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small-scale albedo, normal, and displacement maps to model complex small-scale surface

features and their effect on surface reflectance. The implementation of the technique was able
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Suomenkielinen tiivistelmä: Tämä pro gradu -tutkielma tarkastelee tekstuurien ja pintaku-

viointien soveltuvuutta pienen skaalan materiaaliominaisuuksien mallintamiseen tietokone-

grafiikassa. Tutkielmassa esitellään tähän liittyvä tekniikka sekä toteutetaan ja tarkastellaan

tekniikkaa räätälöidyllä renderöintiohjelmistolla. Tekniikka käyttää albedo-, normaali- ja

siirtymäkarttoja mallintamaan kompleksisia pienen skaalan pintaominaisuuksia sekä niiden

vaikutusta valon heijastumaan. Ohjelmistolla onnistuttiin mallintamaan näitä ominaisuuksia,

mutta tekniikka tarvitsee parannuksia visuaalisen tarkkuuden ja laskennallisen tehokkuuden

parantamiseksi.
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1 Introduction

The field of computer graphics is interested in forming synthetic images from 3D environ-

ments. In the process of creating these images, material appearance is important to create a

visually accurate description (Dorsey, Rushmeier, and Sillion 2008). Material appearance is

a term used for the visual impression we get from a material of an object. In computer graph-

ics, it describes the models used to simulate real life materials and render these simulations

to form an image. These simulated models build on the knowledge in human perception,

physics of light and image formation.

To form an image and a given object’s visual appearance in computer graphics, we need

to model the object’s shape, material, and the incident light of the object (Dorsey, Rush-

meier, and Sillion 2008). The object’s shape is generally modeled explicitly with polygons

or parametric patches estimating the approximate shape of the object (Westin, Arvo, and

Torrance 1992). The finer details and the way they interact with the incident light are de-

fined in the material, which can be modeled with different kinds of textures and bidirectional

reflectance distribution functions (BRDFs). Usually, the surface features that are larger than

one pixel are modeled with textures and the sub-pixel sized features are encoded in the

BRDF. Physically-based BRDF models use a theoretical model of the material’s microge-

ometry features to model the light reflectance of a material (Akenine-Moller, Haines, and

Hoffman 2008). These BRDF models are able to reproduce many effects of local light scat-

tering quite well, but are limited in their ability to model a wider array of surfaces (Westin,

Arvo, and Torrance 1992).

Material appearance can have considerable variation when the same material is viewed at

different scales (Wu, Dorsey, and Rushmeier 2011). The small-scale surface features, which

are visible at a close range, merge into a single reflectance description as the same ma-

terial is viewed at a larger distance. Physically this means that averaging the small-scale

details determines the large-scale material appearance. These small-scale details of materi-

als can therefore have considerable effects on material appearance, even when the materials

are viewed at a distance.
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In this thesis, a technique is presented in attempt to model the small-scale surface features of

materials explicitly with different texture mapping methods. Concretely, this means that in

addition to the scale representations described above (object, texture, BRDF), another repre-

sentation of the small-scale material features is added. This small-scale texture representa-

tion therefore inhabits the space between the larger scale texture representation (meso-scale)

and the microscale BRDF.

The previous methods attempting to model these features use explicitly modeled 3D surfaces

to model these features and then form a representation of the features that can be computed

in an efficient way (Westin, Arvo, and Torrance 1992; Wu, Dorsey, and Rushmeier 2011;

Iwasaki, Dobashi, and Nishita 2012). The novelty of the technique presented in this thesis, is

the fact that this modeling is done with common texture mapping methods, including normal

mapping and different parallax mapping techniques. The parallax mapping techniques in

particular are interesting cases for the modeling of small-scale features as they are capable

of producing local occlusion and shadowing needed for physically-based lighting.

Chapter 2 of the thesis introduces the previous work on the subject of modeling light and it’s

interaction with matter, starting with the work done in the field of physics, and moving on

to modeling the light-matter interaction in graphics applications. In Chapter 3, bidirectional

reflectance distribution functions (BRDFs) are discussed and multiple BRDF models devel-

oped in computer graphics research are presented. In Chapter 4, the common approaches to

texturing and sampling are introduced. In Chapter 5, the technique presented in this thesis

is described in detail. Chapter 6 introduces the results of the implementation and examines

the visual results as well as performance figures from the said implementation. In Chapter

7, the results and approach of the introduced method are discussed and future improvements

are proposed.

1.1 Terminology

The terminology of scale in this thesis will follow that of Wu, Dorsey, and Rushmeier (2011)

and Iwasaki, Dobashi, and Nishita (2012), where the different scales are referred to as small-

scale and large-scale. Westin, Arvo, and Torrance (1992) proposed the use of micro/milli-
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scale, but recent studies in the area are increasingly using the small/large-scale distinction

not to impose absolute sizes for the scales. Small-scale refers to effects that happen on a

scale greater than the wave-length of light and large-scale refers to significantly larger scale

than the small-scale (Wu, Dorsey, and Rushmeier 2011).
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2 Modeling Light

When the topic of rendering photo-realistic materials in digital images is approached, atten-

tion should be given to the considerable amount of literature found in the field of physics. In

rendering, we often try to simulate the conditions and appearance of our physical world. Our

algorithms attempt this by simulating the physical model of light and it’s transport. This area

has been extensively studied in the field of radiometry (Akenine-Moller, Haines, and Hoff-

man 2008). Radiometry is the core field in the study of physical transmission of light. The

understanding of the underlying physical principles is important as we attempt to simulate

the appearance of the physical world around us.

In this section, we first turn our attention to light in general and how we will approach it in

this study. Next, we turn our attention to radiometry, radiometric units and their relation-

ships to lay the foundation to the following discussion on theory of bi-directional reflectance

distribution functions (BRDFs).

2.1 Nature of Light

Light is electromagnetic radiation which consists of a flow of photons in the visible spectrum

(Akenine-Moller, Haines, and Hoffman 2008). Light has a dual nature as it behaves as either

a flow of particles or as a wave depending on the situation. This dual nature is addressed in

the field of quantum optics (Glassner 1994). Quantum optics give us a basic idea for thinking

about photons. It says that a photon can be thought of as a small, localized wave packet, that

is a wave but doesn’t extend infinitely.

In this study, the wave nature of light is mostly ignored. This means that we cannot model

certain phenomena, namely polarization, interference, and diffraction, which depend on the

wave properties of photons. Although these are important phenomena, they are usually ig-

nored in rendering systems (Akenine-Moller, Haines, and Hoffman 2008). The model of

geometric optics, where light is regarded as traveling along straight lines between differ-

ent surfaces, serves to accurately model the light interactions at the scale of human activity

(Dorsey, Rushmeier, and Sillion 2008).
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The wave-related property of photons that will not be ignored is the photon’s frequency or

wave-length. Energy of a photon is proportional to it’s frequency (Akenine-Moller, Haines,

and Hoffman 2008). The energy and frequency of the photon affects it’s interaction with

sensors, matter, and other photons. In general, humans perceive different photon frequen-

cies between approximately 380 and 780 nanometers as different colors. Electromagnetic

frequencies outside of the visible spectrum are not perceptile to the human eye although the

frequencies of electromagnetic radiation range from extremely low frequency radio waves to

gamma rays.

In geometric optics, light travels along straight ray paths between different surfaces (Dorsey,

Rushmeier, and Sillion 2008). This path begins as light is emitted from a light source.

Emitted light travels in a straight path until it hits a surface. After the light hits a surface it

causes it to change directions either into the encountered matter or away from it.

2.2 Light-Matter Interaction

Light interacts with matter in two ways: it is scattered and absorbed (Akenine-Moller,

Haines, and Hoffman 2008). These two phenomena can describe fundamentally all light-

matter interactions. Scattering causes the light to change direction. It does not affect the

amount of light, but only it’s direction. Scattering is caused by all kinds of optical dis-

continuities, for example an interface between two different surfaces with different optical

properties. In absorbtion, the amount of light is reduced, but the direction is not changed.

This happens inside matter. Absorbtion converts light energy to some other form of energy

and the light disappears.

Light is scattered in two ways: it is reflected out of the material or it is transmitted into it

(Akenine-Moller, Haines, and Hoffman 2008). In reflection, light is partly or fully propa-

gated outward by the material. Transmission or refraction is a similar process in which light

passes through the interface of two materials and into the material.

Usually simple models of reflection categorize different kinds of reflection in categories

(Glassner 1994). These categories explain how light is propagated by a surface. For the

purposes of this thesis, we will introduce the most relevant categories to computer graphics
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rendering systems. These categories are specular reflection and diffuse reflection. Specular

reflection changes the direction of the light without actually scattering it, as from a surface

of a smooth mirror. Diffuse reflection, on the other hand, scatters light in every direction

with equal energy.

There are several categories of transmission of light into the material (Glassner 1994). Most

relevant for computer graphics are specular transmission and diffuse transmission. The cat-

egories behave similarly as their respective categories in reflection, with the difference of

light being directed into the material, whereas it is directed outward in reflection.

As we consider these different kinds of light-matter interactions, the geometric optics model

needs an addition in the form of scattering distributions (Dorsey, Rushmeier, and Sillion

2008). These distributions describe how much of the arriving light leaves the surface in each

direction. These scattering functions are discussed in detail later in section 2.3. We will lay

the mathematical and conceptual foundation for this discussion in the next section.

2.2.1 Radiometry

In the study of light-matter interaction, the concepts and units discussed in radiometry are

important to model these interactions mathematically. Radiometry is the core field that stud-

ies the physical transmission of light and it deals with the measurement of electromagnetic

radiation, that consists of a flow of photons (Akenine-Moller, Haines, and Hoffman 2008).

Photons behave as particles or waves depending on the situation. The geometric optics think

of photons as particles which works usually quite well in rendering (Akenine-Moller, Haines,

and Hoffman 2008). As discussed earlier, some phenomena cannot be modeled without the

wave properties of photons, but these phenomena are usually ignored in most rendering

systems, and this is the case for this study as well.

Next, the various radiometric units and their relationships are discussed to lay the foundation

for the later introduction of the BRDF theory. Rest of this section is mostly based on Dorsey,

Rushmeier, and Sillion (2008).

Radiant energy Q is the basic energy unit in radiometry, measured in joules (J). The radiant

6



power or radiant flux is the rate of energy transfer per unit time and it is expressed as watts

(W ). Average flux is denoted as Φ. We get the average flux as the energy ∆Q transferred

through some period of time ∆t.

Φ =
∆Q
∆t

(2.1)

As we need to find the Φ(t) at a particular instant so we use differentials dQ and dt which

are the quantities ∆Q and ∆t as they approach zero:

Φ(t) =
dQ
dt

. (2.2)

Light travels at the speed of nearly 300 million meters per second so we will not carry the

dependence on time in our later definitions because we are not going to be generating images

in this time frame.

