Production of ^4He and $^4\overline{\text{He}}$ in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV at the LHC

ALICE Collaboration

Received 26 October 2017; received in revised form 20 December 2017; accepted 21 December 2017
Available online 27 December 2017

Abstract

Results on the production of ^4He and $^4\overline{\text{He}}$ nuclei in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV in the rapidity range $|y| < 1$, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0–10% central events are found to be $dN/dy^{^4\text{He}} = (0.8 \pm 0.4 \text{ (stat)} \pm 0.3 \text{ (syst)}) \times 10^{-6}$ and $dN/dy^{^4\overline{\text{He}}} = (1.1 \pm 0.4 \text{ (stat)} \pm 0.2 \text{ (syst)}) \times 10^{-6}$, respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature ($T_{\text{chem}} = 156$ MeV) as for light hadrons.

The measured ratio of $^4\overline{\text{He}}/^4\text{He}$ is $1.4 \pm 0.8 \text{ (stat)} \pm 0.5 \text{ (syst)}$.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords: Pb–Pb collisions; ALICE detector; LHC; Anti-nuclei

1. Introduction

The production of light (hyper-)nuclei, up to a mass number $A = 3$, has been reported already in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV at the Large Hadron Collider (LHC). This includes deuterons, ^3He and the hypertriton as well as their corresponding anti-particles [1,2]. The observed total yields can be described well by equilibrium thermal models [3–9], with only three free parameters: the chemical freeze-out temperature T_{chem}, the volume V and the baryo-chemical potential μ_B. The current best fit to the measured yields at the LHC, including results ranging in mass from pions up to ^3He, results in a $T_{\text{chem}} = 156$ MeV [10]. The measurement of the production yields of ^4He and $^4\overline{\text{He}}$ ($A = 4$) will put additional constraints on T_{chem}. Since the baryo-chemical potential is consistent with zero ($\mu_B = 0.7 \pm 3.8$ MeV [11]) at LHC energies,
the expected anti-baryon to baryon ratio is unity. Therefore, also the ratio is expected to be close to unity for particles composed of (anti-)baryons, namely the anti-nuclei and nuclei [6].

Furthermore, ^4He is the heaviest anti-nucleus ever observed. It was discovered in Au–Au collisions at RHIC by the STAR Collaboration [12]. Out of 10^9 Au–Au collisions at centre-of-mass energies per nucleon pair ($\sqrt{s_{NN}}$) of 200 GeV and 62.4 GeV, 18 ^4He have been detected. The corresponding yield at a given transverse momentum p_T is compared to the prediction of the thermal model [13] and the coalescence nucleosynthesis model [14] and found to be consistent with both. A confirmation of this observation is still pending as no other experiment has been able to detect the ^4He particle since then.

Coalescence models have been successfully used to describe the general trends of deuteron production [15–25] in relativistic nuclear collisions, albeit with a number of external parameters. These models are clearly challenged with the regular pattern observed in the production probability for light nuclei measured by the STAR [12] and ALICE [1] Collaborations. To extend the studies to $A = 4$ the measurement at LHC energies is obviously of great interest.

In this paper, the measurement of the production yield of the ^4He and ^4He nuclei with the ALICE apparatus is presented. Besides the increase in collision energy, the main difference with respect to the measurement by the STAR Collaboration is the usage of a six layer silicon vertex detector in ALICE. Together with the other barrel detectors this provides precision information on vertex position, particle identification and momentum. The determined yields are compared to thermal model expectations.

2. Detector setup and data sample

The two main detectors involved in the identification of the ^4He and ^4He particles are the Time Projection Chamber (TPC) [26] and the Time of Flight (TOF) detector [27], combined with the start time detector T0. In addition, V0 detectors ((28,29)) are used for centrality determination and the Inner Tracking System (ITS) [30] is employed for tracking and the discrimination between primary and secondary particles [1,31]. A full description of the ALICE detector can be found in [32], whereas the performance of the ALICE subdetectors is reported in [33].

The measurement of the ^4He and ^4He particles is performed on the 2011 data set of Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. From this campaign, 38.7×10^6 events in a trigger mix of central, semi-central and minimum-bias events are used in this analysis. This leads to 20.7×10^6 events in the 0–10% centrality interval, 17.4×10^6 events in the 10–50% centrality interval and 0.6×10^6 events in the 50–80% centrality interval. The combined yields are extrapolated to the 0–10% centrality class with the procedure discussed in section 4.

