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Figure 4. Raman spectra obtained with a) the CW Raman setup, b) the time-gated Raman instrument, 
presented as sum spectra from 0-5.5 ns and c) the time-gated Raman instrument, presented as spectra 

after fluorescence rejection. The Raman intensity scale is the same for each solid-state form, but different 

for each of the three columns for clarity.  
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†Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-

00790 Helsinki, Finland 
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ABSTRACT: Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is 

sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through 

temporal resolution of the spectral signal, and allows Raman spectra of fluorescent materials to be obtained. An additional practical 

advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the 

quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4 CMOS SPAD de-

tector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least 

squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving 

performance. Model performance was further improved by using kernel-based regularized least squares (RLS) regression with greedy 

feature selection, in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated 

Raman spectroscopy, especially with optimized data analysis in both the spectral- and time-dimensions, shows potential for sensitive 

and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing.

Most (90%) active pharmaceutical ingredients (API) crystal-

lize as solid particles.1 Different inter- and intra-molecular 

bonding and conformations in solid-state forms of a substance, 

such as polymorphs, amorphous solids, salts, and solvates, re-

sult in different physicochemical properties.2,3 Dissolution rate, 

solubility, stability, and bioavailability, among other properties, 

depend on the solid-state structure of the substance. This poses 

challenges to the pharmaceutical industry in terms of material 

characterization, formulation, processing and end product qual-

ity control, and has therapeutic, legal and commercial implica-

tions.4  

Effective methods for evaluating the possible changes in 

solid state structure during research and development, manufac-

turing, and storing are needed.5,6 Raman spectroscopy is an es-

tablished method for qualitative and quantitative analysis of 

APIs exhibiting different solid-state forms and often enables 

rapid, non-destructive measurements with no sample prepara-

tion needed.7-9 The spectra can be measured through container 

walls, blisters, plastic bags, and in an aqueous environment 

since Raman spectroscopy has low sensitivity for water.10 The 

form of the sample is also flexible; powders, slurries, pellets, 

emulsions, films are all suitable for Raman spectroscopy. These 

properties make Raman spectroscopy well-suited for diverse 

real-time process monitoring applications. 

Raman spectra are obtained by measuring the intensity distri-

bution of Raman scattered photons from a monochromatic light 

source as a function of wavelength.10,11 Quantitative determina-

tion is based on the concentration of the substance of interest 

being proportional to the integrated intensity of its characteristic 

Raman bands.12 Overlapping peaks of different compounds in a 

mixture and experimental effects that are not related to sample 

concentration complicate the analysis.13 In such cases multivar-

iate analysis, where a large amount of spectral data can be in-

cluded, is more reliable than methods where only one or a few 

spectral features are considered. Several multivariate methods 

have been established for the interpretation of Raman spec-

tra.14,15 The aims of such methods are to: i) extract spectral in-

formation that quantifies substances of interest, ii) estimate the 

uncertainties of the quantification, and iii) evaluate the perfor-

mance of the built model.14 Partial least squares (PLS) regres-

sion is one of the most widely used chemometric methods for 

quantitative analysis.16 PLS relates the information in two data 

matrices, X (e.g. the spectral variation) and Y (e.g. the sample 

composition), in a multivariate model by maximizing their co-

variance.17 Kernel-based regularized least-squares (kernel-

based RLS) regression is another approach that has the ability 

to learn functions from the nonlinear data features which, when 

combined with feature selection algorithms, such as greedy for-

ward feature selection, optimizes the use of information pro-

vided by the data features.18,19 PLS and RLS are quite similar in 
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that they aim to shrink the solution away from the ordinary least 

squares solution toward the directions of the variable space of 

large sample spread with lower variability.20 

Error sources in the quantitative analysis of powder mixtures 

using Raman spectroscopy include variance in intra- and inter-

day reproducibility of the Raman instrument, changes in room 

temperature and humidity, sample fluorescence, mixing, pack-

ing and positioning, as well as sample particle size and com-

pactness.21,22 While most issues can be addressed with suitable 

spectral processing and data analysis approaches, complete sub-

traction of fluorescence without any instrument-based methods 

is difficult, even with sophisticated algorithms.10 

Complete or partial rejection of the fluorescence signal from 

the Raman signal is possible with various time-resolved tech-

niques.23 The ability to detect the arrival time and energy of 

each photon allows assessment of the lifetime of both the fluo-

rescence and Raman signals. Due to the lifetime differences, re-

jecting the fluorescence background is possible (Figure 1). 

