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Abstract 

The time and budget restrictions in survey sampling can impose limits on the area sample sizes. 

This may reduce the possibility to obtain area-specific and population parameters estimates 

with adequate precision. Market research companies and institutes for producing official 

statistics face frequently this problem. Various models and methods for small area estimation 

(SAE) have been developed to solve this problem. The sample allocation must support the 

selected model and method to ensure efficient estimation and must be implemented in the 

design phase of the survey. The proposed allocation is developed by incorporating auxiliary 

information, a model, and an estimation method. The estimated parameters are area and 

population totals. The performance of this allocation is assessed through design-based 

simulation experiments using real, regularly collected register data. Five other allocations 

selected from the literature serve as references. Model-based estimation is applied to two 

allocations and design-based Horvitz-Thompson and model-assisted GREG estimation to four 

model-free allocations. Four allocations are based on past register data. The allocation with 

uniquely best performance among all alternatives was not found, but the simulation study 

supports the comprehensive survey plan where the sampling design is conditioned on the 

available auxiliary information, selected model, and method. 

Key words: Low sample size, auxiliary information, model selection, sample allocation, 

EBLUP estimation. 
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1. Introduction 

Many sample-based surveys in a business or an administrative environment aim at obtaining 

parameters estimates for the variables of interest, not only on the population level, but also on 

the subpopulation or area level. A fundamental survey plan contains the phases which are 

implemented in a specified order. The sampling design phase contains a plan for the collection 

of the sample data from the target population. The estimation phase uses the sample data and 

auxiliary information available often on unit level. The sampling design is a critical phase in 

the sense that one of its sub-steps, the sample allocation, may have a strong influence on the 

estimation results. For this reason, the sample allocation is not an independent part of the 

survey. It must be conditioned on the used model, estimation method and auxiliary information 

as well as the priorities set on the area and population level estimation. The variation of the 

variables of interest between and within the areas must also be considered. 

The time and budget restrictions in survey sampling can impose limits on the area sample 

sizes. This may reduce the possibility to obtain area-specific and population parameters 

estimates with adequate precision. Market research companies and institutes for producing 

official statistics face frequently this problem. Various models and methods for small area 

estimation (SAE) have been developed to solve this problem. As Rao and Molina [1] present 

comprehensively, the assortment of different alternatives is wide. They point out the use of 

empirical best linear unbiased estimation methods (EBLUP). This is the main reason for 

applying EBLUP to the selected model.  Burgard et al. [2] have studied the performances of 

different small area point and accuracy estimates for business data. The above sources show 

that the optimal solutions concerning sampling design and the choice of the model, estimator 

and estimation method are under intensive study. 

We propose a model-based CAL-g1 allocation for stratified sampling where the areas of 

interest coincide with the strata and where the overall sample size is restricted. The estimated 

parameters are area and population totals of the study variable y. This allocation aims at 

obtaining area and population estimates with sufficient accuracy. It is based on analytical 

optimization and the calibration of area sizes, and uses the selected model, estimation method, 

and the auxiliary population information, from which the variation between and within the areas 

can be resolved. The underlying model and the derivation of this allocation are introduced in 

Sections 2.1 and 2.2. 

The performance of the proposed allocation method in a real situation is evaluated by using 

design-based simulation experiments. An official Finnish register of block apartments for sale 

in 18 Finnish provinces serves as the sampling population. Five other allocations selected from 

then literature serve as references. One of them, the MC-q025 allocation introduced by Molefe 

and Clark [3], is based on a two-level area model and composite estimator, and uses the same 

population information as CAL-g1 allocation. It is introduced in Section 2.3. Four other 

allocations are model-free and have originally been developed for design-based estimation. 

They are introduced in Section 3. Two of them need only number-based area information for 

computing the area sample sizes. The other two methods use, in addition to number-based 

information, area level parameter information of the study variable.  

The choice of the reference allocations is based on the diversity in the optimization criteria. 

Among the model-free allocations, the optimality level is not defined, it is set on the area level, 

population level or on both levels simultaneously. The priorities for the area and population 

level estimation can be adjusted in MC-q025 allocation. 

Because the parameter information as well as the between-area and within-area variation 

concerning the study variable y are not available, it is replaced with a proxy study variable y* 

obtained from the past apartment register data. Variable y* is used when computing the area 

sample sizes for each allocation except for equal and proportional allocations. Section 4.1 
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contains the characteristics of the sampling population and the proxy population used in the 

allocation phase. The populations include also two auxiliary variables. The allocation-specific 

area sample sizes and the calculation details are presented in Section 4.2. 

Different estimation methods are used for producing the estimates for the area and 

population totals. Model-based EBLUP estimation is applied to the simulated samples drawn 

according to model-based allocations. Design-based Horvitz-Thompson and model-assisted 

GREG estimation are applied to the samples drawn according to model-free allocations. The 

assisting model is the one used in EBLUP estimation. The idea in applying two methods to the 

same samples is to resolve how the accuracy of the estimates develops when the assisting model 

is included in estimation. The use of a low overall sample size (n) makes it easier to see how 

design-based and model-based estimations perform in this survey framework.  

For measuring and comparing the performances of the different allocation and estimation 

method combinations, two quality measures are computed from the simulated samples. The 

relative root mean square error (RRMSE%) is a numerical approximation for the accuracy of 

the area-specific and population estimates, and absolute relative bias (ARB%) is a numerical 

approximation for the bias of the estimates. The biases of the model-based estimates can be 

high for some areas, indicating the model misspecification, but the design-based estimates are 

generally almost unbiased. The primary quality measure is RRMSE%. Section 4.3 contains the 

empirical simulation results. They support the strategy where the allocation is conditioned on 

auxiliary information, the model and estimation method, and they should be determined as early 

as in the design phase of a survey. 

 

2. Allocations using the model 

2.1. The model and estimation method for estimating area totals 

The model for estimating the area totals of the study variable y is a unit-level linear mixed 

model, also called a nested error linear regression model 

DdNkevy ddkddkdk ,...,1;,...,1;  βx ,   (1) 

where dN is the size of area d and D is the number of the areas. The area effects dv  are assumed 

to be iid random variables with mean zero and variance 2

v , and dke ´s are iid random variables 

with mean zero and variance 2

e  and they are independent of dv ´s. Furthermore, βxdkdkyE )(  

and 22)( evdk σσyV   (total variance). Matrix V is the variance-covariance matrix of the study 

variable y with a block-diagonal covariance structure. This model can be used when unit-level 

values are available for the auxiliary variables x. 

