Evidence for chiral doublet bands has been observed for the first time in the even-even nucleus ^{136}Nd. One chiral band was firmly established. Four other candidates for chiral bands were also identified, which can contribute to the realization of the multiple pairs of chiral doublet bands (MχD) phenomenon. The observed bands are investigated by the constrained and tilted axis cranking covariant density functional theory (TAC-CDFT). Possible configurations have been explored. The experimental energy spectra, angular momenta, and $B(M1)/B(E2)$ values for the assigned configurations are globally reproduced by TAC-CDFT. Calculated results support the chiral interpretation of the observed bands, which correspond to shapes with maximum triaxiality induced by different multiquasiparticle configurations in ^{136}Nd.

DOI: 10.1103/PhysRevC.97.041304
FIG. 1. Partial level scheme of 136Nd showing the newly identified doublet bands and their decay toward low-lying levels. The intensities of the bands relative to the intensity of the 374-keV, $2^+ \rightarrow 0^+$ transition are also indicated below the band labels. The bands are labeled as in the complete level scheme that will be published in a forthcoming paper [34].

The 135Nd and 136Nd nuclei were the most strongly populated in the reaction, with cross sections of around 100 mb each, for a total of 480 mb. A number of 5.1×10^{10} three-fold and higher prompt γ-ray coincidence events were accumulated using the JUROGAM II array which has an efficiency of around 4.3% at 1.3 MeV. The events were time stamped by the total data readout (TDR) data acquisition, and sorted using the GRAIN code [35]. Fully symmetrized, three-dimensional ($E_\gamma - E_\gamma - E_\gamma$) and four-dimensional ($E_\gamma - E_\gamma - E_\gamma - E_\gamma$) matrices of γ-ray energies E_γ were analyzed using the RADWARE [36,37] analysis package. Spin and parity assignments were made on the basis of the measured DCO (directional correlations of oriented states) ratios (R_{DCO}), two-point angular correlation (anisotropy) ratio R_{an} [38,39], angular distributions [40], and polarization asymmetries [41] of the transitions depopulating the states. Details of the angular correlation analysis will be given in a forthcoming paper [34].

The partial level scheme of 136Nd showing five pairs of doublet bands and their decay toward low-lying states is given in Fig. 1. An example of double-gated spectra showing the transitions connecting one of the newly identified bands, band D2-C, to band D2, is given in Fig. 2. Similar spectra have been also obtained for the other doublet bands. One of the specific features of these bands is their decay to the yrast partners via high-energy quadrupole transitions, which, due to the E_γ^5 dependence, are stronger than the in-band dipole transitions which have low energy and E_γ^3 dependence, resulting in a factor of 10 to 20 in favor of the connecting transitions. Due to this fact, many in-band dipole transitions of the new bands could not be observed with the present statistics. The $B(M1)/B(E2)$ branching ratios for some of the observed bands are shown in Fig. 3. One can see an increase at spin around 20 for the bands D1, D3, and D4, which are well correlated with an increased single-particle alignment marking a change in the configuration. The $B(M1)/B(E2)$ values of all bands have a decreasing behavior at the highest spins. For the strongest pair of chiral bands, D5 and D5-chiral, we could extract the $B(M1)/B(E2)$ values for both bands, which are nearly identical within errors in the observed spin range.

Generally speaking, for the description of chiral rotations, three-dimensional tilted axis cranking covariant density functional theory (3D TAC-CDFT) should be adopted, which has been used to investigate the chiral modes of 106Rh [42]. For the doublet bands built on the 4- and 6-quasiparticle configurations identified in 136Nd, the 3D TAC-CDFT calculations are very challenging. For simplicity, the observed five pairs of rotational bands are investigated within the framework of TAC-CDFT [43–45]. However, the chiral nature...
of the assigned configurations was tested by performing 3D TAC-CDFT calculations for one chiral pair as an example. The well-known relativistic density functional PC-PK1 [46] is adopted and the Dirac equation is solved in a 3D harmonic oscillator basis in Cartesian coordinates with 10 major shells which provide convergent results in TAC-CDFT calculations [45].