Time-gated devices employ short, intensive laser pulses and the 

sample response is recorded simultaneously with the pulses. 

This also means that analysis in ambient lighting is possible.24 

Figure 1. Relative lifetimes (not to scale) of Raman and photolu-

minescence (including fluorescence) signals (adapted from 25). 

    Time-gating can be realized with various detection sys-

tems such as time-resolved photomultiplier tubes,26,27 high-

speed optical shutters based on a Kerr cells,28,29 intensified 

charge-coupled devices,30 quantum dot resonant tunneling di-

odes,31 and complementary metal-oxide semiconductor single-

photon avalanche diodes (CMOS SPADs).24 One of the essen-

tial advantages of CMOS SPADs is the ability to reject both the 

photoluminescence tail and the photon noise.32 SPADs are real-

ized in standard CMOS technology and contain a pn junction 

which is reverse-biased above its breakdown voltage, meaning 

that entry of even a single photon can trigger avalanche break-

down that can then be recorded.33-35 The width and position of 

the time gate need to be properly selected.36 

The current CMOS SPADs are compact and inexpensive 

while being able to achieve adequate temporal resolutions (sub-

nanosecond).37-39 CMOS SPAD detectors have been used to 

evaluate fluorescence lifetimes.40 More recently the applicabil-

ity of CMOS SPADs for fluorescence rejection in Raman spec-

troscopy in pharmaceuticals has also been shown.25,36,41 

The aim of this study was to investigate the potential of time-

gated Raman spectroscopy for quantitative analysis of fluores-

cent pharmaceutical solids. A time-gated Raman setup using a 

fast CMOS SPAD detector39 was employed for the first time for 

quantitative analysis of powder mixtures. This instrument al-

lows the separation of the photoluminescence signal from the 

Raman signal in ambient lighting and enables stronger Raman 

signal generation compared to traditional instruments.38,39 The 

data, with and without prior time-domain selection (based on 

visual inspection), was analyzed using PLS regression, the most 

well established multivariate quantitative spectral analysis 

method in pharmaceutics. Quantitative analysis was also per-

formed using kernel-based RLS with greedy feature selection, 

which statistically optimized data use in both the spectral and 

time domains.        

MATERIALS AND METHODS 

Materials. Piroxicam (PRX) (Hawkins, USA), a non-steroi-

dal anti-inflammatory drug, was the fluorescent model com-

pound in this study. PRX has six reported polymorphs (β (I), α1 

and α2 (both also referred as form II), III, IV, and V)) and one 

hydrated form (monohydrate, MH).42-47 Ternary powder mix-

tures used in this study consisted of the most commonly ob-

served forms: β, α2 and MH.  

The PRX was purchased in form β and this form was used as 

received. PRX form α2 was prepared by recrystallization from 

a saturated solution in absolute ethanol.46 PRX MH was pre-

pared by recrystallization from saturated aqueous solution.48 

The aqueous solution was heated to 80 °C, the ethanol solution 

to 70 °C and the solutions were slowly cooled to room temper-

ature before vacuum filtration.  

Evaluating polymorph conversion. X-ray powder diffrac-

tometry (XRPD) analysis was performed using a Bruker D8 

Advance diffractometer (Bruker, Germany) with a Cu Kα radi-

ation source (λ = 1.5418 Å) over a 2θ range of 5° to 40°, using 

a step size of 0.01°, step time of 0.5 s, voltage of 40 kV, and 

current of 40 mA.  The results were compared to the patterns in 

the Cambridge Structural Database (CSD). Fourier transform 

infrared spectroscopy (FTIR) measurements were performed 

with a Bruker Vertex 70 spectrometer (Bruker Optik, Germany) 

