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Abstract

Sampsa Kiiskinen
Modeling Friction between Shearing Brittle Surfaces with a Discrete Element
Method
Master’s Thesis
Department of Physics, University of Jyväskylä, 2018, 76 pages

The fracture of brittle materials is a fundamental problem in material physics. It
still lacks a complete theoretical description, so making predictions relies heavily
on experiments and numerical models based on them. In this work we design and
implement a discrete element method to study the physical system of two brittle
surfaces as they are sheared across each other. Our focus is specifically how different
force models for internal friction affect the dry friction of the material. By using
granite as our reference material, we find that the dry friction depends strongly
on the internal friction when the pressure is around the ultimate strength of the
material. Otherwise the dry friction is primarily determined by the roughness of the
surfaces or the thickness of the fragment layer between the them. Still, regardless
of the pressure, the presence of internal friction strongly influences the mechanics
inside the fragment layer.

Keywords: material physics, geophysics, computational physics, discrete element
methods
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Tiivistelmä

Sampsa Kiiskinen
Kitkan mallintaminen hauraiden pintojen leikkauksessa käyttäen
diskreettielementtimenetelmää
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2018, 76 sivua

Hauraiden materiaalien murtuminen on eräs materiaalifysiikan peruskysymyksistä.
Sille ei ole vieläkään olemassa täydellistä teoreettista selitystä, joten ennusteiden
tekeminen nojaa vahvasti kokeisiin ja niihin perustuviin numeerisiin malleihin. Tässä
työssä suunnittelemme ja toteutamme diskreettielementtimenetelmän sellaisen fysi-
kaalisen systeemin tutkimiseen, jossa kaksi haurasta pintaa leikkaavat toisiaan. Kes-
kitymme erityisesti siihen kuinka erilaiset voimamallit sisäiselle kitkalle vaikuttavat
materiaalin ulkoiseen kitkaan. Käyttämällä graniittia koemateriaalina huomaamme,
että sen ulkoinen kitka riippuu voimakkaasti sen sisäisestä kitkasta, kun ulkoinen
paine on lähellä materiaalin puristuslujuutta. Muutoin ulkoisen kitkan määräävät
pääasiallisesti leikkauspintojen karkeus tai niiden väliin muodostuneen sirpalekerrok-
sen paksuus. Toisaalta, riippumatta ulkoisesta paineesta, sisäinen kitka vaikuttaa
voimakkaasti sirpalekerroksen sisäiseen mekaniikkaan.

Avainsanat: materiaalifysiikka, geofysiikka, laskennallinen fysiikka, diskreettielement-
timenetelmät
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1 Introduction

To set the stage for the research question, let us briefly go over the history of friction,
fracture mechanics and computational physics as they relate to it. The timeline is
summarized in figure 1 for convenient reference.

1.1 Historical Context

The first recorded instance of precisely defining and experimentally measuring the
coefficient of friction was done by Leonardo da Vinci around1 the year 1500 [1]. This
predated Isaac Newton’s calculus and classical mechanics [2] for almost two hundred
years and did not gain widespread adoption until being rediscovered by Guillaume
Amontons in 1699 [3].

Over the next three hundred years several authors elaborated the foundations
by considering the origins and mechanisms of friction and wear. These include the
theory of adhesion by John Desaguliers in 1734 [4], the postulated microscopic origin
and distinction between static and dynamic friction by Leonhard Euler in 1750 [5],
the time-dependent behavior of frictional contacts by Charles-Augustin de Coulomb
in 1781 [6] and the relation between rolling and sliding friction by Arthur Morin in
1832 [7]. Augmenting the models with lubrication required formulating a theory of
hydrodynamic friction, which was subsequently done by Osborne Reynolds in 1886
[8] and further refined by Richard Stribeck in 1902 [9]. Although the microscopic
origin of friction was examined statistically by Bowden and Tabor in 1939 [10], it
took considerably longer until atomic force microscopy allowed Mate, McClelland,
Erlandsson and Chiang to measure microscopic frictional forces in 1987 [11].

While people were busy coming up with new models for friction, contact mechanics
began to develop as Heinrich Hertz published his 1882 work [12] on stresses inside
elastic bodies in frictionless contact. This model was first extended to rigid adhesive
contact by Raymond Bradley in 1932 [13] and further to elastic adhesive contact most

1Da Vinci never published his notebooks in a coherent manner, so this estimate is based on
various incomplete collections of his early works.



12

notably by Johnson, Kendall and Roberts in 1971 [14], by Derjaguin, Muller and
Toporov in 1975 [15] and by Carpick, Ogletree and Salmeron in 1999 [16]. Relating
contact mechanics to friction was another shared effort with one of the biggest
contributions being the comprehensive treatise on the theory of rolling contact by
Joost Kalker in 1967 [17].

Contact mechanics is not only important for its own sake, but also because it
gave rise to fracture mechanics, which is the field of study concerning what happens
when the critical stress in a material is exceeded. Based on the contact mechanical
analysis by Charles Inglis in 1913 [18], the paper by Alan Griffith in 1920 [19] marked
the starting point of the field. Just like contact mechanics, fracture mechanics was
later molded into its modern form by various authors, starting with George Irwin in
1957 [20].

As an interesting aside, there was no unifying term for the study of friction, wear
and lubrication until Peter Jost started calling it tribology in his influential report in
1966 [21]. In the same time period wear also became an umbrella term for abrasion,
corrosion, erosion, fatigue and fretting [22].

Shortly following the birth of fracture mechanics, the first electronic computers
appeared. Together with early works like the application of the finite difference
method to physical phenomena by Lewis Richardson in 1922 [23] and the theoretical
exploration of both the finite difference method and the finite element method by
Courant, Friedrichs and Lewy in 1928 [24] and by Richard Courant again in 1943 [25],
this marked the beginning of computational physics as we know it today. In the years
to come, many new numerical methods were invented. Among the most relevant
ones to this work were the first prototype of molecular dynamics as published by
Fermi, Pasta and Ulam in 1955 [26] and the more modern formulation of the same
idea by Alder and Wainwright in 1959 [27]. Finally, the distinct element method
originally proposed by Peter Cundall in 1971 [28] and later popularized by Cundall
and Strack in 1979 [29] became the first member of the family of discrete element
methods. Other methods such as the discrete–finite element method by Williams,
Hocking and Mustoe in 1985 [30] and the discontinuous deformation analysis by Shi
and Goodman in 1985 [31] soon followed.

Discrete element methods were originally intended for studying jointed rocks,
which they have been very successful at [32, 33], but they have also been applied to
investigate calving glaciers [34], organic agglomerates [35], synthetic ceramic–polymer
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Figure 1: Timeline of selected works [1–10, 12–16, 24–26, 28, 30, 51–53] on
friction, fracture mechanics and computational physics. The selection is limited
by the size of the figure and based on the perceived historical importance and
relevance to this work, so it is necessarily somewhat arbitrary. A more rounded
view can be obtained from books [54, 55] and reviews [56, 57] solely dedicated
to the subjects.

composites [36], powder flow [37] and the deformation [38], fragmentation [39], rolling
[40] and piling [41] of granular media in general. Engineering applications include
mill [42] and hopper [43] design, tunnel excavation [44], slope and cave stability
estimation [45], pharmaceutical milling, mixing, compaction, coating, transport and
storage [46] and agricultural damage estimation [47] and the processing produce
[48], including oil seeds, sugar cane stems, apples, soybeans, corn, wheat, rice and
rapeseed. While not directly advertised, some physics engines for video games [49,
50] are also based on discrete element methods.

In summary, friction and fracture of materials have interested physicists and
engineers for centuries, but their complete theoretical description is still lacking.
However, discrete element methods have been very successful at accurately predicting
their behavior and, thanks to the commoditization of electronic computers, have
quickly found widespread adoption.
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1.2 Mission Statement

In this work we use a discrete element method to simulate the physical system of two
solid surfaces as they are sheared across each other. The surfaces are made of the
same material, which is2 amorphous, isotropic and brittle. The time development of
the system consists of four distinct phases that are displayed in figure 2.

The system itself has been studied before, both theoretically [58, 59] and ex-
perimentally [60, 61], but always with a specific model in mind. The goal here is
to instead explore the design space of simulations by comparing the effects various
models for internal friction have on the resulting dry friction. This should shed light
on the appropriate choice of force models and their calibration, both of which are
difficult problems in the general case [62, 63].

For this work we choose granite as a reference material, because it is suitably
brittle, familiar from everyday life, easily available for experiments and has well-
known physical properties. It is also easier to be confident in the validity of the
model if it is not needlessly abstract.

1.3 Relation to Other Fields

In geophysics parlance, our system would be called a fault, making the shearing
represent an earthquake. The fragmentation would be dubbed comminution and
the resulting layers of fragments would be classified as cataclastic rocks. The
rocks themselves would either be breccia or gouge, depending on the fragment size
distribution. With this terminology in mind, the research question would be loosely
related to a problem known as the heat flow paradox, which concerns the unexpected
lack of frictional heating in the San Andreas fault [64].

Condensed matter physics is at the other end of the length scale, but features
similar concepts. If our particles were molecules, the system would resemble a
sedimented colloidal suspension. Quantized elastic waves in the material would be
called phonons and variations in its particle size distribution would be referred to as
its dispersity. This is a useful connection to make, because some statistical results
from condensed matter physics [65] can be used in this work as well.

2These terms mean that the material is not crystalline, looks the same in all directions and fails
suddenly after elastic deformation.
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(a) A block of material is formed by pack-
ing loose particles together.

(b) The block is artificially split into two
halves and pulled apart slightly to create
a fault.

(c) The edge of one half is held in place as
a horizontal driving force is applied to the
edge of the other half under a constant
vertical pressure.

(d) The horizontal force and vertical pres-
sure are maintained until enough frag-
ments have appeared to make meaningful
measurements.

Figure 2: Sketches of the physical system of interest. The system extends to
infinity in the direction of the shearing through periodic boundary conditions.
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2 Basic Concepts

In this section we introduce the foundational concepts needed to understand the
research question and motivate some of the problems therein. The structure of the
rest of this work is also laid out at the end of this section.

2.1 Microscopic and Macroscopic Friction

Friction refers to dissipative forces that resist the relative motion of surfaces, whether
the surfaces are interfaces between materials or layers within the same material.
It is not a fundamental force but rather an idealized statistical classification of
microscopic forces that are complicated enough to make it infeasible to derive from
first principles.

Friction is commonly divided into different kinds based on the context it appears
in. In this work we talk about

dry friction, which describes the tendency of macroscopic solid objects in contact
to oppose sliding across each other,

internal friction, which can be thought of as the microscopic constituents of a
plastic or viscoelastic material resisting deformation, and

fluid friction, which manifests as flow resistance in purely viscous materials.

If the behavior at rest differs from that in motion, the kinds are further divided into

static friction, which appears when the surfaces have been at rest long enough for
them to jam or bond together weakly, and

dynamic friction, which is exactly the opposite.

