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Highlights: 

 We detected intact components in complex-valued analysis at high model orders. 

 We found component integration in phase analysis with increasing model order. 
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 Phase data has a complementary role in preserving the integrity of brain networks. 

 Intact group DMN at higher orders showed significant difference between HCs and SZs. 

 We proposed an improved best run selection to select a run of ICA results. 
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Abstract 

Background 

Component splitting at higher model orders is a widely accepted finding for independent component 

analysis (ICA) of functional magnetic resonance imaging (fMRI) data. However, our recent study found 

that intact components occurred with subcomponents at higher model orders. 

New Method 

This study investigated model order effects on ICA of resting-state complex-valued fMRI data from 82 

subjects, which included 40 healthy controls (HCs) and 42 schizophrenia patients. In addition, we 

explored underlying causes for distinct component splitting between complex-valued data and 

magnitude-only data by examining model order effects on ICA of phase fMRI data. A best run selection 

method was proposed to combine subject averaging and a one-sample t-test. We selected the default mode 

network (DMN)-, visual-, and sensorimotor-related components from the best run of ICA at varying 

model orders from 10 to 140. 

Results 

Results show that component integration occurred in complex-valued and phase analyses, whereas 

component splitting emerged in magnitude-only analysis with increasing model order. Incorporation of 

phase data appears to play a complementary role in preserving integrity of brain networks. 

Comparison with Existing Method(s) 

When compared with magnitude-only analysis, the intact DMN component obtained in complex-valued 

analysis at higher model orders exhibited highly significant subject-level differences between HCs and 

patients with schizophrenia. We detected significantly higher activity and variation in anterior areas for 

HCs and in posterior areas for patients with schizophrenia. 

Conclusions 

These results demonstrate the potential of complex-valued fMRI data to contribute generally and 

specifically to brain network analysis in identification of schizophrenia-related changes. 

 

 

Keywords: Independent component analysis (ICA); Complex-valued fMRI data; Model order; 
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1. Introduction 

Independent component analysis (ICA), which is a blind source separation technique, has become a 

widely used data-driven method for functional magnetic resonance imaging (fMRI) data analysis 

(McKeown et al., 1998; Calhoun et al., 2001a, 2001b, 2002; Adalı and Calhoun, 2007; Smith et al., 2009; 

Zeng et al., 2009; Calhoun and Adalı, 2012). ICA can be used to separate fMRI data into maximally 

independent spatial maps by minimizing mutual information between spatial maps as well as their 

associated time courses. The number of spatially independent components, called model order, has 

significant effects on ICA of magnitude-only fMRI data (Li et al., 2007; Kiviniemi et al., 2009; Smith et 

al., 2009; Abou-Elseoud et al., 2010, 2011). A lower model order usually is preferred when extracting 

large spatial activations containing widely accepted integrated regions of interest (ROIs). In contrast, 

some large spatial networks are split into several subcomponents when using a larger model order (Li et 

al., 2007; Kiviniemi et al., 2009; Smith et al., 2009; Abou-Elseoud et al., 2010, 2011; Allen et al., 2011; 

Ding and Lee, 2013). For example, the default mode network (DMN) was detected as one intact 

component at model order 10, but it was split into posterior (DMNP), anterior (DMNA), and inferior 

parietal lobule (IPL) areas when the model order was larger than 70 (Abou-Elseoud et al., 2010). Recently, 

ICA at higher model orders has attracted increasing attention (Ma et al., 2007; Abou-Elseoud et al., 2011; 

Allen et al., 2011; Chen et al., 2017b), in part because functional connectivity among subnetworks 

exhibits significant differences between healthy controls (HCs) and patients with illnesses and disorders 

such as schizophrenia (Jafri et al., 2008; Demirci et al., 2009; Meda et al., 2012), Alzheimer’s disease 

(Liu et al., 2012), major depressive disorder (Abbott et al., 2013; He et al., 2017), and bipolar disorder 

(Meda et al., 2012; Jie et al., 2016). 

To date, most studies on model order effects on ICA have considered magnitude-only fMRI data. fMRI 

data initially are acquired as a bivariate complex-valued form containing magnitude and phase image 

pairs (Rowe, 2005; Rowe et al., 2007; Adalı and Calhoun, 2007; Calhoun and Adalı, 2012; Hagberg and 

Tuzzi, 2014). Although phase data tend to be noisy, phase fMRI data may contribute unique biological 

ACCEPTED M
ANUSCRIP

T



5 
 

information. For example, phase data previously have been used to reduce unwanted draining vein 

(Nencka and Rowe, 2007) and macrovascular (Menon, 2002; Tomasi and Caparelli, 2007) effects on 

blood oxygenation level-dependent signals. In addition, phase data show task-related changes 

(Hoogenraad et al., 1998, 2001; Arja et al., 2010). The phase change in activated brain areas can be 

explained via the sphere of Lorentz effect (Zhao et al., 2007; Feng et al., 2009). Multiple studies also have 

shown that meaningful brain activations can be extracted from phase fMRI data (Calhoun et al., 2002; 

Castro et al., 2014; Yu et al., 2015; Chen and Calhoun, 2016; Chen et al., 2017b). fMRI analyses based on 

evaluation of magnitude-only data can benefit from including information conveyed by phase data 

(Rodriguez et al., 2011, 2012; Castro et al., 2014; Hagberg and Tuzzi, 2014; Yu et al., 2015). For instance, 

Chen and Calhoun (2016) extracted a task-evoked brain functional map from phase fMRI data using an 

ICA-based brain functional magnetic susceptibility mapping method. Castro et al. (2014) achieved a 5% 

improvement in classification accuracy rate for HCs and patients with schizophrenia (SZs) by 

incorporating features, which were extracted by ICA from phase data, into a multiple kernel learning 

algorithm. Rodriguez et al. (2011, 2012) achieved better sensitivity and specificity than the 

magnitude-only method by proposing quality map phase denoising in the complex-valued method. Yu et 

al. (2015) detected more (139% for task-related and 331% for default mode) expected activations in a 

complex-valued method (as opposed to a magnitude-only method) by using a spatial phase mask for 

post-ICA denoising. Chen et al. (2017b) analyzed functional connectivity in phase data using group ICA 

and obtained different results from magnitude-only data, which provided a new arena for more 

comprehensive brain function analysis. 

A fixed model order typically is used when performing ICA of complex-valued fMRI data. The model 

order is larger than that used for magnitude-only data because additional phase information is 

incorporated (Adalı and Calhoun, 2007; Li et al., 2007; Xiong et al., 2012; Yu et al., 2015). Motivated by 

model order effects seen in ICA of magnitude-only fMRI data, we were interested in how model order 

would affect ICA of complex-valued fMRI data. In a preliminary study, we investigated model order 
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effects on independent vector analysis using 16 task-related complex-valued fMRI data sets (Kuang et al., 

2017a). Results indicated that complex-valued ICA analysis also detected component splitting at higher 

model orders but differed from magnitude-only analysis in that an intact component and its 

subcomponents existed simultaneously. 

In this study, we examined model order effects on ICA using resting-state complex-valued fMRI data 

from 82 subjects (40 HCs and 42 SZs). In addition, we investigated underlying causes of 

component-splitting differences between complex-valued data and magnitude-only data. We chose DMN-, 

visual-, and sensorimotor-related networks as components of interest because of clear component-splitting 

differences at higher model orders in magnitude-only analysis (Abou-Elseoud et al., 2010). We repeated 

ICA 10 times at varying model orders from 10 to 140 to gather complex-valued data, magnitude-only data, 

and phase data from each subject. We selected a best run of ICA results to provide DMN-, visual-, and 

sensorimotor-related components for further analyses. To ensure consistency of ICA results across runs, 

Du et al. (2014, 2016) proposed a best run selection method using the assignment problem and a 

minimum spanning tree (MST) to sort components. We identified the best run by the highest average 

correlation between all estimated components and their corresponding t-maps, which we obtained by 

performing a one-sample t-test on each component estimate from all subjects. Furthermore, we have 

proposed an improved method for selecting the best ICA run. The proposed method jointly performs 

averaging of the spatial maps of a component across all runs and statistical significance tests for each 

voxel in the spatial maps, which provides a more concise spatial reference. We constructed and used three 

spatial references, which corresponded to intact DMN-, visual-, and sensorimotor-related components, to 

select the best run in terms of the highest sum of correlation coefficients between the three reliable spatial 

references and their corresponding spatial components. We conducted experimental tests to evaluate the 

efficacy of the proposed best run selection method. 