and an ATR accessory with a single reflection diamond crystal 

(MIRacle, Pike Technologies, Madison, WI, USA). The ob-

tained spectra were the mean of 64 scans and have a spectral 

range from 650 to 4000 cm−1 with a resolution of 4 cm−1. The 

ATR spectra were converted to absorbance spectra with OPUS 

software (v. 5.0, Bruker Optik, Ettlingen, Germany). Differen-

tial scanning calorimetry (DSC) was performed with a differen-

tial scanning calorimeter (DSC823e, Mettler Toledo AG) in 

sealed perforated aluminum pans under dry nitrogen purge (50 

mL/min) at a heating rate of 10 °C/min from 30 to 210 °C. Par-

ticle size and morphology of the PRX solid-state forms were 

examined by scanning electron microscopy (SEM) with a 

Quanta™ 250 FEG (FEI Inc., U.S.). Samples for SEM were 

mounted on carbon-coated double-sided tape (Agar Scientific, 
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Germany) and sputter-coated with a 5 nm layer of platinum 

(Q150T Quomm, Turbo-Pumped Sputter Coater, China).  

Mixture design. The powder mixtures were prepared accord-

ing to a special cubic mixture design (Figure 2).49 The mass 

ratio of each form was varied between 0, 1:6, 1:3, 2:3, and 1 in 

the mixtures, the (1:3, 1:3, 1:3) mixture was prepared in tripli-

cate. A ternary mixture was preferred over a binary mixture 

since often more than two solid-state forms are potentially pre-

sent in a process environment. The solid-state forms of PRX 

were carefully mixed using geometric dilution with a card to 

avoid inducing changes in the solid state. 

 Figure 2. Mixture design employed in the experiments.  

Time-gated Raman spectroscopy. Raman spectra of the 

mixtures of different solid-state forms of PRX were collected 

with a TimeGated® TG532 M1 Raman spectrometer (TimeGate 

Instruments Oy, Finland) coupled with a BWTek sampling 

probe with a focal spot size of approximately 85 µm (Figure 3). 

The Raman instrument was equipped with a picosecond pulsed 

laser, a CMOS SPAD array detector, and the sampling probe. 

The excitation source was a 532 nm Nd:YVO microchip pulsed 

laser, the average power used was 14 mW (2.235 mW after the 

probe), repetition rate 40 kHz, pulse width 150 ps, focus diam-

eter 50 μm, pulse energy 0.35 μJ, peak power 2 kW, and maxi-

mum irradiance 28 MW cm−2. 

The detector was a 128 × (2) × 4 CMOS SPAD matrix detec-

tor.39 The internal time histogram of the detector consisted of 

four bins accumulating single-photon arrivals. Bin 3 provided 

the strongest Raman signal with the present setup (Figure 3). 

The signals collected with bin 3 were used for the data analysis. 

The time-resolved spectral datasets were collected by sequen-

tially moving the gate in 50 ps steps using the electronic delay 

generator. Raman spectra with fluorescence rejection and time-

resolved fluorescence spectra were acquired simultaneously. 

The spectra were obtained from the Raman shift range of 700 

cm−1 to 1700 cm−1 up to 5.5 ns.  

The measurements were conducted in triplicate, with contin-

uous sample rotation, and the focal point was moved between 

each measurement to acquire a more representative signal over 

a larger area of the sample. The measurements were carried out 

at ambient temperature, lighting, and humidity. Cyclohexane 

was used as a reference standard to monitor wavenumber accu-

racy. Data acquisition and setup control were performed with 

the instrument software (TimeGated® Model 1). 

Continuous wave (CW) Raman spectroscopy. Raman 

measurements were executed with a home-built Raman setup in 

a backscattering geometry using 532 nm excitation produced 

with a CW single frequency laser (Alphalas, Monolas-532-100-

SM). The beam was focused onto the sample and subsequently 

collected with a 100 x microscope objective (Olympus 100x 

with 0.70 N.A.). The scattered light was dispersed in a 0.5 m 

imaging spectrograph (Acton, SpectraPro 2500i) using a 600 

g/mm grating (resolution: ~5 - 6 cm-1). The signal was detected 

with EMCCD camera (Andor Newton EM DU971N-BV) using 

60 μm slit width. The Rayleigh scattering was attenuated with 

a notch-filter (Semrock). The sample positioning was per-

formed with an XYZ-piezo scanner (Attocube, ANPxyz101) 

with the smallest step of 100 nm in each direction. The laser 

power was ~0.5 mW and two 5 s measurements were averaged 

for each accumulation. 