A common intra-area correlation   (IAC), see Meza and Lahiri [4], measures the relative 

variation of y between the areas and is computed of the variance components as 

)/( 222

evv σσσ  .     (2) 

The variance components, regression coefficients and area effects must be estimated from the 

sample data before estimating the area parameters. The BLUE estimator (Best Linear Unbiased 

Estimator) of β , noted β
~

, is obtained in accordance with the general linear model theory. It 

is replaced with its EBLUP (Empirical Best Linear Unbiased Predictor) sample estimate β̂ . 
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The EBLUP estimate (predicted value) for the area total 
dY  of the study variable is the sum 

of the observed y-values and predicted y-values for units outside the sample: 

.ˆ)(ˆˆˆ
, ddd

sk
dk

sk
dk

sk
dk

sk
dkEBLUPd vnNyyyY

dddd

 


βx    (3) 

The design MSE (mean squared error) for the estimator Eq. (3) is the sum of its variance and 

squared bias and is defined as 

2

,,

2

,, ))ˆ(E()ˆV()ˆE()ˆMSE( dEBLUPdEBLUPddEBLUPdEBLUPd YYYYYY   (4) 

The second-order Prasad-Rao approximation (see Rao and Molina [1]; pp 180-181) to MSE 

Eq. (4) for finite populations is 

,ˆˆˆˆ2ˆˆˆˆ)ˆ( mse 22

4

22

3

22

2

22

1 )σ,σ(g)σ,σ(g)σ,σ(g)σ,σ(gY evdevdevdevdd,EBLUP    (5) 

where the four terms dg1 , dg2 , dg3 , and dg4  are defined as  

2222

1
ˆˆ1ˆˆ

vdddevd σ)γ()n(N)σ,σ(g  , 

,)ˆ()) (́ˆ()(ˆˆ 1222

2 d

*

d

1

d

*

d xxXX´Vxx ddddevd nN)σ,σ(g     

,ˆˆˆˆ2ˆˆ

ˆˆ)(ˆˆ)(ˆˆ
222224

2431*222*222

3

)]σ,σCov(σσ)σV(σ

)σV(σ[)nσσ(n)n(N)σ,σ(g

veveev

vedevdddevd



 

 

.σ)n(N)σ,σ(g eddevd

222

4
ˆˆˆ       (6) 

The area sample sizes 
dn  depend on the sample and are not fixed. The main term dg1  contains 

the area-specific ratio )/ˆˆ/(ˆˆ 222

devvd nσσσγ  . Nissinen [7, p. 53] points out that this component 

contributes generally over 90 % of the estimated MSE. We have reached similar proportions 

for dg1  in our simulation experiments for every allocation. The high proportion of dg1  suggests 

that the variation of the area estimates is strongly related to the variation between the areas. 

 

2.2. Model-based calibrated CAL-g1 allocation 

    One criterion for obtaining the area sample sizes in the model-based framework is to 

minimize the mean of MSEd´s over areas subject to  


D

d dnn
1

, but an analytical solution is 

difficult owing to the complexity of the MSE approximation Eq. (5). Keto and Pahkinen [8] 

have examined this allocation problem for the first time in an experimental study and have 

developed later an allocation (basic g1 allocation) based only on the term dg1 . The reasoning 

behind this solution is the high proportion of dg1  in the MSE approximation. We describe first 

the basic g1 allocation and then extend it to the proposed CAL-g1 allocation. 

The basic g1 allocation is based on the minimization of the sum of dg1 ´s over the areas: 

 






D

d veddd

D

d evd )/σ/σ(n)n(N),σ(σg
1

1222

1

22

1 1    (7) 

subject to  


D

d dnn
1

. 
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The solution is obtained using Lagrange´s multiplier method. The function F of sample sizes 

),...,,( 21 Dnnnn  and   is 

 






D

d d

D

d veddd

D

d evd nn)/σ/σ(n)n(N),σ(σgF
11

1222

1

22

1 )(1),( n . (8) 

An analytical solution for the area sample size 1g

dn  is 

)1/1(

)1/1)((1










DN

nDNNnN
n ddg

d ,    (9) 

where the intra-area correlation   in Eq. (2) measuring the relative between-area variation is 

unknown. It is replaced with an adjusted homogeneity measure of variation, which is the 

approximation of an intra-class correlation (ICC) known of cluster sampling. One area serves 

as one cluster here. Because y is unknown, it is replaced with the proxy variable y*. They are 

related to one another, because they measure the same numerical quantity on consecutive points 

of time. 

The homogeneity coefficient is obtained using one-way ANOVA applied to y* between the 

areas, and then the adjusted homogeneity measure between the areas is computed as 

22

, ** /MSW1
yya

SR  ,     (10) 

where MSW is the mean SS of areas and 
2

*y
S  is the variance of y*. 

Replacing   in Eq. (9) with the known homogeneity measure Eq. (10), the final expression for 

computing the area sample sizes is obtained as 

)/RD(N

)/Rn)(DN(NnN
n

ya

yaddg

d
11

11

2

,

2

,1

*

*




 .    (11) 

The expression in Eq. (11) is an increasing function of the area size dN . In principal, the 

computed sample sizes are rounded to the nearest integer. Under certain circumstances, such as 

low homogeneity coefficient, small overall sample size n or area size dN , Eq. (11) may yield 

negative area sample sizes, which are changed to zero. An extreme case is that all variation is 

between the areas (  = 1), and Eq. (11) turns to proportional allocation. In case of equal area 

sizes dN , the solution is equal allocation. 

The derived g1 allocation is efficient on the population level, but it can lead to inaccurate 

estimates for the areas with very small size, because they have a low sample size. This allocation 

does not take the within-area variation into account. This variation is included in the modified 

g1 allocation (CAL-g1) using calibration. The steps for the calibration are: 

a) The average  d d DySDyASD /)()( **  of the area standard deviations of y* is computed. 

b) Each true area size 
dN  is replaced with the constant area size DNNd /ˆ  . 

c) The calibrated area sizes are computed as 
dddg NyASDySDN ˆ))(/)((

~ **

,1  . 

d) Inserting the calibrated area sizes 
dgN ,1

~
 into Eq. (11) in place of 

dN , the sample sizes for the 

CAL-g1 allocation are obtained as 

)/RD(N

)/Rn)(DN(NnN
n

ya

yadgdggL

d
11

11
~~

2

,

2

,,1,11CA

*

*




 .   (12) 
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This calibration ignores the true area sizes. The higher the variation in area d, the larger is 
1CAL g

dn 
, and vice versa. Following the idea of Longford [12], the calibrated weight  dgN ,1

~
 

reflects the inferential priority (importance) for area d.  