To evaluate model order effects, we obtained the group components by averaging a component of interest 

in the best run across 82 subjects and then we used these components for assessment. The group 
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components in complex-valued analysis were further denoised using group phase masks (Yu et al., 2015; 

Kuang et al., 2017b), and the group components in phase analysis were further spatially smoothed for 

denoising. We examined the model order effects on ICA of complex-valued data by comparing these 

effects with ICA of magnitude-only data and phase data. We made these comparisons in terms of 

qualitative observations of DMN-, visual-, and sensorimotor-related group components and quantitative 

indexes, which included the number of activated voxels and cluster quality. In addition, we demonstrated 

the advantage of intact networks obtained from complex-valued fMRI data in distinguishing HCs and SZs. 

We selected the intact DMN as an example and compared HCs and SZs in terms of the number of 

activated voxels within several ROIs in group DMN components as well as the significance of differences 

in voxel number, voxel-wise t-maps (obtained by a two-sample t-test), and voxel-wise variance maps 

across subjects. 

2. Materials and Methods 

2.1. Materials 

Resting-state complex-valued fMRI data were collected from 40 HCs and 42 SZs with written subject 

consent overseen by the University of New Mexico Institutional Review Board. During the scan, all 

participants were instructed to rest quietly in the scanner, keep their eyes open without sleeping, and not 

think of anything in particular. fMRI scans were acquired using a 3.0 Tesla Siemens Allegra scanner 

(Siemens Medical Solutions USA, Inc., Malvern, PA, US) equipped with 40 mT/m gradients and a 

standard quadrature head coil. The functional scan was acquired using gradient-echo echo-planar imaging 

with the following parameters: TR = 2 s, TE = 29 ms, field of view = 24 cm, acquisition matrix = 64 × 64, 

flip angle = 75°, slice thickness = 3.5 mm, slice gap = 1 mm. Data preprocessing was performed using the 

Statistical Parametric Mapping software package (Wellcome Trust Center for Neuroimaging, University 

College of London, London, England; http://www.fil.ion.ucl.ac.uk/spm). Five scans were excluded 

because of steady-state magnetization effects. Functional images were motion corrected and then spatially 
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normalized into the standard Montreal Neurological Institute space. Following spatial normalization, the 

data were slightly subsampled to 3 × 3 × 3 mm³, which resulted in 53 × 63 × 46 voxels. Both magnitude 

and phase images were spatially smoothed with an 8 × 8 × 8 mm³ full-width half-maximum (FWHM) 

Gaussian kernel. Phase images were motion corrected using the transformations computed from 

magnitude-only data. Complex division of phase data by the first time point reduced the need for phase 

unwrapping, and spatial normalization of phase images used the warp parameters computed from 

magnitude-only data. A total of 146 scans were entered into the ICA. 

2.2. Methods 

2.2.1. Selection of the best run 

Principal component analysis (PCA)-reduced fMRI data of a single-subject are described as 𝐗 ∈ ℂ𝑁×𝑉, 

where N is the model order and V is the number of in-brain voxels. The spatial ICA model of fMRI data is 

𝐗 = 𝐀𝐒 , where 𝐒 = [𝐬1, ⋯ , 𝐬𝑁] ∈ ℂ𝑁×𝑉  includes N spatial maps. 𝐀 = [𝐚1, ⋯ , 𝐚𝑁]𝑇 ∈ ℂ𝑁×𝑁  is the 

mixing matrix containing N time course information, and T denotes transpose. The model order N could 

vary from 1 to 146, which is the number of scans. By learning a demixing matrix 𝐖 ∈ ℂ𝑁×𝑁 under the 

assumption of statistical independence of spatial components (McKeown et al., 1998; Calhoun et al., 

2001b), ICA estimates the N spatial maps as 𝐒̂ = 𝐖𝐗, where 𝐒̂ = [𝐬̂1, ⋯ , 𝐬̂𝑁] ∈ ℂ𝑁×𝑉. 

Next, we constructed three reliable spatial references to determine the best run. Let 𝐬̂1
𝑚, ⋯ , 𝐬̂𝑁

𝑚 denote N 

spatial map estimates of ICA at run m, 𝑚 = 1, ⋯ , 𝑀 and let 𝐲1
𝑚, 𝐲2

𝑚 and 𝐲3
𝑚 represent the three 

components of interest (i.e., intact DMN-, visual-, and sensorimotor-related components) for run m of 

ICA results. First, we selected 𝐲1
𝑚, 𝐲2

𝑚 and 𝐲3
𝑚 from 𝐬̂1

𝑚, ⋯ , 𝐬̂𝑁
𝑚 by finding the maximal absolute 

Pearson correlation coefficients between 𝐬̂1
𝑚, ⋯ , 𝐬̂𝑁

𝑚 and the DMN, visual, and sensorimotor reference 

networks detected in Smith et al. (2009). More specifically, the DMN contains posterior, anterior, and 

bilateral IPL areas. The visual network contains medial visual (MVS), occipital pole visual (OPVS), and 
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lateral visual (LVS) areas. The sensorimotor network contains right primary motor (RPMA), 

supplementary motor (SMA), and left primary motor (LPMA) areas. 

Second, we z-scored 𝐲1
𝑚, 𝐲2

𝑚 and 𝐲3
𝑚 and matched signs to the reference networks for magnitude-only 

fMRI analysis and phase fMRI analysis. For complex-valued fMRI analysis, we processed 𝐲1
𝑚, 𝐲2

𝑚 and 

𝐲3
𝑚 using phase correction and denoising methods (see Appendix A for details). Finally, we obtained 

three spatial references 𝐲̅𝑖, 𝑖 = 1,2,3  by averaging 𝐲𝑖
𝑚  over M runs and performing statistical 

significance tests on each voxel 𝑣, 𝑣 = 1, ⋯ , 𝑉: 

 𝑦̅(𝑣) = {
[𝑦𝑖

1(𝑣) + ⋯ + 𝑦𝑖
𝑀(𝑣)] 𝑀⁄ ,     𝑖𝑓 𝑝_𝑡𝑡𝑒𝑠𝑡(𝑦𝑖

1(𝑣), ⋯ , 𝑦𝑖
𝑀(𝑣)) < 𝑝𝑡ℎ

        0,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   
, (1) 

where 𝑝_𝑡𝑡𝑒𝑠𝑡(∙) denotes the p-value of a one-sample t-test on 𝑦𝑖
1(𝑣), ⋯ , 𝑦𝑖

𝑀(𝑣), and 𝑝𝑡ℎ is a p-value 

threshold (we used 𝑝𝑡ℎ = 0.01 ). Note that we removed the voxels with negative values from 

magnitude-only spatial references, because the magnitude maps in complex-valued analysis have only 

voxels with positive values. Removing the negative values did not substantially affect the results. In 

equation (1), the spatial reference 𝐲̅𝑖 takes advantage of denoising by averaging ICA estimates over all 

runs and of the consistency of activations using statistical significance tests. 

Given three spatial references 𝐲̅𝑖, 𝑖 = 1,2,3 obtained using equation (1), the best run 𝑚′ is determined 

when the maximal sum of correlation coefficients between 𝐲𝑖
𝑚 and 𝐲̅𝑖 , 𝑖 = 1,2,3;  𝑚 = 1, ⋯ , 𝑀, is 

reached: 

 𝑚′ = argmax
𝑚=1,⋯,𝑀

∑ |corr(𝐲𝑖
𝑚, 𝐲̅𝑖)| 3

𝑖=1 ,  (2) 

where corr and |∙| denote the correlation computation and the magnitude calculation, respectively. 

2.2.2. ICA analyses with varying model order 

We changed the model orders from 10 to 140 (in increments of 10). We used the entropy bound 

minimization (EBM) algorithm (Li and Adalı, 2010) to perform complex-valued ICA in complex-valued 
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fMRI analysis, and we used the Infomax algorithm (Bell and Sejnowski, 1995) to perform real-valued 

ICA in magnitude-only and phase fMRI analyses. The parameters used for EBM and Infomax were the 

default parameters used in the GIFT toolbox (Medical Image Analysis Lab, University of New Mexico, 

Albuquerque, NM, US; http://mialab.mrn.org/software/gift/). We repeated ICA 10 times for each subject 

and selected the best run using our proposed method in Section 2.2.1. 

Given the best run of ICA for each subject, we first selected the DMN-, visual-, and sensorimotor-related 

components by using their spatial reference networks. Because some DMN-, visual-, and 

sensorimotor-related subcomponents emerged at higher model orders because of component splitting, we 

also constructed subcomponent references by dividing the reference networks (see Section 2.2.1) into 

several subnetworks. As a result, we obtained: (1) six total reference networks for DMN-related 

components, which included the intact DMN as well as subcomponents DMNA, DMNP, IPL, right IPL 

(RIPL), and left IPL (LIPL), (2) six visual reference networks, which included the intact visual network 

as well as subnetworks MVS, OPVS, LVS, right LVS (RLVS), and left LVS (LLVS), and (3) four 

sensorimotor reference networks, which included the intact sensorimotor network as well as SMA, 

RPMA, and LPMA. We selected these DMN-, visual-, and sensorimotor-related components from the 

best run of ICA via maximal Pearson correlation coefficients between spatial map estimates and 

corresponding references as well as visual inspection. 