Figure 3. a) Schematic of the time-gated Raman instrument used for obtaining the Raman spectra and performing fluorescence rejection and 

b) basis for bin 3 selection. The four bins collect the scattered photons with different delays and the intensity of the obtained signal varies. 

Bin 3 provided the strongest signal at the optimal time-frame for detection of Raman scattered photons for PRX. 

Page 4 of 11

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4 

 

Partial least squares (PLS). Part of the fluorescence was re-

jected from the signal by the time-gated detection system using 

the data obtained from bin 3 data. Residual photoluminescence 

(elevated baseline) signal was removed using the software pro-

vided with the instrument (TimeGated® Model 1).  The time-

frame for analysis was selected manually based on visual ap-

pearance of the signal. The location of the Raman peaks in the 

time-domain was found to be at the delay of 0.4 - 0.8 ns. Base-

line correction was performed using adaptive iteratively re-

weighted penalized least squares (airPLS) and local minima fit-

ting (Lmin) algorithms. Data from the whole time-domain with-

out selecting a specific time-frame (0.0 - 5.5 ns) was processed 

identically with the selected time-frame data for comparison. 

PLS is widely used for quantitative Raman spectral analysis 

of pharmaceutical samples. In general, PLS finds components 

known as latent factors in variable matrix X which best predict 

the response matrix Y. PLS regression searches for a set of fac-

tors that simultaneously decompose X and Y where these fac-

tors explain the covariance between the two matrices as much 

as possible.50 The spectral data was standard normal variate 

(SNV) transformed51 and mean centered (without scaling) prior 

to PLS analysis. SNV and mean-centering have been shown to 

be suitable algorithms for quantitative analyses of solid-state 

mixtures by vibrational spectroscopy.21 PLS regression52 for 

quantitative analysis was carried out with the NIPALS algo-

rithm17 using SIMCA-P software (v. 13.0.3, Umetrics AB, Swe-

den).  

The performance of the model was evaluated using R2X, 

R2Y, and the root-mean-square error of cross-validation 

(RMSECV). RMSECV values were obtained with leave-one-

out cross validation (LOOCV), with the leave-one-out proce-

dure performed with all mixtures, except the pure forms (since 

there is no mixing error associated with the pure forms), where 

in each CV round all replicates of one mixture are left out. The 

reported RMSECV values are the average of the root-mean-

square error of prediction (RMSEP) values which were ob-

tained for the left out mixtures for each cross-validation round 

(Equation 1): 

𝑅𝑀𝑆𝐸𝑃 =  √
∑ (𝑦−ŷ)2  𝑛

𝑖=1

𝑛
           (1) 

Here, y-ŷ is the predicted residual for each mixture form of an 

observation. 

Kernel-based regularized squares (RLS). Part of the fluo-

rescence was rejected from the signal by the time-gated detec-

tion system using the data obtained from bin 3 data, as in the 

previous section. To further investigate the quantification po-

tential of the 3D spectra in both the spectral and time dimen-

sions, fast kernel-based RLS analysis with multi-target greedy 

feature selection was applied. All predictive models were 

trained with the Python-based machine learning software li-

brary RLScore 19. RLS with a Gaussian kernel was built as the 

prediction model. Given a training set {(𝒙𝑖 , 𝒚𝑖)}𝑛
𝑖=1

 where the 

feature vector 𝒙𝑖 ∈ ℝ𝑝 and the class labels 𝒚𝑖 ∈ ℝ𝑞, the multi-

variate RLS formulation finds A such that (Equation 2):   

𝑨 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑨

1

𝑛
‖𝒀 − 𝑲𝑨‖𝐹

2
+ 𝜆 𝑡𝑟(𝑨𝑇𝑲𝑨)            (2) 

where A  is the 𝑛 × 𝑞 weight matrix, Y  is the 𝑛 × 𝑞 label matrix, 
‖. ‖𝐹 is the Frobenius norm of a matrix, K is the 𝑛 × 𝑛 kernel 

matrix, λ is the regularization parameter and tr is the trace of a 

matrix. The following Gaussian kernel function was used in the 

models (Equation 3): 

𝑲(𝒙𝑖 , 𝒙) = 𝑒𝑥𝑝 (
‖𝒙𝑖−𝒙‖2

2𝜎2
)                  (3) 

where ‖. ‖ is the ℓ2 norm and 𝜎 is the kernel width parameter.  

