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Abstract: Let Ω be a domain in ℝn, where n = 2, 3. Suppose that a sequence of Sobolev homeomorphisms
fk : Ω → ℝn with positive Jacobian determinants, J(x, fk) > 0, converges weakly in W1,p(Ω,ℝn), for some
p ⩾ 1, to a mapping f . We show that J(x, f) ⩾ 0 a.e. in Ω. Generalizations to higher dimensions are also given.
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1 Introduction
The main goal of this note is to establish when the sign of the Jacobian is preserved under W1,p-weak con-
vergence. Such a question pops out naturally in the variational approach to Geometric Function Theory
(GFT) [2, 14, 22] and Nonlinear Elasticity (NE) [1, 4, 6, 19, 24, 25]. Both theories GFT and NE deal with
minimizing sequences of Sobolev homeomorphisms. In the context of NE, one typically deals with two-
dimensional or three-dimensional models and require that the deformation gradients belong toMn×n

+ , where
Mm×n = {real m × n matrices}, andMn×n

+ = {A ∈ Mn×n : det A > 0}. The infimum of the energy is not attained,
in general, at a homeomorphism; interpenetration of matter may occur. Even in a special case of Dirichlet
energy injectivity is often lost when passing to the weak limit of the minimizing sequence, [3, 13, 15, 16].
Further examinations are needed to know the properties of such singular minimizers.

Throughout this text Ω will be a domain in ℝn. The class of Sobolev mappings f : Ω → ℝn with nonneg-
ative Jacobian determinant, J(x, f) = detDf(x) ⩾ 0 almost everywhere, is closed under the weak convergence
inW1,p(Ω,ℝn) provided p ⩾ n (see [14, Theorem 8.4.2]). However, if p < n, passing to the weakW1,p-limit of
a sequencewith nonnegative Jacobians onemay lose the sign of the Jacobian. Indeed, there exists a sequence
of Sobolev mappings fk : Ω → ℝn with J(x, fk) > 0 almost everywhere such that the sequence converges
weakly inW1,p(Ω,ℝn), p < n, to the mapping f(x) = (−x1, x2, . . . , xn), see [14, p. 181]. Moreover, following
the construction in [18] such mappings fk can be made continuous. However, it is not obvious at all as to
whether one can make a similar example with fk being homeomorphisms. This is the subject of our result
here. Here [ n2 ] denotes the integer part, i.e. [

2
2 ] = 1, [32 ] = 1 and so on.

Theorem 1. Let Ω ⊂ ℝn be a domain and let p ⩾ 1 for n ∈ {2, 3} and p > [ n2 ] for n ⩾ 4. Suppose that a sequence
of Sobolev homeomorphisms fk : Ω → ℝn with J(x, fk) ⩾ 0 converges weakly in W1,p(Ω,ℝn) to amapping f and
further assume that J(x, fk) is not a.e. zero. Then J(x, f) ⩾ 0 a.e. in Ω.
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66 | S. Hencl and J. Onninen, Jacobian of weak limits of Sobolev homeomorphisms

It is worth noting that in Theorem 1 the Jacobian J(x, f) can have very different behavior than the Jacobians in
the sequencewithout knowing that J(x, fk) > 0 on a set of positivemeasure. Indeed, there exists a sequence of
Sobolev homeomorphisms fk with J(x, fk) = 0 a.e., converging weakly inW1,p(Ω,ℝn), 1 ⩽ p < n, to the map-
ping f(x) = x. Let us briefly sketch this using the construction from [10]: we cover Ω by cubes of diameter less
than 1

k and on each cubewe follow the construction from [10] to obtain a homeomorphismwith zero Jacobian
a.e. It is possible tomake theW1,p-norm of the sequence uniformly bounded and hence find aweakly conver-
gent subsequence. Furthermore, it follows from the construction that the sequence fk converges uniformly to
the identity. This also shows that there is a sequence with J(x, fk) = 0 a.e. converging weakly inW1,p(Ω,ℝn),
1 ⩽ p < n, to f(x) = (−x1, x2, . . . , xn).