Next, we performed post-ICA processing to obtain the DMN-, visual-, and sensorimotor-related spatial 

group components for subsequent evaluation. We built group components in complex-valued, 

magnitude-only, and phase analyses via the following three steps:  

1.  Averaging each component over all 82 subjects. For complex-valued analysis, we denoised the 

averaged components using the group phase denoising method (Yu et al., 2015; Kuang et al., 

2017b).  
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2.  Removing insignificant voxels by a one-sample t-test (threshold at t > 2.639; p < 0.01; df = 81). 

For phase analysis, we also removed negative voxels and then spatially smoothed the group 

components using an 8 × 8 × 8 mm³ FWHM Gaussian kernel.  

3. Removing voxels with relatively smaller magnitudes by thresholding at Z > 0.5. 

Previous studies have demonstrated that the stability of magnitude-only analysis decreases as model order 

increases. In this study, we examined the stability of complex-valued analysis, magnitude-only analysis, 

and phase analysis under increasing model order. We used the cluster quality index in ICASSO, which is 

software for investigating reliability of ICA estimates by clustering and visualization (Himberg et al., 

2003, 2004), to evaluate consistency of a spatial component estimated from different runs of ICA. More 

specifically, we used the mean cluster quality index 𝑞̅ averaged first over selected components and then 

over all subjects for evaluation (Kuang et al., 2017a). The definitions of 𝑞̅ and the standard deviation 𝜎̅ 

averaged across 82 subjects are provided in Appendix B. 

2.2.3. Complex-valued DMN component differences between HCs and SZs 

To investigate the advantage of intact components obtained in complex-valued analysis at higher model 

orders, we used the intact group DMN as an example to show its capacity for distinguishing HCs and SZs. 

We selected a higher model order N = 120 for evaluation. When compared with magnitude-only analysis, 

we analyzed a magnitude subcomponent containing dominant posterior areas and weak IPL areas since 

this subcomponent was the most similar to the intact DMN component. In addition, we compared the 

intact DMN components obtained at lower model orders using both complex-valued and magnitude-only 

analyses. Specifically, we selected N = 20 for magnitude-only analysis and N = 40 for complex-valued 

analysis. We used a larger model order in complex-valued analysis because of the additional phase 

information that had been incorporated compared with magnitude-only data (Adalı and Calhoun, 2007; Li 

et al., 2007; Xiong et al., 2012; Yu et al., 2015). Based on the DMN estimates at selected model orders for 
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each subject, we calculated the group DMN components for 40 HCs and 42 SZs using the method given 

in Section 2.2.2. 

We counted the number of activated voxels within several ROIs of group DMN components and 

calculated the difference between the HC and SZ groups. We selected the ROIs according to Brodmann 

areas (BA), which included the precuneus (BA 7), medial frontal gyrus (BAs 8, 9), ventromedial 

prefrontal cortex (BA 10), orbitofrontal areas (BA 11), lingual gyrus (BAs 17, 18, 19), and anterior 

cingulate cortex (BA 32). To investigate group differences, we determined the number of activated voxels 

within ROIs for each subject and performed a two-sample t-test for 40 HCs and 42 SZs. 

Next, we aligned single-subject DMN estimates by masking them with a group DMN mask for each 

model order. In the group DMN mask, a voxel = 0 if its value in the group component over 82 subjects 

was smaller than 0.5; otherwise, a voxel = 1. Based on these aligned single-subject DMN estimates, we 

computed the difference t-map and difference in variance maps between HCs and SZs to assess activation 

differences and subject variability. We formed the difference t-map by performing voxel-wise two-sample 

t-tests (p < 0.05) on 40 aligned HC components and 42 aligned SZ components. The difference variance 

map was computed by calculating the voxel-wise difference values between the variance maps of HCs 

and SZs (HC-SZ). We generated the variance map of HCs (or SZs) by computing the variance values at 

each voxel across 40 aligned HC components (or 42 aligned SZ components). 

3. Results 

3.1. Best run selection 

We first present an example of the spatial DMN references generated using the proposed method, which 

combines across-subject averaging and a one-sample t-test (Z > 0.5; t > 3.250; p < 0.01; df = 9) with a 

comparison of references constructed by an across-subject one-sample t-test (i.e., t-map; t > 3.250; p < 

0.01; df = 9) and averaging (Z > 0.5), respectively. Fig. 1 shows results for ICA of complex-valued and 
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magnitude-only fMRI data from subject 2 at model order N = 60. The spatial references generated by the 

proposed method [Fig. 1A(3) and 1B(3)] included fewer voxels than those generated by the one-sample 

t-test [Fig. 1A(1) and 1B(1)] and averaging [Fig. 1A(2) and 1B(2)]. We retained voxels with high mean 

Z-values and high t-values in the proposed spatial DMN reference. 

 

We further compared our proposed method, MST-based method, and ICASSO for magnitude-only 

analysis and complex-valued analysis with varying model orders (from 10 to 140 with 10 intervals). The 

quantitative indexes were means and standard deviations of Pearson correlation coefficients between the 

estimated DMN-, visual-, and sensorimotor-related components selected from the best run and their 

corresponding spatial references across all 82 subjects. Fig. 2 shows results of magnitude-only analysis 

and complex-valued analysis. We observe from Fig. 2 that the proposed method achieved higher means 

and lower standard deviations of correlation coefficients for all DMN-, visual-, and sensorimotor-related 

components as compared with the MST-based method and ICASSO. This result suggests that our best run 

selection method benefited from both subject averaging and the one-sample t-test. In addition, we found 

that component splitting resulted in decreasing means of correlation coefficients in magnitude-only 

analysis when we increased model orders from 60 to 140 (see magenta lines in Fig. 2). Conversely, means 

of correlation coefficients in complex-valued analysis showed increasing trends (see green lines in Fig. 2), 

which suggests intact DMN-, visual-, and sensorimotor-related components (i.e., close to their 

corresponding reference networks) at higher model orders in complex-valued analysis. 

 

3.2. ICA analyses with varying model orders 

We obtained spatial group components using the method described in Section 2.2.2 for complex-valued 

fMRI data, magnitude-only fMRI data, and phase fMRI data. Figs. 3–5 show results of DMN-, visual-, 

Figure 2 

Figure 1 
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and sensorimotor-related networks at model orders N = 10, 20, 30, 40, 50, 60, 80, 100, 110, 120, and 140. 

Our first observation from Figs. 3–5 is that complex-valued analysis required a higher model order to 

extract meaningful components than magnitude-only and phase analyses. Specifically, magnitude-only 

analysis separated DMN and visual components at model order N = 10 and sensorimotor components at N 

= 20, whereas complex-valued analysis could not extract DMN and visual components until N ≥ 20 and 

could not extract sensorimotor components until N ≥ 30. This result is consistent with previous findings 

that the model order of complex-valued fMRI data is higher than that of magnitude-only fMRI data (Li et 

al., 2007; Xiong et al., 2012; Kuang et al., 2017a) due to including additional phase fMRI data. 

 

Our second observation is that, with increasing model order, magnitude-only analysis showed component 

splitting, whereas phase analysis and complex-valued analysis showed component integration. 

Complex-valued analysis detected an intact network for the DMN-, visual-, and sensorimotor-related 

components across all model orders, whereas magnitude-only analysis extracted an intact component only 

at lower model orders. More precisely, for the DMN in the magnitude-only analysis shown in Fig. 3B, the 

intact DMN first branched into DMNP2 (a component containing posterior areas of DMN), DMNA, and 

IPL at N = 30 (anterior areas were visible in DMNP2), and then it branched into DMNP2, DMNA, RIPL, 

and LIPL at N = 50 (anterior areas were invisible in DMNP2, and IPL was split into RIPL and LIPL). The 

bilateral IPL areas within DMNP2 gradually became invisible from N = 30 to N = 140. In the phase 

analysis displayed in Fig. 3C, we gradually detected new subcomponents with increasing model order. 

For example, we detected “DMNP2+DMNA” (a component containing posterior and anterior areas) and 

DMNA at N = 10, DMNP1 (another posterior DMN) at N = 20, and LIPL at N = 40. Then RIPL emerged 

at N = 70, and we detected an integrated component IPL containing both LIPL and RIPL areas. As shown 

in Fig. 3A, complex-valued analysis also exhibited component integration. LIPL appeared at N = 50, and 

RIPL emerged at N = 60. In addition, we detected an integrated component IPL containing LIPL and 

Figure 3 
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RIPL regions at N = 60. In complex-valued analysis with increasing model order, in addition to the intact 

DMN component, we extracted some subcomponents including DMNP1 at N = 20, DMNA at N = 30, 

LIPL at N = 50, and RIPL and IPL at N = 60. The model orders for detecting these subcomponents in 

complex-valued analysis were either identical to or higher than those of magnitude-only or phase analyses. 