Since dry friction and dynamic friction are often referred to as just friction, fluid
friction and static friction may be called viscosity and stiction [66] respectively to
emphasize the difference.
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The simplest model for dry friction is Amontons’ law, which states that the
frictional force

F t = µF n, (1)

where F n is the loading force and µ is a constant called3 the coefficient of friction.
The coefficient of friction is a property of the physical system, depending primarily
on the materials of the contacting surfaces and secondarily on a slew of other factors
such as the external loading configuration [67]. For most systems 0 < µ < 1, although
contacts with sticky materials like rubber may have µ ≥ 1 and adhesive and nanoscale
systems [68] can exhibit µ < 0. As an example, granite in contact with itself has
µ ≈ 0.7 [69].

For internal friction in a solid, one of the simplest models is the Kelvin–Voigt
model, which states that

σ = Y ε+ ηG∂tε, (2)

where σ is stress, ε is strain, t is time, Y is the Young’s modulus of the material and
ηG is its dynamic viscosity. The idea behind this model is to describe the material
as a spring with stiffness Y and a dashpot with sluggishness ηG, both ideal and
connected in parallel. Without the dashpot, the material would be perfectly elastic
and there would be no friction involved. Coming back to the previous example, this
model suits granite at long time scales with Y ≈ 50 GPa [70] and ηG ≈ 50 EPa s [71].

While the model in equation 1 is very crude, it works well for characterizing
both the static and dynamic friction of rigid bodies and makes comparing systems
a simple matter of comparing their coefficients of friction. Similarly, the model in
equation 2 is a decent way to characterize creep in solid materials for only relying
on two material parameters. Alas, both of these models and their more advanced
counterparts are based on the assumption that the material is elastic and forms a
continuum. As soon as there is plastic deformation or fracture, the models become
little more than useless. Even if this was not the case and the models worked fine in
isolation, there is no universal way to combine them, because they work at vastly
different length scales.

3The notational conventions are summarized in appendix section A.
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Figure 3: Tensile stress σ as a function of strain ε for two stainless steel samples
[72]. As expected of a ductile material, the yield strength is substantially smaller
than the ultimate strength, both of which are marked on the curves. See figure
4 for a comparison with granite.

2.2 Deformation and Fragmentation

Whenever a solid material is subjected to a sufficiently large stress, it will undergo
irreversible plastic deformation or fracture. The stress corresponding to the onset
of these changes is called the yield strength and the stress at which fracture finally
happens is called the ultimate strength. For many materials the yield strength is
smaller than the ultimate strength, resulting in gradual failure preceded by observable
changes in the material. For brittle materials, however, the ultimate strength is very
close to the yield strength, making failure sudden and unpredictable. This difference
is demonstrated for stainless steel and granite in figures 3 and 4 respectively.

A material may also respond differently to compressive and tensile stresses. It
is common to work with the assumption that the responses are equal, but this
assumption is generally unfounded for processes involving large stresses. This is
apparent in figure 4, where the ultimate tensile strength σ crit n ≈ 20 MPa is an order
of magnitude smaller than the ultimate compressive strength σ crit n ≈ 280 MPa.
Composite materials like reinforced concrete exist to balance these properties.
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Figure 4: Tensile stress σ as a function of strain ε for two granite samples [70].
As expected of a brittle material, the yield strength coincides with the ultimate
strength, which is marked on the curves. See figure 3 for a comparison with
stainless steel.

2.3 Discrete Element Methods

Discrete element methods (henceforth dem in both singular and plural) are, as
the name suggests, numerical simulation methods featuring a finite number of
distinguishable particles. In dem, the system of interest is constructed from suitably
composed particles and time is advanced by moving said particles according to the
laws of classical mechanics. Precisely how the particles are composed and how time
is advanced varies from method to method, but the most popular choice is spherical
particles with either force-based or event-driven time development.

To give some perspective, dem are very similar to molecular dynamics (md)
with the exception that particles may have more degrees of freedom, assume more
complicated shapes, feature time-dependent interaction mechanisms and bear some
internal structure. Indeed, the original distinct element method [29] was basically
two-dimensional force-based md with additional rotational degrees of freedom and
short-range contact forces in place of long-range electromagnetic forces. From another
point of view, dem resemble finite element methods (fem), where the vertices of the
mesh may move, the local topology of the mesh may vary, the ambient space of the
mesh may only be covered partially and the boundaries of the mesh may change.
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This connection to fem may seem like a stretch, but it is roughly how the theory of
the discrete–finite element method [30] was first formulated.

One of the major benefits dem have over other simulation methods and even
theoretical approaches is their ability to model fragmentation. Since fragmentation
in real materials emerges from the way their constituents interact with each other,
mimicking these interactions in dem produces qualitatively correct behavior without
having to involve fracture mechanics. Other benefits include how easy dem are to
understand conceptually, how conveniently their implementations scale and parallelize
and how implementing them does not require generating or performing operations
on triangular meshes, because having to do so is unwieldy and known to create
nonphysical artifacts in some applications [63].

Nevertheless, dem are far from the ultimate solution to every problem as calibrat-
ing them to match experiments is tricky, applying them to large systems and long
runs require a lot of processing power and implementing them efficiently is laborious
and complicated. There is also considerably less established software infrastructure
for dem than for md or fem.

Understanding dem in detail is best done constructively by considering the
process of making one. We divide this process into design and implementation phases
as shown in figures 5 and 6 respectively. The motivation for the division is that the
design phase is primarily carried out with pen and paper while the implementation
phase is more heavy on programming. In this work the design phase leads us to
differently sized spheres in two dimensions with force-based time development and
breaking under tensile and compressive stresses. The implementation, on the other
hand, ends up being written in4 the C programming language. We walk through
these choices in the sections to come.

4The code follows the modern standards ISO/IEC 9899:2011 and POSIX.1-2008.
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Figure 5: Flowchart of the design phase of a dem. See figure 6 for the imple-
mentation phase.
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3 Theoretical Design

Our focus in this section is the theory needed for designing the simulation. We try
to be careful with the details, such as repulsive forces always having negative signs,
to help the reader who might want to implement the simulation.

3.1 Dimensionality

If the isotropic block of material we started with formed a continuum, the system
would be completely symmetric in all directions. Introducing a fault and a driving
force would then break the symmetry in two directions, but the system would still be
symmetric along the intersection line of the fault plane and the plane perpendicular
to the driving force vector. Due to the remaining symmetry, we could completely
describe the system in two dimensions.

In reality the block of material is made of finitely sized particles, so it does not
form a continuum and, as a consequence, the fault is not exactly a plane. The
practical consequence of this is that the driving force may actually move particles
in any direction within the fault. The movement in the direction of the assumed
symmetry should, however, be statistically insignificant for the measurements we are
interested in, so we ignore it.

These mental contortions to justify the use of two dimensions are not without
merit. Assuming the characteristic side length of the system is L and the characteristic
radius of the particles is R, going from three dimensions to two dimensions scales the
number of particles required in the worst case5 by N3/N2 = (

√
6/4)(L/R). In the

case of a 100 mm block made of 2 mm particles, this comes out as N3/N2 ≈ 61. The
change from three dimensions to two dimensions also reduces the degrees of freedom6

per particle from 3 + 3 to 2 + 1 and the maximum number of contacts per particle
(the kissing number) from 12 to 6. This is notable, because contact calculations scale
quadratically7 with respect to the number of neighboring particles, so we drop from

5The dependence is derived in appendix section B.
6The notation here is T +R for T translational and R rotational degrees of freedom.
7The requirements of contact calculations are elaborated in section 4.4.1.
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66 to 15 contact calculations per particle in the worst case.
One more thing to consider is the mapping between our two-dimensional system

and three-dimensional reality. When we construct the two-dimensional system, we
merely constrain the dynamics of three-dimensional particles into two dimensions.
Treating the system as a three-dimensional extrusion of a two-dimensional profile
would not work well with models that were originally derived for three-dimensional
geometries [73].

3.2 Particle Composition

Particle composition refers to the shapes of the smallest indivisible particles and
the ways they are linked together. The appropriate choice for both features is a
compromise between simplicity and realism, just like in the case of dimensionality.

The most popular choices for the shapes are discs or spheres, because their collision
detection does not depend on their angular displacements and their interactions can
be derived directly from contact mechanics [74]. Other popular choices are polygons
or polyhedra, because they can be decomposed into triangles or tetrahedra and
handled by case analysis [75].

When links are introduced, they can either be completely rigid or somewhat
flexible. The main purpose of rigid links is building more complicated shapes out
of the few basic ones without having to devise new collision detection algorithms.
Flexible links, on the other hand, are far more versatile. When taken to behave like
springs or beams, they allow the modeling of properties like deformation or fracture.
While using flexible links is not the only way to model either property, no other
approach quite compares in the breadth of literature and variety of models to choose
from [62, 76–78].

In this work we employ spheres with two kinds of flexible links. Strong links
represent covalently bond regions and as such keep intact blocks of solid material
together. They are made of viscoelastic beams that break under sufficient stress.
Weak links represent van der Waals forces and appear in contact interactions of loose
particles. They form when particles come into contact and vanish as soon as the
particles depart. The whole arrangement is fictitious in the sense that it does not
accurately represent the microscopic structure of the material it makes up, but that
is fine as long as it behaves as if that was the case.

These choices allow the efficient implementation of many types of forces, but not
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without their own set of problems. The biggest concern is the distinct lack of surface
geometry in the spheres, which means that certain properties, such as static friction,
need to be included in the force models in an inelegant and physically questionable
manner. This is not merely an aesthetic issue, but also makes calibration harder,
because it tends to give rise to physically meaningless parameters that cannot be
derived directly from theory or experiments.

3.3 Interactions

We consider the interactions of pairs of particles with each other and the influence of
external or ambient forces on single particles separately. While there are situations
where multi-body interactions arise8 from the limitations of the model, we do not
have to worry about them due to our time development9 being force-based and the
effect of high-speed collisions being negligible.

3.3.1 Pair Interactions

When modeling the collision of two indivisible particles, we consider them to be
completely rigid, but allow them to overlap each other. The overlapping is taken to
imply deformation, whereas wear is purposefully neglected. This concept is illustrated
in figure 7, along with the variables that we need to define.

Our starting point is the usual Euclidean space with 2 dimensions, where the
laboratory frame of reference consists of the right-handed Cartesian coordinate
system centered at the origin and spanned by the basis vectors ~e x and ~e y. The space
is inhabited by N distinguishable particles, each of which is a rigid sphere with a
homogenous mass distribution and open boundary. Given a particle indexed with i,
it has the radius ri and mass mi and, at each point in time t, has the displacement
~xi(t), velocity ~vi(t), acceleration ~ai(t), angular displacement ϕi(t), angular velocity
ωi(t) and angular acceleration αi(t). To avoid clutter, we forgo writing the time
parameter explicitly when referring to the current point in time t.

We establish another frame of reference for each pair of particles. Given two
different particles indexed with i and j, their pair frame is just like the laboratory
frame, except that it is centered at the focal point ~oi,j and spanned by the normal

8Simulating a Newton’s cradle with event-driven time development is a good example, since
naive collision resolution would have problems keeping the balls in the middle at rest.