The average flux per unit area is referred to as the radiant exitance M. It is the total flux Φ

divided by surface area A:

M =
Φ

A
(2.3)

As we did with time, we divide the surface area A into infinitesimally small areas dA and

consider the flux dΦ from these areas individually. These infinitesimally small areas are

located at a single point (x,y). We define the radiant exitance M(x,y) at a specific position

as

M(x,y) =
dΦ(x,y)

dA
. (2.4)

Irradiance E refers to radiant energy arriving at the surface. It is defined in a similar manner

as radiant exitance M, with the only difference being that the radiant energy is arriving in the

surface.
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Next, we consider the radiant flux in a particular direction. As before, we start with consid-

ering the set of all directions. We can think of the set of all directions as an unit sphere. Any

single direction can be specified as a point on the unit sphere and any set of directions as a

surface on the unit sphere. A set of directions is called a solid angle, which is measured in

steradians. Steradian is the three-dimensional analog of radian. An unit sphere’s area is 4π

and the solid angle of a sphere is 4π steradians.

Radiant intensity is the radiant flux per unit solid angle. The average radiant intensity I over

the set of all directions is defined as

I =
Φ

4π
. (2.5)

Again, we can divide this to smaller sets of directions and express a particular point as an

infinitesimally small set of directions dω . Additionally, we need coordinates to specify a

particular direction.

To specify coordinates, we set up a spherical coordinate system for the directions. We define

the specific angle a direction makes with a fixed zenith ("up") as the polar angle θ . As a

second reference, we use an arbitrary direction that is perpendicular to the zenith and define

a plane from the zenith and perpendicular direction. The projection of a direction to the plane

makes an angle with the reference direction and this angle φ is called the azimuthal angle.

These two angles θ and φ form a direction and from now on Θ will be used to specify a

single direction (θ , φ ). The radiant intensity I in a particular direction is defined as

I(Θ) =
dΦ(Θ)

dω
. (2.6)

Radiance is the amount of radiant intensity per projected unit area and unit solid angle. Let

dA be an infinitesimal area on a surface perpendicular to the direction where the polar angle

is zero. Then, the projection of the area in direction Θ is dAcosθ . Let dω be an infinitesimal

solid angle around direction Θ.

Thus, we can define the surface radiance L in direction Θ as
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L(Θ) =
d2Φ(Θ)

cosθdAdω
. (2.7)

In computer graphics we are interested in the amount and color of light that arrives to the

pixel being computer in the shader. This means that we are interested in the radiance that

would arrive from a visible object in a specific view direction. Radiance is the key quantity

in defining light transfer and important when computing the lighting in computer graphics.

2.2.2 Color

Light consists of photons in a distribution of wavelengths and this distribution is called the

light’s spectrum (Akenine-Moller, Haines, and Hoffman 2008). The wavelenghts of perceiv-

able light (or the visible band of light) are between 380 and 780 nanometers. Human color

perception in the eye utilises three different types of cone receptors located in the retina and

these receptors respond differently to various wavelength’s of light. This means that given a

spectrum, the brain only receives three signals. For this reason, only three numbers can be

used to represent any spectrum that humans can perceive.

Many different kinds of color systems have been proposed (Akenine-Moller, Haines, and

Hoffman 2008). The most commonly used system in computer graphics is the RGB color

model. This divides the spectrum to 3 signals r, g and b. The RGB model cannot directly

represent all visible colors. Other color representations include the XYZ color space, HSB

(hue, saturation, brightness) and HLS (hue, lightness, saturation). In this study, the RGB

model is used because of it’s practicality and common use in computer graphics.

2.3 Bidirectional Reflectance Distribution Function

Next, we will turn our attention to the bidirectional reflectance distribution function (BRDF)

before continuing to a detailed description of reflectance. These descriptions in sections 2.3

and 2.4 are based on Akenine-Moller, Haines, and Hoffman (2008).

In order to shade a surface in computer graphics, we need to compute the outgoing radi-

ance using the quantities and directions of incoming light. In radiometry, a bidirectional
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reflectance distribution function (BRDF) is used for this purpose. Given the light direction l

and view direction v, the BRDF describes how the incoming light is reflected from a surface.

The BRDF is defined as the ratio between differential radiance (outgoing radiant flux) and

differential irradiance (incoming radiant flux):

f (l,v) =
dLo(v)
dE(l)

. (2.8)

Here light is coming from a very small solid angle around l is measured at the surface area

as irradiance dE. Radiance dLo is proportional to the irradiance dE in any view direction v.

This ratio is the BRDF and it depends on the two vectors l and v. As this value of the BRDF

depends on wavelength, it is represented as an RGB vector in rendering.

The earlier section on radiometry used an angular parametrization of directionality. The

BRDF can also be presented as a function of four scalar variables. This parametrization uses

two angles where θ is the elevation relative to surface normal and φ is the rotation about the

normal vector. In rendering literature, it is common to represent directionality with vectors

and as we continue from physics more towards rendering, vectors will be used to represent

the directionality.

In this study we will limit ourselves to non-area light sources, and as such the definition of

the BRDF can be given in a non-differential form:

f (l,v) =
Lo(v)

EL(l)cosθi
. (2.9)

Here EL is the irradiance of a light source on a perpendicular plane to l. The overlined cosine

represents a clamped cosine, which gives a value of 0 if the result of the cosine function is

less than zero. When EL is multiplied with the clamped cosine of the angle θi between the

surface normal n and light direction vector l, we get the irradiance on the surface.

The BRDF is an abstraction of the light-matter interaction and there are various phenomena

that take place in this interaction. Some of the incoming light is transmitted through the

surface or reflected away from it. As some light is transmitted through the surface it can
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partially absorbed and scattered before eventually exiting the surface. This phenomena is

called subsurface scattering.

For BRDFs used in rendering, the large-scale subsurface scattering is usually approximated

as happening at a single point even though in reality the entry and exit points are not the same.

In this study, we will use the BRDF with the single point subsurface scattering approximation

which allows us to model all light interaction with a BRDF or a spatially varying BRDF

(SVBRDF). The SVBRDF also captures the spatial variation of the BRDF that changes from

one surface point to the next.

2.3.1 Physical constraints of BRDFs

There are two physical constraints on BRDFs that are to be considered as we attempt to

model physically accurate BRDFs. These constraints are the Helmholtz reciprocity and en-

ergy conservation. Helmholtz reciprocity states that when the input and output angles are

switched the function value stays the same:

f (l,v) = f (v, l). (2.10)

Often the BRDFs that are used in computer graphics violate this principle without introduc-

ing noticeable artifacts. Energy conservation means that the total outgoing energy cannot be

greater than the incoming energy (excluding light emitting surfaces). Energy conservation is

not always required by rendering systems and approximate energy conservation is sufficient.

2.4 Reflectance

Light-matter interaction happens on the object’s surface and in it’s interior. It is important

to differentiate between the two to achieve understanding of light’s behaviour with real-

world objects. Using BRDFs, the surface phenomena are modeled as surface reflectance and

interior phenomena as body reflectance. The surface acts as an optical discontinuity which

scatters light. The matter in the object’s interior can absorb some of the transmitted light. The

interior might also have optical discontinuities which scatter the light. In computer graphics,
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the surface reflectance is usually modeled with specular terms and body reflectance using

diffuse terms.

2.4.1 Surface Reflectance and Fresnel Equations

Fresnel equations describe the interaction of light with a perfectly planar interface between

two substances. The requirement of a perfect plane is not plausible in real-world objects, but

any surface irregularities that are considerably smaller than the shortest wavelength of light

will have no effect. For this reason, we can consider such plane as an optically perfect plane.

As Fresnel reflectance is only a surface reflectance phenomenon, we can use it to describe

the surface reflectance independent of body reflectance phenomena. Optical discontinuities

cause light to change direction (scattering) as discussed earlier. An optically perfect pla-

nar interface between two substances scatters incoming light in only two directions. These

directions are the ideal reflection direction and the ideal refraction direction.

The ideal reflection direction ri has the same angle θi with the surface normal n as the

incoming light direction l. Fresnel reflectance RF describes the reflected light and depends

on the incoming light angle θi.

The reflection vector ri for the Fresnel equations is defined as

ri = 2(n · l)n− l. (2.11)

Light that is not reflected outward is transmitted, so the proportion of transmitted flux is

1−RF . The proportion for radiance is different because of the differences in projected area

and solid angle between the incident and transmitted rays. This relationship between incident

and transmitted radiance is

Lt = (1−RF(θi))
sin2

θi

sin2
θt

Li. (2.12)

In addition to the incident angle θi, the Fresnel reflectance RF and the transmission angle

θt depend on the refractive index n of the substances. The dependence of θt on θi and the
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refractive indices of the two substances is described by Snell’s Law which states that

n1 sin(θi) = n2 sin(θt), (2.13)

where n1 is the refractive index of the substance that the light propagates from and n2 is the

refractive index of the substance the light propagates to. Snell’s Law gives a different form

for the transmitted radiance:

Lt = (1−RF(θi))
n2

2
n2

1
Li. (2.14)

The direct use of Fresnel equations in rendering is very challenging because of their complex-

ity and other properties. Schlick presented an approximation of Fresnel reflectance, which is

based on the charasteristic specular color RF(0◦) of the material. The Schlick approximation

is defined as

RF(θi)≈ RF(0◦)+(1−RF(0◦))(1− cosθi)
5. (2.15)

Substances with different ranges of values for RF(0◦) can be divided into three groups. This

division is between insulators (dielectrics), metals (conductors), and semiconductors. Semi-

conductors are rarely found in rendered scenes so our focus will be on the first two.

Insulators have low values of RF(0◦), typically 0.05 or lower. The Fresnel effect refers to the

increased reflectance at glancing angles. This effect is clearly visible on insulators because of

the low value of reflectance at normal incidence. Insulators usually have colorless reflectance

values due to their low variation of optical properties in the visible spectrum.

Metallic substances have high values of RF(0◦) (0.5 and above). Metallic substances can

also have optical properties with variation over the visible spectrum. This can be observed

in their colored reflectance. Subsurface scattering or transparency is not present with metals

as they absorb all transmitted light.

In external reflection, incoming light is reflected from an object’s external surface. Re-
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flectance function RF(θi) is defined for a given substance and this function depends only on

the incoming light direction. The value of RF(θi) varies over the visible spectrum and for

rendering it is treated as an RGB vector.

The function RF(θi) has two characteristics. First, the RF(0◦) of a given substance is the

property of the substance that defines it’s specular color. Second, as θi increases, the value

of RF(θi) increases until θi = 90◦ where RF(90◦) is 1 for all frequencies.

Internal reflection occurs as light is traveling inside a transparent object and encounters the

surface from inside the object. In this case the refractive indexes are reversed as the light is

propagating from the substance with higher refractive index. The Schlick approximation can

be used for internal reflection with substituting the transmission angle θt for θi.

External reflection is the most commonly encountered phenomenon in rendering, but internal

reflection can be important to note.

2.4.2 Body Reflectance

Surface reflectance is enough to model light-matter interaction with metals as they absorb all

light that is not reflected. For insulators however, body reflectance has to be considered.

Insulators can be homogenous or heterogenous, depending on the amount of internal optical

discontinuities in the substance. Homogenous substances have a low amount of internal dis-

continuities that scatter light. This means that these substances are transparent. Hmogenous

substances, such as clear liquids and glass, can partially absorb light but do not scatter it.