3. Analysis

To ensure high tracking efficiency, high energy-deposit (dE/dx) resolution in the TPC and a good track matching between the TPC and TOF detectors, a set of selection criteria is applied. In order to select primary particles, the corresponding tracks have to originate from the primary vertex. The primary vertex position is estimated using the ITS and the TPC detectors. The resolution of the vertex determination is better than 50 μm in the xy-plane and 150 μm in the z-direction for charged particles with momenta above 1 GeV/c. To select primary tracks, the minimum distance from the vertex, called Distance-of-Closest-Approach (DCA), is required to be smaller than 1 cm along the z-axis, whereas the DCA in the xy-plane must not be greater than 0.1 cm. In addition, a hit in the TOF detector is required for a precise time measurement and only those tracks are used for the track reconstruction. The selection criteria are summarised in Table 1.
The dE/dx is measured in the TPC as a function of the rigidity p/z, where p is the momentum and z is the electric charge in units of the elementary charge e. This distribution of reconstructed charged particles is well described by the Bethe–Bloch formula [34,35] and is unique for each particle species.

Primarily, all events with at least one particle with a dE/dx corresponding to a 3He and 3He or a higher mass are selected. To ensure a good track matching between the TPC and the TOF detectors, only candidates within 3 standard deviations (σ) around the mean in the dE/dx (TPC) vs. βγ (TOF) plane are accepted. Here, β denotes the relativistic velocity β = v/c and γ is the Lorentz factor. In order to select 4He or 4He particles, candidates within a 3σ band of the Bethe–Bloch parametrisation in the dE/dx versus p/z distribution are taken into account. At higher momenta, the two Bethe–Bloch curves of 4He or 4He and of 3He or 3He approach each other. To study a possible contamination from 3He and 3He particles, different narrower cuts for the TPC dE/dx selection band are investigated: while the upper cut of the band (3σ) is fixed, the lower cut is restricted progressively going in steps of 0.5 units from −3σ up to 0σ. For all these seven cuts the procedure described in the following is carried out and a yield dN/dy is determined.

In Fig. 1, the velocity (β) distributions of He candidates are plotted versus rigidity. One can clearly see the separation of 3He and 4He. From these data, the m^2/z^2 (m = mass of the particle) distributions are calculated and displayed in the insert of this figure. From the insert, the separation of 3He and 4He can be quantitatively asserted. The m^2/z^2 is different for 3He (2.00 GeV²/c⁴) and 4He (3.48 GeV²/c⁴). Candidates lying within a window of 2.86 GeV²/c⁴ < m^2/z^2 < 4.87 GeV²/c⁴ are identified as 4He or 4He particles. This window is determined by a fit to the peak in the m^2/z^2 distribution of the selected tracks. Because of the low statistics, the fitting is done simultaneously both for particles and for anti-particles, including secondary 4He knocked out from the material. A Gaussian with an exponential tail on the right side is used as the fit function. For the background, the sum of a first-order polynomial and an exponential shape is assumed. This is necessary to describe the time-signal shape of the TOF detector [27]. The polynomial shape is needed to cope with mismatched candidate tracks in the signal region. A similar procedure is used in [1].

For the analysis of positively charged 4He, contamination from 4He nuclei which do not originate from the primary vertex, but stem from the detector material due to knockout processes, are taken into account. Monte Carlo studies suggest a cut on $p/z > 2$ GeV/c to eliminate such
Fig. 1. Velocity β measured with the TOF detector as a function of the rigidity p/z. For this figure a selection band of -1.5 to 3σ around the mean of the TPC specific energy-loss distribution is required. Negatively (positively) charged particles are shown on the left (right) side, with positive tracks in blue and negative tracks in green. The dashed vertical line represents the cut on the rigidity $p/z = 2\text{ GeV}/c$ (applied only for positively charged particles). The inset shows the m^2/z^2 distributions obtained from the data points shown in the main figure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

A background. Note that the background due to knockout processes is steeply falling with momenta and the signal is rising in this momentum range. Therefore, only ^4He candidates with a p/z greater than $2\text{ GeV}/c$ are accepted. The contamination at higher momenta is estimated to be a maximum of 0.13 counts out of a total count of the order of 10, which is added as a systematic uncertainty.

The small number of clear signal counts observed by combining the TPC and TOF information does not give any indication of background. In order to estimate an upper limit on the background counts from mismatched tracks in the TOF detector underneath the ^3He or $^3\overline{\text{He}}$ peak in the TOF mass window, a likelihood fit under the assumption of a flat background is performed in the dE/dx versus $\beta\gamma$ plane outside the $\pm 3\sigma$ matching band. In this way, background candidates are identified as mismatched particles. (These are usually rejected and only used for this purpose.) Due to limited statistics, this procedure cannot be used if a stronger selection criterion is applied for the TPC dE/dx selection, since no ^4He or $^4\overline{\text{He}}$ candidates are left to apply this technique. For these particular cases, we assume a constant ratio of ^3He to background counts and use this to estimate the number of ^3He background.