9The choice of time development is discussed more in section 3.6.
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and tangential basis vectors ~eni,j and ~e ti,j respectively. The focal point is defined as
the intersection point of the collinear and radical axes of the particles, as in

~oi,j = ~xi + bi,j(~xj − ~xi) = ~oj,i, (3)

where the overlap factor

bi,j = 1
2


1− (r2

j − r2
i )/|~xj − ~xi|2, ~xi 6= ~xj

1, ~xi = ~xj

= 1− bj,i.

(4)

This is a convenient definition, because when the particles overlap, the focal point
corresponds to the center of the contact, and when they do not, it corresponds to
the midpoint of their tangents, which is where a link between them would be. The
basis vectors follow the same line of reasoning. The normal vector is defined as the
unit vector from i to j and is thus parallel to the collinear axis. The tangent vector
is defined as its right-handed perpendicular and is therefore parallel to the radical
axis. In other words

~eni,j = ~xj − ~xi

|~xj − ~xi|
= −~enj,i ~e ti,j = per~eni,j = −~e tj,i, (5)

where per is10 the right-handed vector perpendicularization function.
We can now write the force exerted by j on i as

~Fi,j = ~F n
i,j + ~F t

i,j = F n
i,j~e

n
i,j + F t

i,j~e
t
i,j = −~Fj,i, (6)

where both the normal component F n
i,j and the tangential component F t

i,j depend on
the choice of the force models. Since there is a tangential component, the force also
induces the torque

τi,j = di,jF
t

i,j, (7)

where di,j is the distance from the assumed11 contact point.
10An explicit definition for per is given in appendix section C.
11The contact point assumption is discussed in appendix section D.
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(a) In reality particles have rough surfaces
and, upon colliding with other particles,
may experience significant deformation
and wear.

ri

~xi ~vi

ϕi

ωi

rj

~xj

~vj ϕj

ωj

~e x
~e y

~e n
i,j

~e t
i,j

(b) In our model particles are completely
rigid spheres and, instead of colliding
with other particles, may come to over-
lap them. The variables are defined in
section 3.3.1.

Figure 7: Contrasting the model for pair interactions with reality.

3.3.2 External Potential

In addition to pair interactions, there may be an external potential U , which each
particle i experiences via the conservative force field

~F ext
i = −~∇Ui. (8)

The potential generally induces a torque as well, but not for spherical bodies with
constant density, so we may safely assume that

τ ext
i = 0. (9)

Conservative force fields arise naturally from phenomena like gravity, which we
could model with the potential

Ui = a extmix
y
i , (10)

where a ext is the magnitude of the gravitational acceleration in the direction of
−~e y. Aside from gravity, external potentials are also useful for artificially controlling
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the system. One example of this is the harmonic potential we use for packing the
particles together when forming the initial block12 of material.

3.3.3 Ambient Forces

It is sometimes desirable to model friction in the surrounding media or to damp
vibrations in excessively elastic regions of the system [58]. This requires an ambient
and dissipative force field, which cannot be created through pair interactions or
external potentials alone.

The drag force [79] experienced by particle i in isolation is

~F amb = −1
2ρ

ambAiCi|~vi|~vi, (11)

where ρ amb is the density of the surrounding media, Ai is the cross-sectional area of
the particle and Ci is a dimensionless number known as the drag coefficient. Since
the particle is spherical, we can write Ai and Ci in terms of the radius ri and the
Reynolds number

Rei = 2
(
ρ amb

η amb
G

)
ri|~vi|, (12)

where η amb
G is the dynamic viscosity of the surrounding media. This results in

Ai = (2π)

2 r2
i (13)

and, according to an experimental correlation [80] that should be accurate enough
for our purposes,

Ci = 8
Rei

√
Φ‖

+ 16
Rei

√
Φ◦

+ 3√
Rei

√
Φ3
◦

+ D
D2(− log Φ◦)D3
1

Φ⊥
, (14)

where the particle sphericities Φ◦ = Φ⊥ = Φ‖ = 1 and

D =


4.21 · 10−1

4.00 · 10−1

2.00 · 10−1

 . (15)

With these considerations, the drag force

~F amb
i = − (2π)

16

((η amb
G )2

ρ amb

)( 24
Rei

+ 3√
Rei

+ 1
)

Re2
i

~vi

|~vi|
. (16)

12Initial conditions are discussed more in section 3.7.3.
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If portraying the surrounding media accurately is not particularly important or
the Reynolds number roughly satifies Rei < 1, we can simplify things considerably
by assuming creeping flow. For creeping flow the drag coefficient only consists of the
first term

Ci = 24
Rei

, (17)

which makes the drag force

~F amb
i = −3 (2π) η amb

G ri~vi (18)

and the corresponding torque

τ amb
i = −4 (2π) η amb

G r3
iωi. (19)

These equations are equivalent to Faxén’s laws [81], but without the disturbance
terms that would appear if we considered the effects particles have on each other.

3.3.4 Driving Force

With just the natural interactions in play, our system would eventually settle to an
equilibrium position. In order to maintain the shearing motion indefinitely, we have
to introduce a driving force that does enough work to balance the energy dissipation.

We define the driving force for each particle i such that

~F driv
i = δ drivi (F driv x

i ~e xi + F driv y
i ~e yi ), (20)

where δ driv is an indicator13 for being driven, the number of driven particles

N driv =
∑

i

δ drivi (21)

and the components F driv x
i and F driv y

i are adjusted to fulfill

1
N driv

∑
i

δ drivi v x
i = v driv

1
N driv

∑
i

δ drivi

F driv y
i

A y = pdriv,

(22)

13We have δ driv
i = 1 if particle i is driven and δ driv

i = 0 if it is not.
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where v driv is the horizontal target speed, pdriv is the vertical target pressure and
A y is the area of the driven surface. In three dimensions the area would simply be

A y = l xl z, (23)

where l are the side lengths of the system, but there is no such thing as depth in two
dimensions, so l z does not exist. To settle this problem, we observe that since the
initial block14 of material is supposed to be isotropic, we could form it by stacking
together suitable two-dimensional slices some characteristic length L z apart. This
means that we can write

A y = l xL z, (24)

where the characteristic length

L z = 2
N

∑
i

ri (25)

follows from the particle size distribution.

3.3.5 Summary of Interactions

Since pair interactions, external potentials and ambient forces are independent of
each other, each particle i is subjected to the total force

~Fi =
j 6=i∑

j

~Fi,j − ~∇Ui + ~F amb
i + ~F driv

i

=
j 6=i∑

j

(F n
i,j~e

n
i,j + F t

i,j~e
t
i,j)− ~∇Ui + ~F amb

i + δ drivi (F driv x
i ~e xi + F driv y

i ~e yi )
(26)

and torque

τi =
j 6=i∑

j

τi,j + τ amb
i =

j 6=i∑
j

di,jF
t

i,j + τ amb
i , (27)

where F n
i,j, F t

i,j, di,j, Ui, ~F amb
i and τ amb

i depend on the choice of the force models.
14Initial conditions are discussed more in section 3.7.3.
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3.4 Force Models

Whether time development is force-based or event-driven, all interactions come down
to the definition of the forces, which is why choosing the appropriate force models
is at the crux of this work. Luckily there is no shortage of models to choose from.
Even a short literature review reveals six options for normal forces and another six
for tangential forces [62, 78], each of which can be calibrated to fit the task at hand.

3.4.1 Normal and Tangential Displacements

Whenever two different particles i and j interact, their interaction can be characterized
by the normal displacement ξi,j and tangential displacement ζi,j. The normal
displacement represents the relative movement of the particles along ~eni,j and has a
positive value if they overlap. It is easy to derive and ends up being exactly

ξi,j = (ri + rj)− |~xj − ~xi| = ξj,i. (28)

The tangential displacement is similar to the normal displacement, except it goes
along ~e ti,j and is somewhat trickier to derive.

Looking at the pair frame of i and j, the angle of the frame itself in the laboratory
frame is

λi,j = arctan~eni,j = rev λj,i, (29)

where rev is15 the angle reversal function. The angular displacement of particle i in
the pair frame is thus

ψi,j = ϕi − λi,j. (30)

If the particles initiate their interaction at some point in time t initi,j , the angular
displacement of i is the difference

∆ψi,j = ψi,j − ψi,j(t initi,j ) (31)

and the tangential displacement ends up being approximately

ζi,j = di,j∆ψi,j, (32)

15An explicit definition for rev is given in appendix section C.
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where, again, di,j is the distance from the assumed16 contact point.
In addition to the normal and tangential displacements, we introduce the adjusted

normal displacement

Ξi,j =
(
di,j(t initi,j ) + dj,i(t initi,j )

)
− |~xj − ~xi| = Ξj,i, (33)

which is relative to the initial distance between the particles instead of being relative
to their radii. The adjustment makes the normal displacement more consistent with
the tangential displacement and helps avoid the creation of stresses in the material
when bonding particles together.

To describe elastic behavior in force equations, we may use any combination
of the normal and tangential displacements directly. However, to describe viscous
behavior, we also need their rates of change. This can be accomplished through
straightforward differentiation, which produces the normal and tangential velocities

∂tξi,j = ∂tΞi,j = −∂t|~xj − ~xi| = −(~vj − ~vi) · ~eni,j

∂tζi,j = di,j∂t∆ψi,j = di,j

(
ωi −

(~vj − ~vi) · ~e ti,j
|~xj − ~xi|

) (34)

respectively.

3.4.2 Weak Links

For normal forces in weak links, we apply the Kelvin–Voigt model (KV) introduced
in equation 2. In this context stress and strain are replaced by force and displacement,
entailing the force

F KV
i,j = −(k nξi,j + γ n∂tξi,j), (35)

where k n is a calibration parameter17 measured in kg/s2 and γ n is a calibration
parameter measured in kg/s. While this model is always defined and works for
both attraction and repulsion, we only want the repulsive part to be in effect, so we
truncate it to obtain the normal force

F n
i,j = min{0, F KV

i,j }. (36)

16The contact point assumption is discussed in appendix section D.
17Calibration parameters are discussed in greater detail in section 4.3.
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To help fix the calibration parameters, we use the Brilliantov–Spahn–Hertzsch–
Pöschel model (BSHP) alongside KV. It is a model for viscoelastic spheres and
states [74] that the repulsive force

F BSHP
i,j = −2G

√
2

3ν

(
ν

1− ν

)√ 2
1/ri + 1/rj

(
ξi,j

√
ξi,j + Λ

√
ξi,j∂tξi,j

)
, (37)

where [82] the dissipative constant

Λ = 1
3M

(1− ν
ν

)2 (3ηK − ηG)2

3ηK + 2ηG

, (38)

the shear and P-wave moduli are

G = Y

2(1 + ν) M = Y (1− ν)
(1− 2ν)(1 + ν) (39)

respectively, ν is the Poisson’s ratio of the material and ηK is its bulk viscosity. This
model is only defined for positive normal displacements and does not work correctly
for attraction, so we must truncate it further than KV to obtain the normal force

F n
i,j =


min{0, F BSHP

i,j }, ξi,j ≥ 0

0, ξi,j ≤ 0.
(40)

For tangential forces in weak links, we have two models. The first one is the
Haff–Werner model (HW), which gives rise to dynamic friction [62] via the force

F HW
i,j = − sgn(∂tζi,j + ∂tζj,i) min{µ|F n

i,j|, γ t|∂tζi,j + ∂tζj,i|}, (41)

where µ is the coefficient of friction from equation 1 and γ t is a calibration parameter
measured in kg/s. The second one is the Cundall–Strack model (CS), which features
both static and dynamic friction in18 the force

F CS
i,j = −


sgn(∂tζi,j + ∂tζj,i)µ|F n

i,j|, µ|F n
i,j| ≤ k t|ζi,j + ζj,i|

sgn(ζi,j + ζj,i)k t|ζi,j + ζj,i|, µ|F n
i,j| > k t|ζi,j + ζj,i|,

(42)

where k t is a calibration parameter measured in kg/s2. These models allow us
to choose between F t

i,j = 0 for no friction, F t
i,j = F HW

i,j for dynamic friction and
F t

i,j = F CS
i,j for static and dynamic friction.