Light continues unscattered after it’s initial transmission until it hits the surface.

Most insulators contain various discontinuities and this means they are heterogenous. These

discontinuities include density variations, structural changes, foreign particles, and other

discontinuities which scatter the light inside the substance. In addition, light may be partially

or completely absorbed. The light that is not absorbed will be re-emitted through the surface.

As previously stated, when we model reflectance with a BRDF, we assume that light will be

emitted from the point of entry. This is called local subsurface scattering.

The ratio between the light that leaves the surface from the interior and the light transmitted
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into the substance is called scattering albedo. For insulators, the scattering albedo ρ is

visually more prominent than the Fresnel reflectance RF(θi) as insulators transmit most of

the incoming light. As they are results of different physical processes, ρ and RF(θi) can have

different spectral distributions (represented as an RGB vector in rendering).

Lhe local subsurface scattering is often modeled as a Lambertian diffuse term in BRDFs.

As such, the directional-hemispherical reflectance of Rdiff (diffuse term) is set to a constant

diffuse color value cdiff. This yields the following diffuse BRDF term:

fdiff(l,v) =
cdiff

π
. (2.16)

There is a tradeoff between surface and body reflectance that depends on the incoming light

angle θi. Body reflectance will decrease as θi increases towards a glancing angle. This can

be accounted for with a modification to the diffuse term as

fdiff(l,v) = (1−RF(θi))
ρ

π
, (2.17)

where RF is the Fresnel reflectance and ρ is the scattering albedo.

This equation results in an uniform distribution of light and as such does not depend on the

view direction v. If we consider the numerous scattering effects happening inside the ma-

terial, it might seem plausible that the outgoing direction is randomized and has an uniform

distribution. However, the discussions on the Helmholtz reciprocity and internal reflection

imply that the outgoing distribution is not uniform.

Helmholtz reciprocity implies that as the term varies by incoming direction, it should vary in

the outgoing direction also. Additionally, the light goes through Fresnel reflectance as it is

leaving the substance. This imposes a directional preference on the outgoing light. There are

diffuse terms in literature which address these issues. Nevertheless, the simple Lambertian

diffuse term with an uniform distribution remains the most commonly used diffuse term in

practice.
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3 Microstructure and BRDF models in Rendering

Until now, we have discussed the light-matter interaction with the assumption that the surface

is optically flat. Most surfaces have surface structures which affect the way light reflects from

them. The surface structure which is modeled in the BRDF is microscale. This means that

it is smaller than a single pixel but considerably larger than the wavelengths of visible light.

In this chapter, we examine how this microstructure is approached in rendering and review

different BRDF models that are used in rendering systems. This review is mostly based on

Akenine-Moller, Haines, and Hoffman (2008).

3.1 Surface Microgeometry

The microgeometry of an object surface is too small to be seen directly. It’s effect is ex-

pressed as a statistical approximation of light scattering at the object surface. The most im-

portant visual effect of the microscale structure in rendering is that there are multiple surface

normals in the area covered by a pixel instead of a single one. This distribution is called the

microscale normal distribution. This distribution of normals causes the light to be reflected

in multiple directions.

Increased microscale roughness of the surface results in blurring of reflected environmental

detail. Also, the appearance of specular highlights are broader and dimmer because of the

spreading of light energy into a larger set of directions.

The microscale normal distribution can be isotropic or anisotropic. Most commonly, the

distribution of microsurface normals is rotationally symmetrical and as such the distribution

is isotropic. Anisotropic surface normal distributions result in directional reflections and

highlights.

Shadowing is another important effect of microgeometry. This refers to the occlusion of light

by microscale surface details. Masking is a similar effect which refers to the occlusion of

visibility by the microsurface structure.

The light that is occluded by shadowing does not disappear. It is reflected away from the

16



object or to other microfacets. There might be several microsurface interreflections before

light reaches the viewer. In insulators, the interreflections are often not visible due to the

attenuation of Fresnel reflectance at each bounce. However in metals, this interreflection is

the only source of visible diffuse reflection as they don’t exhibit any subsurface scattering.

Microfacet theory is a mathematical analysis of the effects of microscale surface structure on

reflectance and various BRDF models used in rendering are based on this theory. In this the-

ory, the microgeometry is modeled as a collection of microfacets that are flat Fresnel mirrors

on the surface. The distribution of these microfacets is defined by the normal distribution

function (NDF) of the surface. This function is a probability distribution of the microfacet

normals. The NDF is a normalized function that integrates to 1 over the sphere, because the

probability of a microfacet pointing somewhere is always 1.

The NDF captures the most important visual effect of spreading the reflected light. Micro-

facet theory does not model multiple bounces of light or body reflectance so BRDFs that are

based on microfacet theory include a diffuse term. Masking and shadowing are modeled, but

without a full surface representation, this is done in an ad hoc manner.

As a flat Fresnel mirror, each microfacet reflects light in a single reflected direction. When

a ray of light coming from light direction l meets the surface and is reflected to the direction

of the view vector v, only the microfacets that are aligned correctly will participate in the

reflection. The participating microfacets are the ones that have their surface normal aligned

between l and v. This vector that is aligned between l and v is called the half vector h.

The proportion of microfacets aligned with the half vector h will participate in the reflectance

and it is given by the NDF evaluated at the half vector. Reflectance will also depend on the

Fresnel reflectance of the microfacets equal to RF(αh). Value of αh is the angle between l

and h and it is the incoming light angle for participating microfacets.

In BRDFs based on the microfacet theory, masking and shadowing are accounted for by

introducing a geometric attenuation factor G(l,v). This is a function that represents how

much of the incoming light remains after masking and shadowing, and gives a value between

0 and 1.
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3.1.1 BRDF Model

Different types of BRDF models usually fall within one of two groups: empirical models or

analytical models. Empirical models are designed for specific class of surface types. Ana-

lytical models are based on physical theory. In this section, some classic empirical models

are introduced first. Next, some approaches for physically-based analytical models are pre-

sented.

First empirical model used in rendering was the Lambertian BRDF (Dorsey, Rushmeier, and

Sillion 2008). This model is still in wide use because of it’s computational simplicity. Real-

world materials often differ from the model when the view or incident angle approaches a

glancing angle.

Lambertian shading equation is named after Lambert’s law which defines the outgoing radi-

ance for ideally diffuse surfaces as proportional to cosθi. As we saw before, this holds not

only to Lambertian surfaces but for irradiance in general.

The Lambertian BRDF gives a constant value across all view directions. This constant value

is usually referred to as the diffuse color cdiff. The BRDF is defined as

f (l,v) =
cdiff

π
. (3.1)

The division by π results from the integration of a cosine factor over the hemisphere yielding

π . This division is often moved to the irradiance in shader applications, but it is present in

the definitions of BRDFs in academic literature.

The first specular model in computer graphics was presented by Phong (1975). Despite it’s

age, this model still remains in common use. Many newer models can be viewed as variations

or improvements on this classic model (Dorsey, Rushmeier, and Sillion 2008).

Model presented by Phong (1975) is given in a slightly different form than the other BRDFs

presented here. For the purposes of consistency in presentation, the Phong model presented

here is in a more physically plausible and simpler form. This version of the Phong model is

defined as
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f (l,v) =
cdiff

π
+

cspeccosmαr

π
(3.2)

where the αr is the angle between the reflection vector ri and the view vector v. The reflection

vector ri is the ideal reflection direction presented earlier in Section 2.4.1.

The reflectance in the model is divided to the diffuse and specular elements. Key aspect

of the model is the term that raises the cosine of the angle αr to the power of m. This is

commonly referred to as the Phong reflectance (Dorsey, Rushmeier, and Sillion 2008) and it

defines the specular reflectance spreading in a set of directions around the mirror direction.

This can be interpreted as an effect of a slightly rough surface.

Blinn (1977) introduced a half vector based variant of the model, which is often referred to

as the Blinn-Phong BRDF. The half vector h represents the halfway direction between view

vector v and light vector l and it is computed as

h =
l+v
‖l+v‖

, (3.3)

where the halway vector is divided by it’s length to get an unit-length result.

Computation of the half vector and it’s dot product with the normal is more convenient for

lighting computations (Dorsey, Rushmeier, and Sillion 2008). Blinn also noted that ideal

mirror reflections are observed only with the alignment of the normal and half vector so the

specular lobe can then be thought of as the result of the probability of microfacet normals

oriented with the half vector.

The Blinn-Phong BRDF was originally given in non-normalized form, but in it’s normalized

energy-conserving form it is defined as

f (l,v) =
cdiff

π
+

m+8
8π

cspeccosm
θh, (3.4)

where θh is the angle between the half vector h and the surface normal n. The multiplication

of the specular term with a value is done to ensure that parameters such as cspec are equivalent
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to reflectance values. This process is called BRDF normalization.

This version of the Blinn-Phong has commonalities to microfacet based analytical BRDFs

and we can start interpreting the model using the microfacet theory. The cosine power term

can be seen as a normal distribution function with m as the parameter of the NDF. We can also

replace the cspec with the Fresnel term and thus adding the Fresnel effect. The Blinn-Phong

presented here is missing the geometric attenuation factor, which models shadowing and

masking in the microstructure. The model above can be interpreted as having the simplest

possible visibility factor which always has the value of 1.

Torrance and Sparrow (1967) introduced a reflectance model based on measured data and

their approach was later introduced to graphics by Blinn (1977). Revising the Blinn model,

Cook and Torrance (1982) later introduced their own model. The Cook-Torrance reflectance

model is defined as

f (l,v) =
F(v,h)D(h)G(v, l,h)

π(n · l)(n ·v)
(3.5)

where D is the normal distribution function, F is the Fresnel reflectance, and G is the geo-

metric attenuation factor. Here, the different individual pieces of the model can be mixed to

create the desired type of analytical BRDF model (Akenine-Moller, Haines, and Hoffman

2008). Cook and Torrance introduced their model with the π term in the denominator, but

this π multiplier is sometimes replaced with 4 in newer models. In this study, a modification

of a model proposed by Walter et al. (2007) is used and this model has the 4 term in the

denominator.

3.1.2 Normal Distribution Functions

Previously, we introduced Fresnel equations and we will be using the Schlick approximation

for the Fresnel reflectance portion of the BRDF model used in this study. Next, we will

introduce some common normal distribution functions and geometric attenuation factors in-

cluding the ones used in this study. Sections 3.1.2 and 3.1.3 are mostly based on Hoffman

(2013).
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In BRDFs, the statistical distribution of microgeometry surface orientations is defined by the

normal distribution function D(h). The normal distribution function (NDF) is evaluated at

the half vector h and it describes the concentration of surface points which are oriented in

a way that they could reflect light from l to v. Many different NDFs have been proposed in

literature and in this section we review some of the most commonly used NDFs, mainly the

Blinn-Phong NDF, the Beckmann distribution, and the Trowbridge-Reitz NDF.