A kernel-based RLS model was obtained by carrying out the 

following procedure. A hyper-parameter combination consist-

ing of the kernel width parameter, 𝜎, the regularization param-

eter, λ, and the time interval for averaging with SNV and mean 

centering, was selected from a three-dimensional grid with 

LOOCV on a training set. In addition to the hyper-parameter 

values, a multi-target greedy RLS algorithm was built to select 

a predictive subset of Raman shifts.18 Greedy RLS starts from 

the empty set, and on each iteration adds the feature (Raman 

shift) whose addition provides the best LOOCV performance. 

To avoid selection bias, the prediction performance of the ob-

tained kernel-based RLS model was estimated with the standard 

nested cross-validation approach, in which the selection proce-

dure described above was separately carried out during each 

round of an outer cross-validation, and the performance esti-

mate was the average of the prediction errors of these models 

on the data withheld in the corresponding rounds of the outer 

cross-validation.53 

 In addition, to ensure that the performance estimate would 

reflect the real-world conditions under which the model is ex-

pected to be used, the fold-partition of the cross-validation was 

performed similar to PLS analysis as follows. A LOOCV was 

applied to the PRX mixtures, indicating that every replication 

of each mixture was simultaneously used as test data and the 

pure forms were not used for testing. 

Given the input vector of a new measurement unseen during 

the training phase (left-out mixtures for testing), kernel-based 

RLS makes a prediction of its corresponding output vector. The 

real-value vectors (y = [predicted value of form β, predicted 

value of form α2, predicted value of MH]) predicted by the ker-

nel-RLS model were post-processed as follows, with the ith en-

try of the vector, y, set as (Equation 4):  

𝑚𝑎𝑥 (0,𝑦𝑖)

∑ max (0,𝑦𝑖)𝑖
       (4) 

The purpose of this setting was to restrict the mixture propor-

tions between zero and one and prevent impossible predictions. 

Later, Equation 1 was used as described earlier to calculate the 

RMSECV values of each of the three solid-state forms. 

RESULTS AND DISCUSSION 

Polymorph conversion. XRPD, FTIR, and DSC analyses 

confirmed complete polymorph conversion of form β of PRX 

(CSD: BIYSEH13)54 to form α2 (CSD: BIYSEH06)46 and MH 

(CSD: CIDYAP02).54 No solid-state impurities were detected. 

SEM images show clear morphological differences between the 

solid-state forms (Figure S1 (Supplementary data)). Addition-

ally, PCA of the Raman data also showed very clear differences 
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for all the mixtures with no overlap of the sample clusters ob-

served.  

Raman spectra and fluorescence rejection. Fluorescence, 

as indicated by the elevated baselines, was observed in both the 

CW Raman spectra and the time-gated spectra that were the 

sum of the raw signal recorded over the whole time-scale (0 - 

5.5 ns) (Figure 4a and 4b). Form β fluoresced more strongly 

than form α2 and the MH. The baseline increased with increas-

ing Raman shift for all three solid state forms. 

Fluorescence rejection with the time-gated data (using bin 3, 

0.4-0.8 ns time-frame, and residual airPLS and Lmin for base-

line correction) resulted in 2D Raman spectra with fluores-

cence-free baselines (Figure 4c). The characteristic peaks of the 

solid-state forms of PRX match those previously published.55 

The vibrational modes for piroxicam have previously been pre-

dicted and assigned using density functional theory calcula-

tions.56

 

Figure 4. Raman spectra obtained with a) the CW Raman setup, b) 

the time-gated Raman instrument, presented as sum spectra from 

0-5.5 ns and c) the time-gated Raman instrument, presented as 

spectra after fluorescence rejection. The Raman intensity scale is 

the same for each solid-state form, but different for each of the three 

columns for clarity. 