18There are conflicting accounts in literature [29, 62, 83] on what should determine the direction
of the force, so our choice may look unfamiliar.
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3.4.3 Strong Links

Similar to weak links, we use KV for normal forces in strong links too. The only
difference is that we replace the normal displacement with the adjusted normal
displacement to get

F aKV
i,j = −(k̄ nΞi,j + γ̄ n∂tΞi,j), (43)

where k̄ n is a calibration parameter measured in kg/s2 and γ̄ n is a calibration
parameter measured in kg/s. Since strong links are both attractive and repulsive,
we do not need to apply any truncations to obtain the normal force F n

i,j = F aKV
i,j .

For tangential forces in strong links, we simplify the Euler–Bernoulli model (EB)
for beams [76] to create an angular analog of KV. This results in19 the force

F EB
i,j = −(k̄ tζi,j + γ̄ t∂tζi,j), (44)

where k̄ t is a calibration parameter measured in kg/s2 and γ̄ t is a calibration
parameter measured in kg/s. We cannot apply this model directly to the particles,
however. To make it behave like a beam, we have to take both of its ends into
account, so instead of following equations 6 and 7, the tangential force and torque
have to be

F t
i,j = τi,j + τj,i

|~xj − ~xi|
τi,j = riF

EB
i,j (45)

respectively. The benefit of this and other beam models is that they greatly reduce
the number of particles needed for achieving high shear strength. For a chain of
linked particles, the difference is similar to that of cooked and uncooked strands of
pasta.

3.5 Breaking and Bonding

Since brittle materials behave elastically all the way up to their ultimate strengths,
we can ignore plastic deformation and model fracture simply by breaking links once
their yield strengths are reached. This is convenient, because it makes characterizing
the material only require a few parameters and, just like with force models, there is
a plethora of yield criteria [77] to choose from.

19We purposefully use the tangential displacement ζi,j instead of the angular displacement ∆ψi,j

to make the beam favor bending near its thinner end, where it is also more likely to break.
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In addition to breaking, some materials may do the opposite. For example
fragments of ice may freeze together in the presence of water and crustal rocks may
close cracks at very high pressures. Since this cannot happen in our system, we leave
the spontaneous creation20 of links out of our model.

3.5.1 Yield Criteria

For breaking strong links, we use the Zhang–Eckert criterion (ZE). It is intended for
brittle materials and predicts fracture [77] when

( σ n
i,j

σ crit n

)2
+
( σ t

i,j

σ crit t

)2
≥ 1, (46)

where σ n
i,j is the normal stress, σ t

i,j is the tangential stress, σ crit n is the ultimate
normal strength and σ crit t is the ultimate tangential strength. If the equation is
interpreted as an elliptical disc in the stress space, the ratio of its semi-minor and
semi-major axes

β = σ crit t

σ crit n (47)

indirectly determines the fracture angle of the material. In terms of forces the
criterion is ( F n

i,j

σ crit n

)2
+
( F t

i,j

σ crit t

)2
≥
(

(2π)

2 (r criti,j )2
)2
, (48)

where the radius of the weakest point

r criti,j = min{ri, rj} = r critj,i . (49)

3.5.2 Random Variation

The ultimate strengths of real materials always exhibit some random variation.
Statistically the strengths of random samples follow the three-parameter Weibull
distribution [84], although not necessarily based on material constants [85].

Since our system is held together by strong links between differently sized particles,
we cannot directly impose the Weibull distribution on their strengths and pretend
that their geometries do not matter. As seen in equation 48, link strength is directly

20We still bring up bonding, because its contribution to the energy balance shows up in section
3.8.1.
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Figure 8: Comparing the emergent link strength distribution with the expected
three-parameter Weibull distribution. The shape of the emergent distribution
can be adjusted to match the Weibull modulus of the material as demonstrated.

proportional to the square of the radius of its weakest point, so we have to define
the link strength factor s such that the modified yield criterion

( F n
i,j

σ crit n

)2
+
( F t

i,j

σ crit t

)2
≥
(

(2π)

2 (si,jr
crit
i,j )2

)2
(50)

faithfully reproduces the desired strength distribution.
We assume that s and r are independently and uniformly distributed, because

doing so makes all of the resulting random quantities bounded and allows us to
calculate a closed form21 for the emergent strength distribution. The emergent
distribution does not match the expected Weibull distribution exactly, but it is a
decent approximation as seen in figure 8.

While the figure shows the case for the Weibull modulus k = 5, we could reach
any other k by adjusting the bounds of s and r. The only problem is that going too
far into k > 5 would require making the distribution of r so narrow that it negatively
affects the disorder22 of the system. Avoiding this problem without giving up the
previously mentioned nice properties would require making s and r correlated in
some manner.

21The emergent distribution is calculated in appendix section E.
22The importance of disorder is discussed in section 3.7.2.
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3.6 Time Development

Disregarding models23 with quantized time, there are two primary ways to advance
time. Force-based time development involves advancing time by a small step, moving
the particles accordingly, checking for collisions and repeating the process until
enough time has passed. Event-driven time development, on the other hand, involves
calculating the trajectories of the particles to predict when the next collision is going
to happen, advancing time to that moment, resolving the collision and repeating the
process until enough time has passed.

Consequently, event-driven time development works better for sparse systems
with infrequently colliding particles, whereas force-based time development is more
suitable for dense systems with persistent contacts. Our system falls into the latter
category, which is why we opt for force-based time development.

3.6.1 Equations of Motion

Once the forces and torques are known, classical mechanics dictates the subsequent
behavior of the system. Assuming that the density of the particles ρ is constant,
each particle i gets the linear and angular accelerations

~ai =
~Fi

mi

αi = τi

Ji

(51)

respectively, where the mass

mi = 2 (2π)

3 ρr3
i (52)

and the moment of inertia

Ji = 2
5mir

3
i = 4 (2π)

15 ρr5
i . (53)

Following these definitions, other dynamical quantities develop according to

~vi =
t∫

0

dt~ai

~xi =
t∫

0

dt ~vi

ωi =
t∫

0

dt αi

ϕi =
t∫

0

dt ωi.

(54)

We only need some way to evaluate the integrals.
23Cellular automata are sometimes used for simulating granular systems [86] and feature quantized

time.
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3.6.2 Integration Methods

There are many methods for iteratively calculating the integrals that appear in the
equations of motion [87]. They all produce the same result as the time step ∆t is
brought to zero, but at a different computational cost. It is therefore important to
choose the appropriate combination of integration method and time step to maximize
efficiency.

The simplest option is the forward Euler method, stating24 that

~v(t+ ∆t) = ~v(t) + ~a(t)∆t

~x(t+ ∆t) = ~x(t) + ~v(t)∆t.
(55)

The Euler method is not particularly accurate, but may be gradually improved
through higher-order Taylor expansions. For example second-order expansions lead
to

~v(t+ ∆t) = ~v(t) + ~a(t)∆t

~x(t+ ∆t) = ~x(t) + ~v(t)∆t+ 1
2~a(t)(∆t)2.

(56)

Even more accuracy can be obtained with predictor–corrector methods, such as the
modified Beeman’s or Kuraev’s algorithm for damped systems [88]. The former
involves initially making a prediction with

~v pred(t+ ∆t) = ~v(t) +
(3~a(t)− ~a(t−∆t)

2

)
∆t

~xpred(t+ ∆t) = ~x(t) + ~v(t)∆t+ 1
2

(4~a(t)− ~a(t−∆t)
3

)
(∆t)2,

(57)

then using the prediction to calculate ~a(t+ ∆t) and finally replacing the prediction
with the correction

~v corr(t+ ∆t) = ~v(t) +
(2~a(t+ ∆t) + 5~a(t)− ~a(t−∆t)

6

)
∆t

~x corr(t+ ∆t) = ~x(t) + ~v(t)∆t+ 1
2

(
~a(t+ ∆t) + 2~a(t)

3

)
(∆t)2.

(58)

While these and other higher-order methods provide improved accuracy, they also
tend to be less stable. Since it is much more important for us to maintain contacts
than to calculate trajectories, the Euler method beats the other methods simply by
the virtue of making it more affordable to decrease the time step.

24In this context angular quantities work exactly the same as their linear counterparts, so we do
not write them out explicitly. The reader may replace ~x with ϕ, ~v with ω, ~a with α and m with J
at their leisure.
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3.6.3 Time Step

The time step can be chosen with a certain arbitrariness, although there are upper
bounds for ensuring the correct reproduction of various phenomena. Technically,
there is also a lower bound imposed by the precision of the underlying number
representation, but it can always be eliminated by choosing the units of time carefully.

The most important upper bound is the one for numerical stability, because
violating it will make the integration error grow exponentially, which manifests as
the system exploding violently. Another essential upper bound is the point at which
energy is almost completely conserved. The time step at which these bounds are
satisfied is collectively known as the critical time step and it is strongly influenced by
both the integration method and the dynamics of the system. The least upper bound
is usually impossible to determine, but guidelines exist for getting close to it. To
give some examples, a densely packed system integrated with the central difference
method [89] should satisfy f∆t < 1/21, where f is the characteristic frequency of
oscillations, and another such system integrated with the third-order Gear method
[90] should satisfy ∆t/T < 1/50, where T is the characteristic duration of collisions.

In addition to energy conservation, there is the question of waves. The speeds of
primary and secondary elastic waves in a solid are

cP =
√
K + 4G/3

ρ
cS =

√
G

ρ
(59)

respectively, where the bulk modulus

K = Y

3(1− 2ν) . (60)

If accurate modeling of wave propagation is desired, the time step should be such
that

cP∆t
2R < 1, (61)

where R is the characteristic radius of the particles.
Intuitively it would make sense for cracks to obey the same speed limit as waves,

but this is not always the case. Cracks may propagate an order of magnitude faster
than elastic waves [91, 92], which requires adjusting the time step constraint to

cP∆t
2R <

1
Ma , (62)

where Ma is the characteristic Mach number of the cracks.
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3.7 Initial and Boundary Conditions

Before starting the shearing process, we must create the block of material and break
it into two halves. We also need some way to ensure that the lower half stays in
place when the upper half is moved. These issues are best addressed with periodic
boundaries and a packing process that features automatic quality assurance.