As discussed earlier, the classic Phong shading equation was later modified to better fit the

structure of the microfacet BRDF by Blinn (1977). The Blinn-Phong BRDF introduced a

normal distribution function that can be defined in it’s normalized form as

Dp(h) =
αp +2

2π
(n ·h)αp (3.6)

where n is the surface normal and αp is the roughness parameter of the NDF. High values of

αp represent smooth surfaces and low values represent rough surfaces.

Later, Cook-Torrance proposed replacing the NDF with a Beckmann distribution. In it’s

normalized form the Beckmann distribution is defined as

Db(h) =
1

πα2
b (n ·h)4 e

−
(

1−(n·h)2

α2
b (n·h)

2

)
. (3.7)

For smooth surfaces, the Beckmann distribution and Blinn-Phong give similar results. The

difference between the NDFs becomes more apparent in rough surfaces. The roughness

parameter αb in the Beckmann distribution is equal to the root mean square slope of the

microscale surface. This gives a different meaning of microgeometry roughness compared to

Blinn-Phong’s increased randomness of the microgeometry. This means that the Beckmann

distribution is able to represent very rough surfaces, which are less random than the uniform

distribution, but more rough as the microgeometry is not as flat.

Blinn (1977) recommended the use of the Trowbridge-Reitz NDF. The NDF was not normal-

ized by Blinn but was later normalized and this form is often referred as the GGX distribution

(Walter et al. 2007). The Trowbridge-Reitz NDF is defined as
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Dtr(h) =
α2

tr

π
(
(n ·h)2(α2

tr−1)+1
)2 (3.8)

,

where αtr is the roughness parameter of the Trowbridge-Reitz NDF. 3.8 represents the Trowbridge-

Reitz NDF in it’s original form as presented by Hoffman (2013).

The Trowbridge-Reitz NDF is capable of producing both the uniform distribution of the

Blinn-Phong NDF and the very rough surfaces of the Beckmann distribution.

In the implementation of the proposed technique of this thesis, the Trowbridge-Reitz NDF

will be used. This NDF was chosen due to it’s more realistic highlight shapes, recommenda-

tion in literature, and it’s common use in film and game production.

3.1.3 Geometric Attenuation Factors

The geometric attenuation factor G(l,v,n) represents the probability of the microsurface

facets that are visible from both l and v. As with the NDF, the geometry function’s value is

a scalar value between 0 and 1. There are many geometric attenuation factors proposed in

graphics literature and in this section we will introduce few common ones for the purposes

of this thesis.

Some BRDFs such as the Blinn-Phong model do not define a geometric attenuation factor,

which is equivalent to setting the visibility term to 1. This kind of approach implicitly defines

the geometric attenuation factor as

GImplicit(l,v,n) = (n · l)(n ·v). (3.9)

The implicit geometry function is a plausible approach for heightfield microsurfaces such as

the Blinn-Phong NDF. It approaches 0 as v or l approaches a glancing angle. The compu-

tational efficiency of this geometry function is very good. However, the implicit geometry

function goes to 0 too fast for moderate glancing angles, is too dark compared to other geo-

metric attenuation function, and is not affected by surface roughness.
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The geometric attenuation function used in the original Cook-Torrance BRDF is based on

the geometry function introduced by Torrance and Sparrow. It is defined as

GCT(l,v,h) = min
(

1,
2(n ·h)(n ·v)

(v ·h)
,
2(n ·h)(n · l)

(v ·h)

)
. (3.10)

This geometric attenuation factor has seen considerable use, but it does have some problems.

It is based on an unrealistic microgeometry model and it is not affected by surface roughness.

For increased accuracy, the Smith family of geometric attenuation factors provide a good

solution. These functions take into account the surface roughness and are considered to be

more accurate than the model presented above. The Smith function was originally designed

for the Beckmann distribution, but has been later generalized into a form that can be used

with any NDF.

For the purposes of this thesis, a modified Schlick (1994) model was used. This geometric

attenuation factor belongs in the Smith family of functions and in it’s original form was

approximated for a Beckmann distribution. This modified model was developed to better fit

the Smith model of Trowbridge-Reitz (Karis 2013). It is defined as

G(l,v,h) = G1(l)G1(v) (3.11)

G1(v) =
n ·v

(n ·v)(1− k)+ k
(3.12)

k =
(α +1)2

8
. (3.13)

As the Trowbridge-Reitz NDF was chosen for this study, this reformulation of the Schlick

model was chosen to better fit the Smith model of Trowbridge-Reitz (Karis 2013).

3.2 Representing Materials on Multiple Scales

While there has been considerable research effort to model materials on a single scale, the

modeling of multi-scale materials is not as well studied. There has been some development
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in the area in recent years. In this section, the most relevant literature on multi-scale material

modeling is presented.

An early method for computing large-scale appearance from small-scale geometric structures

was introduced by Westin, Arvo, and Torrance (1992). In their method, they provide a

representation of the BRDF as a matrix of spherical harmonic coefficients, use a Monte

Carlo technique to estimate the coefficients from a geometric optics simulation, and create

a small-scale BRDF from microscale scattering events. Their method works for arbitrarily

rough geometries.

This method requires the storage of the BRDF as a large matrix of spherical harmonic coef-

ficients that is produced through precomputation. A Monte Carlo estimation of this matrix

is then computed and this matrix is used in rendering. Westin, Arvo, and Torrance (1992)

display examples of materials such as simple isotropic and anisotropic surfaces, velvet, and

woven cloth using Monte Carlo ray tracing.

In their work on accurate and efficient normal map filtering in the frequency domain, Han et

al. (2007) show that normal map filtering can be formalized as a spherical convolution of the

NDF and the BRDF. They use spherical harmonics for low-frequency specular BRDFs and

spherical von Mises-Fisher distributions for high-frequency materials. This is because they

acknowledge the impracticality of using spherical harmonics with high-frequency materials

due to the large amount of coefficients required. Han et al. (2007) introduce a function called

the effective BRDF, which is a convolution of the NDF and the BRDF.

Han et al. (2007) also note that an extension of their technique to associate additional spa-

tially variable properties to the normal map. This extensions enables the correct filtering of

different materials across wide variety of scales. They display the use of this extension on a

complex surface on many different scales and it compares quite favorably with the ground

truth approach of supersampling pixels with hundreds of samples per pixel.

Wu, Dorsey, and Rushmeier (2009) introduce the charasteristic point map (CPM) as method

to represent a hierarchy of view-independent points that preserve the appearance of a detailed

model across different scales. They introduce this method to represent objects as simplified

mesh hierarchies that are combined with their CPM hierarchies. In rendering the appear-
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ance across scales, they use a weighted average of reflectances from charasteristic points.

This representation enabled them to compute the macro-scale reflectance from micro-scale

geometries with shadowing-and-masking effects.

Wu, Dorsey, and Rushmeier (2011) later extended their method and introduced the first in-

teractive physically-based bi-scale material editing system, which manipulates small-scale

geometry and BRDFs to facilitate appearance design at two scales consistently. They in-

troduce a rendering pipeline that converts the edited small-scale details into effective large

scale appearance. After taking the small-scale details as an input, the pipeline discretises

the geometry into facet samples, computes their directional visibility information, and con-

verts this into a bidirectional visible normal distribution function (BVNDF). Combining the

BVNDF with the rotated small-scale BRDFs, the pipeline produces the effective BRDF and

performs the final large-scale appearance rendering.

This pipeline was implemented with a slider-based interface that allowed manipulation of

small-scale geometry and materials. The small-scale geometry could be created either by

setting parameters for a procedural model, or by specifying a height-field. The procedural

models in their paper include pyramids, grooves, rods and woven threads. It is also possible

to vary other properties of the different parts of the small-scale geometry.

Various kinds of materials were introduced in the paper from the procedural models. These

include anisotropic metallic appearance using pyramids as the small-scale geometry, unusual

5-way anisotropic reflection using pentagonal pyramids (no existing BRDF model could

represent this with physical plausibility), the appearance of velvet using small-scale rods,

and a two-hue silk appearance using a woven structure of 2 colors (cannot be achieved using

standard BRDF models).

Most recently, Iwasaki, Dobashi, and Nishita (2012) presented a technique for rendering and

editing bi-scale materials under all frequency lighting in real time. They were able to achieve

real-time performance on the bi-scale materials by representing the BVNDF introduced by

Wu, Dorsey, and Rushmeier (2011) with spherical gaussians (SG). This enabled them to

represent the small-scale reflectance without dense sampling of different directions and the

large matrices used for storing these precomputed BVNDF and BRDF values needed by the
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previous methods.

The technique introduced by Iwasaki, Dobashi, and Nishita (2012) has similarities to the

method proposed by Han et al. (2007), but they extend it in their method to account for

shadowing and masking effect by changing the SG lobe amplitudes according to visibility.

This results in an accurate representation of the small-scale materials that is able to fit com-

fortably in GPU memory. They calculate the BVNDF from small-scale geometries similarly

as Wu, Dorsey, and Rushmeier (2011), but use the GPU to do this which results in higher

performance.
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4 Other relevant techniques

To describe the implementation of the technique used in this study, it is necessary to describe

some additional concepts and methods. The technique presented in this thesis uses texture

maps to represent the small-scale structures of the materials. These texture maps are then

sampled accordingly to calculate final reflection values. In this chapter, the relevant methods

and concepts on texturing and sampling are introduced. Section 4.1 on texturing is based on

Akenine-Moller, Haines, and Hoffman (2008). Sections 4.2 and 4.2.1 on sampling are based

on Glassner (1994).

4.1 Texturing

Texturing is a process in which a given surface appearance is modified at each location using

images, functions, or other data sources. It is a technique for modeling various surface

properties and for modifying the parameter values in shading.

In the texturing process, a location in object space is given to a projector function to obtain

a set of numbers called the parameter-space values. This process of combining a location

in space to accessing the texture called texture mapping. The parameter-space values are

then used in corresponder functions to transform them into the texture space and retrieve the

correct value from the texture, which can be used to modify surface properties.

The most common property to be modified by an image texture is the diffuse color cdiff and

the texture used for this purpose is called diffuse color map. Specular color cspec is another

commonly textured attribute and this texture is called the specular color map. Gloss maps

refer to the textures that modify the surface roughness parameter α .

The surface detail can be traditionally classified into three scales. Macrogeometry describe

detail that cover multiple pixels and is often represented by geometric primitives such as

triangles. Microgeometry are features that are substantially smaller than a pixel and are

encapsulated in the shading model. Mesogeometry describe the detail between these two

scales. These details are too expensive to render using polygons and too large to implement
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in the shading. This is a scale in which a family of methods called bump mapping techniques

are used.

Bump mapping adjusts the shading parameters in a way that small perturbations from the

base geometry appear while the actual base geometry stays flat. The bump mapping tech-

niques differ mainly in the way they represent these details. In modern hardware, the pre-

ferred method of bump mapping is to store a normal map. A normal map contains the per-

turbed normals directly encoded as (x,y,z) with individual values mapped to [−1,1]. Usually,

this perturbed normal is retrived in tangent space (relative to the surface itself) and then used

in shading the surface.