2.3. Model-assisted MC allocation 

Molefe and Clark [3] have used the following composite estimator for estimating the mean 

of the study variable y for area d: 

dddrd

C

d yy Xβ ˆ)1(~  .     (13) 

This estimator is a combination of two estimators: the synthetic estimator 
dsyndY Xβ ˆˆ

)(
, where 

β̂  is the estimated regression coefficient and 
dX  is the area population means of auxiliary 

variables x, and a direct estimator )(ˆ
ddddr yy Xxβ  , where 

dy  and 
dx  are the area d 

sample means of y and x. The coefficients 
d  are set with the intent to minimize the mean 

squared error (MSE) of the estimator (13). The approximated design-based MSE of the 

estimator under certain conditions and assumptions is given as 

22

)(

2)1();~( ddsynddd

C

dp BvYyMSE   ,    (14) 

where )(syndv  is the sampling variance of the synthetic estimator 
)(

ˆ
syndY  and 

ddd YB  XβU
 is the 

bias when 
)(

ˆ
syndY  is used to estimate dY , with 

Uβ denoting the approximate design-based 

expectation of β̂ . 

A random sample (SRSWOR) of 
dn  units is selected from stratum d (d = 1,…, D) containing 

dN  units. The relative size of area d is ./ NNP dd   

A two-level linear model ξ conditional on the values of x is assumed, with uncorrelated 

stratum random effects du  and unit residuals i : 





















2

2

)(

)(

0)()(

edi

udd

id

idi

V

uV

EuE

uy















ixβ

,     (15) 

where i refers to all units in stratum d. This model implies that 22)( edudiyV    for all 

population units and ),(cov ji yy  equals 2

dd   for units i ≠ j in the same stratum and zero for 

units from different strata, where )/( 222

edududd   . For simplicity, it is assumed that  d
 

are equal for all strata. 

After some other simplifying assumptions and solving the optimal weight 
d  in Eq. (14), the 

final approximate optimum anticipated MSE is obtained of Eq. (13) as 

    12

)( )1(1)1(;~(MSEAMSE


  dddoptd

C

dpd nYyE .  (16) 
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The criterion F using anticipated MSE´s of the small area mean and overall mean estimators 

for model-assisted allocation has the final approximative form 

 rp

q

d

D

d

q

d YEGNNF ˆvarAMSE )(

1 
  

   










D

d ddd

qD

d dd

q

d nPGNnσN
1

122)(
1

1

2 )1()1(1)1(  .  (17) 

Optimal sample sizes for the areas are obtained minimizing Eq. (17) subject to  
d d nn , 

following the idea of Longford [12]. The weight 
q

dN  reflects the inferential priority for area d, 

with q as an adjustable constant ( 20  q ), and   
D

d

q

d

q NN
1

)(
. The quantity G is a relative 

priority on the population level. If G is set to zero, the attention is focused only on the area level 

estimation, and the increment in G diminishes the importance of area level estimation. 

If also the population estimation has a priority (G > 0), F must be minimized numerically by 

using, for example, the NLP method. If G = 0 and the unit survey cost are fixed, the 

minimization of Eq. (17) with respect of  
dn  has a unique solution 



















 





1
1

1

21

2

1

2

2

D

d

q

dd

q

dd

D

d

q

dd

q

ddMC

d

ND

N

N

Nn
n












.   (18) 

Equations (17)–(18) contain two unknown parameters, the intra-class correlation   and the 

area-specific variance 2

d . Parameter   is replaced with an adjusted homogeneity coefficient 

of the proxy variable y* (Section 2.2), and 2

d  is replaced with the variance of y* in area d. The 

relationship between y and y* justifies both replacements. 

Table 1. Summary of model-based and model-assisted allocations. 

 

3. Model-free reference area allocations 

Four allocation methods developed originally for the design-based estimation are introduced 

shortly in this section. They are model-free in the sense that they can be used also in other model 

and estimation method frameworks. Depending on which kind of auxiliary information each 

one uses, they are divided into two groups: number-based and parameter-based allocations. 

3.1. Number-based allocations  

Two basic commonly used allocations go under the names equal  allocation and proportional 

allocation, see Cochran [5]. They don´t contain any specific criterion on the area or population 

level. Their implementation requires only information on the number of strata D and the 

numbers of units 
dN  in each stratum.  

In the equal allocation (EQU), the area sample size dn  is simply 

DnnEQU

d / .     (19) 

It is recommended to choose the total sample size n so that the quotient is an integer. This 

allocation method does not take the internal characteristics of the areas into account in any way. 

As Choudry et al. [11] state, it can be efficient on area level, but can lead to inaccurate estimates 
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for very large areas, and thus for the whole population. A natural lower limit of the sample size 

is min n = 2D. 

Proportional allocation (PRO) is a frequently used basic method. The area sample size dn  

is proportional to the area size dN  and is computed as 

nNNn d

PRO

d )/( .     (20) 

If a stronger variation can be anticipated in large areas compared with small areas, this 

allocation can be a reasonable choice, but on the other hand, strong differences between the 

area sizes can lead to situations where 2PRO

dn  for the smallest areas.  This is an obstacle in 

calculating reliable direct design-based area estimates as well as their unbiased variances. The 

population estimates are generally accurate, because large areas have high sample sizes, but the 

small area estimates are probably less accurate. Costa et al. [6] have proposed a convex 

combination 

DnknNNknknkn d

EQU

d

PRO

d

COS

d
/)1()/()1(                                             (21) 

between equal and proportional allocation for a specified constant k )10(  k to avoid very 

small sample sizes, but it can be difficult to justify the optimal value for k. 

3.2. Parameter-based allocations 

Parameter-based allocations use area-level information of the study variable y. In practice 

the unknown y is replaced with a proxy variable y* such as a study variable measuring the same 

characteristics and is obtained from the past data. If the past data is not available, an auxiliary 

variable x correlated with y can be used as a proxy variable. The allocation criteria can be set 

on population level, only on area level or on combined population and area level. 

The Neyman allocation (NEY) aims at reaching an optimal accuracy on the population level 

and uses area parameters 
dyS )( , see Tschuprow [9] and Cochran [5]. The standard deviation 

of the study variable y and the number of units in each area must be known. This allocation 

favors large areas with strong variation and can lead to area sample sizes 
dn < 2 preventing the 

unbiased estimation of the variances. An alternative to avoid this problem by using the box-

constraint optimal allocation has been proposed by Gabler et al. [10]. 

Choudry et al. [11] present the NLP (non-linear programming) allocation for direct 

estimation. Criteria for the allocation are defined by setting first upper limits for CV´s of the 

area sample means dy  and population sample mean sty . The CV´s are computed as 

ddd Yyy /)(V)(CV   and Yyy stst /)(V)(CV  .   (22) 

The program searches the minimum sample size  d dnn subject to pre-set tolerances for 

the CV´s in Eq. (22). The constraints are defined so that the function to be minimized becomes 

separable and convex. The SAS procedure NLP with Newton-Raphson option was used to find 

the solution. The allocation favors areas with high CV regardless of the area size 
dN . 