The background stemming from misidentification of (anti-)^3He as (anti-)^4He is estimated to be more than one order of magnitude smaller than the one from the mismatch of TPC tracks when extrapolated to the TOF detector and is therefore considered to be negligible. The estimated background decreases with more stringent TPC dE/dx cuts. The signal-to-background ratio improves depending on the tightness of the dE/dx cut from 1.7 to 8.4 for ^4He and from 1.7 to 17.6 for $^4\overline{\text{He}}$.

To estimate the efficiency for the detection of ^4He and $^4\overline{\text{He}}$, a Monte Carlo simulation is generated in which the kinematical distributions of the particles are generated flat both in rapidity...
y and in transverse momentum p_T. The shape of p_T spectra in heavy-ion collisions is typically described by a blast-wave model [36]. This model assumes an average radial-flow velocity $\langle \beta \rangle$ and a kinetic freeze-out temperature T_{kin} as described in [37]. Generally, most hadron p_T spectra measured in heavy-ion collisions can be described well by one common set of parameters [38]. Surprisingly, this also works well for the description of deuteron and 3He p_T spectra [1]. Hence the same prescription is used here for the p_T shape of 4He and ^4He particles, namely the same set of parameters is used, only the mass is changed to the ^4He mass.

Since only a small number of ^4He and ^4He particles (14^4He and 9^4He for the widest TPC dE/dx cut) are observed, a p_T spectrum can not be measured. It is estimated using the blast-wave parameters of deuterons and 3He spectra [1]. The final acceptance \times efficiencies are obtained as described in [39] and are of the order of 15% for 4He and 20% for ^4He. The difference originates from the 2 GeV/c rigidity cut applied to ^4He candidates.

For the ^4He analysis, the absorption in the detector material is taken into account using two different transport codes, namely GEANT3 [40] and GEANT4 [41]. These two codes use different models for the estimation of the absorption cross section. In GEANT4, a Glauber model based on the well known hadronic interaction cross sections for (anti-)protons is implemented [42]. The version of GEANT3 used in this analysis is modified [1] such that it calculates the absorption based on an empirical parameterisation [43], based on the measurements of anti-deuterons carried out at Serpukhov [44]. The baseline is given by the absorption calculated with GEANT4, while the GEANT3 based correction is used in the systematic uncertainty evaluation. The maximum absorption probability towards low p/z is about 20%. In contrast to GEANT4, which still shows an absorption of about 5% at $p_T = 10$ GeV/c, GEANT3 exhibits basically no absorption above 3.5 GeV/c.

The main contributions to the systematic uncertainty on the determined production yields are:

- The uncertainty due to the unknown shape of the p_T distributions, which is determined by using the blast-wave model based on the measured deuteron and 3He spectra [1]. This leads to a systematic uncertainty contribution of around 13%.
- Only for ^4He: The rigidity cut on p/z greater than 2 GeV/c itself has a systematic uncertainty of 4 to 13% depending on the TPC PID cut. As mentioned before, the secondary contamination above this cut is estimated to be a maximum of 0.13 counts. This leads to a systematic uncertainty of at minimum 20% and at maximum 49% growing with stricter TPC PID cut. As the number of observed candidates shrinks with stricter TPC dE/dx selection, the systematic uncertainty on the secondary contamination grows.
- Only for ^4He: The absorption correction has an uncertainty of 7%, estimated from the difference of the two GEANT implementations.

Other systematic uncertainties are estimated by varying the cuts in the limits consistent with the detector resolution. The contributions of these systematic uncertainties are typically found to be below the percent range. The systematic uncertainty on the chosen TPC PID cut varies between 1% for the most loose cuts and 19% for stricter cuts. This is caused by the stronger sensitivity of the stricter cuts, namely the even further reduced low number of candidates, which is not reflected in the Monte Carlo simulation.

The final values and the corresponding uncertainties are calculated as a mean from the previously discussed variations of the selection criteria. The resulting systematic uncertainty on the final yield is 35% for ^4He and 20% for ^4He.
charged-particle each yields have been tested by the ALICE Collaboration Collaboration. The fits in Fig. 3 extend the simple exponential model (Fig. 2) by incorporating Boltzmann statistics and degeneracy factors for all particles. If instead of all listed

Fig. 2. dN/dy for protons (A = 1) up to 4He (A = 4) and the corresponding anti-particles in central (0–10%) Pb–Pb collisions at √sNN = 2.76 TeV. The blue lines are fits with an exponential function. Statistical uncertainties are shown as lines, whereas the systematic uncertainties are represented by boxes.