By minimizing the energy with respect to the triaxial deformation γ, both adiabatic and configuration-fixed constrained calculations similar to those in Ref. [18] were performed for various low-lying particle-hole excitations in 136Nd. Detailed results are shown in Table I. There are three positive-parity configurations (labeled A, B, and C) and five negative-parity configurations (labeled D, D^*, E, F, and H) which are candidates for the observed nearly degenerate partner bands. All these configurations with particle-hole excitations possess remarkable triaxial deformation, which is the typical feature for the chiral rotational bands. By considering the pairing correlations with separable pairing force [47,48], the changes of total energy and total angular momentum at the rotational frequency 0.2 MeV are within 0.005% and 4.5% for configuration A. Therefore, pairing correlations can be safely neglected here. In the following, the configurations listed in Table I will be justified based on the quasiparticle alignments. The energy spectra, angular momenta, as well as the $B(M1)/B(E2)$ values of the observed doublet bands are also investigated within the TAC-CDFT framework for the assigned configurations.

Here, we take the bands D1 and D1-C as an example to show how the configurations are assigned. The quasiparticle alignments calculated by TAC-CDFT are shown in Fig. 4 in comparison with the experimental data. The experimental quasiparticle alignments are derived as in Ref. [49]. The parameters $J_0 = 11 \ h^2/\text{MeV}$ and $J_1 = 20 \ h^4/\text{MeV}^2$ have been adopted for the Harris formula $J = J_0 + J_1 \omega^2$. It is clearly seen that the calculated results based on configuration A reproduce the experimental data of band D1 very well. Therefore, the configuration of band D1 is assigned as A, as shown in Table I.

The assigned configuration A is further investigated by examining the calculated excitation energies of bands D1 and D1-C using the TAC-CDFT formalism, as shown in the left panels of Fig. 5. Note that the energy references for the
TABLE I. Unpaired nucleon configurations labeled A–H and the corresponding parities, calculated by constrained CDFT. The deformation parameters \(\beta \) and \(\gamma \), and the excitation energies \(E_x \) are also provided. It is noted that the letter G represents the ground state of \(^{136}\text{Nd}\) and there are no nucleons resulting from the breaking of a Cooper pair for this configuration. \(\Omega \) is the projection of the spin of the \(d_{3/2} \) orbital on the quantization axis, while \(\pi \) and \(\nu \) indicate protons and neutrons, respectively. The configurations are given in terms of spherical single-particle orbitals.

<table>
<thead>
<tr>
<th>State</th>
<th>(E_x) (MeV)</th>
<th>Parity</th>
<th>(\beta)</th>
<th>(\gamma)</th>
<th>Unpaired nucleons</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>0.000</td>
<td>+</td>
<td>0.24</td>
<td>27(^{\pi})</td>
<td>(\pi (h_{11/2})^{(d_{5/2}g_{7/2})^{-1}} \otimes v(h_{11/2})^{-1}(s_{1/2}d_{3/2})^{-1})</td>
</tr>
<tr>
<td>A</td>
<td>0.335</td>
<td>+</td>
<td>0.21</td>
<td>21(^{\nu})</td>
<td>(\pi (h_{11/2})^{(d_{5/2}g_{7/2})^{-1}} \otimes v(h_{11/2})^{-1}(s_{1/2}d_{3/2})^{-1})</td>
</tr>
<tr>
<td>B</td>
<td>3.419</td>
<td>+</td>
<td>0.22</td>
<td>19(^{\pi})</td>
<td>(\pi (h_{11/2})^{(d_{5/2}g_{7/2})^{-1}} \otimes v(h_{11/2})^{-1}(s_{1/2}d_{3/2})^{-1})</td>
</tr>
<tr>
<td>C</td>
<td>3.704</td>
<td>+</td>
<td>0.26</td>
<td>23(^{\nu})</td>
<td>(\pi (h_{11/2})^{(d_{5/2}g_{7/2})^{-1}} \otimes v(h_{11/2})^{-1}(f_{7/2}h_{9/2})^{-1})</td>
</tr>
<tr>
<td>D</td>
<td>1.173</td>
<td>–</td>
<td>0.22</td>
<td>19(^{\pi})</td>
<td>(\pi (h_{11/2})^{(d_{5/2}g_{7/2})^{-1}} \otimes v(h_{11/2})^{-1}(s_{1/2}d_{3/2})^{-1})</td>
</tr>
<tr>
<td>D(^{\pi})</td>
<td>1.346</td>
<td>–</td>
<td>0.21</td>
<td>22(^{\nu})</td>
<td>(\pi (h_{11/2})^{(d_{5/2}g_{7/2})^{-1}} \otimes v(h_{11/2})^{-1}(s_{1/2}d_{3/2})^{-1})</td>
</tr>
<tr>
<td>E</td>
<td>1.937</td>
<td>–</td>
<td>0.21</td>
<td>23(^{\nu})</td>
<td>(\pi (h_{11/2})^{(d_{5/2}g_{7/2})^{-1}} \otimes v(h_{11/2})^{-1}(s_{1/2}d_{3/2})^{-1})</td>
</tr>
<tr>
<td>F</td>
<td>2.778</td>
<td>–</td>
<td>0.20</td>
<td>35(^{\pi})</td>
<td>(\pi (h_{11/2})^{(d_{5/2}g_{7/2})^{-1}} \otimes v(h_{11/2})^{-2})</td>
</tr>
<tr>
<td>H</td>
<td>3.494</td>
<td>–</td>
<td>0.20</td>
<td>37(^{\nu})</td>
<td>(\pi (h_{11/2})^{(d_{5/2}g_{7/2})^{-1}} \otimes v(h_{11/2})^{-2})</td>
</tr>
</tbody>
</table>