Recently it was shown in [12] and [5] that a Jacobian of a Sobolev homeomorphism can change sign in
dimension n ≥ 4 for 1 ≤ p < [ n2 ].

2 Preliminaries

2.1 Degree and Jacobian

There are two basic approaches to the notion of local degree for a mapping, the algebraic (see e.g. Dold [7])
and the analytic (see e.g. Lloyd [17]). Both of these notions try to capture the idea of counting the preimages
of a target point. For a continuous mapping f : Ω → ℝn and y∘ ∈ ℝn \ f(∂Ω) the degree of f at y∘ with respect
to Ω is denoted by deg(f, Ω, y∘). If f : Ω → ℝn is a homeomorphism, then deg(f, Ω, y∘) is either 1 or −1 for
all y∘ ∈ f(Ω), see e.g. [17, Section IV.5] or [21, Section II.2.4, Theorem 3]. We say that a homeomorphism f is
sense-preserving if deg(f, Ω, y∘) ≡ 1. For a linear map A : ℝn → ℝn with det A ̸= 0, it is easy to check from the
definition that

deg(A, Ω, y∘) = sgn det A. (1)

We recall the following corollary [2, Corollary 2.8.2]. Given a homeomorphism f : Ω → ℝn suppose that f is
differentiable at x∘ with J(x∘, f) ̸= 0. Then we have

deg(f, Ω, f(x∘)) = sgn J(x∘, f). (2)

We will use the fact that the topological degree is stable under homotopy. That is for every continuous map-
ping H : Ω × [0, 1] → ℝn and y∘ ∈ ℝn such that y∘ ∉ H(∂Ω, t) for all t ∈ [0, 1] we have

deg(H( ⋅ , 0), Ω, y∘) = deg(H(⋅, 1), Ω, y∘). (3)

2.2 Differentiability of Sobolev mappings

ASobolev homeomorphism f ∈ W1,p(Ω,ℝn) is differentiable almost everywhere if p > n − 1, n ⩾ 3, and p ⩾ 1
for n = 2, see [9, 20, 26]. We will also need a generalization of the concept of differentiability, which is ob-
tained by replacing the ordinary limit by an approximate limit, see e.g. [8, Section 6.1.3]. It is known that
a Sobolev mapping f ∈ W1,1

loc (Ω,ℝ
n) is approximatively differentiable almost everywhere, see e.g. [8, Sec-

tion 6.1.2, Theorem 2]. Moreover, such a mapping is L1-differentiable almost everywhere [27]; that is, for
almost every x∘ ∈ Ω we have

lim
r→0
−∫

B(x∘ ,r)

!!!!!!!
f(x) − f(x∘) − Df(x∘)(x − x∘)

r
!!!!!!!
dx = 0. (4)

Hereafter, the notation −∫B(x∘ ,r) means the integral average over the n-dimensional ball

B(x∘, r) = {x ∈ ℝn : |x − x∘| < r}.

In order to illustrate our ideas and for reader’s comprehension, we first prove Theorem 1 in the simpler
cases p ≥ 1, n = 2; and p > n − 1, n ≥ 3, where we can avoid some technicalities.
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3 Proof of Theorem 1 for p > n − 1, n ⩾ 3, and p ⩾ 1, n = 2
Each homeomorphism fj is either sense-preserving or sense-reversing. Under our assumptions there exists
a point xj such that fj is differentiable at xj, see Section 2.2, and J(xj , fj) > 0. By (2) we know that the degree
of fj is one and hence each fj is sense-preserving.

As fj ⇀ f in Lp, p > 1, we know that ∫Ω |Df|p is uniformly bounded and hence we can find a Radon
measure μ and a subsequence (which we will denote again as fj) such that

|Dfj|p
w∗

⇀ μ in measures.