The raw 3D spectra recorded with the time-gated instrument 

(bin 3 data), the subtracted 3D baseline spectra (representing 

the fluorescence) and the 3D Raman spectra after baseline re-

jection from PRX form β, form α2 and the MH are presented in 

Figure 5. The 3D data indicates the starting point of the Raman 

signal immediately after the laser pulse, as well as the fluores-

cence starting-point and the fluorescence tail. Consistent with 

the spectra in Figure 4b, the 3D spectra also suggest the three 

solid-state forms of PRX fluoresced to varying degrees over the 

presented Raman shift range, with form β exhibiting the strong-

est baseline intensity maxima, as well as largest baseline profile 

change as a function of Raman shift. The 3D plots also reveal 

the changing baselines over time: a rapid initial increase (at all 

Raman shifts) is followed by a more gradual decay over several 

nanoseconds for all three forms. It is important to note that, 

since the presented data are from bin 3 only, the baseline signal 

cannot be expected to represent the total fluorescence signal 

over the presented time range, with detected signal intensity bi-

ased toward time delays close to the Raman-active time-frame. 

Bin selection for biased detection was appropriate in this case, 

since avoiding fluorescence through instrumental means for im-

proved quantification was one of the aims of the study. Despite 

this, it is interesting to note that different baseline decay profiles 

are visible for the three different solid-state forms, supporting 

previous evidence that not only relative fluorescence intensity 

(as a function of Raman shift), but also the fluorescence signal 

lifetime profiles, can also be solid-state specific. Differences in 

such decay profiles have previously been observed using time-

gated Raman spectroscopy with the amorphous and γ-crystal-

line forms of the drug indomethacin.25 

After subtracting the detected baseline spectra from the raw 

spectra, very little fluorescence signal was observed and Raman 

peaks were clearly visible at time delays of less than 1 ns. Over-

all, the time-gated Raman instrument and with baseline pro-

cessing enabled robust fluorescence rejection without any re-

quirement for substance specific calibration or suppression 

methods. This provided a suitable basis for applying chemomet-

ric data analysis for quantitative solid-state determination. 

PLS regression. The PLS regression used to quantify the 

mixtures on the basis of the associated Raman spectra using the 

0.4 - 0.8 ns window was successful. Traditional PLS models 

with four PLS factors resulted in an R2X(cum) of 0.997, 

R2Y(cum) of 0.982, and a mean RMSECV of 4.1%, whereas the 

data from the whole time-domain without selection of a specific 

time-frame (0.0 - 5.5 ns) resulted in a mean RMSECV of 6.7%, 

R2X(cum) of 0.997, and R2Y(cum) with four PLS factors (Ta-

ble 1). 

Table 1. Data analysis performed on the Raman data with PLS 

indicating time-frame, method for baseline removal and 

RMSECV values obtained for each crystal form. 

Time-

frame (ns) 

Baseline  

removal 

RMSECV  

Form β 

RMSECV      

Form α2 

RMSECV     

MH 

0.4 - 0.8  airPLS, 

Lmin 

4.1% 4.5% 3.8% 

0.0 - 5.5 airPLS, 

Lmin 

7.5% 6.6% 6.0% 
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Figure 5. 3D spectra obtained with time-gated Raman of a) raw spectrum (form β), b) baseline spectrum (form β), c) Raman spectrum (form 

β), d) raw spectrum (form α2), e) baseline spectrum (form α2), f) Raman spectrum (form α2), g) raw spectrum (MH), h) baseline spectrum 

(MH), and i) Raman spectrum (MH).

 

The Raman signals of piroxicam were able to be detected 

over the fluorescence backgrounds. However, in the case of 

more extreme or complete Raman signal masking, an instru-

mental means to avoid fluorescence becomes essential. Time-

gated Raman spectroscopy is one such approach.25 

Kernel-based data analysis. Iterative optimization of the 

time-frame (an example of the process is presented in Figure 6) 

with the kernel-based RLS and greedy forward feature selection 

strongly affected the quantitative performance. Clear differ-

ences were observed in the quantitative performance between 

the optimized and non-optimized time-frames (Table 2). If the 

full time-frame data was used, mean RMSECV values of 6.2%, 

at best, were obtained. However, when the time-frame was op-

timized, the predictions improved, down to 1.4%. AirPLS (op-

timized λ = 10) was found most efficient with or without time-

frame selection. Overall, this result suggests that kernel-based 

RLS analysis is a valid alternative to the PLS approach in this 

study for quantitative analysis of time-gated Raman spectra, as 

indicated by at best approximately three-fold lower RMSECV 

values.  