For example, the model order was the same for detecting DMNP1 (N = 20) in all three analyses, but it 

was higher for extracting DMNA than in phase analysis (complex: N = 30; phase: N = 10). At each model 

order (e.g., N = 140), essential subcomponents to form the intact complex-valued DMN existed in the 

magnitude-only (e.g., DMNP2) and phase (e.g., “DMNP2+DMNA” and IPL) analyses. 

 

We also observed splitting of magnitude-only components and integration of phase components for visual 

networks as shown in Fig. 4 and sensorimotor components as shown in Fig. 5. Three splitting cases are 

marked in Fig. 4B. The intact visual component was split into OPVS and an “MVS1+LVS” component, 

which included medial and lateral areas at N = 30. “MVS1+LVS” further branched into MVS1 (a medial 

visual component) and LVS at N = 60, and LVS segmented into LLVS at N = 100 and RLVS at N = 110. 

One integrating case marked in the phase analysis demonstrated that an integrated LVS component 

containing both RLVS and LLVS areas was detected at N = 110 when LLVS emerged at N = 110 (RLVS 

appeared at N = 70), as shown in Fig. 4C. In the complex-valued analysis (Fig. 4A), we detected an intact 

visual component at N ≥ 20 and subcomponents OPVS and MVS2 (another medial visual component) at 

N = 30 as well as LVS at N = 70. We also detected these subcomponents at the same or lower model order 

in magnitude-only analysis (OPVS at N = 30; LVS at N = 60) and phase analysis (OPVS at N = 30; 

MVS2 at N = 10). At N = 140, the intact visual component demonstrated an example integration by 

magnitude MVS1, phase visual, phase LVS, and phase OPVS. 

 
Figure 5 

Figure 4 
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For the sensorimotor components shown in Fig. 5, the intact magnitude sensorimotor component (Fig. 5B) 

segmented into two SMA components (SMA1 and SMA2) and LPMA at N = 40, and then it segmented 

into an additional RPMA at N = 50. For the phase analysis (Fig. 5C), we detected RPMA and LPMA at N 

= 20, and an integrated sensorimotor component containing RPMA and LPMA regions emerged at N = 50. 

At N = 140, an example integration for the intact complex-valued sensorimotor component came from 

magnitude SMA2 component and phase sensorimotor component. In addition to the intact sensorimotor 

component, complex-valued analysis detected subcomponents LPMA at N = 40, SMA1 at N = 50, and 

RPMA at N = 70. We also detected these subcomponents at the same or a lower model order in 

magnitude-only (e.g., LPMA and SMA1 at N = 40) and phase (e.g., LPMA and RPMA at N = 20) 

analyses. 

3.3. Number of activated voxels 

Fig. 6 shows the number of activated voxels for each of the DMN-, visual-, and sensorimotor-related 

group components obtained in complex-valued, magnitude-only, and phase analyses at varying model 

orders (from 10 to 140 with 10 intervals). Because the intact networks in magnitude-only analysis split at 

higher model orders, we selected the components in the leftmost column of Figs. 3B–5B for analysis (i.e., 

DMNP2 for N ≥ 30; “MVS1+LVS” for 30 ≤ N ≤ 50 and MVS1 for N ≥ 60; SMA2 for N ≥ 40) 

since these components were closest to the intact components. In the phase analysis shown in Figs. 3C–

5C, we also selected the leftmost components to represent the intact networks (i.e., “DMNP2+DMNA” 

for N ≥  10; visual component for N ≥  10; sensorimotor component for N ≥  50). Other 

subcomponents for calculating the number of activated voxels included: 1) DMNA, IPL, LIPL, RIPL, and 

DMNP1 for DMN-related networks, 2) OPVS, LVS, RLVS, LLVS, and MVS2 for visual components, 

and 3) RPMA, LPMA, and SMA1 for sensorimotor components. 

 
Figure 6 
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Fig. 6(2) shows the number of voxels in representative intact networks (blue) in magnitude-only analysis 

for DMN-, visual-, and sensorimotor-related group components. The numbers of activated voxels for the 

three components started rapidly decreasing at N ≥ 20. This resulted from continuous component 

splitting in magnitude-only analysis with increasing model order. The other subcomponents also showed 

a decreasing tendency at higher model orders. The number of voxels in these subcomponents was 

significantly smaller than the number of voxels representing the intact component at lower model orders 

(e.g., N ≤ 60), and the difference in the number of voxels became smaller at higher model orders. The 

increase in the number of voxels at the starting model orders (e.g., N ≤ 20 for DMN; N ≤ 50 for 

DMNP1) may have been due to incomplete separation. 

Conversely, as shown in Fig. 6(1), in complex-valued analysis, the number of activated voxels in the three 

intact group components showed an initial increase and then maintained a nearly constant value as model 

order increased. This quantified the existence of the intact components in complex-valued analysis at 

higher model orders. A similar tendency was observed in the phase analysis shown in Fig. 6(3). The 

representative intact components showed a roughly constant voxel number, which indicated that phase 

analysis also detected intact components. Regarding the other subcomponents in complex-valued and 

phase analyses, the number of voxels showed a slight increase as model order increased (except for 

DMNA and LPMA in complex-valued analysis). 

3.4. Stability of ICA analysis 

Fig. 7 shows ICA stability for complex-valued, magnitude-only, and phase analyses with increasing 

model order. We compared the mean cluster quality index 𝑞̅ and the standard deviation 𝜎̅ averaged 

across 82 subjects (threshold at 𝑞𝑡ℎ = 0.7). We found that 𝑞̅ values kept decreasing in magnitude-only 

analysis as the full range of model orders increased from 10 to 140. In contrast, 𝑞̅ values remained stable 

at higher model orders of N ≥ 60 after initially decreasing at lower model orders of N < 60 in 

complex-valued and phase analyses. Note that 𝑞̅ values of complex-valued analysis were lower than 

ACCEPTED M
ANUSCRIP

T



18 
 

those of magnitude-only (t-value = 21.35, p-value = 1.67 × 10-11) and phase (t-value = 30.75, p-value = 

1.58 × 10-13) analyses. This lower value may have been because stability analysis used the unmixing 

matrix of ICA, which corresponded to the initial component estimates without any post-ICA processing 

(such as post-ICA denoising for complex-valued fMRI analysis). 

 

Regarding the standard deviation 𝜎̅, the three analyses first demonstrated similar tendencies in that 𝜎̅ 

values were ascending at lower model orders of N < 60. Magnitude-only analysis then exhibited slightly 

increasing 𝜎̅ values, whereas complex-valued and phase analyses showed steady 𝜎̅ values at higher 

model orders of N ≥ 60. This was consistent with previous findings that magnitude-only analysis 

demonstrated decreasing stability with increasing model order (Abou-Elseoud et al., 2010). In contrast, 

complex-valued analysis yielded a relatively stable separation at higher model orders. 

3.5. HC-SZ differences based on complex-valued intact DMN 

3.5.1. Number of activated voxels within ROIs 

As stated in Section 2.2.3, we used the intact group DMN to show its capacity for distinguishing HCs and 

SZs. We calculated the number of activated voxels within several ROIs of group DMN and tested for 

group-level HC-SZ differences using a two-sample t-test for 40 HCs and 42 SZs (Table 1). In general, 

compared with SZs, HCs had a higher number of activated voxels in the medial frontal gyrus (BAs 8, 9), 

ventromedial prefrontal cortex (BA 10), orbitofrontal areas (BA 11), and anterior cingulate cortex (BA 

32). In contrast, compared with HCs, SZs had a higher number of activated voxels in the precuneus (BA 7) 

and lingual gyrus (BAs 17, 18, 19). 

 

For a higher model order of N = 120, at which complex-valued analysis had an intact DMN but 

magnitude-only analysis had only a DMNP2 subcomponent, the complex-valued intact DMN not only 

Table 1 

 

Figure 7 
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showed much larger HC and SZ differences in activated voxel numbers within all ROIs, but it also 

showed significant subject-level differences in that all p-values were less than 0.05. In contrast, the 

magnitude-only DMNP2 component showed much smaller voxel number differences for HCs and SZs 

(BAs 17–19: a larger voxel number difference but insignificant subject-level difference). 