A summary of the model-free allocations and the formulas for calculating area sample sizes 

are presented in Table 2. 

Table 2. Summary of number-based and parameter-based allocations. 

Some other parameter-based allocation methods are mentioned briefly. Longford [12] 

introduces the inferential priorities dP  for the strata d and G for the population and uses those 

constraints for deriving sample size allocation schemes for three types of estimators. Falorsi 
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and Righi [13] propose an overall sampling strategy that guarantees a pre-defined precision for 

the domain estimators when the overall sample size is bounded. The strategy aims at controlling 

the area sample sizes by using a multi-stage sampling design based on a balanced sampling 

selection technique and a GREG-type estimation. 

 

3.3. Estimation methods for model-free allocations 

The finite population denoted  NkU ,...,,...,2,1  is composed of D non-overlapping 

domains or areas Dd UUU ,...,,...,1 , with dN  units in each, and  
d d NN . A probability 

sample s is drawn from U, and ds  is the sample drawn from area d. The inclusion probability 

of unit k is denoted k , and the sampling weight for unit k is kkw /1 . 

Two design-based estimation methods are applied to model-free allocations. The Horvitz-

Thompson estimator for the area total 
dU kd yY is  

  
dd sk kksk kkTHd yywY /ˆ

, .    (23) 

The model-assisted GREG (Generalized Regression) estimator for area total dY  

 value)predicted  theis ˆ( /)ˆ(ˆˆ
, kkksk kUk kGREGd yyyyY

dd

 
 , (24) 

is based on a model, and here it is the linear mixed model Eq. (1). See Lehtonen et al. [14] for 

details. The first part of Eq. (24) is the predicted value for dY  when the model is applied. The 

predicted value for every kU can be computed, because the unit-level values of the auxiliary 

variables x are known according to the model. The second term protects against model 

misspecification (Lehtonen et al. [14]). 

 

4. Empirical results  

 This section contains the descriptions of the research data populations, the allocations and 

the clarifying details in computing the sample sizes, as well as the performances of the 

allocations based on sample simulation experiments. The estimated parameters are area and 

population totals of the study variable y, and the overall sample size n is fixed. 

4.1. Periodically collected business register 

A national Finnish register of block apartments for sale is the source of the research data. 

This register is maintained by a private company, Alma Mediapartners Ltd, whose customers 

are real estate agencies. They save all the necessary information of the apartments into this 

register as soon as they receive an assignment from the owners. The population for sample 

simulations consists of 21,025 block apartments (serve as sampling units) for sale selected from 

the register. They cover 18 Finnish provinces, which serve as areas, in October 2015. The 

smallest area contains 160 units and the largest area contains 6,813 units. The study variable 

(y) measures the apartment price (1,000 €) and the auxiliary variables ( 1x  and 2x ) measure the 

size (m2) and age (years) of the apartments. 

All the allocations except EQU and PRO allocations are based on the proxy variable y*, 

which is the price variable of the proxy data register in April 2015. This register contains 22,230 

apartments for sale in 18 provinces, and the variables are the same as in the sampling 

population. The reasoning behind the use of the proxy data for the allocations is that the 



10 

 

structure of this phenomenon under study has remained practically unchanged from April to 

October in 2015. The adjusted measure of homogeneity of the y* is 
2

, *ya
R = 0.1697 indicating a 

moderate variability between the areas. 

Table 5 in the Appendix contains area sizes (
dN ), population summary statistics (totals, 

means, standard deviations and CV´s) for y and the proxy variable y*. The corresponding 

population statistics except totals for x-variables, as well as correlations between y- and x-

variables, are given in the Appendix Table 6. The characteristics of the areas have a wide range 

concerning the variables price and age. There is not a very significant variation in the sizes of 

apartments between the areas, as can be expected. The province of Uusimaa (around capital 

Helsinki) is a dominating area, because its size is clearly the largest (32.4 % of the population 

size) and the general price level is by far the highest among the provinces. The study variable 

y has a strong positive correlation with 1x (size) except for one small area and a negative 

correlation with 2x  (age) in all areas except for the largest area (Uusimaa). The area-specific 

correlations between auxiliary variables are low. 

4.2. Allocations 

In general, the overall sample size depends on the available time and financial resources in 

the research project. These limitations have no significance now, because the low overall 

sample size (n) is an essential feature in our experimental study. The value of the sampling ratio 

was determined as f % = 216/21,025 = 1.03 %. Method-specific allocations are based on the 

formulas presented in Table 1 and Table 2. 

Some details are clarified. We have substituted y* for y in two model-free and two model-

based allocations using area parameters. The Excel Solver procedure with non-linear option is 

used for solving the area sample sizes for NLP allocation. The selected CV limits 0.1901 (19.01 

%) for areas and the CV limit 0.0800 (8.00 %) for the population lead to the overall sample size 

216. Two smallest areas have a computational sample size one in NEY allocation, but they were 

raised to two, on the cost of Uusimaa province, to allow unbiased variance estimation. The 

value for the adjusted homogeneity coefficient (Section 2.2) used for CAL-g1 and MC-q025 

allocations is 0.1697. For the MC-q025 allocation, the value of q was set to 0.25, and the quantity 

G was set to zero. The reason for the choice of these values is to avoid the strong concentration 

of the sample on one area (Uusimaa) and a very low or zero sample size for many areas. 

The allocation-specific area sample sizes, which are presented in Table 3, vary strongly 

between the allocations. The area sizes in the proxy population and the calibrated area sizes 

used for CAL-g1 allocation are also presented. Uusimaa area dominates in three allocations, 

and in NEY allocation it represents almost 60 % of the overall sample. Four areas have sample 

size two in NEY allocation. Low area sample sizes appear also in MC-q025 and PRO allocations. 
 

Table 3. Area sample sizes by allocation. 

4.3. Simulation experiments    

The results are based on design-based simulation experiments. For each allocation, r (here r 

= 1,500) independent stratified SRSWOR samples were simulated using SAS program, which 

was used also in the computation of estimates for regression coefficients, area effects and area 

totals in EBLUP estimation. Other calculations from the simulated samples were implemented 

with SPSS program. We have applied design-based Horvitz-Thompson (H-T notation in tables 

and figures) and model-assisted GREG estimation to the model-free allocations and model-

based EBLUP estimation to CAL-g1 and MC-q025 allocations. 
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The performances of the allocations (accuracy and bias) are evaluated in terms of two quality 

measures computed from the simulated samples. The relative root mean square error RRMSE% 

is the numerical approximation of design MSE Eq. (4) or design variance, and absolute relative 

bias (ARB%) is the numerical approximation of the design bias. Bias values are computed also 

for model-free allocations, although design-based estimators are generally design-unbiased. 