Normal mapping will only alter the normal of the surface and will not show occlusion of

other details. A method called parallax mapping was introduced to add approximated oc-

clusion of surface details on the meso-scale. In parallax mapping, the bumps are stored in

a displacement texture. As the surface point is viewed, the value of the displacement is re-

trieved at that point. This displacement value is then used to alter the texture coordinates and

retrieve values from different location of the texture. The amount of coordinate change is

done according to the retrieved displacement and the viewing angle. The displacement can

be stored in a separate texture or a single channel in other textures. These values are scaled

and biased before being used. Scale is used to determine how much the value is to extend

the above or below the surface. Bias tells the height at which no change takes place.

The new parallax-adjusted texture position padj can be computed as

padj = p+
h ·vxy

vz
(4.1)

where p is the location of the original texture coordinates, h is the adjusted displacement

value and vz and vxy are components of a normalized view vector v.

This method was further developed by Welsh (2004) with the addition of offset limiting. Off-

set limiting is used to limit the amount of change in texture coordinates to the displacement

value that was originally retrieved. Parallax mapping with offset limiting is in wide use in

games and it is now considered the practical standard for bump mapping.
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Figure 1. Representation of parallax mapping with a depth map, where v is the view vector, p

is location of the original texture coordinate, h is the height at the original texture coordinates,

and padj is parallax-adjusted texture position.

Parallax mapping provides an approximation of the displacement, but assumes that the dis-

placement between pixels are somewhat similar. Furthermore, the bias setting affects how

the heightfield is displayed.

Another group of techniques emerged to accurately find where the view vector first intersects

the displacement map. These techniques have the same approach of ray tracing the path of

the view vector. Parallax occlusion mapping (POM), relief mapping, and steep parallax

mapping are the names given by different researchers to the variations of this technique.

The idea of these algorithms is to test a number of texture samples along the view vector.

The amount of tested texture samples increases as the view angle increases in order to not

miss the closest intersection point. These tested texture samples are processed to determine

if the view vector is above or below the displacement. At the first occurence of the sample

found under the displacement, that sample and the previous sample (above the displacement)

are used to find the intersection. This texture location is then used to shade the surface. The

technique can also be used to have the surface cast shadows onto itself by applying the same

process to determining light visibility.

The displacement is considered as a depthfield in all of the approaches with the plane of
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Figure 2. Representation of the basic approach of parallax occlusion mapping, relief map-

ping, and steep parallax mapping. The path of the view vector is sampled at the layer inter-

sections and after the first occurence of a sample below the depthfield, the intersection point

is calculated and adjusted texture coordinates are returned.

the polygon representing the upper limit. However, the root-finding problem of finding the

actual intersection point between the two texture samples is approached differently with these

algorithms. This refers to the method used to find the intersection between the last sample

above, and first sample below the depthfield. The methods used are a binary search, single

step of the secant method, and iteration using the secant method. There are also various

additional algorithms attempting to improve on the efficiency of these methods that mainly

focus on skipping intervening empty spaces instead of sampling the depthfield at a regular

interval. Examples of these methods include cone-stepping and quad-tree relief mapping.

4.2 Sampling

As our approach in finding the average reflectance over a microstructure texture is based on

sampling the texture multiple times, we should look closer at sampling and reconstruction.

The general approach of uniform and non-uniform sampling will be covered as well as their

common implementation techniques and problems.

Sampling is a process where a continuous signal is turned into a discrete signal by taking
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sample values. Reconstruction is the process of turning a discrete sampled signal back to a

continuous signal. Computer graphics is usually dealing with the discrete versions of aperi-

odic, continuous signals as most of the performed operations are too complex for computer

graphics when they are attempted analytically.

If the signal is sampled at equal intervals, the sampling is uniform. Uniform sampling is an

approach where sampling patterns can be represented as a regular lattice. These lattices can

be in different forms and in our 2D setting, but they are usually grids of some regular form.

Uniform sampling is an attractive solution if we can assume that the signal is bandlimited.

Uniform Sampling Theorem states that a bandlimited signal f (t) that has a cutoff frequency

ωF can be reconstructed from its samples f (nT0) if 2π/T0 ≥ 2ωF . The sampling rate T0

is called the Nyquist rate and the ωF is called the Nyquist frequency of the signal. This

effectively means that in order to perfectly reconstruct a signal, we must sample f (t) at least

twice as often as the highest frequency in f (t).

However, the assumption of a bandlimited signal is unlikely to be true in a computer graphics

setting. Also, a limited amount of samples is prone to errors in uniform sampling. These

errors are known as aliasing. For example, when an image is sampled with a regular pattern

of a too low sampling rate, aliasing structures can appear that are often visible patterns.

In nonuniform sampling however, we can use a variable sampling density and trade struc-

tured aliasing for noise. Nonuniform sampling refers to all techniques that produce a sam-

pling pattern that is not periodic. Two types of nonuniform sampling are patterned and

random sampling. Patterned nonuniform sampling is often used when the sampling pattern

is known but nonuniform in its nature.

A common approach to nonuniform sampling are the various stochastic techniques. These

are techniques that are based on random, or quasi-random, sampling. Stochastic techniques

often turn structured aliasing for high-frequency noise. This means that the reconstructed

signal is still "wrong", but noise is generally preferred over structured aliasing in images. The

human visual system is surprisingly adept in ignoring noise while good at spotting structured

aliasing artefacts.
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4.2.1 Sampling techniques

Uniform sampling is based on different patterns that can be defined in respect to lattices. The

most commonly used lattice is the rectangular lattice, that is formed by two perpendicular

vectors. It is used frequently in image sampling by thinking of the frame buffer as a group

of cells where each holds m×n pixels. Other lattices more rarely used in computer graphics

include the hexagonal, triangular, and diamond lattices.

Poisson sampling is the simplest random sampling technique. It is effectively a group of

random samples that have no relationship to each other. They are generated in Rn by picking

n uniformly distributed random numbers and using them as the location of the sample.

N-rooks sampling is a technique that can be used for sampling a signal on a N×N grid. In

this technique, a sample is taken in each row and column of that grid. N-rooks pattern is

constructed on the grid by initially placing the samples along the main diagonal and then

randomly shuffling the columns.

Jittered sampling is based on randomly perturbing samples on a sampling pattern. This

means that a random displacement is added on all samples in their respective domains. These

sample domains are defined by the sampling pattern, for example as an uniform rectangular

grid, or an N-rooks pattern.

Poisson-disk distribution is a random pattern with the requirement that no two samples are

closer than distance rp. This requirement is called the Poisson-disk criterion and it uses the

idea of surrounding the random samples with disks that do not overlap but are as close to

each other as possible. As generating this pattern is inefficient, the precomputation of the

pattern is common.
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5 Technique

The technique presented and examined in this thesis applies the different techniques of tex-

ture mapping to modeling of complex small-scale structures. This texture mapping of small-

scale surface features is an interesting approach for several reasons. As stated earlier, the

various texture mapping techniques are able to model of complex structures on surfaces.

Also, parallax mapping techniques enable us to model the masking and shadowing effect

needed in physically plausible materials.

Shadowing and masking effect is included in physically based analytical BRDF models by

using the normal distribution function and the geometric attenuation factor. These models

work well for a wide range of common materials. However, they lack the possibility of

customizing small-scale structure (beyond the scalar roughness value) as they are statistical

approximations of the surface’s structure. Meso-scale texture mapping, that is commonly

used in rendering, is applied on a larger scale and as such cannot be used to model the small-

scale features of materials.

Using small-scale texture maps in addition to the meso-scale texture maps and BRDFs, we

gain a new degree of freedom to model our materials. The idea is to add another set of

texture maps between the meso-scale texture maps and BRDFs. These texture maps are used

to define the small-scale features of materials. For example, the small-scale features can

include the modeling of weaves in different fabrics or the anisotropic grooves in brushed

metals.

Small-scale texture mapping enables us to add considerable complexity to the small-scale

geometry and material features. The small-scale geometry is modeled with normal maps

and displacement maps, but other surface features present in meso-scale texture mapping

can be added. These possible additions include albedo, metalness, roughness, and ambient

occlusion maps.

In this study, albedo, normal, and displacement maps were used in modeling the small-scale

features of the material. The displacement map stores the depth values of the surface and

was used as an individual texture. This texture can also be used to calculate surface normals.
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For this study, a separate normal map texture was used in addition to a displacement map.

An albedo colour map was used to distinguish the correct response of the calculations.

These maps represent the small-scale features of the material and are sampled multiple times

to get the average amount of light reflected. In a single sample, the displacement map is used

to determine the correct texture coordinates for the sample. At this point, the masking effect

has been achieved as the parallax map calculation has determined the actual visible texture

coordinates. After obtaining the coordinates, the amount of light reflected is determined

using the other texture maps with the chosen BRDF for that particular sample. Here, the

possible shadowing effect is also calculated for the sample by determining the light visibility.

When all the samples are calculated, the sample reflection values are then averaged to get

the final output.

This process is done in the fragment shader individually for each pixel. The small-scale

texture maps are essentially treated as a repeating texture that always covers the area of the

pixel. This represents a slight problem as the small-scale features can then be considered as

varying in scale in regards to the pixel coverage. However, as we constrain the small-scale

features to repeating patterns that are always displayed as the surface reflection features, this

approach gives an adequate approximation for the use of this master’s thesis.

5.1 Implementation

A detailed description of the implemented pixel shader (also known as the fragment shader)

is given in this section. This pixel shader is evaluated for every pixel that the material covers.

The implementation is given in GLSL code format. There are some simplifications in the

code presented here to improve the readability and presentation. For the full working code,

please refer to the shader implementation provided in the code repository (Kinnunen 2018).

5.1.1 Sampling

The entry point of the pixel shader is the main function. We start by presenting the simplest

case of normal mapping with a single point light and describe the modifications to implement

parallax mapping later in the section.
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tabsizetabsize tabsizevoid main()

tabsizetabsize tabsize{

tabsizetabsize tabsizevec4 result;

tabsizetabsize tabsizefor(int sx = 0; sx < SAMPLES_X; sx++)

tabsizetabsize tabsize{

tabsizetabsize tabsizefor (int sy = 0; sy < SAMPLES_Y; sy++)

tabsizetabsize tabsize{

tabsizetabsize tabsizefloat x = (sx + 0.5) / SAMPLES_X;

tabsizetabsize tabsizefloat y = (sy + 0.5) / SAMPLES_Y;

tabsizetabsize tabsizevec2 textureCoordinates = vec2(x, y);

tabsizetabsize tabsize// Normal mapping. Parallax Mapping described later.

tabsizetabsize tabsizevec2 finalTexCoord = textureCoordinates;

tabsizetabsize tabsizeresult += CookTorrance(viewDir, lightDir);

tabsizetabsize tabsize}

tabsizetabsize tabsize}

tabsizetabsize tabsizeout = result / (SAMPLES_X * SAMPLES_Y);

tabsizetabsize tabsize}

Here we can observe the sampling procedure described earlier with full sampling of the

texture map. Samples are taken for every pixel of the texture map and for every sample we

do the calculation of the Cook-Torrance BRDF. These lighting calculations are summed and

and averaged, which results in the outputted color value for the pixel. When we consider the

addition of parallax mapping later, we store the texture coordinates from those functions in

the finalTexCoord variable on the corresponding row of the main function.