Moreover, for p = 1we can use De La Vale Pousin characterization of weak convergence in L1 andwe can find
an continuous convex function Φ : [0,∞) → [0,∞) such that

Φ(t)
t

is increasing, lim
t→∞

Φ(t)
t

= ∞ and ∫
Ω

Φ(|Dfj|) ≤ 1. (5)

It follows that we can find a Radonmeasure μ and a subsequence (which wewill denote again as fj) such that

Φ(|Dfj|)
w∗

⇀ μ in measures.

It is well known that for almost every x∘ ∈ Ω we have

Mμ(x∘) := sup
r>0

μ(B(x∘, r) ∩ Ω)
|B(x∘, r)|

< ∞. (6)

Let δ > 0. For the contrary we suppose that there is x∘ ∈ Ω such that (4) and (6) hold at x∘ and

J(x∘, f) < 0.

Without loss of generality we may and do assume that

Df(x∘) = (

1 0 . . . 0
0 1 . . . 0
...

. . .
...

0 0 . . . −1

) . (7)

Using (4) we can find 0 < r1 small enough such that for all 0 < r < r1 we have

−∫
B(x∘ ,r)

!!!!!!!
f(x) − f(x∘) − Df(x∘)(x − x∘)

r
!!!!!!!
dx <

δn

2 .

Since the sequence of mappings fj converges to f weakly in W1,p(Ω,ℝn), we have that the sequence of
mappings fj converges to f strongly in L1loc(Ω,ℝ

n). Now, we may pick up an index j∘ large enough such that
for all j ≥ j∘,

∫
Ω

|f(x) − fj(x)|dx < |B(0, 1)|rn+1 δ
n

2 .

The last two inequalities imply that for all 0 < r < r1 we have

−∫
B(x∘ ,r)

!!!!!!!
fj(x) − f(x∘) − Df(x∘)(x − x∘)

r
!!!!!!!
dx < δn . (8)

Our next goal is to prove the following:
(i) if p > n − 1, then there exists a constant C (depending only on p and n) such that for all 0 < r < r1

and j ≥ j∘,
δn−1−prn ⩽ C ∫

B(x∘ ,r)

|Dfj|p ,
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(ii) if n = 2 and p = 1, there exist a constant C and such that for all 0 < r < r1 and j ≥ j∘ there is a set
A ⊂ B(x∘, r) such that

|A| < Cδ|B(x∘, r)| and r2 ⩽ C∫
A

|Dfj|.

These would lead to a desired contradiction. Indeed, choose 0 < r < r1 such that μ(∂B(x∘, r)) = 0 and in
case (i) we obtain after passing to a limit in j that

δn−1−p ≤ C lim
j→∞
−∫

B(x∘ ,r)

|Dfj|p = C μ(B(x∘, r) ∩ Ω)
|B(x∘, r)|

≤ CMμ(x∘).

After passing δ → 0+we obtain a contradiction with (6). In case (ii) we can use Jensen’s inequality and (5) to
obtain

−∫
B(x∘ ,r)

Φ(|Dfj|) ≥
|A|
r2
−∫
A

Φ(|Dfj|) ≥
|A|
r2
Φ(−∫

A

|Dfj|) ≥
|A|
r2
Φ(

Cr2

|A| )
≥ CδΦ(

C
δ )
.

Similarly as above we obtain in the limit that

CδΦ(
C
δ )

≤ CMμ(x∘)

and now passing to a limit δ → 0+ we obtain a contradiction using (5).

Proof of (i). We simplify the notation and write

φj(x) = |fj(x) − f(x∘) − Df(x∘)(x − x∘)| and Bs = B(x∘, s).