3.7.1 Periodic Boundaries

Ideally the two halves of the block would always be on top of each other, but that
would require making them infinitely long in the direction of the shearing. Simulating
an infinite system like that is obviously impossible, but we can still imitate the infinity
through periodic boundary conditions. Mathematically this involves replacing the
usual metric of our space

di,j =
√

(x x
j − x x

i )2 + (x y
j − x

y
i )2 (63)

with the horizontal minimum image metric

di,j =
√(

(x x
j − x x

i )− l x
⌊x x

j − x x
i

l x
+ 1

2

⌋)2
+ (x y

j − x
y
i )2. (64)

This effectively tiles the space with infinitely many copies of one of its regions. It
introduces some nonphysical effects as well, but we can make them arbitrarily small
by increasing the length of the region.

3.7.2 Particle Size Distribution

If we made the block from particles that all have the same size, the system would
quickly transition into an anisotropic state. We can avoid this problem by making
the sizes of the particles random, but there is still the question of choosing the right
particle size distribution.

A similar phenomenon arises in colloidal suspensions, where a system of spherical
particles spontaneously transitions from a disordered state into an ordered one.
Theoretical and experimental results suggest [65] that if the particle sizes25 are
normally distributed with the mean µ and the standard deviation σ, the transition
happens roughly when

σ

µ
< 0.1. (65)

25In this context, unlike in chemistry, particle size is defined by radius instead of by mass.
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It turns out that we can adapt this result to a uniform particle size distribution and
barely avoid the transition by choosing the endpoints of the interval26 according to

rmin =
( 2

1 +
√

2

)
r avg rmax =

( 4
2 +
√

2

)
r avg, (66)

where r avg is the average particle size. A wider interval would also work, but not
without making it harder to adjust27 the Weibull modulus of the material.

3.7.3 Particle Packing

Once the geometry of the particles is known, we take the following steps to pack
them together. The process may not be optimal, but it is very flexible and produces
a dense packing without introducing any new machinery.

First, we generate an excessive number of particles and arrange them into a square
lattice. We make the lattice loose enough to allow every particle to be displaced by
∆x in any direction without coming into contact with another particle. Second, we
randomly perturb each particle by a displacement smaller than or equal to ∆x. This
is not strictly necessary, but makes the rest of the steps go faster. Third, we disable
static friction and enable the harmonic potential

Ui = 1
2k

ext
(
x y

i −
l y

2

)2
, (67)

where k ext is a calibration parameter measured in kg/s2. We may also increase the
viscosity of the surrounding media to make the potential energy dissipate faster.
Fourth, we wait until the particles settle into a stable configuration, remove the
excess particles and restore the original force models. The potential is defined such
that the pressure at the end should be consistent throughout the block.

3.7.4 Quality Assurance

When we perform the packing, we want the result to be as dense as possible while
remaining disordered. Such a result is commonly known as a random close packing
(rcp) or, following a more precise definition [93], a maximally random jammed state
(mrj). Since density and disorder are necessarily at odds with each other, it is
difficult to tell whether any given packing is sufficiently dense or disordered. We

26The equations for the endpoints of the interval are derived in appendix section F.
27The effects of the random variation are discussed in section 3.5.2.
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can visually inspect the packing to see if it looks acceptable, but this is laborious
and susceptible to a biased judgment. It is therefore desirable to employ some
quantitative metrics to assess the quality of the packing.

Density is easy to quantify by calculating the packing fraction

q = (2π)

2

(
N

l xl y

) 1
N

∑
i

r2
i , (68)

which should always be28 between 0 and (2π) /6
√

2. For identical hard spheres in mrj,
typical packing fractions vary from q ≈ 0.60 [94] to q ≈ 0.68 [95] due to differences in
the packing process. To account for this variation, we only require that the packing
fraction is reasonable and adjust the density of the particles ρ based on the true
material density.

Disorder is a bit harder to quantify. There exist order metrics like the orientational
Q metric or the translational T metric [93], but they only work with respect to an
ordered reference structure. It is more appropriate for us to use the two-body excess
entropy [96], which has the dimensionless form

S

k B = −1
2

(
N

l xl y

) ∞∫
0

dd
(
g log g − (g − 1)

)
, (69)

where g is the radial distribution function parametrized by the distance d and k B is
the Boltzmann constant. It is similar to thermodynamic entropy in that it grows
with increasing disorder and only its differences admit meaningful interpretations.

3.7.5 Block Formation

To turn a packing into a block of material, we establish a maximum distance for
qualifying as a nearest neighbor and bond each particle with its neighbors by adding
strong links between them. If the packing is not ideal or the force models for weak
and strong links differ at this point, the bonding will introduce stresses inside the
material. This problem can be alleviated by giving the system enough time to reach
a stable configuration again, but doing so does not completely eliminate all of the
stresses.

28The packing fraction is discussed in appendix section B.



45

3.7.6 Fault Creation

After forming the block, we split it into two halves by partitioning the particles into
two groups with an indicator function and breaking all the strong links that span
both groups. To give some examples of the indicator function δ, a straight fault can
be created by grouping each particle i according to

δi =


0, x y

i < l y/2

1, x y
i ≥ l y/2

(70)

while a jagged fault can be created with

δi =


0, x y

i < l y/2 + (h/2) sin((2π)nx x
i /l

x)

1, x y
i ≥ l y/2 + (h/2) sin((2π)nx x

i /l
x),

(71)

where h is the height and n is the number of jags.

3.8 Estimators

Making measurements in an experiment can be very difficult, because it requires the
careful selection, placement and reading of sensors. Fortunately, simulations make
the same task comparatively trivial. Since the state of the system is always known in
its entirety, we either can read our measurements directly from the data structures
or calculate them with the appropriate estimators. The only limitations stem from
the computational feasibility of the estimators we devise.

3.8.1 Energy

Conservation of energy mandates that the total energy of the system matches the
work done on it, as in

E kin + E cont + E ext +Q amb +Q fric +Q brk = W bond +W driv, (72)

where E kin is the kinetic energy, E cont is the stored contact energy, E ext is the
external potential energy, Q amb is the energy dissipated by ambient forces, Q fric is
the energy dissipated by contact friction, Q brk is the energy lost in removing contacts,
W bond is the energy expended to create contacts and W driv is the work done by the
driving force.
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Even though heat is not the only energy dissipation mechanism in play, we use
its symbol Q to distinguish the dissipative quantities from the rest. This distinction
is of practical importance, because conservative quantities are completely determined
by the current state of the system, whereas dissipative quantities require evaluating
line integrals over the entire history of the system.

The energies consist of the individual contributions of the particles and their
links, that is,

E kin =
∑

i

E kin
i

E cont =
∑

i

j>i∑
j

E cont
i,j

E ext =
∑

i

Ui

W bond =
∑

i

W bond
i

Q amb =
∑

i

Q amb
i

Q fric =
∑

i

j>i∑
j

Q fric
i,j

Q brk =
∑

i

Qbrk
i

W driv =
∑

i

W driv
i .

(73)

The kinetic terms are always

E kin
i = 1

2(mi|vi|2 + Jiω
2
i ) Q amb

i =
∣∣∣ t∫

0

dt(~vi · ~F amb
i + ωiτ

amb
i )

∣∣∣. (74)

The contact terms E cont
i,j and Q fric

i,j depend on the conservative and dissipative parts
of the force models respectively. The conservative parts are

E contKV
i,j = 1

2k
nξ2

i,j

E contBSHP
i,j = 4G

√
2

15ν

(
ν

1− ν

)√ 2
1/ri + 1/rj

(
ξ2

i,j

√
ξi,j

) (75)

and either

E contHW
i,j = 0 E contCS

i,j = 1
2k

tζ2
i,j (76)

for weak links and

E cont aKV
i,j = 1

2k
nΞ2

i,j E contEB
i,j = 1

2 k̄
t(ζ2

i,j + ζ2
j,i) (77)

for strong links. The dissipative parts are their complements, so the expression for
the whole term29 is

Q fric
i,j =

∣∣∣ t∫
t init
i,j

dt(F n
i,j∂tξi,j + F t

i,j∂tζi,j)
∣∣∣− E cont

i,j . (78)

29Actually, t init
i,j may not always exist or be unique, but we pretend that it is to keep the expression

short.
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The term for the driving force is just

W driv
i =

∣∣∣ t∫
0

dt ~vi · ~F driv
i

∣∣∣ (79)

and the breaking and bonding terms Q brk
i,j and W bond

i,j are the same as E cont
i,j , but

occur instantaneously when adding or removing links.

3.8.2 Entropy

As seen in equation 69, calculating the two-body excess entropy requires integrating
over the radial distribution function, which in turn requires integrating over the
whole space. For a finite number of particles, this involves gathering all their pairwise
distances into a weighted sample, formulating an estimate of the true population
based on the sample, constructing the radial distribution function from the estimate
and evaluating the resulting integral.

We define the samples and their weights as

di,j = |~xj − ~xi| wi,j =
A©i,j
A⊗i,j

, (80)

where A©i,j is the surface area of a spherical shell with the radius di,j and A⊗i,j is the
surface area of the same shell when positioned at ~xi and truncated30 within the
block of material. Using weighted kernel density estimation, we take the population
probability density to be

P = Z

B

(∑
i

j 6=i∑
j

wi,j

)−1∑
i

j 6=i∑
j

wi,jΨ
(
d− di,j

B

)
, (81)

where Ψ is a statistical kernel, B is its bandwidth and Z is a normalization constant
for enforcing

l x/4∫
0

ddP = 1. (82)

The radial distribution function is now easily stated as

g = V ©

A©
P = (l x/4)2

2d P, (83)

30Finding the surface area of the truncated part becomes deceivingly complicated as the number
of dimensions is increased [97].
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where V © is the volume of a sphere with the radius l x/4 and A© is the surface area
of a spherical shell with the radius d. We may also simplify the expression for the
entropy to

S

k B = −1
2

(
N

l xl y

)(
l x

4 +
l x/4∫
0

dd g(log g − 1)
)
. (84)

Theoretically the integrals would require taking the limit as the distance goes
to infinity, but we have to limit ourselves to l x/4, because otherwise the periodic
boundaries of the system31 would create false correlations. This limitation also has
the unfortunate side effect of introducing Z into equation 81 to keep P normalized.

3.8.3 Dry Friction

In comparison to energy and entropy, estimating the coefficient of friction is de-
lightfully simple. Using equation 1, we can calculate it directly from the load
with

µ = 1
N driv

∑
i

F driv x
i

F driv y
i

(85)

or indirectly from the force feedback with

µ = 1
N driv

∑
i

F x
i − F driv x

i

F y
i − F

driv y
i

. (86)

These estimators produce the same value when the motion is steady, but consistently
differ otherwise. Both of them are useful, because their difference provides some
insight into the dynamics of the system.

31The periodic boundaries are discussed in section 3.7.1.



49

4 Practical Implementation

The goal of this section is to highlight the most interesting points that came up in
the practical implementation of the simulation. While these points are most relevant
to our own program [98], they should also shed some light on the challenges faced by
other dem projects [99–101].