5.1.2 Shading

tabsizetabsize tabsizevec4 CookTorrance(vec3 viewDir, vec3 lightDir) {

tabsizetabsize tabsize// Specular.

tabsizetabsize tabsizefloat NDF = TrowbridgeReitzNDF(normal, halfway, roughness);

tabsizetabsize tabsizefloat G = GeometrySmith(normal, viewDir, lightDir, roughness);

tabsizetabsize tabsizevec3 F = FresnelSchlick(max(dot(halfway, viewDir), 0.0), F0);

tabsizetabsize tabsizevec3 nom = NDF * G * F;

tabsizetabsize tabsizefloat denom = 4 * max(dot(normal, viewDir), 0.0) * max(dot(normal, ←↩

tabsizetabsize tabsizelightDir), 0.0);

tabsizetabsize tabsizevec3 spec = nom / denom;
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tabsizetabsize tabsize//Diffuse.

tabsizetabsize tabsizefloat NdotL = max(dot(normal, lightDir), 0.0);

tabsizetabsize tabsizevec3 refracted = (vec3(1.0) - F) * (1 - metalness);

tabsizetabsize tabsizevec3 Lo = ((refraction * albedo / PI) + spec) * radiance * NdotL;

tabsizetabsize tabsizereturn vec4(Lo, 1.0);

tabsizetabsize tabsize}

Lighting calculation for individual samples is presented in the function above. First, we

obtain the proportion of reflecting microstructure facets using the normal vector, halfway

vector between view and light direction, and the roughness parameter given by the material

properties. This value is stored in the NDF variable. Next, the geometric attenuation factor

is calculated. We will need both the view direction and light direction explicitly to calculate

this function. Lastly, the Fresnel reflectance is calculated using the Schlick approximation.

For the first parameter of the Fresnel function, we use the clamped dot product of the half

vector and the view vector. The second parameter F0 is the refractive index of the given

material, which is needed by the Schlick approximation.

After obtaining the NDF value, geometric attenuation factor and, Fresnel reflectance, we are

able to input these values in the Cook-Torrance BRDF nominator and calculate the denomi-

nator from the clamped dot products. Finally, this gives us the specular reflectance that will

be used later.

Next, we calculate the diffuse term of the reflectance. For this, we first approximate the

proportion of light refracted into the material. This is done by subtracting the proportion

of the light that is directly reflected off the surface. Then, we use the material’s metalness

parameter to take into account the proportion that is absorbed by the material. Combining

these calculations, we use the Lambertian reflectance with the material’s albedo property

(the "color" of the material), that gives us the amount of diffusely reflected light.

The specular and diffuse reflection are then multiplied by the amount of light arriving at

the surface. This gives us the final amount and color of the light that is reflected from this

sample.

tabsizetabsize tabsizevec3 FresnelSchlick(float cosTheta, vec3 F0)
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tabsizetabsize tabsize{

tabsizetabsize tabsizereturn F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);

tabsizetabsize tabsize}

tabsizetabsize tabsizefloat TrowbridgeReitzNDF(vec3 N, vec3 H, float roughness)

tabsizetabsize tabsize{

tabsizetabsize tabsizefloat a = roughness*roughness;

tabsizetabsize tabsizefloat a2 = a*a;

tabsizetabsize tabsizefloat NdotH = max(dot(N, H), 0.0);

tabsizetabsize tabsizefloat NdotH2 = NdotH*NdotH;

tabsizetabsize tabsizefloat nom = a2;

tabsizetabsize tabsizefloat denom = (NdotH2 * (a2 - 1.0) + 1.0);

tabsizetabsize tabsizedenom = PI * denom * denom;

tabsizetabsize tabsizereturn nom / denom;

tabsizetabsize tabsize}

Above are code examples of the functions that define the Schlick approximation and Trowbrigde-

Reitz NDF. They are straight-forward implementations of Equation 2.15 and Equation 3.8.

In the Schlick approximation, we use the material’s refractive index F0 to calculate the ap-

proximation of the Fresnel reflection and cosTheta which is equal to the clamped dot prod-

uct of the normalized view vector and the halfway vector. In the NDF implementation, we

use the normal vector, halfway vector, and the material’s microstructure roughness value to

approximate the proportion of the contributing microstructure facets.

tabsizetabsize tabsizefloat GeometrySchlickTR(float NdotV, float roughness)

tabsizetabsize tabsize{

tabsizetabsize tabsizefloat r = (roughness + 1.0);

tabsizetabsize tabsizefloat k = (r*r) / 8.0;

tabsizetabsize tabsizefloat nom = NdotV;

tabsizetabsize tabsizefloat denom = NdotV * (1.0 - k) + k;

tabsizetabsize tabsizereturn nom / denom;

tabsizetabsize tabsize}

tabsizetabsize tabsizefloat GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)

tabsizetabsize tabsize{

tabsizetabsize tabsizefloat NdotV = max(dot(N, V), 0.0);

tabsizetabsize tabsizefloat NdotL = max(dot(N, L), 0.0);

tabsizetabsize tabsizefloat visibilityV = GeometrySchlickTR(NdotV, roughness);
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tabsizetabsize tabsizefloat visibilityL = GeometrySchlickTR(NdotL, roughness);

tabsizetabsize tabsizereturn visibilityV * visibilityL;

tabsizetabsize tabsize}

The geometric attenuation factor is calculated by the functions above as defined in Equation

3.11. The first point of entry is the GeometrySmith function that takes as it’s parameters

the tangent space normalized view, light and normal vectors in addition to the material’s

roughness value. The dot product of the normal is then calculated for both the view vector

and the light vector. These dot products are used to calculate the visiblity with both the light

and view directions.

The visibility of both directions is returned by the GeometrySchlickTR function. After

attaining the visibility of both the view direction and the light direction, multiplying them

gives the final proportion of microfacets that are not occluded or shadowed.

5.1.3 Parallax Mapping

Parallax mapping techniques aim to shift the texture coordinates based on the displacement

map and the view direction. Applying these methods in the technique relies on replacing the

finalTexCoords assignment in the code of the main function with one of the function calls

that are presented next.

tabsizetabsize tabsizevec2 ParallaxMapping(vec2 texCoords, vec3 viewDir)

tabsizetabsize tabsize{

tabsizetabsize tabsizefloat height = texture(texture_displacement1, texCoords).r;

tabsizetabsize tabsizevec2 p = viewDir.xy / viewDir.z * (height * height_scale);

tabsizetabsize tabsizevec2 final = texCoords - p;

tabsizetabsize tabsizereturn final;

tabsizetabsize tabsize}

The original parallax mapping approach performs a single step approximation of the correct

texture coordinates using the original texture coordinates, displacement map value, and nor-

malized tangent space view vector. The change in texture coordinates is calculated as defined

in Equation 4.1. This value is stored in the variable p. The change in texture coordinates is

then subtracted from the original texture coordinates and the final texture coordinates are
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then returned by the function.

Parallax occlusion mapping was the second approach that was used to calculate the view

dependent change in texture coordinates. This method calculates the new texture coordinates

by dividing the depth of the displacement range into layers and finding the first layer below

the displacement map along the view vector. After this, we linearly interpolate between the

depth values of the last layer above and first layer below the displacement.

tabsizetabsize tabsizevec2 ParallaxOcclusionMapping(vec2 texCoords, vec3 viewDir, float ←↩

tabsizetabsize tabsizenumLayers)

tabsizetabsize tabsize{

tabsizetabsize tabsizefloat layerDepth = 1.0 / numLayers;

tabsizetabsize tabsizefloat currentLayerDepth = 0.0;

tabsizetabsize tabsizevec2 P = viewDir.xy / viewDir.z * height_scale;

tabsizetabsize tabsizevec2 deltaTexCoords = P / numLayers;

tabsizetabsize tabsizevec2 currentTexCoords = texCoords;

tabsizetabsize tabsizefloat currentDepthMapValue = texture(texture_displacement1, ←↩

tabsizetabsize tabsizecurrentTexCoords).r;

tabsizetabsize tabsizewhile(currentLayerDepth < currentDepthMapValue)

tabsizetabsize tabsize{

tabsizetabsize tabsizecurrentTexCoords -= deltaTexCoords;

tabsizetabsize tabsizecurrentDepthMapValue = texture(texture_displacement1, ←↩

tabsizetabsize tabsizecurrentTexCoords).r;

tabsizetabsize tabsizecurrentLayerDepth += layerDepth;

tabsizetabsize tabsize}

tabsizetabsize tabsizevec2 prevTexCoords = currentTexCoords + deltaTexCoords;

tabsizetabsize tabsizefloat afterDepth = currentDepthMapValue - currentLayerDepth;

tabsizetabsize tabsizefloat beforeDepth = texture(texture_displacement1, prevTexCoords).r -←↩

tabsizetabsize tabsizecurrentLayerDepth + layerDepth;

tabsizetabsize tabsizefloat weight = afterDepth / (afterDepth - beforeDepth);

tabsizetabsize tabsizevec2 finalTexCoords = prevTexCoords * weight + currentTexCoords * ←↩

tabsizetabsize tabsize(1.0 - weight);

tabsizetabsize tabsizereturn finalTexCoords;

tabsizetabsize tabsize}

The first step is to calculate the change in texture coordinates per layer. This is stored in the
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deltaTexCoords variable. After that, we iterate through the layers along the view vector

until the first occurence where the layer’s depth value is below the displacement map. Next,

the depth values of the layers before and after the intersection are linearly interpolated and

stored in the weight variable. Finally, this weight is used to calculate the approximation of

the new texture coordinates and returned by the function.

The number of layers can vary according to the view direction so that a more accurate cal-

culation can be achieved at grazing angles. The addition of shadows for parallax mapping

and parallax occlusion mapping is done by applying the same respective calculations with

light vectors instead of the view vectors to determine the visibility of the light. For a com-

plete representation of the implemented code please refer to the provided code repository

(Kinnunen 2018). In this code the shadowing for both techniques is implemented and used

for the small-scale shadowing. In the actual implementation, the number of layers are also

calculated based on the view and light vectors.
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6 Results

In this section, the results of the software implementation is discussed. This includes the

evaluation of the visual outputs and the performance of the proposed technique. The main

focus of the thesis was to determine the applicability the proposed idea. In this section, the

findings from implementing these ideas are presented.

In order to test the texture mapping of small-scale surface features, a real-time rendering

system was implemented using C++ and OpenGL. The custom renderer application uses

common open-source libraries (GLFW, GLEW, and Assimp) to do tasks such as window-

ing, OpenGL extension handling and model loading. The source code for the renderer and

shaders are provided in the code repository (Kinnunen 2018).

The main software contribution of this thesis is the shader code that implements different

small-scale texture mapping techniques. This GLSL shader calculates per-pixel shading of

modeled small-scale structures as described in the previous chapter. The shader supports the

use of normal mapping, two parallax mapping techniques, two sampling schemes, and two

BRDFs.