The number of simulated samples is r in each allocation, and diŶ  is a design- or model-based 

estimate for the area total dY  in the ith sample (i = 1, …, r). RRMSE%  for area d is defined as 

d

r

i ddid YYYr /))ˆ(/1(100%RRMSE
1

2/12
 

 , 

and ARB% for area d is defined as 

)1/ˆ(1/100%ARB
1

   d

r

i did YYr ,  

and their means over all D areas are computed as  

MRRMSE% =  

D

d dD
1

%RRMSE/1  and MARB% =  

D

d dD
1

%ARB/1 . 

The estimate for the population total in the ith simulated sample (i = 1, …, r) is the sum of the 

estimates of the area totals:  


D

d dii YY
1

ˆˆ . RRMSE% for the population total is computed as 

RRMSE(pop)% = YYYr
r

i i /))ˆ(/1(100
1

2/12
 

 , 

where Y is the true value of the population total, and the corresponding ARB% is computed as 

 ARB(pop)% =  


r

i EBLUPi YYr
1 , )1/ˆ(/1100 . 

The evaluation of the quality measures is based on the means over the areas, the population 

values, and the area-specific distributions. 

The RRMSEd % means over the areas (MRRMSE%) and population RRMSE%´s are 

presented in Figure 1. The allocations and estimation methods are ordered so that they highlight 

the change in accuracy of area and population estimates when the design-based and model-

assisted GREG estimation have been applied to the model-free allocations. The population level 

RRMSE%´s and means over the areas (MRRMSE%) have decreased clearly in EQU and NLP 

allocations. The corresponding changes in PRO and NEY allocations are contradictory in the 

sense that population RRMSE%`s have decreased slightly, but the means over the areas have 

increased considerably. The typical properties of the EQU, PRO and NEY allocations can be 

recognized from the results. The EQU allocation performs well on the area level, but poorly on 

the population level (H-T: 13.26 % and GREG: 10.97 %). The PRO and NEY allocations are 

far from good performance on the area level.  

On the population level, PRO/GREG combination reaches the lowest population RRMSE% 

(4.82 %), but all the other allocations except EQU and NLP have almost the same accuracy. If 

the allocation-specific aggregate RRMSE%´s are experimentally computed as the sums of the 

means over the areas and population values, the allocations CAL-g1 and MC-q025 have the 

lowest sums, but their mutual differences are small. 

 

Figure 1. Means of area RRMSEd%s and population RRMSE%s by allocation and estimation 

method. 

Figure 2 contains the distributions of the area-specific RRMSEd % values for each allocation, 

and the precise values are presented in the Appendix Table 7. The distributions illustrate the 

relative variation in the area total estimates obtained from the simulated samples and express 

the impact of the randomness on the samples. High values and outliers exist in every 

distribution. The GREG estimation has different effects on the distributions of the model-free 
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allocations. The distributions are considerably wider in PRO and NEY allocations. The 

distribution level of EQU allocation falls, but on the other hand, high values (25.37 % and 20.91 

%) for the largest area Uusimaa occur, regardless of the estimation method. The distribution 

level of NLP allocation falls also, except for two smallest areas. The model-based allocations 

have otherwise a tight distribution with a quite low level, but they both have one small area as 

an outlier case. The randomness is best controlled in the EQU/GREG combination and CAL-

g1 allocations. 

 

Figure 2. Distributions of area-specific RRMSEd %s by allocation and estimation method. 

Table 4 contains the bias (ARB%) means over areas and population ARB%´s obtained from 

EBLUP estimation for every allocation, together with corresponding RRMSE% values. The 

results concerning both quality measures in the model-based allocations are similar. CAL-g1 

allocation has lower values on the area level, and MC-q025 performs better on the population 

level. As expected, the area estimates obtained for the model-free allocations are almost 

unbiased. The overall performances are evaluated by experimentally combining first the area 

and population level RRMSE% and ARB% values and then combining the two sums into 

overall sums. The NLP/GREG and EQU/GREG combinations have the lowest overall sums 

(25.59 % and 27.13 %), but CAL-g1 and MC-q025 allocations have only slightly higher sums. 

 

Table 4. Means over the areas and population values for RRMSE% and ARB% by allocation. 

The table contains also aggregate values and overall aggregate values. 

 

The Appendix Table 8 contains the area-specific bias (ARB%) values for each allocation and 

estimation method combination. As can be anticipated, the model-based allocations have 

considerably higher biases for most of the areas compared with the model-free allocations. The 

low biases occur only in the same five areas, one of which is small. Four same areas have a bias 

10 % or higher, and one of them has a bias as high as over 20 %. The high area biases 

demonstrate that the used model is inappropriate for those areas. The CAL-g1 allocation 

outperforms MC-q025 allocation according to the area-specific biases. 

NEY, PRO, and EQU allocations represent the extreme solutions in the sense that they are 

either very strongly or not at all related to the area sizes. These solutions lead to good estimation 

results only on one level. A strong connection between sample and area sizes does not occur in 

the rest of the allocations (CAL-g1, MC-q025, and NLP), and excluding a few exceptions, they 

perform moderately well on both levels. Any pre-set priorities or tolerances are not used in 

CAL-g1 allocation, but NLP and MC-q025 are based on such limitations, and it may be difficult 

to find proper values for them. The choice of these limitations depends on what importance is 

addressed to the quality of estimation on the area and population level. 

Compared with Horvitz-Thompson estimation, the application of model-assisted GREG 

estimation improves the accuracy of estimates for EQU and NLP allocations. On the other hand, 

the GREG estimation leads to reduced accuracy on area level for PRO and NEY allocations, 

which are tightly related to the area sizes and in which one area (Uusimaa) dominates. EQU 

and NLP allocations do not have the same kind of dependency on the area sizes. 

The two model-based allocations perform moderately well as a whole. The results for small 

areas indicate that model-based estimation can produce accurate estimates despite a low sample 

size, but sometimes a much larger sample size is necessary for reaching adequate accuracy. The 

available auxiliary information suggests that if the characteristics of an area deviate much from 

the corresponding population characteristics, it can lead to a strong underestimation or 

overestimation of the area totals, regardless of the area size dN . If the area sample size dn  is 
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very low, the synthetic part in the estimator Eq. (3) dominates, and the area total estimate 

depends almost completely on the sampled units from the other areas. 