FIG. 4. Quasiparticle alignments calculated by TAC-CDFT for the positive-parity (left panel) and negative-parity (right panel) chiral rotational bands of \(^{136}\text{Nd}\). Solid and open circles with the same color represent experimental data of one pair of nearly degenerate bands, and different lines denote the theoretical results based on different configurations.

FIG. 5. Excitation energies \(h\omega \) vs \(I \) calculated by TAC-CDFT for the positive (left panel) and negative (right panel) chiral rotational bands of \(^{136}\text{Nd}\).
FIG. 6. Evolution of the azimuth angle ϕ as a function of rotational frequency, for the total angular momentum of the configuration D^* assigned to band D3, calculated by 3D TAC-CDFT.

It is found that the azimuth angle ϕ for band D3 vanishes at low rotational frequencies, providing a planar solution. Above the critical rotational frequency 0.5 MeV, a nonzero angle ϕ appears, corresponding to an aplanar solution, namely, chiral rotation, for the selected configuration, namely, D^*. The resulting excitation energies and total angular momenta are well reproduced by the present 3D TAC-CDFT calculations.

We find aplanar solutions in band D3 which provides very strong support for the existence of chiral rotation. Moreover, the effects of 3D rotation on $B(M1)/B(E2)$ values, the total angular momentum, and excitation energies are marginal.

Summarizing, five pairs of nearly degenerate rotational bands were identified in 136Nd, one of which has a clear chiral character. It is the first time that chiral bands are observed in an even-even nucleus at high spins. The other four doublet bands, which are weakly populated, have no measured $B(M1)/B(E2)$ values, but the calculated assigned configurations show chiral geometry. This set of five nearly degenerate bands is the largest observed in a single nucleus until now. The observed bands were discussed using the TAC-CDFT, 3D TAC-CDFT, and MQ-PRM models, which reveal the chiral nature in the assigned configurations. Further theoretical calculations to investigate in detail to what extent the chiral geometry of the observed bands is realized are in progress.

This work has been supported by the Academy of Finland under the Finnish Centre of Excellence Programme (2012-2017) and by the EU 7th Framework Programme Project No. 262010 (ENSAR). The use of germanium detectors from the GAMMAPOOL is acknowledged. This work was supported in part by the GINOP-2.3.3-15-2016-00034, National Research, Development and Innovation Office NKFH, Contract No. PD 124717, the Polish National Science Centre (NCN) Grant No. 2013/10/M/ST2/00427, the Swedish Research Council under Grant No. 621-2014-5558, and the Chinese Major State 973 Program No. 2013CB834400, National Natural Science Foundation of China (Grants No. 11335002, No. 11375015, No. 11461141002, and No. 11621311001).