For lower model orders (complex: N = 40; magnitude: N = 20), it was evident that the complex-valued 

intact group DMN was comparable to the magnitude-only intact group DMN in finding differences 

between HCs and SZs and presented larger differences in the number of activated voxels and extremely 

significant subject-level differences for the ventromedial prefrontal cortex (BA 10; HC-SZ = 94; p < 1.6 × 

10-7) and orbitofrontal areas (BA 11; HC-SZ = 136; p < 5.2 × 10-13). These two ROIs demonstrated 

similar performance at a higher model order of N = 120 for complex-valued analysis. Specifically, the 

ventromedial prefrontal cortex (BA 10) had HC-SZ = 212 (p < 2.9 × 10-9), and the orbitofrontal areas (BA 

11) had HC-SZ = 167 (p < 2.7 × 10-21). In fact, ROIs BAs 8–11 and BA 32 were concentrated in anterior 

DMN areas. These results are supported by previous findings. For example, HCs had stronger effects in 

the bilateral medial frontal cortex (BAs 8, 9) and left anterior cingulate cortex (BA 32) compared with 

SZs (Mingoia et al., 2012), and SZs exhibited moderate increases in the posterior cingulate and parietal 

lobe (Calhoun et al., 2008). By using complex-valued fMRI data, BA 10 and BA 11 exhibited highly 

significant subject-level differences for HCs and SZs. 

3.5.2. T-maps of spatial group differences 

The difference DMN t-map was formed by performing voxel-wise two-sample t-tests (p < 0.05) on 40 

aligned HC components and 42 aligned SZ components (see Section 2.2.3), and results are shown in Fig. 

8(3). The group DMN spatial components of HCs and SZs are shown in Fig. 8(1)–8(2). We first 

compared the difference DMN t-maps for complex-valued and magnitude-only analyses at a higher model 

order of N = 120, as shown in Fig. 8A(3)–8B(3). It is evident that the difference DMN t-map in 

complex-valued analysis included similar changes as those observed in the magnitude-only difference 

t-map. That is, the posterior areas in SZs were significantly higher than those areas in HCs. Furthermore, 
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the difference DMN t-map in complex-valued analysis demonstrated unique and additional differences in 

anterior areas where HCs were significantly higher than SZs. This can be readily seen in the group DMN 

components of HCs and SZs at N = 120, as shown in Fig. 8A(1)–8A(2) and Fig. 8B(1)–8B(2). The group 

DMN of HCs showed much larger activations in anterior areas when compared with SZs in 

complex-valued analysis, whereas anterior areas showed subtle activations and differences in the group 

DMNs of HCs and SZs in magnitude-only analysis. 

 

Next, we compared the difference DMN t-maps for complex-valued and magnitude-only analyses at 

lower model orders (complex: N = 40; magnitude: N = 20). We observed that the difference t-map in the 

complex-valued analysis showed more differences in the anterior areas than the magnitude-only analysis, 

which was consistent with the results at higher model orders. The difference found in posterior areas (SZs 

were significantly higher than HCs) at higher model orders was not observed at lower model orders, as 

shown in Fig. 8C(3)–8D(3). The results at lower model orders are reasonable in that ICA can extract more 

activations from complex-valued fMRI data than magnitude-only fMRI data because of the inclusion of 

phase fMRI data (Rodriguez et al., 2011, 2012; Yu et al., 2015). 

3.5.3. Difference variance maps 

Fig. 9 shows variance maps of HCs, variance maps of SZs, and difference variance maps for the four 

cases. As shown in Fig. 9(3), we computed the difference in the DMN variance maps by calculating 

voxel-wise differences between the variance maps of HCs and SZs. We generated the variance maps of 

HCs and SZs shown in Fig. 9(1)–9(2) by computing voxel-wise variance values across DMN components 

of HCs and SZs. Briefly, the difference variance maps were similar for complex-valued and 

magnitude-only analyses at lower model orders. For the higher model order (N = 120), however, 

complex-valued analysis achieved better results in that SZs showed higher variance differences in 

posterior areas of the DMN than HCs, and HCs showed higher variance differences in anterior areas of 

Figure 8 
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the DMN than SZs. This finding is consistent with previous results of the difference DMN t-map. In sum, 

the intact DMNs obtained at the higher model orders in complex-valued analysis appeared to be useful for 

differentiating HCs and SZs. 

 

4. Discussion 

This study examined model order effects on ICA of complex-valued fMRI data based on resting-state 

complex-valued fMRI data sets from 82 subjects (40 HCs and 42 SZs). We analyzed DMN-, visual-, and 

sensorimotor-related networks as components of interest. We proposed a best run selection that combines 

across-subject averaging and a one-sample t-test to select components of interest for varying model orders 

from 10 to 140. Magnitude-only analysis exhibited component splitting at higher model orders (N ≥ 70), 

whereas complex-valued and phase analyses showed component integration with increasing model order. 

Complex-valued analysis detected an intact component at all model orders and extracted some 

subcomponents at a higher model order compared with magnitude-only or phase analyses. The 

complex-valued intact DMN component obtained at higher model orders exhibited highly significant 

group differences for HCs and SZs. 

We could infer the difference between model order effects on complex-valued fMRI data and 

magnitude-only fMRI data from incorporation of phase data. Results of phase analysis together with 

magnitude-only analysis provided quantitative supports for splitting differences between complex-valued 

and magnitude-only data at higher model orders. The white boxes at the bottom of Figs. 3–5 show one 

example of the complementary role of magnitude-only and phase data in generating an intact component. 

In fact, this can be found at any model order where all essential subcomponents for forming the 

complex-valued intact component can be found in either magnitude-only or phase analysis. For example, 

when DMNA was invisible in DMNP2 at N ≥ 50 in magnitude-only analysis, a DMNA component was 

extracted (from N = 10) in phase analysis (Fig. 3). When OPVS was split out of the intact visual 

Figure 9 
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component in magnitude-only analysis at N = 30, phase analysis detected OPVS at N = 30 (Fig. 4). When 

RPMA and LPMA were invisible in SMA2 in magnitude-only analysis at N ≥ 60, phase analysis 

extracted RPMA and LPMA from N = 20 (Fig. 5). As a result, the existence of an intact component is 

reasonable at higher model orders. Along this line, the coexistence of IPL, PIPL, and LIPL shown in Fig. 

3A was also acceptable. Considering that we always detected an intact component at varying model order, 

the subcomponents in the complex-valued analysis may have been generated by magnitude-only or phase 

analysis instead of by component splitting. The results given in Section 3.2 support the finding that the 

model order for detecting subcomponents in complex-valued analysis was either identical to or higher 

than magnitude-only or phase analysis. 

From a different point of view, we can say that complex-valued analysis can detect more voxels than 

magnitude-only analysis, and these additional voxels are meaningful as they have increasing correlations 

with the reference networks in Smith et al. (2009). This can be derived from the results shown in Figs. 6 

and 2. In comparison with magnitude-only analysis showing component splitting with increasing model 

order, complex-valued analysis detected an increasing number of voxels for the intact DNM, visual, and 

sensorimotor components (Fig. 6). The correlation coefficients between these intact complex-valued 

components and their reference networks also increased with increasing model order, similar to those 

shown in Fig. 2. Therefore, compared with the magnitude components, the extra voxels in the intact 

complex-valued components have increasing correlations with the reference networks as model order 

increases. These additional and meaningful voxels detected by complex-valued analysis at higher model 

orders can provide additional brain information beyond magnitude-only analysis, which may be useful for 

applications such as differentiating HCs and SZs, as demonstrated in Section 3.5. 

The uniqueness of phase information has been verified in multiple publications (Hoogenraad et al., 1998, 

2001; Calhoun et al., 2002; Zhao et al., 2007; Feng et al., 2009; Arja et al., 2010; Castro et al., 2014; Yu 

et al., 2015; Chen and Calhoun, 2016; Chen et al., 2017b). Nevertheless, this study elucidated additional 

details about model order effects on ICA of phase data. First, component integration in phase analysis is 
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the opposite of component splitting in magnitude-only analysis. We compared eigenvalues (sorted in a 

descending order) of the covariance matrix of phase data with those of magnitude-only data. Fig. 10 

shows the normalized and averaged results over all 82 subjects. It is evident that the eigenvalues of the 

phase data decreased much more slowly than those of magnitude-only data for all subjects. Note the 

eigenvalues of phase data were also much smaller than those of magnitude-only data (maxima: 4.29 vs. 

3.94 × 109). Therefore, it is reasonable to infer that, with increasing model order, increasing phase 

information is retained, which compensates for the loss of magnitude information caused by splitting and 

enables generation of integrated components. The relationship of the number of activated voxels between 

magnitude-only analysis and phase analysis, as shown in Fig. 6, supports this point. Second, we separated 

different components from phase fMRI data compared with those from magnitude-only data (e.g., 

“DMNP2+DMNA” in Fig. 3C, visual component in Fig. 4C, and sensorimotor component in Fig. 5C). 

These components in phase analysis were nearly intact at varying model orders (see the first column in 

Figs. 3C–5C). Moreover, we extracted the same components for magnitude-only and phase data at 

different model orders (e.g., DMNA emerged at N = 30 in magnitude-only analysis, but at N = 10 in phase 

analysis). In this case, it is safe to conclude that phase data provide unique and complementary brain 

activations in complex-valued fMRI analysis. Thus, complex-valued fMRI data require higher model 

orders than magnitude-only fMRI data for ICA to extract meaningful components. 