 

5. Conclusion 

The focus in this study was in resolving how area sample sizes can be controlled in stratified 

sampling, when the unit-level linear mixed model and EBLUP estimation is applied to the 

sample data and when the overall sample covers only 1 % of the population. The low overall 

sample size was a deliberate choice in the sense of highlighting the problems in small area 

estimation. The control aims at obtaining the area and population estimates with adequate 

accuracy and low bias. The proposed CAL-g1 allocation method uses auxiliary information, the 

model, and method and is derived in the design phase of the survey. 

The performance of the proposed allocation both on the area and population level was 

assessed through design-based sample simulations using real population data. Five allocations 

selected from the literature served as references. Each of them is based on a different 

optimization criterion and the use of auxiliary information. The MC-q025 allocation uses 

another area model, whereas the other four allocations are model-free. The sample sizes except 

for equal and proportional allocations were calculated using the previous real register data. 

EBLUP estimation was applied to the samples in case of model-based allocations. The design-

based Horvitz-Thompson and model-assisted GREG estimation using sampling weights were 

applied to the samples drawn according to model-free allocations. The results indicate that the 

incorporation of an assisting model does not always improve the estimation results. 

The area sample sizes and estimation results have a large variability in the studied 

allocations. An allocation and estimation method combination with indisputably best 

performance does not exist among the studied alternatives, if the comparison is based on the 

accuracies of the area and population estimates. Every combination has high RRMSE% values, 

and a clear majority of the values over 20 % occur in the distributions of the design-based 

allocations, regardless of the estimation method. 

Proportional and Neyman allocations perform well on the population level, but poorly on 

area level. It is also noteworthy concerning these two allocations that compared with Horvitz-

Thompson estimation, the inclusion of the assisting model leads to reduced accuracies of the 

area estimates. It seems that under these circumstances with an uncommon area structure and 

the strong dependency between sample and area sizes, the model-assisted estimation can be 

more inefficient than Horvitz-Thompson estimation. As far as NLP and equal allocations are 

concerned, the application of GREG estimation improves also the accuracies of area estimates 

on the average, in contrast with proportional and Neyman allocations. The distribution of NLP 

allocation contains two smallest areas as outlier cases, and its overall performance is not the 

best anyway. The largest area Uusimaa is an outlier case in the distribution of equal allocation, 

and many other large areas have inaccurate estimates. The population level RRMSE% values 

which are by far the highest, demonstrate one common weakness of this allocation. As is 

expected, the area and population estimates are almost unbiased when the design-based 

estimation is applied. 

Cal-g1 and MC-q025 allocations perform well both on the population and area level according 

to RRMSE% values, except for one small area as an outlier case. The population estimates are 

almost unbiased, but the area-specific distributions contain the same four areas with a strong 

bias (over 10 %). If these two allocations are evaluated in terms of area-specific bias 

distributions, CAL-g1 allocation performs better compared with MC-q025 allocation, but 

anyway, the same strongly biased four areas are a common problem for both allocations. This 
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indicates the model misspecification for these areas. The bias level of a single area remains 

regardless its sample size. 

When analyzing the results from different standpoints, it is worth taking into consideration 

that they have been obtained in a quite demanding survey and area framework. Although the 

results are partly contradictory, they support the principle that the used model and estimation 

method as well as the available auxiliary information are incorporated in the sampling design 

implemented at the planning stage of the survey. If it is important to obtain accurate area and 

population estimates, the variation between and within the areas must be included in the 

allocation solution. Both model-based allocations satisfy these requirements, but the existence 

of outliers indicates deficiencies which must be corrected.  

A wider conception of the performance of the proposed allocation requires, that it is tested 

together with the reference allocations in various other area frameworks using different study 

and auxiliary variables. Possible directions for further development of the proposed allocation 

are the use of every MSE term (not only dg1 ) and the improvement in calibration of area sample 

sizes. The complexity of the MSE makes it difficult to reach an analytical solution, and for this 

reason, the use of software tools like nonlinear programming become necessary. It is likely that 

an optimization problem relating to the used model has not a closed-form solution in this 

situation. The question related to MC-q025 allocation is the setting of priorities between 

population and area level estimation. This question arises anyway when both the area and 

population level parameters are estimated, regardless of the estimation method. The choice of 

the priorities should be a reasonable trade-off between the levels. 
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Tables and figures 
 

Table 1 

Summary of model-based and model-assisted allocations. 

Method Computing sample size 
dn  for area d Optimality level 

CAL-g1 

)1/1(

)1/1)(
~

(
~

2

,

2

,,1,11CAL

*

*






ya

yadgdgg

RDN

RnDNNnN
n

d

, where 

./)(/)(
~ **

,1 DNyASDySDN ddg   

Jointly area  

and population 

MC-

q025  


















 





1
1

1

2/1

2/

1

2/

2/

MC

D

d

q

dd

q

dd

D

d

q

dd

q

dd

d

ND

N

N

Nn
n












, G = 0 here. 

Area 

 



17 

 

Table 2 

Summary of number-based and parameter-based allocations. 

Allocation  Computing area sample size 
dn  Optimality level 

Equal DnnEQU

d
/  Not defined 

Proportional nNNn d

PRO

d )/(  Population 
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 )/(
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

D
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deviation of y (in this study y*) in area d. 
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dd CV)y(CV 0  

and 
0)( CVyCV st  . In this study y* replaces y. 

Jointly 
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Table 3 

Area sample sizes by allocation. The calibrated area sizes are used for calculating the sample 

sizes for CAL-g1 allocation. The sampling population is denoted “Population”. 

 Proxy data Popu- Model-based Model-free 

Area (province) True Calibrated lation CAL- MC- Number-based Parameter-based 
 Nd Ñd Nd g1 1 q025 

1 

EQU PRO NLP NEY 

Uusimaa 7,449  3,516.5  6,813  43  55  12  69  36  125  

Pirkanmaa 2,121  1,256.8  2,003  12  14  12  20  11  13  

Varsinais-Suomi 1,652  1,670.3  1,543  18  19  12  16  18  14  

Päijät-Häme 1,103  1,368.2  1,166  14  14  12  12  13  8  

Central Finland 1,219  973.8  1,141  9  8  12  12  9  6  

North Ostrobothnia 1,300  1,191.4  1,131  11  11  12  12  9  7  

Satakunta 962  1,189.3  1,017  11  11  12  10  15  6  

Kymenlaakso 836  911.5  929  8  7  12  10  13  4  

Pohjois-Savo 1,009  1,228.7  923  12  11  12  9  13  6  

Kanta-Häme 755  1,021.8  885  9  9  12  9  10  5  

Etelä-Savo 825  1,032.6  751  9  9  12  8  10  4  

South Karelia 481  1,090.7  553  10  9  12  6  12  3  

North Karelia 625  1,225.2  549  12  10  12  6  7  4  

Lapland 649  1,099.2  544  10  9  12  6  12  3  

Ostrobothnia 523  972.2  421  8  7  12  4  8  2  

South Ostrobothnia 346  913.3  311  8  6  12  3  6  2  

Kainuu 216  706.3  185  5  3  12  2  8  2  

Central Ostrobothnia 159  862.3  160  7  4  12  2  6  2  

Total 22,230  22,230  21,025  216  216  216  216  216  216  
1) based on the adjusted homogeneity coefficient (value 0.1697) computed of the proxy variable y*. 
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Table 4 

Means over the areas and population values for RRMSE% and ARB% by allocation. The 

table contains also aggregate values and overall aggregate values. 