In the following we use the notationHk(A) for the k-dimensional Hausdorff measure of the set A. We claim
that the set of radii

IG = {s ∈ [0, r] : Hn−1({x ∈ ∂Bs : φj(x) ⩾ δr}) < 5nδn−1Hn−1(∂Bs)}

has measure at least 3r
4 , i.e. |IG| ⩾

3r
4 , otherwise

−∫
Br

!!!!!!!
φj(x)
r

!!!!!!!
dx ≥

1
|Br|

r
4

∫
0

5nδn−1Hn−1(∂Bs)
!!!!!!!
δr
r
!!!!!!!
ds = 5nδn

|B r
4
|

|Br|

which contradicts (8).
On the other hand, the key point in our argument is that for x∘ ∈ Ω∘ and for every s ∈ (0, r) we can find

β = β(s) ∈ ∂Bs such that
φj(β) ⩾

4
5 s for every j = 1, 2, . . . . (9)

Finding such a point β is the only place where we use the homeomorphism assumption of fj. Suppose on the
contrary that (9) fails for every β ∈ ∂Bs and for some j ∈ {1, 2, . . . }. For x ∈ ∂Bs and t ∈ [0, 1]we consider the
following homotopy:

H(x, t) := (1 − t)(fj(x) − f(x∘)) + tDf(x∘)(x − x∘).

By (7) we know that Df(x∘) is an isometry and thus |Df(x∘)z| = |z|. Furthermore, if (9) does not hold, then for
all x ∈ ∂Bs we have

|H(x, t)| ⩾ |Df(x0)(x − x0)| − (1 − t)|fj(x) − f(x0) − Df(x0)(x − x0)| ≥ s − (1 − t)45 s > 0.

It follows that H(x, t) ̸= 0 for every x ∈ ∂Bs and all t ∈ [0, 1]. Thus, by (3) and (1),

deg(fj , Bs , f(x∘)) = sgn det(Df(x∘)) = −1.

This contradicts the fact that fj is sense-preserving.
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We apply the Sobolev embedding theorem [8, Theorem 3 (i), p. 143] on the (n − 1)-dimensional spheres.
This way for almost every s ∈ (0, r∘) and for all z1, z2 ∈ ∂B(x∘, s) we have

|fj(z1) − fj(z2)| ⩽ C(n, p)|z1 − z2|1−
n−1
p ( ∫

∂Bs

|Dfj|p)
1
p

. (10)

Now let us fix s ∈ IG so that (10) is satisfied on the sphere ∂Bs. Since s ∈ IG, we find α = α(s) ∈ ∂Bs satis-
fying

φj(α) < δr and |α − β| ⩽ C0δs,

where C0 is somefixed constant (which depends only on n). Combining thiswith (9)wehave found α, β ∈ ∂Bs
such that 4

5 s − δr − 2C0δs ⩽ |φj(β)| − |φj(α)| − 2|α − β| ⩽ |fj(α) − fj(β)|.

This together with (10) implies that for s ∈ IG ∩ [ r2 , r] and δ small enough

Csp ⩽ (
4
5 s − δr − 2C0δs)

p
⩽ C(n, p)(δs)p−n+1 ∫

∂Bs

|Dfj|p . (11)

Integrating inequality (11) over the set IG ∩ [ r2 , r] we obtain (i), finishing the proof of Theorem 1 in the
case p > n − 1.

Proof of (ii). We proceed as above. For s ∈ IG we can find β = β(s) ∈ ∂Bs so that (9) holds. In fact we consider
the measurable set

A := {x ∈ Br : φj(x) > δr}.

By Chebyshev’s inequality and (8) we obtain

|A| ≤ 1
δr ∫

Br

|φj(x)|dx ≤
1
δr
δ2r2r = Cδ|Br|.

Let s ∈ IG ∩ [ r2 , r]. The point β ∈ ∂Bs with (9) clearly belongs to A ∩ ∂Bs and the closest point α on the relative
boundary of ∂Bs ∩ A satisfies

|φj(α)| = δr

by the definition of A. It follows that for every s ∈ IG ∩ [ r2 , r] we have

s ⩽ C ∫
∂Bs∩A

|Dfj|.

Integrating this over IG ∩ [ r2 , r] we obtain
r2 ⩽ C∫

A

|Dfj|

finishing the proof of (ii).