The DMN component has been widely implicated in studies of many diseases including Alzheimer’s 

disease, schizophrenia, and epilepsy (Broyd et al., 2009). Multiple studies have found significant 

abnormalities in activity and deactivation within the DMN (Garrity et al., 2007; Calhoun et al., 2008, 

2009; Pomarol-Clotet et al., 2008; Whitfield-Gabrieli et al., 2009; Jeong et al., 2010; Karbasforoushan 

and Woodward, 2012; Mingoia et al., 2012; Manoliu et al., 2014). Spatial differences in the DMN have 

been widely found in schizophrenia based on both task-related and resting-state fMRI data (Garrity et al., 

2007; Calhoun et al., 2008, 2009; Sambataro et al., 2010; Karbasforoushan and Woodward, 2012; 

Mingoia et al., 2012; Manoliu et al., 2014; Gopal et al., 2016; Hu et al., 2017). In this study, we examined 
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HC-SZ group differences in terms of the number of activated voxels, spatial t-maps, and variance maps 

based on the complex-valued intact DMN. As for the number of activated voxels within ROIs of the 

DMN, we obtained results similar to those of Mingoia et al. (2012), who showed that HCs had stronger 

effects in the bilateral medial frontal cortex (BAs 8–9) and left anterior cingulate cortex (BA 32) 

compared with SZs. Our difference DMN t-maps in magnitude-only analysis were consistent with 

previous studies by Manoliu et al. (2014) and Calhoun et al. (2008). Manoliu et al. reported that the DMN 

at a higher model order showed significantly decreased activity in the bilateral precuneus of DMNP for 

SZs. Calhoun et al. detected more activations in anterior areas of HCs when compared with SZs, whereas 

SZs presented more activity in the posterior cingulate and parietal regions in a group average DMN 

component at a lower model order during an auditory oddball task (Calhoun et al., 2008). Other studies 

also found decreased task-related suppression in the medial and dorsolateral prefrontal cortexes 

(Pomarol-Clotet et al., 2008; Whitfield-Gabrieli et al., 2009; Jeong et al., 2010) in schizophrenia. Note 

that Garrity et al. (2007) and Harrison et al. (2007) both detected abnormally increased deactivation in the 

prefrontal cortex and anterior cingulate cortex for SZs. For difference variance maps, our results are 

supported by those reported in Gopal et al. (2016). Gopal et al. captured greater variance for HCs than for 

SZs in a few anterior areas of the DMN at a high model order (N = 75), although they detected less 

significant activity in the DMN. Moreover, our difference variance maps in complex-valued analysis 

additionally captured clearly higher variance for SZs than for HCs in posterior areas. Compared with 

magnitude-only analysis, the ventromedial prefrontal cortex (BA 10) and orbitofrontal areas (BA 11) 

exhibited highly significant subject-level differences for HCs and SZs. SZs showed higher subject-level 

spatial variability in posterior areas of the DMN, whereas HCs showed higher spatial variability in 

anterior areas of the DMN. In sum, our complex-valued results at a higher model order (N = 120) not only 

support previous results, but provide additional information that might serve as biomarkers for 

distinguishing SZs from HCs. This suggests that additional unique biological information can be 

extracted from complex-valued fMRI data to understand better the disease and distinguish HCs from SZs. 
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We note that some subcomponents for the visual component (Gopal et al., 2016; Van de Ven et al., 2017) 

and temporal lobes (Calhoun et al., 2004, 2008; Gopal et al., 2016) also show spatial differences between 

HCs and SZs. We found that the intact temporal lobe component had similar benefits for distinguishing 

SZs from HCs, but the intact visual and sensorimotor components did not show significant differences. 

Additional quantitative indices may highlight more differences in their complex-valued form and this is a 

topic of future work. Future study of functional connectivity among brain networks at higher model 

orders for complex-valued fMRI data is also promising. Finally, we used across-subject averaging to 

generate group components. Group ICA and independent vector analysis (Garrity et al., 2007; Calhoun et 

al., 2008, 2009; Calhoun and Adalı, 2012; Gopal et al., 2016; Chen et al., 2017a; Kuang et al., 2017c) are 

good candidates for providing group components with new characteristics to investigate model order 

effects. 
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Appendix A 

Phase correction and denoising methods 

Given a complex-valued spatial component 𝐲𝑖
𝑚 ∈ ℂ𝑉(𝑖 = 1,2,3; 𝑚 = 1, ⋯ , 𝑀) , we assume its 

corresponding time course is 𝐚̃𝑖
𝑚 = {𝑎̃𝑖

𝑚(𝑡)} ∈ ℂ𝑇(𝑡 = 1, ⋯ , 𝑇, and T is the number of time points), 

which is obtained by decompressing the vector 𝑎𝑖
𝑚 ∈ ℂ𝑁 of the estimated mixing matrix 𝐀. Phase 

correction and denoising are done as follows (Yu et al., 2015): 

Step 1: Construct 𝐀̃𝑖
𝑚 ∈ ℝ2×𝑇  using the real part 𝐚̃𝑖,𝑟𝑒

𝑚  and imaginary part 𝐚̃𝑖,𝑖𝑚
𝑚  of the time 

courses 𝐚̃𝑖
𝑚 or the spatial component 𝐲𝑖

𝑚: 

 𝐀̃𝑖
𝑚 = [𝐚̃𝑖,𝑟𝑒

𝑚 , 𝐚̃𝑖,𝑖𝑚
𝑚 ]𝑇. (A.1) 

Step 2: Calculate the covariance of 𝐀̃𝑖
𝑚: 

 cov(𝐀̃𝑖
𝑚) = 𝐀̃𝑖

𝑚(𝐀̃𝑖
𝑚)𝑇 𝑇⁄ . (A.2) 

Step 3: Perform eigenvalue singular decomposition on cov(𝐀̃𝑖
𝑚) = 𝐕𝚲𝐕𝑇 , where 𝚲  is the 

eigenvalues matrix, and 𝐕 is the eigenvector matrix: 

 𝐕 = [
cos (𝜃𝑖

𝑚) sin (𝜃𝑖
𝑚)

−sin (𝜃𝑖
𝑚) cos (𝜃𝑖

𝑚)
]. (A.3) 

Calculate the rotation angle 𝜃𝑖
𝑚 from the elements of 𝐕. 

Step 4: Rotate 𝐲𝑖
𝑚 as follows: 

 𝐲𝑖
𝑚 = 𝐲𝑖

𝑚𝑒𝑗𝜃𝑖
𝑚
. (A.4) 

Step 5: Remove sign ambiguity of 𝐲𝑖
𝑚 according to the correlation between 𝐲𝑖

𝑚 and its reference 

𝐲𝑖,ref: 
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 𝐲𝑖
𝑚 = (−1)𝐲𝑖

𝑚, if corr (𝐲𝑖
𝑚, 𝐲𝑖,ref) < 0. (A.5) 

Step 6: Denoise 𝐲𝑖
𝑚 = {𝑦𝑖

𝑚(𝑣)}  (𝑣 = 1, ⋯ , 𝑉) based on the phase value of each voxel:  

 𝑦𝑖
𝑚(𝑣) = {

𝑦𝑖
𝑚(𝑣),       if 𝑦𝑖,phase

𝑚 (𝑣) ∈ ± 𝜋 4⁄

0,                            otherwise
 (A.6) 

where 𝑦𝑖,phase
𝑚 (𝑣) denotes the phase value of the voxel 𝑦𝑖

𝑚(𝑣). Then 𝐲𝑖
𝑚 = {𝑦𝑖

𝑚(𝑣)} is the phase 

corrected and denoised output. 
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Appendix B 

Definitions of 𝒒̅ and 𝝈̅ 

We used the cluster quality index in ICASSO to evaluate consistency of a spatial component estimated 

from different runs of ICA. We used the cluster quality index averaged first over selected components and 

then over all subjects for evaluation (Kuang et al., 2017a). 