Estimation method Model-based Design-based and model-assisted   

Allocation method CAL- MC- EQU/ EQU/ PRO/ PRO/ NLP/ NLP/ NEY/ NEY/ 

 g1 q025 H-T GREG H-T GREG H-T GREG H-T GREG 

 RRMSE% 

Mean over areas (%) 14.02  15.47  19.11  14.71  24.33  26.53  20.13  17.82  30.28  40.68  

Population value (%) 6.06  5.13  13.26  10.97  5.94  4.82  8.23  6.35  5.42  4.98  

Sum (%) 20.08  20.60  32.37  25.68  30.27  31.35  28.36  24.17  35.70  45.66  

 ARB% 

Mean over areas (%) 6.53  7.84  0.37  0.46  0.58  0.43  0.31  0.62  0.79  1.27  

Population value (%) 2.48  1.23  0.29  0.99  0.58  0.58  0.17  0.80  0.19  0.30  

Sum (%) 9.01  9.07  0.66  1.45  1.16  1.01  0.48  1.42  0.98  1.57  

Overall sum (%) 29.09  29.67  33.03  27.13  31.43  32.36  28.84  25.59  36.68  47.23  
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Appendix 

Table 5 

Population summary statistics of the study variable y obtained from the business register in October 

2015 and a proxy variable y* obtained from the business register in April 2015. 

Area (province) Study variable y (price) Proxy variable y* (price) 

Name Nd Total Mean St. dev CV Nd Total Mean St. dev CV 

Uusimaa 6,813  2,067,530  303.47  271.28  0.894  7,449 2,304,368  309.35  273.26 0.883 

Pirkanmaa 2,003  311,634  155.58  106.87  0.687  2,121 332,063  156.56  97.67 0.624 

Varsinais-Suomi 1,543  248,763  161.22  145.36  0.902  1,652 263,589  159.56  129.80 0.814 

Päijät-Häme 1,166  174,104  149.32  107.30  0.719  1,103 170,514  154.59  106.33 0.688  

Central Finland 1,141  153,693  134.70  81.07  0.602  1,219 165,102  135.44  75.67 0.559  

North Ostrobothnia 1,131  180,849  159.90  98.22  0.614  1,300 215,869  166.05  92.58 0.558  

Satakunta 1,017  111,409  109.55  84.94  0.775  962 118,271  122.94  92.42 0.752  

Kymenlaakso 929  91,405  98.39  66.81  0.679  836 85,538  102.32  70.83 0.692  

Pohjois-Savo 923  114,935  124.52  100.49  0.807  1,009 137,991  136.76  95.48 0.698  

Kanta-Häme 885  106,110  119.90  73.85  0.616  755 98,418  130.36  79.40 0.609  

Etelä-Savo 751  89,736  119.49  81.94  0.686  825 109,153  132.31  80.24 0.606  

South Karelia 553  64,087  115.89  73.77  0.637  481 61,378  127.60  84.76 0.664  

North Karelia 549  96,688  176.12  103.19  0.586  625 116,373  186.20  95.21 0.511  

Lapland 544  61,867  113.73  89.11  0.784  649 83,683  128.94  85.42 0.662  

Ostrobothnia 421  58,584  139.15  77.63  0.558  523 74,995  143.39  75.55 0.527  

South Ostrobothnia 311  41,822  134.48  67.02  0.498  346 51,766  149.61  70.97 0.474  

Kainuu 185  15,791  85.36  52.93  0.620  216 21,230  98.29  54.89 0.558  

Central Ostrobothnia 160  22,403  140.02  69.53  0.497  159 23,556  148.15  67.01 0.452  

Population 21,025  4,011,408  190.79  191.69  1.005  22,230 4,433,859  199.45  175.02 0.877  

Mean over areas         95.97  

 

Table 6 

Population summary statistics of the auxiliary variables and correlations between variables obtained 

from the business register in October 2015 

Area (province) Auxiliary variable x1 (size) Auxiliary variable x2 (age) Correlations 

Name Nd Mean St. dev CV Mean St. dev CV (y,x1) (y,x2) (x1,x2) 

Uusimaa 6,813  70.60 28.94  0.410  33.41 30.16 0.903  0.732 0.031 -0.014 

Pirkanmaa 2,003  65.02 23.75  0.365  29.63 25.04 0.845  0.649 -0.170 0.133 

Varsinais-Suomi 1,543  69.26 28.10  0.406  33.83 22.22 0.657  0.573 -0.306 0.143 

Päijät-Häme 1,166  66.07 23.76  0.360  30.84 22.47 0.729  0.576 -0.463 0.031 

Central Finland 1,141  63.90 19.62  0.307  25.80 22.57 0.875  0.433 -0.650 0.029 

North Ostrobothnia 1,131  65.41 23.11  0.353  18.17 21.90 1.205  0.625 -0.434 0.080 

Satakunta 1,017  64.82 20.17  0.311  40.50 24.19 0.597  0.501 -0.163 0.059 

Kymenlaakso 929  63.28 24.09  0.381  38.64 23.13 0.599  0.456 -0.508 0.165 

Pohjois-Savo 923  66.07 26.19  0.396  36.90 19.28 0.523  0.535 -0.465 -0.044 

Kanta-Häme 885  63.22 24.18  0.382  35.05 21.56 0.615  0.499 -0.519 -0.008 

Etelä-Savo 751  62.40 20.83  0.334  34.02 20.62 0.606  0.423 -0.521 -0.009 

South Karelia 553  61.91 18.08  0.292  33.83 21.31 0.630  0.458 -0.542 0.048 

North Karelia 549  61.94 18.98  0.307  20.20 21.80 1.079  0.473 -0.680 0.027 

Lapland 544  64.63 25.15  0.389  31.98 21.58 0.675  0.532 -0.573 0.033 

Ostrobothnia 421  61.56 25.94  0.421  33.08 28.41 0.859  0.513 -0.248 0.181 

South Ostrobothnia 311  64.61 24.15  0.374  25.68 22.18 0.864  0.221 -0.657 0.253 

Kainuu 185  58.84 20.51  0.349  36.35 16.10 0.443  0.472 -0.590 -0.029 

Central Ostrobothnia 160  75.08 40.78  0.543  40.39 26.23 0.649  0.578 -0.145 0.293 

Population 21,025  66.72 25.75  0.386  32.11 25.85 0.805  0.592 -0.097 0.044 
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Table 7 

Area and population level RRMSE%s by allocation and estimation method. The values are computed 

of the simulated samples drawn from the business register in October 2015. 