4.1 Properties of Granite

Granite is not a single unambiguous material, but covers a wide range of coarse-
grained rocks primarily consisting of quartz and feldspar. Figure 9 shows what a
typical slab of granite looks like, although it should be noted that the colors and
grain sizes of different granites vary greatly.

As granites are so varied, they do not have a complete and consistent naming
convention. Instead, they are commonly named after their origins or most prominent
secondary constituents. The samples in figure 4 are of Barre32 granite and the slab in
figure 9 is of Kure33 granite, for example. Since our primary goal is not the accurate
representation of any particular granite, we mix and match the properties of several
different granites to obtain a fictitious but believable compromise.

Our granite shall have the density ρ = (2.7± 0.1) · 103 kg/m3 [102], the Young’s
modulus Y = (50± 20) GPa [103] and the Poisson’s ratio ν = 0.22± 0.12 [104].
Since our system is always under a compressive load, the ultimate normal strength
of links shall be σ crit n = (280± 30) MPa [70], and since the load is rarely much
larger than the ultimate strength, the coefficient of friction between particles shall
be µ = 0.7± 0.1 [69]. The ultimate tangential strength follows from the axial ratio
in equation 47, which we assume to be β = 0.6± 0.1 [77]. We also assume that the
Weibull modulus k = 5, which is on the lower end of the expected k = 15± 10 [84]
due to the small scale of our particles.

In our system the block of granite is immersed in air, which is a fluid with the
32The origin is Barre, Vermont, USA.
33The origin is Kure, Hiroshima, Japan.
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(a) View of a 100 mm region. (b) Close-up view with the magnification
X = 4.

Figure 9: Typical surface texture of a polished slab of granite.

dynamic viscosity η amb
G = (18± 3) µPa s [105]. This makes the ambient forces and

torques predicted by equations 18 and 19 negligibly small, so we might as well set
~F amb

i = 0 and τ amb
i = 0.

4.2 Simulation Parameters

There are a few things in the simulation that are not tied to material properties or
other physical restrictions. We can choose them with a certain degree of arbitrariness,
although there are some choices that work better than others.

We make the average particle size r avg = 1 mm to approximately match the
visible grain size of granite. We want there to be a few thousand such particles,
so we make the side lengths of our system l x = l y = 100 mm. To overcome static
friction without generating excessive amounts of heat, we set the horizontal target
speed to v driv = 2 m/s and vary the vertical target pressure over 0 < pdriv/σ crit n ≤ 1.
Since we want the total strain to eventually reach ε = 1, we set the total simulation
time to t fin − t init = 50 ms.

Based on the properties laid out in section 4.1, equation 59 predicts that the
speeds of different kinds of elastic waves in our material are cP = (4.6± 2.1) km/s
and cS = (2.8± 0.8) km/s. Assuming that cracks always propagate at Ma < 15,
equation 62 suggests that the time step should satisfy ∆t < 18 ns. By adding in a
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safety factor of 1.5, we end up with ∆t = 10 ns.
In order to reproduce the link strength distribution with the appropriate Weibull

modulus, we limit the link strength factors to 0.9 < si,j < 1.1. We also make
the fault slightly jagged by using the indicator function in equation 71 with the
parameters n = 4 and h = 4 mm. This does not make a noticeable difference in the
measurements we are interested in, but helps decouple the initial fragmentation from
the exact arrangement of the particles.

4.3 Calibration

Calibration typically involves a lot of trial and error, making it the most laborious
part of the implementation. While there exist tables [78] and guidelines [63] for
calibrating various models, the details always depend on the particular system and its
desired properties. We only take the calibration far enough to make the comparison
of models possible.

The calibration parameters we need to fix are k n and γ n in equation 35, k t in
equation 42, γ t in equation 41, k̄ n and γ̄ n in equation 43, k̄ t and γ̄ t in equation
44 and k ext in equation 67. The parameters affect the material such that k n, k̄ n

and k̄ t determine its elastic properties, γ n, γ̄ n and γ̄ t mostly determine its viscous
properties, k t and γ t influence its internal friction and k ext slightly influences its
fracture energy.

We introduced BSHP in section 3.4.2 with the intention to draw parallels between
the calibration parameters of KV and other known properties of the material. Doing
so helps us first fix k n and γ n, laying the foundations for the rest of the calibration
parameters.

Let us begin by exploring a situation, where two strongly linked particles i and j
with ri = rj break apart just as ∂tξi,j = 0 and F t

i,j = 0. At that moment the yield
criterion in equation 50 is barely satisfied, so( F n

i,j

σ crit n

)2
=
(

(2π)

2 (si,jri)2
)2
. (87)

After the link is broken, equation 35 predicts that the force should be

F KV
i,j = −k nξi,j, (88)

making the normal displacement

ξi,j = ri

2

(
ri

k n s
2
i,j (2π)σ crit n

)
, (89)
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while equation 37 predicts that the force should be

F BSHP
i,j = −2G

√
2

3ν

(
ν

1− ν

)√
ri

(
ξi,j

√
ξi,j

)
, (90)

making the normal displacement

ξi,j = ri

2

(
3ν
2G

(1− ν
ν

)
s2

i,j (2π)σ crit n
)2/3

. (91)

For the displacements to be consistent, we would need to have

k n = ri

(
2G
3ν

(
ν

1− ν

)
si,j

√
(2π)σ crit n

)2/3

= (8± 7) · 106 kg
s2 , (92)

so we choose k n = 107 kg/s2 and run a few simulations to verify that it produces the
appropriate stress–strain curves.

We can do a similar trick to fix γ n, although we need to address another problem
first. The dissipative constant Λ in equation 38 is very sensitive to changes in the
dynamic and bulk viscosities ηG and ηK , both of which are very large and not known
exactly [71]. Fortunately, there is another way to calculate Λ from the dynamics
of particle impacts [82, 106]. Given two 1 m granite spheres colliding at v = 1 m/s,
their coefficient of restitution Υ = 0.83± 0.06 [107]. In this case, the dissipative
constant has the first-order approximation

Λ = 1−Υ
D(ρ2v)1/5 = (6± 3) · 10−3 1

s , (93)

where D = 1.15.
We can now explore the same situation as before, but without imposing any

constraints on ξi,j or ∂tξi,j. Due to the linear independence of displacements and
their rates of change, we can unify

F KV
i,j = −γ n∂tξi,j (94)

with

F BSHP
i,j = −2G

√
2

3ν

(
ν

1− ν

)√
ri

(
Λ
√
ξi,j∂tξi,j

)
(95)

to obtain

γ n = 2G
√

2
3ν

(
ν

1− ν

)√
ri

(
Λ
√
ξi,j

)
. (96)
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Since the resulting equation depends on ξi,j, we can only use it to derive the upper
bound

γ n < Λri

(
2G
3ν

(
ν

1− ν

)
si,j

√
(2π)σ crit n

)2/3

= (7± 6) · 104 kg
s . (97)

Even though this bound has a very large uncertainty, it is useful for finding the right
order of magnitude. After some searching, we settle on γ n = 101 kg/s and run a
handful of simulations to ensure particle impacts behave as expected.

As alluded to in section 3.7.5, the forces in weak and strong links should agree
when breaking or bonding happens, so it is reasonable to assume that k̄ n = k n and
γ̄ n = γ n. Another reasonable assumption is that the material should be equally stiff
in normal and tangential directions, so we also assume that k̄ t = k̄ n and γ̄ t = γ̄ n.

Once the material behaves as intended, we choose the frictional parameters k t

and γ t such that the cases in equations 41 and 42 are balanced. This may not
produce the most realistic result, but ensures that neither dynamic nor static friction
absolutely dominate. We therefore assume that k t = 108 kg/s2 and γ t = 102 kg/s
and verify that simulations of rolling and piling particles work as they should.

The remaining choice of k ext does not matter much, so we decide that k ext =
102 kg/s2 and run some simulations to check that it does not skew the fracture energy.

4.4 Performance Considerations

There are countless ways to improve the performance of the implementation. Aside
from more powerful hardware or better software engineering, choosing those algo-
rithms with the lowest complexity classes for the tasks that work on the largest
inputs makes the biggest difference. In terms of programming effort, identifying the
longest independent computations and making them run in parallel can also be very
effective.
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4.4.1 Cell Lists

If done naively, calculating pair interactions would scale quadratically34 with respect
to the number of particles. However, by using an arrangement known as cell lists,
we can make the calculations only scale quadratically with respect to the number of
neighboring particles and linearly with respect to the total number of particles. The
idea behind the algorithm is to divide the system into small disjoint cells, each of
which maintains a list of all the particles it contains. The pair interactions are then
calculated by only considering those particles that are in adjacent cells and less than
some cutoff distance away from each other. Due to the symmetric nature of pair
interactions, we only need to consider each interaction from the perspective of one of
the particles, which allows us to further cut the computational burden into half.

To keep things simple, we employ rectangular cells with the side lengths l cell,
except for those cells that are on the edges and extend to infinity. As a consequence,
we have to choose the cutoff distance d cut such that

2rmax < d cut < min l cell. (98)

Now, as illustrated in figure 10, a particle may only interact with another particle

• if it is contained in the same cell as the other particle and has a smaller index
than the other particle or

• if it is contained in a cell that is adjacent to the cell that contains the other
particle and its cell has a smaller index than the other cell.

While these rules may sound arbitrary and confusing, they admit a very nice formal-
ization in terms of the index space35 of the cells.

Implementing cell lists as described makes computing pair interactions scale
better, but not without introducing a considerable constant factor. We can get
around this problem by building the cell lists once at the very beginning and only
rebuilding them if the particles travel beyond the maximum safe displacement

∆x cell = l cell

2 − r
max. (99)

It is also possible to only check this condition occasionally, but doing so carries the
risk of missing some of the interactions.

34The scaling follows the triangular number progression N(N − 1)/2 for N particles.
35The index space is elaborated in appendix section G.
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Figure 10: Sketch of leveraging cell lists to calculate the pair interactions of a
particle. Periodic boundaries are not shown.
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4.4.2 Parallel Processing

Cell lists decouple the processing of different parts of the system from each other,
which makes them available for parallelization. However, since we need to run our
simulation with several force models and vary the vertical target pressure as well, it
is more effective to run each simulation in a separate process and let the operating
system take care of the scheduling. This is not only easier to do, but also avoids the
communication overhead that explicit parallelization would introduce.
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5 Results and Analysis

We ran 75 simulations with 3 different force models and 25 different vertical target
pressures. The force models were already discussed in section 3.4.2, but to reiterate,
we used zero tangential forces for the case of no friction, HW for the case of dynamic
friction and CS for the case of static and dynamic friction. The bounds of the vertical
target pressures were also mentioned earlier, but it should be noted that since zero
pressure is unattainable, we limited our sampling to 0.0125 ≤ p driv/σ crit n ≤ 1.0.

5.1 Initial and Final States

Each simulation started from the same initial conditions, ran for tfin − t init =
(50.000± 0.001) ms and reached ε = 1.00± 0.01 as expected. The simulations and
their final states are summarized in table 1 with some of the final states also displayed
in figure 11.