Let 𝑞𝑛,𝑘 denote the cluster quality index of the nth component for subject k (𝑛 = 1, ⋯ , 𝑁; 𝑘 = 1, ⋯ ,82); 

𝑞𝑛,𝑘 is defined as follows (Himberg et al., 2003, 2004): 

 𝑞𝑛,𝑘 =  
1

〈𝐶𝑛
(𝑘)

〉2
 ∑
𝑖,𝑗∈𝐶𝑛

(𝑘)
 |𝑟𝑖𝑗

(𝑘)
| −

1

〈𝐶𝑛
(𝑘)

〉〈𝐶−𝑛
(𝑘)

〉
∑

𝑖∈𝐶𝑛
(𝑘)

∑
𝑗∈𝐶−𝑛

(𝑘)
|𝑟𝑖𝑗

(𝑘)
|,  (B.1) 

where 𝑟𝑖𝑗
(𝑘)

 is an element of 𝐑̂(𝑘) = |𝐒̂(𝑘)||𝐒̂(𝑘)|
𝑇

𝑉⁄  for complex-valued analysis and 𝐑̂(𝑘) =

𝐒̂(𝑘)(𝐒̂(𝑘))𝑇 𝑉⁄  for magnitude-only and phase analyses; 𝐒̂(𝑘) is the spatial map estimates for subject k; 

𝐶𝑛
(𝑘)

 denotes the set of indices belonging to the nth cluster; 𝐶−𝑛
(𝑘)

 is the set of indices that does not belong 

to the nth cluster, and 〈∙〉 is size. The cluster quality index is 𝑞𝑛,𝑘 ∈ [0,1]. Thus, cluster quality improves 

as 𝑞𝑛,𝑘 increases. 

Let 𝑞𝑛,𝑘
′ ∈ {𝑞𝑛,𝑘 > 𝑞𝑡ℎ} denote the threshold at 𝑞𝑛,𝑘; 𝑞𝑡ℎ is the threshold, and 𝑁′ is the cluster number 

for 𝑞𝑛,𝑘
′ . The mean and standard deviation of 𝑞𝑛,𝑘

′  for subject k are calculated as follows (Kuang et al., 

2017a): 

 𝑞̅𝑘 =
1

𝑁′
∑ 𝑞𝑛,𝑘

′𝑁′
𝑛=1 , σ𝑘 = √

1

𝑁′
∑ (𝑞𝑛,𝑘

′ − 𝑞̅𝑘)
2𝑁′

𝑛=1 .  (B.2) 

Finally, 𝑞̅𝑘 and σ𝑘 are each averaged across 82 subjects to assess overall stability of each ICA analysis 

(Kuang et al., 2017a): 

 𝑞̅ =
1

𝐾
∑ 𝑞̅𝑘

𝐾
𝑘=1 , σ̅ =

1

𝐾
∑ σ𝑘

𝐾
𝑘=1 . (B.3) 
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Tables 

Table 1. HC and SZ differences in activated voxel number within several ROIs of group DMN at lower 

model orders (complex: N = 40; magnitude: N = 20) and a higher model order (N = 120). At N = 120, the 

subcomponent DMNP2 in magnitude-only analysis was analyzed. The p-values (bold for p < 0.05) of the 

two-sample t-test for 40 HCs and 42 SZs are denoted in parentheses. 

 Lower model order  Higher model order 

 

 

Complex 

 N = 40 

Magnitude 

N = 20 
 

Complex 

N = 120 

Magnitude 

N = 120 

HC-SZ      

Medial frontal gyrus 

(BAs 8, 9) 
113 (0.039) 357 (0.011)  414 (0.024) 55 (0.912) 

Ventromedial prefrontal 

cortex (BA 10) 
94 (1.6e-7) 81 (0.046)  212 (2.9e-9) 68 (0.462) 

Orbitofrontal areas (BA 11) 136 (5.2e-13) 83 (0.184)  167 (2.7e-21) -1 (0.183) 

Anterior cingulate cortex 

(BA 32) 
115 (0.100) 112 (0.035)  142 (0.010) 1 (0.402) 

SZ-HC      

Precuneus (BA 7) 196 (0.263) 44 (0.858)  34 (0.026) -9 (0.150) 

Lingual gyrus 

(BAs 17, 18, 19) 
109 (0.130) 103 (0.085)  275 (0.002) 208 (0.494) 
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Figure legends 

Figure 1. Comparison of spatial DMN references. (1) t-map (across-subject one-sample t-test) (t > 3.250; 

p < 0.01), (2) averaging (Z > 0.5), and (3) the proposed method (Z > 0.5; t > 3.250; p < 0.01) for ICA of 

complex-valued (A) and magnitude-only (B) fMRI data from subject 2 at model order N = 60. The 

magnitude parts of complex-valued spatial maps are shown. 

Figure 2. Comparison of our proposed method, the MST-based method, and ICASSO for magnitude-only 

analysis (magenta) and complex-valued analysis (green) with varying model order (from 10 to 140 with 

10 intervals) in terms of correlation coefficients (CC) between component estimates selected from the 

best run and their corresponding reference networks in Smith et al. (2009). We calculated means and 

standard deviations of correlation coefficients across all 82 subjects. We analyzed DMN (A), visual (B), 

and sensorimotor (C) components. 

Figure 3. DMN-related group components showing the effect of increasing model order for 

complex-valued analysis (A), magnitude-only analysis (B), and phase analysis (C). Magnitude-only 

analysis shows component splitting, whereas phase and complex-valued analyses show component 

integration. In magnitude-only analysis, an intact DMN was detected at N = 10, and DMNP1 appeared at 

N = 20. The intact DMN first branched into DMNP2, DMNA, and IPL at N = 30 (DMNA region was 

visible in DMNP2) and then branched into DMNP2, DMNA, RIPL, and LIPL at N = 50 (DMNA region 

was invisible in DMNP2), whereas IPL split into RIPL and LIPL at N = 50. Regions of bilateral IPL 

within DMNP2 gradually became invisible from N = 30 to N = 140. Splitting is illustrated in orange 

boxes. For phase analysis, “DMNP2+DMNA” and DMNA were detected at N = 10. DMNP1 appeared at 

N = 20, and LIPL emerged at N = 40. RIPL emerged at N = 70, and an integrated component IPL 

containing both LIPL and RIPL areas was detected. This integration is shown in the blue box. In 

complex-valued analysis, intact DMN and DMNP1 were detected at N = 20. DMNA was extracted at N = 

30, and LIPL appeared at N = 50. RIPL emerged at N = 60, and an integrated component IPL containing 

LIPL and RIPL areas was detected. This integration also is shown in the blue box. Finally, the bottom 

white box highlights one example of a complementary form of magnitude-only and phase data in 

complex-valued analysis. The intact DMN was integrated by magnitude DMNP2, phase 

“DMNP2+DMNA”, and phase IPL. 

Figure 4. Visual-related group components showing the effect of increasing model order for 

complex-valued analysis (A), magnitude-only analysis (B), and phase analysis (C). Magnitude-only 

analysis shows component splitting, whereas phase analysis shows component integration. In 

magnitude-only analysis, an intact visual network was detected at N = 10. At N = 30, the intact visual 

network branched into “MVS1+LVS” and OPVS. MVS2 emerged at N = 40. “MVS1+LVS” branched 

into MVS1 and LVS at N = 60. LVS further branched into LLVS at N = 100 and RLVS at N = 110. The 

three orange boxes show this splitting. For phase analysis, visual and MVS2 were detected at N = 10. 

OPVS appeared at N = 30, and RLVS emerged at N = 70. LLVS emerged at N = 110, and an integrated 

component LVS containing both RLVS and LLVS areas was detected. This integration is shown in the 

blue box. In complex-valued analysis, an intact visual network was detected at N = 20. OPVS and MVS2 
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appeared at N = 30, and LVS appeared at N = 70. Finally, the bottom white box highlights one example of 

a complementary form of magnitude-only and phase data in complex-valued analysis. The intact visual 

component was integrated by magnitude MVS1, phase visual, phase LVS, and phase OPVS. 

Figure 5. Sensorimotor-related group components showing the effect of increasing model order for 

complex-valued analysis (A), magnitude-only analysis (B), and phase analysis (C). Magnitude-only 

analysis shows component splitting, whereas phase analysis shows component integration. In 

magnitude-only analysis, an intact sensorimotor component was detected at N = 20. The intact 

sensorimotor component first branched into SMA2, LPMA, and SMA1 at N = 40 and then branched into 

SMA2, RPMA, LPMA, and SMA1 at N = 50. Splitting is shown in an orange box. For phase analysis, 

RPMA and LPMA were detected at N = 20, and sensorimotor and SMA1 emerged at N = 50. 

Sensorimotor was an integrated component containing RPMA and LPMA regions. This integration is 

illustrated in a blue box. In complex-valued analysis, an intact sensorimotor component was detected at N 

= 30. LPMA was detected at N = 40, and SMA1 appeared at N = 50. RPMA emerged at N = 70. Finally, 

the bottom white box highlights one example of a complementary form of magnitude-only and phase data 

in complex-valued analysis. The intact sensorimotor component was integrated by magnitude SMA2 and 

phase sensorimotor. 

Figure 6. Number of activated voxels for DMN (A), visual (B), and sensorimotor (C) group components 

obtained in complex-valued analysis (1), magnitude-only analysis (2), and phase analysis (3) at varying 

model order (from 10 to 140 with 10 intervals). There were six DMN-related components (DMN, DMNA, 

IPL, LIPL, RIPL, and DMNP1), six visual components (visual, OPVS, LVS, LLVS, RLVS, and MVS2), 

and four sensorimotor components (sensorimotor, LPMA, RPMA, and SMA1). 