Area (province) Nd Model-based Design-based H-T and model-assisted 

  CAL- MC- EQU/ EQU/ PRO/ PRO/ NLP/ NLP/ NEY/ NEY/ 

  g1 q025 H-T GREG H-T GREG H-T GREG H-T GREG 

Uusimaa 6,813  12.15  9.95  25.37  20.91  10.10  7.66  14.89  11.28  7.85  5.50  

Pirkanmaa 2,003  10.14  9.72  19.56  14.66  15.01  12.08  21.21  15.57  19.20  17.86  

Varsinais-Suomi 1,543  12.01  11.77  25.77  18.11  23.08  17.52  21.46  15.79  23.91  21.31  

Päijät-Häme 1,166  10.14  10.38  20.42  14.02  20.92  17.03  19.68  15.33  25.26  24.62  

Central Finland 1,141  11.39  12.25  17.32  11.97  16.94  16.20  20.24  16.03  23.77  29.58  

North Ostrobothnia 1,131  8.80  9.22  17.97  11.51  17.35  14.55  19.86  13.73  23.25  23.15  

Satakunta 1,017  16.72  17.87  22.29  18.81  24.27  24.69  19.91  18.15  31.00  35.68  

Kymenlaakso 929  20.62  23.74  19.07  14.72  21.33  26.25  18.88  18.48  32.43  55.80  

Pohjois-Savo 923  14.45  16.24  22.50  16.93  26.50  25.27  22.70  17.69  33.76  38.47  

Kanta-Häme 885  12.90  13.76  17.17  13.25  20.42  22.61  19.14  16.90  27.32  38.37  

Etelä-Savo 751  13.50  14.08  18.92  15.26  23.93  23.90  21.18  18.74  34.25  40.48  

South Karelia 553  12.55  13.15  18.23  13.24  25.50  24.46  18.05  15.46  36.32  44.27  

North Karelia 549  9.63  11.13  17.01  10.90  24.20  19.71  21.64  15.96  29.58  28.34  

Lapland 544  16.23  19.74  22.64  15.67  30.86  32.44  22.54  18.28  45.09  55.22  

Ostrobothnia 421  11.66  12.45  15.75  14.13  28.14  33.23  19.26  19.34  37.96  57.19  

South Ostrobothnia 311  13.19  14.94  13.59  11.67  30.50  40.15  20.25  21.41  36.56  61.48  

Kainuu 185  26.77  32.16  17.12  15.24  43.64  61.49  21.63  26.13  43.71  80.85  

Central Ostrobothnia 160  19.45  25.89  13.31  13.82  35.19  58.30  19.81  26.54  33.80  72.95  

Mean over areas (%)  14.02  15.47  19.11  14.71  24.33  26.53  20.13  17.82  30.28  40.68  

Population value (%)  6.06  5.13  13.26  10.97  5.94  4.82  8.23  6.35  5.42  4.98  
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Table 8 

Area and population level ARB%s by allocation and estimation method. The values are computed of 

the simulated samples drawn from the business register in October 2015. 

Area (province) Nd Model-based Design-based H-T and model-assisted 
  CAL- MC- EQU/ EQU/ PRO/ PRO/ NLP/ NLP/ NEY/ NEY/ 

  g1 q025 H-T GREG H-T GREG H-T GREG H-T GREG 

Uusimaa 6,813  7.63  5.94  0.53  1.61  0.94  1.71  0.40  1.64  0.55  0.98  

Pirkanmaa 2,003  1.28  1.14  0.34  0.35  0.44  0.09  0.07  0.04  0.42  0.22  

Varsinais-Suomi 1,543  0.83  0.46  0.32  1.12  0.60  0.01  0.15  0.10  0.07  0.18  

Päijät-Häme 1,166  0.85  1.03  0.48  0.63  0.10  0.11  0.24  0.39  0.07  0.32  

Central Finland 1,141  5.09  5.84  0.25  0.14  0.33  0.23  0.33  0.37  0.30  0.16  

North Ostrobothnia 1,131  1.53  1.38  0.09  0.08  0.42  0.10  0.16  0.39  0.78  0.46  

Satakunta 1,017  7.77  9.41  0.32  0.97  0.12  0.21  0.52  1.03  0.36  0.06  

Kymenlaakso 929  14.84  17.66  0.60  0.75  0.06  0.49  0.40  0.06  0.68  1.37  

Pohjois-Savo 923  5.40  6.54  0.39  0.59  1.68  0.02  0.45  0.73  1.04  0.52  

Kanta-Häme 885  5.63  6.67  0.23  0.03  0.39  0.59  0.31  0.66  0.28  0.11  

Etelä-Savo 751  5.14  5.66  0.44  0.30  0.64  1.01  0.09  0.42  0.38  3.47  

South Karelia 553  5.94  6.10  0.18  0.07  1.47  0.64  0.09  0.09  1.45  1.44  

North Karelia 549  4.32  6.45  0.27  0.12  0.05  0.02  0.23  0.54  0.39  0.15  

Lapland 544  10.36  13.17  0.40  0.62  1.66  0.69  0.23  1.00  0.97  0.99  

Ostrobothnia 421  2.15  1.68  0.12  0.24  0.17  0.00  0.69  0.01  0.82  1.41  

South Ostrobothnia 311  6.58  7.84  0.39  0.43  1.21  0.35  0.01  0.59  2.53  3.49  

Kainuu 185  21.64  27.14  0.76  0.18  0.21  0.55  0.92  0.22  1.48  0.90  

Central Ostrobothnia 160  10.59  16.93  0.49  0.04  0.01  0.94  0.20  2.97  1.68  6.63  

Mean over areas (%) 6.53  7.84  0.37  0.46  0.58  0.43  0.31  0.62  0.79  1.27  

Population value (%)  2.48  1.23  0.29  0.99  0.58  0.58  0.17  0.80  0.19  0.30  
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Figure 1. Means of area RRMSEd %s (MRRMSE%) and population RRMSE%s by allocation 

and estimation method. EBLUP estimation is applied to CAL-g1 and MC-q025 

allocations. 
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Figure 2. Distributions of area-specific RRMSEd %s by allocation and estimation method. 

 

 