While looking at the final states does not tell the whole story, it does reveal that
once the vertical target pressure exceeds pdriv/σ crit n = 0.6, the fragment layer may
reach the edges of the block. This can give rise to nonphysical effects due to the
edges of the block being unbreakable, so we must reject such cases outright.

Looking at the final states also suggests that static friction may cause more
elastic energy to build up, which, once released, facilitates the formation of cracks.
Alas, it is difficult to tell whether this phenomenon is real or just an artifact of the
calibration.

5.2 Dry Friction and Fragment Layer Growth

The coefficient of friction was estimated with equation 85. Since the equation
depends on the components of ~F driv, which may change at a rate of up to 100 MN/s,
the estimates featured a lot of noise. While a Savitzky–Golay filter was successful
at eliminating the noise, it also distorted the data near the edges of its domain.
We therefore opted to forgo the filtering and eliminate the noise by fitting the
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Table 1: Informal summary of the simulations and their final states, where F
indicates that there were more than a few fragments, C indicates that there
were cracks that spanned more than a few particles, L indicates that fragments
formed a layer that was thicker than a few particles, E indicates that the cracks
that originated from the fragment layer reached the edges of the block and B
indicates that the the fragment layer reached the edges of the block.

p driv/σ crit n Zero HW CS

0.0125 F
0.025 F F F C
0.0375 F F F C
0.05 F F F C
0.0625 F F F
0.075 F F F C
0.0875 F C F F C
0.1 F C L F F C L
0.1125 F C F F C L
0.125 F C L F C L F C L E
0.15 F C L F C L F C L E
0.175 F C L F C L F C L E
0.2 F C L F C L F C L E
0.225 F C L F L F C L
0.25 F C L F L F C L
0.3 F L F L F C L
0.35 F L F C L F C L
0.4 F C L F C L F C L E
0.45 F C L F C L F C L E
0.5 F C L F C L F C L E
0.6 F C L E F C L E F C L E
0.7 F C L E F C L E B F C L E
0.8 F C L E F C L E B F C L E
0.9 F C L E B F C L E B F C L E B
1.0 F C L E B F C L E B F C L E B
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(a) Final state for HW at p driv/σ crit n =
0.0125. Very few fragments have broken
off from the blocks.

(b) Final state for HW at p driv/σ crit n =
0.015. The fragments have formed a thin
layer.

(c) Final state for HW at p driv/σ crit n =
0.5. The fragment layer has grown to be
quite thick.

(d) Final state for HW at p driv/σ crit n =
0.7. The fragment layer has reached the
edges of the block.

Figure 11: Sketches of the final states. Only some of the simulations are shown.
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exponential36 model

µ =


(µ crit/t crit)t, t ≤ t crit

D1 + (µ crit −D1) exp(−D2(t− t crit)), t ≥ t crit
(100)

to the estimates, where t crit and µ crit specify the point at which the initial static
friction is overcome and D is free. Since this model has the limit

lim
t→∞

µ = D1, (101)

we can interpret D1 as the coefficient of friction for indefinitely large strains and
D2 as its decay constant. The fitting process and some of its results are presented
in figure 12. A more comprehensive presentation of all the resulting coefficients of
friction is in figure 13.

From figures 12 and 13 it is clear that the presence of internal friction has a
substantial effect on the dry friction and a small effect on the growth rate of the
fragment layer as well, although the particular force model in use does not seem
to make much of a difference. The general trend is that the coefficient of friction
increases with the internal friction while decreasing with the vertical target pressure.
This trend does not manifest at very low or very high pressures, however.

At very low pressures there is no fragment layer to speak of, so the dry friction is
almost completely determined by the roughness of the surfaces. Even if our fault
was perfectly straight, the shapes of our particles would give rise to some roughness.
A similar thing happens at very high pressures, where the fragment layer may grow
almost indefinitely. After a certain point the fragments serve as a lubricant and the
dry friction is primarily determined by the thickness of the fragment layer. Still,
regardless of the pressure, the presence of internal friction strongly influences the
mechanics inside the fragment layer. This is apparent in that increasing the internal
friction makes the fragments roll past each other when they would otherwise be
sliding.

36This model has no theoretical justification besides representing exponential decay and fitting
the data really well.
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Figure 12: Coefficient of friction µ as a function of time t and vertical target
pressure p driv. Only some of the simulations are shown. The solid lines represent
the means and the dashed lines represent the standard deviations of the estimates.



62

0

0.2

0.4

0.6

0.8

1

µ
[1
]

0 0.1 0.2 0.3 0.4 0.5 0.6

p driv/σ crit n [1]

Zero

(a) Plot for zero friction.

0

0.2

0.4

0.6

0.8

1

µ
[1
]

0 0.1 0.2 0.3 0.4 0.5 0.6

p driv/σ crit n [1]

HW

(b) Plot for HW.

0

0.2

0.4

0.6

0.8

1

µ
[1
]

0 0.1 0.2 0.3 0.4 0.5 0.6

p driv/σ crit n [1]

CS

(c) Plot for CS.

0

0.2

0.4

0.6

0.8

1

µ
[1
]

0 0.1 0.2 0.3 0.4 0.5 0.6

p driv/σ crit n [1]

Zero
HW
CS

(d) Comparison of all the force models.

Figure 13: Coefficient of friction µ as a function of vertical target pressure p driv.
The solid lines represent the means and the dashed lines represent the standard
deviations of the estimates.
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5.3 Energy Dissipation

Energy conservation and dissipation were estimated with the equations presented in
section 3.8.1. The energy drift was observed to be limited to 200 J/s in most cases,
which is an acceptable margin for the conservation of energy. Figure 14 shows the
energy dissipation curves for some of the simulations.

If fragmentation was not possible or the energy required to break the material into
fragments matched the energy saved by the lubricating effect of the fragment layer,
the energy dissipation would be directly proportional to the vertical target pressure.
However, as figure 14 demonstrates, the energy dissipation increases significantly
slower than a direct proportionality would predict. The practical consequence of this
is that there is much less frictional heating when the fragments form a layer.
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Figure 14: Energy dissipation Q as a function of time t and vertical target
pressure p driv. Only some of the simulations are shown. The scales of the
vertical axes are directly proportional to the vertical target pressures.
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6 Conclusions

We investigated how different force models for internal friction affect dry friction
and found that the effects are significant whenever the vertical pressure is within an
order of magnitude from the ultimate strength of the material. Otherwise the dry
friction is primarily determined by the roughness of the surfaces or the thickness of
the fragment layer between them.

While our simulation allows the comparison of force models, it is almost certainly
incapable of modeling the real behavior or granite. This could be improved by
performing the calibration more rigorously, but there are a few other issues that
potentially limit the effectiveness of this approach.

It is suspicious to use spherical particles, because granite powder typically contains
a large amount of sharp-edged fragments. Even though the calibration can be adjusted
to give spherical particles the same frictional properties that their sharp-edged
counterparts would have, this is inelegant and physically questionable.

It is also suspicious to use a viscoelastic model, such as the one in equation 37,
because the viscosity of granite is so large. Not only does the viscosity stretch the
model over ten orders of magnitude beyond its typical range for fluids, it also causes
problems with the numerical stability of the implementation.

Besides numerical stability, the implementation of CS proved to be quite prob-
lematic. Its definition in equation 42 contains two cases, one of which is completely
conservative and the other of which is completely dissipative. Since the choice
between the cases depends on F n

i,j, the model may quickly switch between the two.
This makes the estimators in equations 76 and 78 report a huge energy drift even
though the model is working as intended.

Aside from these shortcomings, we glossed over several questions that still remain
open. What should the probability distribution of the link strength factor s be to
reproduce any given strength distribution exactly? Would sharp-edged particles with
simpler force models produce better results? How well would the model generalize
to other brittle materials? Would the addition of water or some other surrounding
medium change the behavior of the system markedly?
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A Summary of Notational Conventions

Tables 2, 3 and 4 summarize the notational conventions used throughout this work.
Notable deviations from literature include η instead of µ for viscosity, Υ instead of ε
for the coefficient of restitution, q instead of η for the packing fraction, Λ instead of
A for the dissipative constant and β instead of α for the axial ratio.
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Table 2: Notational conventions used throughout this work with Greek letters
sorted by Beta Code. This table only covers uppercase symbols; lowercase
symbols are in table 3 and keywords are in table 4.

A Area
B Statistical Bandwidth
C Drag Coefficient Ξ Adjusted Normal Displacement
D Dimensionless Constant ∆ Difference
E Energy
F Force Φ Particle Sphericity
G Shear Modulus
J Moment of Inertia
K Bulk Modulus
L Characteristic Length Λ Dissipative Constant
M P-Wave Modulus
N Number of Particles
P Probability Density Π Product
Q Heat Ψ Statistical Kernel
R Characteristic Radius
S Two-Body Excess Entropy Σ Sum
T Characteristic Duration
U External Potential Υ Coefficient of Restitution
V Volume
W Work
X Magnification
Y Young’s Modulus
Z Normalization Constant
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Table 3: Notational conventions used throughout this work with Greek letters
sorted by Beta Code. This table only covers lowercase symbols; uppercase
symbols are in table 2 and keywords are in table 4.

a Particle Acceleration α Particle Angular Acceleration
b Overlap Factor β Axial Ratio
c Wave Speed ξ Normal Displacement
d Distance δ Indicator Function
e Basis Component ε Strain
f Frequency ϕ Particle Angular Displacement
g Radial Distribution γ Calibration Parameter
h Height of Jags θ Central Angle
i Particle Index
j Particle Index
k Weibull Modulus κ Potential Strength
l Length λ Frame Angular Displacement
m Mass µ Coefficient of Friction
n Number of Jags ν Poisson’s Ratio
o Focal Point
p Pressure π Mathematical Constant
q Packing Fraction ψ Relative Angular Displacement
r Particle Radius ρ Density
s Link Strength Factor σ Stress
t Time τ Torque
u Average Contact Distance
v Particle Velocity
w Statistical Weight ω Particle Angular Velocity
x Particle Displacement
y Minimum Contact Distance η Viscosity
z Contact Half-Length ζ Tangential Displacement
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Table 4: Notational conventions used throughout this work with concepts roughly
sorted by similarity. This table only covers keywords; symbols are in tables 2
and 3.

aKV Adjusted Kelvin–Voigt EB Euler–Bernoulli
bond Bonding brk Breaking
cell Cell cut Cutoff
cont Contact fric Frictional
crit Critical avg Average
ext External driv Driven
HW Haff–Werner CS Cundall–Strack
init Initial fin Final
KV Kelvin–Voigt BSHP Brilliantov–Spahn–Hertzsch–Pöschel
kin Kinetic amb Ambient
min Minimum max Maximum

n Normal t Tangential
P Primary S Secondary

pred Predicted corr Corrected
Re Reynolds Number Ma Mach Number
rev Reverse per Perpendicular
x Horizontal y Vertical
z Depthwise B Boltzmann
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B Approximating the Number of Particles

Let us consider a periodic d-dimensional system consisting of a hypercube with side
length L that is optimally packed with hyperspherical particles with radius R. The
number of particles in the system

Nd = qd
V �

d

V ©d
, (102)

where q is the packing fraction, V � is the volume of the hypercube and V © is the
volume of a hypersphere.