The above proof was based on the Sobolev embedding theorem on spheres and therefore does not work for
p < n − 1. To overcome these difficultieswe followHencl andMalý [11] and use the theory of linking numbers
and its topological invariance. For the convenience of the reader we recall the needed properties of linking
numbers here.

4 Linking number
We use the notation Bd for the unit ball in ℝd and Sd−1 for the unit sphere. By Bd(c, r) we denote the closed
ball with center c and radius r > 0.
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Let n, t, q be positive integers with t + q = n − 1. Let us consider themapping Φ(ξ, η) : Bt+1 × Bq+1 → ℝn

defined coordinatewise as Φ(ξ, η) = x, where

x1 = (2 + η1)ξ1,
...

xt+1 = (2 + η1)ξt+1,
xt+2 = η2,

...
xt+q+1 = ηq+1.

Denote byA the anuloid

Φ(St × Bq+1) = {x ∈ ℝn : (√x21 + ⋅ ⋅ ⋅ + x2t+1 − 2)
2
+ x2t+2 + ⋅ ⋅ ⋅ + x2n < 1}.

Of course, given x ∈ A we can find a unique ξ ∈ St and η ∈ Bq+1 such that Φ(ξ, η) = x. We will denote these
as ξ(x) and η(x).

A link is a pair (φ, ψ) of parametrized surfaces φ : St → ℝn, ψ : Sq → ℝn. The linking number of the
link (φ, ψ) is defined as the topological degree

L(φ, ψ) = deg(L,A, 0),

where the mapping L = Lφ,ψ : A → ℝn is defined as

L(x) = φ(ξ(x)) − ψ̄(−η(x)),

or equivalently
L(Φ(ξ, η)) = φ(ξ) − ψ̄(−η), ξ ∈ St , η ∈ Bq+1,

where ψ̄ is an arbitrary continuous extension of ψ toBq+1 (of course, the degree does not depend on the way
how we extend ψ, it depends only on the values on the boundary ∂A = Φ(St × Sq)). Geometrically speaking,
for t = q = 1, the linking number is the number of loops of a curve φ around a curve ψ counting orientation
into account as +1 or −1. For the introductions to the linking number in ℝ3 and its application to the theory
of knots see [23].

The canonical link is the pair (μ, ν), where

μ(ξ) = Φ(ξ, 0), ξ ∈ St ,
ν(η) = Φ(e1, η), η ∈ Sq .

For example in dimension n = 3 we get that

μ(S1) = {x ∈ ℝ3 : x3 = 0, x21 + x22 = 4},
ν(S1) = {x2 = 0, (x1 − 2)2 + x23 = 1}.

It is well known that the linking number is a topological invariant. The simple proof of the following propo-
sition can be found in [11].

Proposition 2. Let n, t, q bepositive integerswith t + q = n − 1. Let f : Bn(4) → ℝn beahomeomorphism. Then
L(f ∘ μ, f ∘ ν) is 1 if f is sense preserving and −1 if f is sense reversing.

Analogously, we can pick a ∈ Bq+1(0, 1
10 ) and b ∈ Bt+1(e1, 1

10 ) ∩ Bt+1 and consider the pair

μa(ξ) = Φ(ξ, a), ξ ∈ St ,
νb(η) = Φ(b, η), η ∈ Sq .

Similarly to the previous proposition we have:

Proposition 3. Let n, t, q be positive integers with t + q = n − 1, a ∈ Bq+1(0, 1
10 ) and b ∈ Bt+1(e1, 1

10 ) ∩ Bt+1.
Let f : Bn(4) → ℝn be a homeomorphism. Then L(f ∘ μa , f ∘ νb) is 1 if f is sense preserving and −1 if f is sense
reversing.
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5 Proof of Theorem 1 for p > [n2], n ⩾ 3, and p ≥ 1, n = 3
Our argument is similar to the proof given in Section 3 and therefore some details are only sketched. By μ we
again denote the w∗ limit of (some subsequence) ∫ |Dfj|p for p > [ n2 ] and of ∫Φ(|Dfj|) for p = 1 and n = 3.