Parallax mapping techniques supported by the shader are the original parallax mapping and

parallax occlusion mapping. Shadowing effect is available for both setups. These techniques

are used to determine the masking and shadowing effects of the small-scale texture samples

in the pixel shader. Sampling schemes that are supported include full sampling of the small-

scale texture maps and jittered sampling. The BRDFs supported by the shader are Blinn-

Phong and Cook-Torrance.

In the performance evaluation, different test setups are examined with varying models, tex-

ture mapping techniques, textures, displacement depths and other shader parameter setups.

As a performance baseline, performance measurements of normal mapped, parallax mapped

and a parallax occlusion mapped meso-scale materials are presented. These baseline setups

all have the same textures and same shader parameters for each measurement.
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6.1 Visual results

A number of different rendered results are presented in this section. The technique proposed

in this thesis is capable of producing large-scale appearance from small-scale details for

both isotropic and anisotropic cases. The effect of the small-scale structure is presented on

a single 3D object such as the Stanford bunny, a cylinder, or a disk. A rendering of the

small-scale surface structure is displayed with the presented model that shows the repeating

surface structure on a rectangular plane. The materials imitated in this section are silk,

brushed metal, and a colored grooved surface with a flat bottom section. Finally, a visual

comparison of different techniques is displayed with a multicolored material consisting of

small-scale pyramids.

Figure 3. Stanford bunny with a small-scale material imitating silk.

First, Figure 3 shows a Stanford bunny with a silk-like material. Silk is a woven fabric

with a high reflectance metallic appearance. The highly reflective woven structure creates an
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anisotropic reflection as the individual fibers are arranged in a perpendicular fashion. This

woven effect was imitated with a pyramid microstructure, small-scale parallax occlusion

mapping, and metallic settings for a Cook-Torrance shader.

Figure 4. A disk with a small-scale material of a grooved surface imitating a brushed metal

appearance.

Next, a highly anisotropic surface reflection is presented which is common for brushed metal.

The circular anisotropic reflection shown in Figure 4 is often found on metallic disks or vinyl

records. The effect was achieved with a grooved small-scale surface where the grooves run

parallel to each other. These parallel grooves, which are shown in the upper right, run on

the disk as a circular path around the center point. The settings used for the Cook-Torrance

shading are set as highly metallic and the small-scale surface structure technique used was

parallax occlusion mapping with no shadows enabled.

For rough surfaces, the technique offers interesting effects. Figure 5 shows a rough flat-

bottomed inverted pyramid small-scale geometry with multicolored surfaces. This can be

used for creating a matted fur-like effect where the reflectance changes as the viewing angle

approaches a grazing angle. This gives an appearance of a light coat vertical green and
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Figure 5. Rough surface with a small-scale structure of inverted pyramids with a flat colored

bottom.

yellow strands on top of a red surface.

Figure 6. Comparison of different small-scale texture mapping techniques. Small-scale

normal mapping (a), parallax mapping (b), and parallax occlusion mapping (c) are displayed

on a cylinder. Last image (d) shows a rendering of the small-scale structure.
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Figure 6 shows a comparison between different techniques of small-scale normal mapping,

parallax mapping, and parallax occlusion mapping. The small-scale structure used in this

comparison is a grooved surface with a flat surface between the grooves. The flat surface is

colored green and the parallel grooves are colored yellow to display which parts of the small-

scale surface are contributing in the reflection. As seen in the different rendered cylinder

models, the yellow reflection of the grooves is more prominent on the sides of the cylinder,

whereas the flat portion of the small-scale surface shows more prominently in the center.

This comparison shows the visual difference between the techniques. The reflection in the

normal mapped version of the cylinder (a) shows a dimmer reflection as there is no mask-

ing effect in place. The technique calculates all of the texture map samples with similar

weighting because of this. Parallax mapping (b) shows an improvement in this regard. As

an approximated masking effect is present, the yellow reflection of the grooves is more pro-

nounced. The comparison also shows the problem parallax mapping has when approaching

grazing angles. The one pass approximation in the technique has a distorting effect at grazing

angles and this is shown with the darkened edges of the cylinder. Parallax occlusion mapping

(c) is the most accurate approximation of these techniques and does not show this warping at

grazing angles. The technique gives a smooth falloff when approaching the grazing angles

with prominent reflection from the grooves due to the more accurate masking effect.
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Figure 7. Small-scale texturing techniques with and without shadows. The planes are

grouped by technique with the first plane applying the small-scale technique to calculate

large-scale appearance and the second showing the surface structure. Techniques presented

are normal mapping (a), parallax mapping (b), parallax mapping with shadows (c), parallax

occlusion mapping (d), and parallax occlusion mapping with shadows (e).

A more comprehensive comparison of the techniques with and without shadowing is pre-

sented in Figure 7 with the corresponding small-scale structure renderings. In this com-

parison, we can also see the problematic artefacts visible in some of the techniques. The

techniques are rendered using full sampling of the 32 by 32 pixel textures. The compari-

son shows normal mapping (a), parallax mapping (b), parallax mapping with shadows (c),

parallax occlusion mapping (d), and parallax occlusion mapping with shadows (e).
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Normal mapping approach does not show any particular artefacts and the microstructural ef-

fect is visible in the image even if dimmed compared to more pronounced effects in parallax

mapping techniques. In the parallax mapping technique, the previously discussed warping

effect is slightly visible on the left hand side green triangles. The parallax mapping effect

also already shows the slight rectangular artefacts in rendering of the small-scale texture

technique. These artefacts become considerably more visible in the shadowed parallax map-

ping approach. Here, the approximation of the shadows are very inaccurate. This can be seen

most visibly in the top left pyramid of the small-scale structure visualization. The technique

approximates a ringing shadow artefacts that result from incorrect approximation.

In the parallax occlusion case, the slight rectangular artefacts are also visible. The reflections

are again more prominent than in the normal mapping and smoother than in the parallax

mapping case. With the addition of shadows the artefacts become more prominent but the

shadowing is considerably more accurate than with parallax mapping. As before, the parallax

occlusion mapping gives the most accurate results of these techniques and provides both

masking and shadowing effects.

6.2 Performace

The runtime performance of the implementation is examined in this section. For this purpose,

frame times of different configurations of the implementation are documented and analyzed

with data gathered by running the software. These configurations introduce the major factors

that contribute to the frame times by varying different test parameters. Different 3D objects,

mapping techniques, sample rates, and textures are implemented in a controlled environment

as to provide an overview of their effect on performance.
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Figure 8. Representation of the controlled test environment, which consists of a central

rotating 3D object (the cube) and a stationary background. Both use the same shader con-

fiquration ensuring full pixel coverage for the shader in question.

The controlled environment used in this study is a scene that runs in the custom software ren-

derer developed by the author. The scene consists of a central rotating 3D object, two point

lights, and a stationary background quad, that is used to fill the remaining screen space with

the examined shader. This ensures that every pixel rendered in the scene is using the shader

in question and confirms that the different runs with varied parameters are comparable. The

data files from the experiments are available in the application repository and provide a more

detailed information of these specific experiment runs (Kinnunen 2018).

All measurements were done using a NVIDIA GeForce GTX 765M GPU, 800 x 600 window

resolution, and vertical synchronization turned off. As some shader setups have varying

performance times depending on viewing angles, a slowly rotating object was used. The

frame times from the performance tests are reported in milliseconds and are averaged over a
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test run of 30 seconds.

6.2.1 3D objects

First, we examine different 3D objects and their effect on the performance. Also, a baseline

for our investigation is set by varying the techniques used by the shader and include the basic

methods commonly used in production systems. These techniques include basic normal,

parallax and parallax occlusion mapping as meso-scale appearance techniques. We compare

these to the proposed small-scale surface modeling techniques presented in this study. These

include small-scale normal mapping, small-scale parallax mapping and small-scale parallax

occlusion mapping.

During the investigation, a curious implementation detail arose. In trying to find a com-

parable baseline for parallax mapping and parallax occlusion mapping, it was noted that

these heavier operations of parallax mapping were in fact aprroximately 2 times faster than a

simple normal mapping implementation generally used. Careful examination of the subject

revealed that a single conditional in the parallax mapping function produced this speed-up.

This conditional was always false for these runs and thus the code contained was never exe-

cuted. The cause of the speed-up might be due to heavy optimization done to the compiled

shaders or a bordercase in the graphics card drivers.

To establish a more suitable baseline for the comparison, this false conditional was imple-

mented exactly the same way in the basic normal mapping case, which resulted in a similar

speed-up and comparable results. Finding the root cause of this curious occurence with this

specific test setup was out of the scope of this thesis and this faster normal mapping case

is presented as the baseline for other techniques. The code regarding this issue is provided

in the application repository (Kinnunen 2018). Both of the normal mapping cases and their

runtime results are documented in Table 1 and Table 2.

In this experiment, three different 3D objects were used with the techniques reported above.

The models in question were a simple rectangular quad with two triangles, a cube with

12 triangles, and the Stanford bunny which is a usual choise for benchmarking in graphics

reasearch since it’s development in 1994. The bunny consists of 69,451 triangles and even
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Meso-scale Quad Cube Bunny

Normal Mapping 0.64 0.67 2.30

Parallax Mapping 0.65 0.69 2.33

Parallax Occlusion Mapping 0.97 1.04 3.06

Slow Normal Mapping 1.23 1.32 3.46

Table 1. Baseline measurements of frametimes in milliseconds varying different 3D objects

with meso-scale application of the texturing techniques.

Small-scale Quad Cube Bunny

Normal Mapping 20.95 22.55 54.59

Parallax Mapping 20.95 20.78 52.84

Parallax Occlusion Mapping 34.23 34.17 95.19

Slow Normal Mapping 33.69 48.78 122.47

Table 2. Performance of small-scale texture mapping techniques with 36 samples on different

3D objects. Average frame times are reported in milliseconds.

though it is a simple model by today’s standards, it can act as a considerable increase in

the number of triangles and complexity in comparison to the other models. Since we are

measuring the shader performance and not polygonal techniques, the bunny will act as our

benchmark for an actual model in regards to geometric complexity.

In the experiment, the same configurations were used in the shader and scene. Only variables

were the 3D object and the technique. Texture was a 32x32 pyramid texture and BRDF was

the Cook-Torrance BRDF. For the small-scale techniques, sampling was set to 36 samples

and self-shadowing effect was turned off for parallax and parallax occlusion mapping.

As we can see from these figures, the increases in frame times are quite similar in different

models. Baseline figures increase for the bunny as expected because of the more complex

polygonal structure, but the increases between the different techniques are similar in scale.

Normal mapping and parallax mapping are quite similar as their underlying complexity is

quite similar. There is a significant performance cost to using parallax occlusion mapping as

it employs a heavier and a more accurate algorithm to calculate the parallax effect.
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Small-scale 12 36 64 100 144

Normal Mapping 10.76 22.54 38.91 59.94 85.61

Parallax Mapping 9.97 20.78 35.67 54.74 78.04

Parallax Mapping with Shadows 29.76 62.38 106.79 163.18 233.96

Parallax Occlusion Mapping 16.30 34.18 58.72 89.95 128.01

Parallax Occlusion Mapping with Shadows 91.94 202.93 355.13 548.23 784.34

Slow Normal Mapping 22.30 48.79 85.74 133.15 191.06

Table 3. Performance of small-scale texture mapping techniques with varying sampling rates.