Figure 7. Comparison of ICA stability for complex-valued, magnitude-only, and phase analyses with 

increasing model order from 10 to 140 in terms of the mean cluster quality index 𝑞̅ and the standard 

deviation σ̅ averaged over 82 subjects. 

Figure 8. Difference DMN t-maps between HCs and SZs. Group DMN spatial components of HCs (1) 

and SZs (2) are shown in addition to the difference DMN t-maps (3) (two-sample t-test, p < 0.05). A 

higher model order of N = 120 was used for both complex-valued analysis (A) and magnitude-only 

analysis (B). A lower model order of N = 40 was used for complex-valued analysis (C), and N = 20 was 

used for magnitude-only analysis (D). The magnitude parts of complex-valued group components and 

difference t-maps are displayed. 

Figure 9. Results of difference variance maps between HCs and SZs. Variance maps of HCs, variance 

maps of SZs, and difference variance maps of HCs and SZs (HC-SZ) (threshold at 0.5) are shown in 

subfigures (1)–(3), respectively. Complex-valued analysis at N = 120 (A) and N = 40 (C) as well as 

magnitude-only analysis at N = 120 (B) and N = 20 (D) are presented. The magnitude parts of 

complex-valued variance maps and difference variance maps are displayed. 

Figure 10. Normalized and averaged eigenvalues (in descending order) of the covariance matrix of 

magnitude-only data and phase data over all 82 subjects. 
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Figure 1 

 

Figure 1. Comparison of spatial DMN references. (1) t-map (across-subject one-sample t-test) (t > 3.250; 

p < 0.01), (2) averaging (Z > 0.5), and (3) the proposed method (Z > 0.5; t > 3.250; p < 0.01) for ICA of 

complex-valued (A) and magnitude-only (B) fMRI data from subject 2 at model order N = 60. The 

magnitude parts of complex-valued spatial maps are shown. 
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Figure 2 

 

Figure 2. Comparison of our proposed method, the MST-based method, and ICASSO for magnitude-only 

analysis (magenta) and complex-valued analysis (green) with varying model order (from 10 to 140 with 

10 intervals) in terms of correlation coefficients (CC) between component estimates selected from the 

best run and their corresponding reference networks in Smith et al. (2009). We calculated means and 

standard deviations of correlation coefficients across all 82 subjects. We analyzed DMN (A), visual (B), 

and sensorimotor (C) components. 
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Figure 3 

 

Figure 3. DMN-related group components showing the effect of increasing model order for 

complex-valued analysis (A), magnitude-only analysis (B), and phase analysis (C). Magnitude-only 

analysis shows component splitting, whereas phase and complex-valued analyses show component 

integration. In magnitude-only analysis, an intact DMN was detected at N = 10, and DMNP1 appeared at 

N = 20. The intact DMN first branched into DMNP2, DMNA, and IPL at N = 30 (DMNA region was 

visible in DMNP2) and then branched into DMNP2, DMNA, RIPL, and LIPL at N = 50 (DMNA region 

was invisible in DMNP2), whereas IPL split into RIPL and LIPL at N = 50. Regions of bilateral IPL 

within DMNP2 gradually became invisible from N = 30 to N = 140. Splitting is illustrated in orange 

boxes. For phase analysis, “DMNP2+DMNA” and DMNA were detected at N = 10. DMNP1 appeared at 

N = 20, and LIPL emerged at N = 40. RIPL emerged at N = 70, and an integrated component IPL 

containing both LIPL and RIPL areas was detected. This integration is shown in the blue box. In 

complex-valued analysis, intact DMN and DMNP1 were detected at N = 20. DMNA was extracted at N = 

30, and LIPL appeared at N = 50. RIPL emerged at N = 60, and an integrated component IPL containing 

LIPL and RIPL areas was detected. This integration also is shown in the blue box. Finally, the bottom 

white box highlights one example of a complementary form of magnitude-only and phase data in 

complex-valued analysis. The intact DMN was integrated by magnitude DMNP2, phase 

“DMNP2+DMNA”, and phase IPL. 
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Figure 4 

 

Figure 4. Visual-related group components showing the effect of increasing model order for 

complex-valued analysis (A), magnitude-only analysis (B), and phase analysis (C). Magnitude-only 

analysis shows component splitting, whereas phase analysis shows component integration. In 

magnitude-only analysis, an intact visual network was detected at N = 10. At N = 30, the intact visual 

network branched into “MVS1+LVS” and OPVS. MVS2 emerged at N = 40. “MVS1+LVS” branched 

into MVS1 and LVS at N = 60. LVS further branched into LLVS at N = 100 and RLVS at N = 110. The 

three orange boxes show this splitting. For phase analysis, visual and MVS2 were detected at N = 10. 

OPVS appeared at N = 30, and RLVS emerged at N = 70. LLVS emerged at N = 110, and an integrated 

component LVS containing both RLVS and LLVS areas was detected. This integration is shown in the 

blue box. In complex-valued analysis, an intact visual network was detected at N = 20. OPVS and MVS2 

appeared at N = 30, and LVS appeared at N = 70. Finally, the bottom white box highlights one example of 

a complementary form of magnitude-only and phase data in complex-valued analysis. The intact visual 

component was integrated by magnitude MVS1, phase visual, phase LVS, and phase OPVS. 
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Figure 5 

 

Figure 5. Sensorimotor-related group components showing the effect of increasing model order for 

complex-valued analysis (A), magnitude-only analysis (B), and phase analysis (C). Magnitude-only 

analysis shows component splitting, whereas phase analysis shows component integration. In 

magnitude-only analysis, an intact sensorimotor component was detected at N = 20. The intact 

sensorimotor component first branched into SMA2, LPMA, and SMA1 at N = 40 and then branched into 

SMA2, RPMA, LPMA, and SMA1 at N = 50. Splitting is shown in an orange box. For phase analysis, 

RPMA and LPMA were detected at N = 20, and sensorimotor and SMA1 emerged at N = 50. 

Sensorimotor was an integrated component containing RPMA and LPMA regions. This integration is 

illustrated in a blue box. In complex-valued analysis, an intact sensorimotor component was detected at N 

= 30. LPMA was detected at N = 40, and SMA1 appeared at N = 50. RPMA emerged at N = 70. Finally, 

the bottom white box highlights one example of a complementary form of magnitude-only and phase data 

in complex-valued analysis. The intact sensorimotor component was integrated by magnitude SMA2 and 

phase sensorimotor. 
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Figure 6 

 

Figure 6. Number of activated voxels for DMN (A), visual (B), and sensorimotor (C) group components 

obtained in complex-valued analysis (1), magnitude-only analysis (2), and phase analysis (3) at varying 

model order (from 10 to 140 with 10 intervals). There were six DMN-related components (DMN, DMNA, 

IPL, LIPL, RIPL, and DMNP1), six visual components (visual, OPVS, LVS, LLVS, RLVS, and MVS2), 

and four sensorimotor components (sensorimotor, LPMA, RPMA, and SMA1). 
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Figure 7 

 

Figure 7. Comparison of ICA stability for complex-valued, magnitude-only, and phase analyses with 

increasing model order from 10 to 140 in terms of the mean cluster quality index 𝑞̅ and the standard 

deviation σ̅ averaged over 82 subjects. 
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Figure 8 

 

Figure 8. Difference DMN t-maps between HCs and SZs. Group DMN spatial components of HCs (1) 

and SZs (2) are shown in addition to the difference DMN t-maps (3) (two-sample t-test, p < 0.05). A 

higher model order of N = 120 was used for both complex-valued analysis (A) and magnitude-only 

analysis (B). A lower model order of N = 40 was used for complex-valued analysis (C), and N = 20 was 

used for magnitude-only analysis (D). The magnitude parts of complex-valued group components and 

difference t-maps are displayed. 
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Figure 9 

 

Figure 9. The magnitude parts of complex-valued variance maps and difference variance maps are 

displayed. Results of difference variance maps between HCs and SZs. Variance maps of HCs, variance 

maps of SZs, and difference variance maps of HCs and SZs (HC-SZ) (threshold at 0.5) are shown in 

subfigures (1)–(3), respectively. Complex-valued analysis at N = 120 (A) and N = 40 (C) as well as 

magnitude-only analysis at N = 120 (B) and N = 20 (D) are presented. The magnitude parts of 

complex-valued variance maps and difference variance maps are displayed. 

ACCEPTED M
ANUSCRIP

T



 

47 
 
 

Figure 10 
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Figure 10. Normalized and averaged eigenvalues (in descending order) of the covariance matrix of 

magnitude-only data and phase data over all 82 subjects. 

 

ACCEPTED M
ANUSCRIP

T