By C1 and C2 we denote a fixed constants whose exact value will be determined later. We fix δ > 0 and
we choose a point x0 such that (4) and (6) hold and without loss of generality we assume that the derivative
of f at x∘ is given by (7).

We fix r1 > 0 such that for all 0 < r < r1 we have

−∫
B(x∘ ,4r)

!!!!!!!
f(x) − f(x∘) − Df(x∘)(x − x∘)

r
!!!!!!!
dx < C1

δn

2

and again for all j ≥ j∘ we obtain

−∫
B(x∘ ,4r)

!!!!!!!
fj(x) − f(x∘) − Df(x∘)(x − x∘)

r
!!!!!!!
dx < C1δn . (12)

We fix t, q ⩽ [ n2 ] such that t + q = n − 1 (e.g. t = q = n−1
2 for n odd and t = n−2

2 , q = n
2 for n even). Our goal is

to prove the following:
(i) if p > [ n2 ] and n ⩾ 3, then there exists a constant C (depending only on p and n) such that for all 0 < r < r1

and j ≥ j∘,
δmin{t,q}−prn ⩽ C ∫

B(x∘ ,4r)

|Dfj|p ,

(ii) if p = 1 and n = 3, we have A ⊂ B(x∘, 4r) such that

|A| < C2δ|B(x∘, 4r)| and r3 ⩽ C∫
A

|Dfj|.

Analogously to reasoning in Section 3 we obtain a contradiction using min{t, q} − p < 0 for p > [ n2 ] and (5)
for p = 1 and n = 3.

Proof of (i). Without loss of generality we will assume that x∘ = 0. We write

φj(x) = |fj(rx) − f(0) − Df(0)rx|.

Let us fix y ∈ μa(St) and denote

Bμa(St)(y, δ) = {x ∈ μa(St) : |x − y| < δ},

the ball of radius δ on the link μa(St). We can clearly choose a constant C1 small enough at the beginning of
the proof so that (12) implies that the set of good links

Ia = {a ∈ Bq+1(0,
1
10) : Ht(x ∈ μa(St) : φj∘ (x) ⩾ δr) < Ht(Bμa(St)(y, δ))},

Ib = {b ∈ Bt+1(e1,
1
10) ∩ Bt+1 : Hq(x ∈ νb(Sq) : φj∘ (x) ⩾ δr) < Hq(Bνb(Sq)(y, δ))}

has measure at least

Hq+1(Ia) >
1
2
!!!!!!!
Bq+1(0,

1
10)

!!!!!!!
and Ht+1(Ib) >

1
2
!!!!!!!
Bt+1(e1,

1
10) ∩ Bt+1

!!!!!!!
.

The key point of our argument is that for every a ∈ Bq+1(0, 1
10 ) and every b ∈ Bt+1(e1, 1

10 ) ∩ Bt+1 we can
find ξ ∈ St and η ∈ Sq such that

φj(μa(ξ)) = !!!!fj(rμa(ξ)) − f(0) − Df(0)rμa(ξ)
!!!! >

r
10 or

φj(νb(η)) = !!!!fj(rνb(η)) − f(0) − Df(0)rνb(η)
!!!! >

r
10 .

(13)
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We prove the observation by contradiction and we suppose that (13) does not hold. We define

fs(x) = (1 − s)(f(0) + Df(0)rx) + sfj(rx)

and we consider the homotopy H(A × [0, 1]) → ℝn defined as

H(Φ(ξ, η), s) = (fs ∘ μa)(ξ) − (fs ∘ νb)(−η),

where (fs ∘ νb) denotes a continuous extension of fs ∘ νb to Bq+1 as in the definition of the linking number,
which in addition depends continuously on s. From [11] we know that the mapping fj ∈ W1,p, p > [ n2 ], with
nonnegative and nonzero Jacobian is sense preserving. By Proposition 3 we get that

deg(H(x, 1),A, 0) = 1.