Figure 6. Leave-one-out cross-validation mean squared error 

(LOOCV-MSE) results from one round of the inner-loop of the ker-

nel-based RLS model, where the model tries to find optimal param-

eters (time-interval, σ2, λ) based on the LOOCV-MSE. The X-axis 

represents the number of different time intervals tested during each 

round of the model construction to find the optimal time interval 

along with the other optimal model parameters. The time interval 

corresponding to the lowest LOOCV-MSE was 0.25 - 0.6 ns in this 

example. 
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Table 2. Data analysis performed on the Raman data with kernel-based RLS indicating time-frame, method for baseline removal, 

use (+) (or absence (-)) of greedy feature selection, and RMSECV values obtained for each crystal form. 

Time-

frame (ns) 

Baseline removal Pre-treatment Greedy feature 

selection 

RMSECV  

Form β 

RMSECV  

Form α2 

RMSECV  

MH 

0.35 - 0.60 airPLS, Lmin SNV, mean centering + 2.6% 2.5% 1.9% 

0.25 - 0.60 airPLS  SNV, mean centering + 1.6% 1.2% 1.5% 

0.20 - 0.65 none SNV, mean centering + 2.1% 2.2% 1.6% 

0.0 - 5.5 airPLS, Lmin SNV, mean centering - 8.4% 6.5% 5.9% 

0.0 - 5.5 airPLS  SNV, mean centering - 7.5% 6.2% 4.9% 

0.0 - 5.5 none SNV, mean centering - 8.4%  7.9% 6.8% 

The Gaussian kernel-based RLS model used in this study has 

the ability to learn target functions from the data capturing the 

nonlinearity of its features. The kernel-based RLS model ac-

companied by careful selection of the Raman shifts, time inter-

val and the models’ hyper-parameters utilizing a nested cross-

validation resulted in improved prediction of the different drug 

forms in the mixtures. The result of this study supports explo-

ration of the possibilities of efficient optimization of the time-

frame as well as selection of the best Raman shifts for Raman 

analysis using kernel based methods and feature selection. 

Overall, this study demonstrates that quantitative analysis 

with time-gated Raman spectroscopy can be suitable for solid-

state analysis of photoluminescent pharmaceuticals during drug 

development and manufacturing. Raman spectroscopy is espe-

cially applicable for focusing on the properties of the API in 

mixtures and pharmaceutical products. This is because the func-

tional moieties present in common APIs typically involve aro-

matic and pi-bonded structures which produce stronger Raman 

signals than the aliphatic and polar structures typical of com-

mon excipients. However, in addition to some APIs, many ex-

cipients (e.g. cellulose-based polymers) also fluoresce, which 

further restricts conventional Raman analysis for the analysis of 

pharmaceutical processing and dosage forms. An additional ad-

vantage of the time-gated measurements is that they can be per-

formed in ambient lighting which facilitates analysis during 

pharmaceutical processing. These advantages mean that the 

time-gated Raman spectroscopy approach used in this study has 

much potential for process monitoring in pharmaceutical man-

ufacturing.  

     Even though the PRX Raman bands were still observable 

without the fluorescence rejection, quantification was improved 

by the fluorescence rejection. Furthermore, the quantitative 

analysis approach in this study is applicable to more strongly 

fluorescing systems, as well as, for example, samples with high 

water contents, such as proteins, biological and biochemical 

samples. Altogether, the capability of the time-resolved Raman 

and fluorescence measurements with a CMOS SPAD detector 

for quantitative analysis shows promise in diverse areas, includ-

ing fundamental chemical research, the pharmaceutical setting, 

process analytical technology (PAT), and the life sciences. 

CONCLUSIONS 

This study demonstrates that time-gated Raman spectroscopy 

is a useful tool for quantifying mixtures of fluorescent materials 

when conventional Raman spectroscopy could fail. PLS analy-

sis of the time-gated spectra allowed quantitative analysis and 

demonstrated the benefit of time-domain selection. In this case, 

statistical optimization of model parameters using kernel-based 

RLS further improved the quantitative results. Overall, the 

time-gated Raman spectroscopy approach employed shows po-

tential for relatively routine quantitative solid-state analysis of 

photoluminescent pharmaceuticals during drug development 

and manufacturing. 
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