4. Results

The measurement is performed on a data set including central, semi-central and minimum-bias triggered events. To make use of all the data analysed, the semi-central and minimum-bias events have been extrapolated to 0–10% centrality interval assuming that the particle and anti-particle yields scale linearly with the charged-particle multiplicity dNch/dη. This procedure has already been tested to work well for the (anti-)hypertriton production [2]. In addition, d/p and 3He/p ratios are measured to be approximately flat versus multiplicity within uncertainties [1]. Thus, for each centrality class, the number of analysed events is multiplied by the corresponding measured charged-particle density dNch/dη [28]. If this is added up and divided by the total number of measured events it leads to a weighting factor of 1034. To get the final yield in the 0–10% centrality class the measured yield is multiplied with the dNch/dη for 0–10% centrality (1447.5) and divided by the weighting factor, as dN/dy0–10% = dN/dymeasured × 1447.5/1034.

This leads to final values of dN/dy4He = (0.8 ± 0.4 (stat) ± 0.3 (syst)) × 10\(^{-6}\) for 4He and dN/dy3He = (1.1 ± 0.4 (stat) ± 0.2 (syst)) × 10\(^{-6}\) for 3He. For the ratio 3He/4He we obtain 1.4 ± 0.8 (stat) ± 0.5 (syst) (“stat” and “syst” indicate the statistical and the systematic uncertainty).

The measured yields in the 0–10% centrality interval are shown in Fig. 2 together with those of (anti-)protons, (anti-)deuterons and (anti-)3He [1,38] (details on the extrapolation to 0–10% centrality can be found in [10]). The blue lines are exponential fits with the fit function \(K e^{BA}\) resulting in \(B = -5.8 ± 0.2\), which corresponds to a penalty factor (suppression factor of production yield for nuclei with one additional baryon) of around 300. The same penalty factor is also obtained if the fit is done up to 3He only [1].

The obtained penalty factor of around 300 for each additional nucleon is consistent with \(T_{\text{chem}} \approx 160\) MeV in the equilibrium thermal models. The measured yields for 4He and 3He nuclei are consistent with the predictions from the various (equilibrium) thermal models (THERMUS [45], GSI [54,64,47] and SHARE [48–50]) with \(T_{\text{chem}} = 156\) MeV, as shown in Fig. 3 for complete statistical thermal model fits using the available light flavour data measured by the ALICE Collaboration. The fits in Fig. 3 extend the simple exponential model (Fig. 2) by incorporating Boltzmann statistics and degeneracy factors for all particles. If instead of all listed
Fig. 3. Thermal model fits, with three different implementations, to the light flavour hadron yields in central (0–10%) Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The data points are taken from [1,2,38,51–54] and details of the fits can be found in [10,11]. The upper panel shows the fit results together with the data, whereas the middle panel shows the difference between model and data normalised to the model value and the lower panel the difference between model and data normalised to the experimental uncertainties.

particles only nuclei (deuterons, 3He and 4He and 4He) are considered for the fit, the resulting temperatures are 154 ± 4 MeV. The pure measured yields for 4He and 4He nuclei agree, depending on the model implementation, within the determined uncertainties with temperatures from 135 MeV to 177 MeV. Taken together these observations suggest that the relatively heavy 4He and 4He nuclei are also produced statistically at the same temperature as the lighter particles.

5. Summary and conclusion

The ALICE Collaboration has measured the production yields of 4He and 4He in central (0–10%) Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The ratio of the two yields is consistent with unity and the results are in good agreement with the prediction of the statistical thermal model assuming the same temperature of 156 MeV as is obtained from the fit to the other light flavour hadrons.

Data gathered at the current beam energy of $\sqrt{s_{NN}} = 5.02$ TeV in Pb–Pb collisions at the LHC (Run 2) will improve the studies described in this letter thanks to an increase in statistics by a factor of about 3. Based on the pilot measurement presented here, we conclude that a precision study will be possible in the data taking period starting from 2021 (Run 3 of the LHC), where about 5500 4He (4He) particles are expected to be reconstructed [55]. This will allow for the measurement of the transverse-momentum spectra. As the unknown shape of the p_T distributions is one of the major sources of the systematic uncertainty, the measurement of the spectrum will decrease the systematic uncertainty of the measured yield. As a consequence the precision of
the ratio of $^4\text{He}/^4\text{He}$ will be significantly improved. In addition, a mass difference measurement similar to what was done in [56] will be possible.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science, Education and Sports and Croatian Science Foundation, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research – Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia y Tecnología (CONACYT), through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia;
Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba, Ministerio de Ciencia e Innovacion and Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain; Swedish Research Council (VR) and Knut and Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and U.S. Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

References

[34] H. Bethe, Bremsformel für Elektronen relativistischer Geschwindigkeit, Z. Phys. 76 (1932) 293.