On the other hand
deg(H(x, 0),A, 0) = −1

since the affine mapping f(0) + Df(0)rx is sense reversing. To obtain a contradiction (with the preservation
of the degree under homotopy) it is now enough to show that for every ξ ∈ St, for every η ∈ Sq and for every
s ∈ [0, 1] we have H(Φ(ξ, η), s) ̸= 0. It is easy to see that

dist((f0 ∘ μa)(St), (f0 ∘ νb)(Sq)) ⩾ dist((f0 ∘ μ)(St), (f0 ∘ ν)(Sq)) −
6r
10 ≥

3r
10 .

Since (13) does not hold, we obtain from the definition of fs that

dist((fs ∘ μa)(St), (fs ∘ νb)(Sq)) ⩾
3r
10 −

r
10 −

r
10

which implies H(Φ(ξ, η), s) ̸= 0.
By (13) and the symmetry we may assume without loss of generality that

̃Ia = {a ∈ Ia : there exists ξ ∈ St such that φj(μa(ξ)) >
r
10}

satisfies Hq+1( ̃Ia) > 1
4 |Bq+1(0,

1
10 )|. Since p > [ n2 ] ≥ t, we can use the Sobolev embedding theorem on the

t-dimensional space rμa(St) and we have for almost every a ∈ ̃Ia and for all z1, z2 ∈ rμa(St),

|fj(z1) − fj(z2)| ⩽ C|z1 − z2|1−
t
p( ∫

rμa(St)

|Dfj|p)
1
p

. (14)

Now let us fix a ∈ ̃Ia so that (14) is satisfied and find ξ ∈ St so that for β = μa(ξ)we have φj(β) > r
10 as in

the definition of ̃Ia. Using a ∈ Ia we find α ∈ μa(St) satisfying

φj(α) < δr and |α − β| ⩽ δ.

Thus we have found α, β ∈ μa(St) such that
r
10 − 3δr ⩽ |φj(β)| − |φj(α)| − 2r|α − β| ⩽ |fj(rα) − fj(rβ)|.

This together with (14) implies that for almost every a ∈ ̃Ia and δ small enough we have

rt ⩽ Cδp−t ∫
rμa(St)

|Dfj|p . (15)

Integrating inequality (15) over the set ̃IA we obtain (i).

Proof of (ii). If p = 1 and n = 3, then for each a ∈ ̃Ia we can find ξ ∈ S(t) so that (13) holds for β = μa(ξ). The
measurable set

A := {x ∈ B(x∘, 4r) : φj(x) > δr}

satisfies |A| ≤ Cδ|B(x∘, 4r)| by inequality (12) and Chebyshev’s inequality. Now clearly ξ with (13) satisfies
rβ = rμa(ξ) ∈ A. In (14) and (15) instead of integrating over the entire rμa(St) we integrate only over the
set rμa(St) ∩ A. Integrating over ̃Ia we obtain the desired conclusion.

Brought to you by | Jyväskylän Yliopisto University
Authenticated

Download Date | 1/11/18 10:16 AM



S. Hencl and J. Onninen, Jacobian of weak limits of Sobolev homeomorphisms | 73

Acknowledgment: The authors would like to thank the referee for carefully reading the manuscript and for
his comments that helped to improve it.

Funding: Stanislav Hencl was supported by the ERC CZ grant LL1203 of the CzechMinistry of Education. Jani
Onninen was supported by the NSF grant DMS-1301570.