Average frame times are reported in milliseconds.

As we move from single sample techniques to multiple sampling of the small-scale texture

mapping techniques, the average frame times increase significantly. This is due to the fact

that the operations retrieving the texture value, doing the parallax calculation, and the shad-

ing calculation is done on every sample. This is a heavier operation and the decreases in

performance are seen above.

The magnitude of the increase in the frame times is seen more clearly when using the bunny

object. This is because, even though the rendering resolution and the amount of pixels is

the same across the different experiment configurations, no culling is done in the renderer.

This means that even though the amount of pixels is the same, the pixel shader operations

in the shader are done for all overlapping triangles of the scene. This can be dealt with by

implementing the Z-culling technique to the renderer. This would result in computing the

pixel shader operations only for the visible triangles. However, this was out of the scope of

this thesis but should be noted when inspecting the frametimes of the more complex bunny

object.

6.2.2 Samples

Next, we inspect the performance values of varying sample rates in the small-scale texture

mapping techniques presented in this thesis. This experiment used the same scene as above,

but only the cube object was used. Varying factors are the small-scale texture mapping

technique and the sample rate.
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As we can see from the frame times in Table 3, the sample rate has a major effect on the per-

formance of all small-scale texture mapping techniques. As the sampling rate is increased,

the amount of operations done in the pixel shader increases considerably. The basic op-

erations for a single sample are the possible parallax operations that determine the texture

coordinates, the texture sampling itself and the shading calculation for that specific sample.

These calculations are done for each sample.

This is made more apparent in the case of self-shadowing. For each sample, the self-

shadowing calculations are done for all light sources using the corresponding parallax tech-

nique. The self-shadowing operations are done in each sample and consist of the correspond-

ing parallax calculation to determine if the light is visible in that position. For example in the

case of a 100 pixels, 10 samples and 10 lights, the calculation for each pixel needs 10 origi-

nal sample shading calculations and each sample needs 10 self-shadowing calculations. This

case would result in 1,000 original sample shading calculations and 10,000 self-shadowing

calculations.

Here we can see that the sampling rate and inclusion of self-shadowing are the most signifi-

cant factors in the performance in the proposed shader.

6.2.3 Textures

Another possible factor for the performance of the algorithm might be the given texture. This

is particularly relevant with parallax occlusion mapping. In parallax occlusion mapping, the

amount of calculations for the intersection point increases as the algorithm calculates deeper

into the depth map. In Table 4, we present findings from experiments with different textures.

A flat texture was used with the depth map set to the lowest or the highest setting in the

corresponding experiment runs. The amount of intersection calculations are smallest in the

top setting of the flat texture. The pyramid texture performance from previous experiment

is given as a reference. Other variables in the experiment were the same as in the previous

experiment and sample rate was set to 36.

As expected, the choice of texture has no noticeable performance difference in the normal

mapping or parallax mapping cases. The parallax mapping algorithm does not do extra depth
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Small-scale Flat (Top) Flat (Bottom) Pyramid

Normal Mapping 22.63 22.62 22.54

Parallax Mapping 20.78 20.78 20.78

Parallax Mapping with Shadows 66.97 67.05 62.38

Parallax Occlusion Mapping 22.38 38.14 34.18

Parallax Occlusion Mapping with Shadows 57.95 208.39 202.93

Table 4. Performance of small-scale texture mapping techniques with varying textures. Av-

erage frame times are reported in milliseconds.

testing. Instead, it approximates the new vector coordinates in a single step using the first

depth map value it encounters and the current viewing angle.

In the case of parallax occlusion mapping however, the depth map itself has an effect on

performance. The algorithm tests multiple texture samples along the view vector when de-

termining if the vector is above or below the depthfield. In the case of the bottom depth

map, the algorithm checks a longer path along the view vector sampling the texture at reg-

ular intervals. This interval is defined by dividing the depth into layers. The depth map is

then sampled at each layer intersection and the amount of layers is increased as the viewing

angle approaches a grazing angle. In this experiment the minimum layer amount was set to

15 layers (used at perpendicular viewing angles) and maximum to 30 layers (used at grazing

angles). The effect of this sampling on perfomance is seen most clearly in the difference

between top and bottom depth textures in parallax occlusion mapping cases.
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7 Discussion

This thesis presents a texture mapping method for modeling small-scale surface structures.

This approach is suitable for a large array of materials featuring small-scale geometry varia-

tion. This small-scale texture mapping approach allows using the same implementation for

multiple kinds of materials with different small-scale surface structures. The implementa-

tion of the technique works as a proof of concept that can function as the first step towards a

small-scale texture mapping system usable in real-time graphics applications. There are still

issues to be solved until this goal of an applicaple system can be achieved.

Small-scale texture mapping is an interesting approach for modeling the small-scale surface

structure as it implements well with regular texturing workflow. This also enables it’s use

for a wide variety of different repeating textures already developed for these kinds of appli-

cations. The obvious downside in all the presented techniques is the approach of sampling

the texture multiple times to find a mean shading for each pixel. This approach makes the

shader implementation too expensive for actual use in real-time graphics applications. It also

introduces wide variety of problems including noise that appears from insufficent sampling

and artefacts resulting from textures of low quality. In the implementation of the method in

this thesis, the texture sizes were very small to achieve frame times that offer even limited

interactability. To achieve high quality results, it is clear that larger textures need to be used.

This cannot be achieved with the sampling based approach used here. This indicates that

some sort of texture preprocessing is needed to form a faster calculation of the shading.

Fortunately, there are interesting avenues of future research in this regard. For normal map-

ping, there are promising results in the challenging problem of normal map filtering. Texture

map filtering is required when a texture is viewed from a distance and averaging of the con-

tributing texture values is needed. For color mapping, usual approaches for filtering are

bilinear, trilinear, or anisotropic filtering. Although normal mapping is an analogue for color

mapping applied to surface normals, the filtering methods in normal mapping do not apply as

the shading is not linear. This means that as we zoom out, averaging the normal map values

into a single pixel value would average the complex surface normals into a flat surface.
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In regards to the technique of microstructure normal mapping, an interesting approach would

be to apply frequency domain normal map filtering presented by Han et al. (2007). In their

paper, they derive an analytic formula, which shows that filtering can be written as a spher-

ical convolution of the material’s BRDF and the normal distribution function (NDF). The

mathematical form holds for a large class of common BRDFs (Lambertian, Blinn-Phong,

Torrance-Sparrow and many measured BRDFs). Spherical harmonics are used for low-

frequency functions. Spherical harmonics are the frequency domain analog to Fourier se-

ries on the unit sphere. The normals are represented as spherical delta distributions in the

NDF which is convoluted with the BRDF to gain the final effective BRDF used in shading.

For higher frequency functions, Han et al. (2007) use von Mises-Fisher distributions, which

model Gaussian-like distributions on the unit sphere. Both of their approaches preserve the

original normals and provides a full BRDF with all the original surface normals.

Frequency domain normal map filtering approach could introduce significant performance

gains in the small-scale normal mapping technique. Filtering the full small-scale normal

map to a single effective BRDF would help to overcome the problematic sampling approach

and allow to calculate a single BRDF from the small-scale texture maps. This would quite

probably introduce high performance gains for the technique presented in this thesis.

Han et al. (2007) acknowledge that their approach only addresses the filtering of normal

maps and state that a critical direction of future research is filtering of displacement maps

and geometry. This would also be needed for the small-scale parallax mapping technique.

Wu, Dorsey, and Rushmeier (2009) use the charasteristic point maps for this. They calculate

a bidirectional visible normal distribution function (BVNDF) to describe the NDF of small-

scale geometry with masking and shadowing and get the effective BRDF by integrating the

product of the BVNDF and small-scale BRDFs. Unfortunately, this approach requires a

large volume of precomputed data and significant precomputation time for the BVNDF and

BRDFs, making it infeasible for the proposed techniques.

Iwasaki, Dobashi, and Nishita (2012) present a different technique for the same problem.

They represent the BVNDF as a sum of spherical gaussians (SG). The von Mises-Fisher

distributions used by Han et al. (2007) are similar as they are the same as the normalized

SGs. Iwasaki, Dobashi, and Nishita (2012) state that this SG representation of the BVNDF
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can be presented in a simple form for the convolution of SGs with a memory footprint that

is small enough to fit in GPU memory. Their SG representation of the BVNDF, small-

scale BRDFs, and effective BRDFs is stated to achieve real-time rendering in all-frequency

environment lighting.

The SG approach is an interesting avenue of future research for the small-scale parallax

mapping techniques as well. Iwasaki, Dobashi, and Nishita (2012) calculate their SG based

effective BRDF from small-scale 3D models as opposed to the parallax mapping approach of

this study. The parallax microstructure maps could possibly be computed into the SG form

similarly as Iwasaki, Dobashi, and Nishita (2012) compute them from the 3D models.

The artefact and aliasing problem encountered with the parallax mapping techniques also

needs to be addressed. As stated before, in this study the microstructure texture maps used

were very small compared to the textures used in regular parallax and parallax occlusion

mapping. This was done due to the expensive sampling based approach. If the SG based

effective BRDF could be calculated the parallax mapping textures, the size of the textures

could be increased with computational cost landing mainly on the texture preprocessing

phase, while not affecting the runtime performance so dramatically. These larger textures

with a higher layer count could reduce the aliasing of the parallax occlusion maps signifi-

cantly.

Unfortunately, the larger textures would not help the parallax mapping case because of it’s

simple approach to determine masking. The simplistic approach would result in similar

aliasing and incorrect masking calculation even if larger textures were used. For this reason,

using the regular parallax mapping technique and it’s applicability for accurate small-scale

texture mapping seems unlikely. The use of more sophisticated parallax mapping techniques

is recommended in further research into the area.

To further improve the accuracy of the shading computations, we should also consult the

improvements in parallax mapping techniques. Parallax occlusion mapping is only one of

the many approaches to displacement mapping and was selected for this study as an example

of a more accurate parallax mapping technique. Other promising techniques include steep

parallax mapping (McGuire and McGuire 2005), relief mapping (Policarpo, Oliveira, and
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Comba 2005), view dependent displacement mapping (Wang et al. 2003), and interval map-

ping (Risser, Shah, and Pattanaik 2005). All of these methods allow for self-occlusion and

self-shadowing. A comprehensive comparison of these techniques should be conducted to

determine their suitability for small-scale texture mapping.

A combination of larger texture sizes, an accurate aliasing free displacement mapping tech-

nique, and an effective filtering to combine the small-scale shading into a single BRDF

could make the texture mapping of small-scale surfaces an effective method for graphics ap-

plications. This would allow these applications to make use of modeled small-scale surface

structures and add a new degree of freedom in modeling complex surface materials.
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