ALICE Collaboration

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
3 Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
5 Budker Institute for Nuclear Physics, Novosibirsk, Russia
6 California Polytechnic State University, San Luis Obispo, CA, United States
7 Central China Normal University, Wuhan, China
8 Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France
9 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
10 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
11 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
12 Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche ‘Enrico Fermi’, Rome, Italy
13 Chicago State University, Chicago, IL, United States
14 China Institute of Atomic Energy, Beijing, China
15 COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
16 Departamento de Física de Partículas y IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
17 Department of Physics, Aligarh Muslim University, Aligarh, India
18 Department of Physics, Ohio State University, Columbus, OH, United States
19 Department of Physics, Pusan National University, Pusan, Republic of Korea
20 Department of Physics, Sejong University, Seoul, Republic of Korea
21 Department of Physics, University of Oslo, Oslo, Norway
22 Department of Physics and Technology, University of Bergen, Bergen, Norway
Joint Institute for Nuclear Research (JINR), Dubna, Russia
Korea University, Seoul, Republic of Korea
Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
KTO Karatay University, Konya, Turkey
Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
Lawrence Berkeley National Laboratory, Berkeley, CA, United States
Moscow Engineering Physics Institute, Moscow, Russia
Nagasaki Institute of Applied Science, Nagasaki, Japan
National and Kapodistrian University of Athens, Physics Department, Athens, Greece
National Centre for Nuclear Studies, Warsaw, Poland
National Institute for Physics and Nuclear Engineering, Bucharest, Romania
National Institute of Science Education and Research, HBNI, Jami, India
National Research Center, Baku, Azerbaijan
National Research Centre Kurchatov Institute, Moscow, Russia
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Nikhef, Nationaal instituut voor subatomaire fysica, Amsterdam, Netherlands
Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rež u Prahy, Czech Republic
Oak Ridge National Laboratory, Oak Ridge, TN, United States
Petersburg Nuclear Physics Institute, Gatchina, Russia
Physics Department, Creighton University, Omaha, NE, United States
Physics Department, Faculty of Science, University of Zagreb, Zagreb, Croatia
Physics Department, Panjab University, Chandigarh, India
Physics Department, University of Cape Town, Cape Town, South Africa
Physics Department, University of Jammu, Jammu, India
Physics Department, University of Rajasthan, Jaipur, India
Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Physik Department, Technische Universität München, Munich, Germany
Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
Rudjer Bošković Institute, Zagreb, Croatia
Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
Saha Institute of Nuclear Physics, Kolkata, India
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
SSC IHEP of NRC Kurchatov Institute, Protvino, Russia
Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
Suranaree University of Technology, Nakhon Ratchasima, Thailand
Technical University of Košice, Košice, Slovakia
Technical University of Split FESB, Split, Croatia
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
The University of Texas at Austin, Physics Department, Austin, TX, United States
Universidad Autónoma de Sinaloa, Culiacán, Mexico
Universidade de São Paulo (USP), São Paulo, Brazil
Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
Universidade Federal do ABC, Santo Andre, Brazil
University of Houston, Houston, TX, United States
University of Jyväskylä, Jyväskylä, Finland
University of Liverpool, Liverpool, United Kingdom
University of Tennessee, Knoxville, TN, United States
University of the Witwatersrand, Johannesburg, South Africa
University of Tokyo, Tokyo, Japan
University of Tsukuba, Tsukuba, Japan
Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
Universität degli Studi di Pavia, Pavia, Italy
Università di Brescia, Brescia, Italy
Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
Universität degli Studi di Pavia, Pavia, Italy
Universita degli Studi di Pavia, Pavia, Italy
Università di Brescia, Brescia, Italy
V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
Variable Energy Cyclotron Centre, Kolkata, India
Warsaw University of Technology, Warsaw, Poland
Wayne State University, Detroit, MI, United States
Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
Yale University, New Haven, CT, United States
Yonsei University, Seoul, Republic of Korea
Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany

i Deceased.
ii Dipartimento DET del Politecnico di Torino, Turin, Italy.
iii M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow, Russia.
iv Department of Applied Physics, Aligarh Muslim University, Aligarh, India.
v Institute of Theoretical Physics, University of Wroclaw, Poland.