References
[1] S. S. Antman, Nonlinear Problems of Elasticity, Appl. Math. Sci. 107, Springer, New York, 1995.
[2] K. Astala, T. Iwaniec and G. Martin, Elliptic partial Differential Equations and Quasiconformal Mappings in the Plane,

Princeton University Press, Princeton, 2009.
[3] K. Astala, T. Iwaniec and G. Martin, Deformations of annuli with smallest mean distortion, Arch. Ration. Mech. Anal. 195

(2010), no. 3, 899–921.
[4] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 (1977), no. 4,

337–403.
[5] D. Campbell, S. Hencl and V. Tengvall, Approximation of W1,p Sobolev homeomorphism by diffeomorphisms and the signs

of the Jacobian, in preparation.
[6] P. G. Ciarlet,Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity, Stud. Math. Appl. 20, North-Holland,

Amsterdam, 1988.
[7] A. Dold, Lectures on Algebraic Topology, Springer, New York, 1980.
[8] L. C. Evans and R. F. Gariepy,Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton,

1992.
[9] F. W. Gehring and O. Lehto, On the total differentiability of functions of a complex variable, Ann. Acad. Sci. Fenn. Ser. A. I.

Math. 272 (1959), 1–9.
[10] S. Hencl, Sobolev homeomorphism with zero Jacobian almost everywhere, J. Math. Pures Appl. (9) 95 (2011), no. 4,

444–458.
[11] S. Hencl and J. Malý, Jacobians of Sobolev homeomorphisms, Calc. Var. Partial Differential Equations 38 (2010), 233–242.
[12] S. Hencl and B. Vejnar, Sobolev homeomorphism that cannot be approximated by diffeomorphisms in W1,1, Arch. Ration.

Mech. Anal. 219 (2016), no. 1, 183–202.
[13] T. Iwaniec, N.-T. Koh, L. V. Kovalev and J. Onninen, Existence of energy-minimal diffeomorphisms between doubly

connected domains, Invent. Math. 186 (2011), no. 3, 667–707.
[14] T. Iwaniec and G. Martin, Geometric Function Theory and Non-Linear Analysis, Oxford Math. Monogr., Oxford University

Press, Oxford, 2001.
[15] T. Iwaniec and J. Onninen, n-harmonic mappings between annuli: The art of integrating free Lagrangians,Mem. Amer.

Math. Soc. 1023 (2012), 1–105.
[16] T. Iwaniec and J. Onninen, Mappings of least Dirichlet energy and their Hopf differentials, Arch. Ration. Mech. Anal. 209

(2013), no. 2, 401–453.
[17] N. G. Lloyd, Degree theory, Cambridge University Press, Cambridge, 1978.
[18] J. Malý, Examples of weak minimizers with continuous singularities, Expo. Math. 13 (1995), no. 5, 446–454.
[19] J. E. Marsden and T. J. R. Hughes,Mathematical Foundations of Elasticity, Dover, New York, 1994.
[20] D. Menchoff, Sur les différentielles totales des fonctions univalentes,Math. Ann. 105 (1931), no. 1, 75–85.
[21] T. Rado and P. V. Reichelderfer, Continuous Transformations in Analysis, Springer, Berlin, 1955.
[22] Y. G. Reshetnyak, Space Mappings with Bounded Distortion, American Mathematical Society, Providence, 1989.
[23] D. Rolfsen, Knots and Links, Publish or Perish, Berkeley, 1976.
[24] M. Šilhavý, The Mechanics and Thermodynamics of Continuous Media, Texts Monogr. Phys., Springer, Berlin, 1997.
[25] C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics, Springer, Berlin, 2004.
[26] J. Väisälä, Two new characterizations for quasiconformality, Ann. Acad. Sci. Fenn. Ser. A I Math. 362 (1965), 1–12.
[27] W. P. Ziemer,Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Grad. Texts in Math.

120, Springer, New York, 1989.

Brought to you by | Jyväskylän Yliopisto University
Authenticated

Download Date | 1/11/18 10:16 AM


	Jacobian of weak limits of Sobolev homeomorphisms
	1 Introduction
	2 Preliminaries
	2.1 Degree and Jacobian
	2.2 Differentiability of Sobolev mappings

	3 Proof of Theorem 1 for $p>n-1$, $n \ge 3$, and $p \ge 1$, $n = 2$
	4 Linking number
	5 Proof of Theorem 1 for $p > [\frac{n}{2}]$, $n \ge 3$, and $p \geq 1$, $n = 3$