There is more to equation 102 than meets the eye [108], but for our needs it is
sufficient to note that it has a closed form in both two and three dimensions. In two
dimensions

q2 = (2π)

4
√

3
V �

2 = L2 V ©2 = (2π)

2 R2 N2 = 1
2
√

3

(
L

R

)2
(103)

while in three dimensions

q3 = (2π)

6
√

2
V �

3 = L3 V ©3 = 2 (2π)

3 R3 N3 = 1
4
√

2

(
L

R

)3
. (104)

The ratio

N3

N2
=
√

6
4

(
L

R

)
(105)

tells us the scale factor for the number of particles when going from two to three
dimensions. The ratio is obviously different for a suboptimal packing like the isotropic
material we study in this work, but this result for the worst case is still a useful
approximation.
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C Properties of the Inverse Tangent

We define the inverse tangent for vector arguments such that

arctan
cosx

sin x

 = x (106)

for all x satisfying |x| ≤ (2π) /2. This can be accomplished with the explicit definition

arctan
x x

x y

 =



arctan |x y/x x|, x x > 0, x y > 0

0, x x > 0, x y = 0

− arctan |x y/x x|, x x > 0, x y < 0

(2π) /4, x x = 0, x y > 0

⊥, x x = 0, x y = 0

− (2π) /4, x x = 0, x y < 0

− arctan |x y/x x|+ (2π) /2, x x < 0, x y > 0

± (2π) /2, x x < 0, x y = 0

arctan |x y/x x| − (2π) /2, x x < 0, x y < 0

(107)

for all ~x satisfying ~x 6= ~0.
The inverse tangent has a couple of notable properties we make use of. The first

one says that reversing its argument reverses the resulting angle, as in

arctan−~x = rev arctan ~x, (108)

where

rev x =


x− (2π) /2, x > 0

± (2π) /2, x = 0

x+ (2π) /2, x < 0

(109)

for all x satisfying |x| ≤ (2π) /2. The second one says that its derivative is equivalent
to a function that produces a scaled perpendicular, that is,

~∇ arctan ~x = per ~x

|~x|2
, (110)
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where taking the perpendicular is performed with

per
x x

x y

 =
−x y

x x

 (111)

for all ~x.
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D Contact Point of Two Particles

In section 3.3.1 we assumed that particles are in contact when they overlap, but did
not calculate the actual contact geometry or explain how it is compatible with the
concept of point forces. Let us address these concerns.

Given two different particles indexed with i and j, the distance of i from their
focal point

yi,j = bi,j|~xj − ~xi|. (112)

Applying the Pythagorean theorem to this produces the half-length of the contact

zi,j =
√
r2

i − y2
i,j = zj,i. (113)

The actual distance from the contact varies between ri and yi,j , so it cannot be given
a single value. We can, however, calculate its average along the length of the contact
as

ui,j = 1
2zi,j

zi,j∫
−zi,j

dz
√
z2 + y2

i,j = yi,j

2

(√√√√1 +
(
zi,j

yi,j

)2
+ yi,j

zi,j

arsinh zi,j

yi,j

)

= yi,j

2

(
ri

yi,j

+
arsinh

√
(ri/yi,j)2 − 1√

(ri/yi,j)2 − 1

)
.

(114)

The resulting expression is quite complicated, but we may simplify it considerably
by replacing the trigonometric function with its Taylor series up to second order.
This procedure yields the approximation

ui,j = ri + yi,j

2 , (115)

which is coincidentally the arithmetic mean of the extremities.
Now, if the contact area is very small, we may safely assume that the contact

point is at distance ri from i. Otherwise we may have to adjust the distance to yi,j

or ui,j. If neither option was satisfactory, we would have to base our calculations
directly on the contact area

Ai,j = (2π)

2 z2
i,j = Aj,i (116)
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or the displaced volume

Vi,j = (2π)

3 (ri − yi,j)r2
i −

(2π)

6 yi,jz
2
i,j + (2π)

3 (rj − yj,i)r2
j −

(2π)

6 yj,iz
2
j,i

= (2π)

6 (2ri + yi,j)(ri − yi,j)2 + (2π)

6 (2rj + yj,i)(rj − yj,i)2 = Vj,i.
(117)

In the case of cylindrical particles of depth L z, the contact area would be

Ai,j = 2L zzi,j = Aj,i (118)

and the displaced volume would be

Vi,j = 1
2L

zθi,jr
2
i − L zyi,jzi,j + 1

2L
zθj,ir

2
j − L zyj,izj,i

= 1
2L

z(θi,jr
2
i − 2yi,jzi,j) + 1

2L
z(θj,ir

2
j − 2yj,izi,j) = Vj,i,

(119)

where the central angles from particles i and j to the contact are

θi,j = 2 arccos yi,j

ri

θj,i = 2 arccos yj,i

rj

(120)

respectively.
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E Operations on Probability Distributions

Given two continuous random variables A and B with the probability densities
PA and PB respectively, their sum and product distributions have the probability
densities

PA+B(x) =
∞∫
−∞

dy PA(y)PB(x− y)

PAB(x) =
∞∫
−∞

dy PA(y)PB(x/y)
|y|

(121)

respectively. Assuming A and B are independent and uniformly distributed, A in
the proper interval from a to b and B in the proper interval from c to d, their sum
distribution has the probability density

PA+B(x) = 1
(b− a)(d− c)


suma,b

c,d(x), a+ d ≤ b+ c

sumc,d
a,b(x), a+ d ≥ b+ c,

(122)

where

sumc,d
a,b(x) =



0, x ≤ a+ c

x− (a+ c), a+ c ≤ x ≤ b+ c

b− a, b+ c ≤ x ≤ a+ d

(b+ d)− x, a+ d ≤ x ≤ b+ d

0, b+ d ≤ x.

(123)

Further assuming37 that a > 0 and c > 0, their product distribution has the
probability density

PAB(x) = 1
(b− a)(d− c)


proda,b

c,d(x), ad ≤ bc

prodc,d
a,b(x), ad ≥ bc,

(124)

37Getting rid of this assumption would be straightforward, but require four times as many case
analyses.
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where

prodc,d
a,b(x) =



0, x ≤ ac

log x− (log a+ log c), ac ≤ x ≤ bc

log b− log a, bc ≤ x ≤ ad

(log b+ log d)− log x, ad ≤ x ≤ bd

0, bd ≤ x.

(125)

Given a continuous random variable C with the probability density PC and a
compatible invertible function f , the distribution of C transformed with f has the
probability density

Pf(C)(x) = PA

(
f−1(x)

)
|∂xf

−1(x)|. (126)

Assuming C = AB and f(x) = xn for some n > 0, the transformed distribution has
the probability density

Pf(AB)(x) = x(1−n)/n/n

(b− a)(d− c)


proda,b

c,d(x1/n), ad ≤ bc

prodc,d
a,b(x1/n), ad ≥ bc.

(127)
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F Bounding the Particle Size Distribution

Let A be a continuous random variable representing particle sizes. Assuming that A
is uniformly distributed in the proper interval from a to b, its mean and standard
deviation are

µ = a+ b

2 σ = b− a
2
√

3
(128)

respectively. Inverting this system of equations gives us the expressions

a = µ− σ
√

3 b = µ+ σ
√

3 (129)

for the endpoints of the interval. If we assume that the transition condition

σ

µ
< 0.1 (130)

from section 3.7.2 is barely satisfied with, say,

σ

µ
=
√

3− 2
√

6
3 ≈ 0.99, (131)

we can find the ratio

b

a
= µ+ σ

√
3

µ− σ
√

3
= 1/

√
3 + σ/µ

1/
√

3− σ/µ
=
√

2 (132)

and use it to obtain

a =
( 2

1 +
√

2

)
µ b =

( 4
2 +
√

2

)
µ. (133)

We can now easily find the uniform distribution that is right on the verge of transition
for any average particle size µ.
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G Life in the Index Space

Let us briefly discuss the relation between the two-dimensional Euclidean space and
the two-dimensional index space. The main difference between them is that the
Euclidean space is defined over the real numbers while the index space is defined over
the integers. While this discussion generalizes to an arbitrary number of dimensions,
we only really need two.

We can project the Euclidean space into the index space by using the componen-
twise floor function

↓

x x

x y

 =
bx x/l cell xc
bx y/l cell yc

 . (134)

We can also inject the index space into the Euclidean space by using the component-
wise shifting function

↑

x x

x y

 =
l cell x(x x + 1/2)
l cell y(x y + 1/2)

 . (135)

While ↓ and ↑ are not inverses of each other, they do satisfy the generalized inverse
property, that is, ↓ ◦ ↑ ◦ ↓ = ↓ and ↑ ◦ ↓ ◦ ↑ = ↑.

In order to measure distances in the index space, it is more natural to use the
Chebyshev metric than the Euclidean metric. For the sake of consistency with
equations 63 and 64, we express it in terms of the particles i and j as

di,j = max{↓x x
j − ↓x x

i , ↓x
y
j − ↓x

y
i }. (136)

We also want to use the index space to impose an order on the particles, such that
we can efficiently partition them into two groups. This is best accomplished with
the lexicographical order 

xi > xj, ↓xi > ↓xj

xi > xj, ↓xi = ↓xj, i > j

xi = xj, ↓xi = ↓xj, i = j

xi < xj, ↓xi = ↓xj, i < j

xi < xj, ↓xi < ↓xj.

(137)
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We can finally formalize the statement that particle i may only interact with particle
j when xi < xj and di,j ≤ 1.


	Abstract
	Tiivistelmä
	Introduction
	Historical Context
	Mission Statement
	Relation to Other Fields

	Basic Concepts
	Microscopic and Macroscopic Friction
	Deformation and Fragmentation
	Discrete Element Methods

	Theoretical Design
	Dimensionality
	Particle Composition
	Interactions
	Pair Interactions
	External Potential
	Ambient Forces
	Driving Force
	Summary of Interactions

	Force Models
	Normal and Tangential Displacements
	Weak Links
	Strong Links

	Breaking and Bonding
	Yield Criteria
	Random Variation

	Time Development
	Equations of Motion
	Integration Methods
	Time Step

	Initial and Boundary Conditions
	Periodic Boundaries
	Particle Size Distribution
	Particle Packing
	Quality Assurance
	Block Formation
	Fault Creation

	Estimators
	Energy
	Entropy
	Dry Friction


	Practical Implementation
	Properties of Granite
	Simulation Parameters
	Calibration
	Performance Considerations
	Cell Lists
	Parallel Processing


	Results and Analysis
	Initial and Final States
	Dry Friction and Fragment Layer Growth
	Energy Dissipation

	Conclusions
	References
	Summary of Notational Conventions
	Approximating the Number of Particles
	Properties of the Inverse Tangent
	Contact Point of Two Particles
	Operations on Probability Distributions
	Bounding the Particle Size Distribution
	Life in the Index Space

