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ABSTRACT 

Kotamäki, Niina 
Statistical methods for adaptive river basin management and monitoring 
Jyväskylä: University of Jyväskylä, 2018, 48 p. 
(Jyväskylä Studies in Biological and Environmental Science 
ISSN 1456-9701; 344) 
ISBN 978-951-39-7377-3 (nid.) 
ISBN 978-951-39-7378-0 (PDF) 
Yhteenveto: Tilastollisia menetelmiä adaptiiviseen vesienhoidon suunnitteluun 
ja seurantaan 
Diss. 

Decision-making at different phases of adaptive river basin management 
planning rely largely on the information that is gained through environmental 
monitoring. The aim of this thesis was to develop and test statistical assessment 
tools presumed to be particularly useful for evaluating existing monitoring 
designs, converting monitoring data into management information and 
quantifying uncertainties. River basin scale monitoring was performed using a 
wireless sensor network and a data quality control system and maintenance 
effort was assessed. National-scale, traditional monitoring data and linear 
mixed effect modelling were used to estimate the uncertainty in two status class 
metrics (total phosphorus, and chlorophyll-a) by quantifying temporal and 
spatial variance components. The relative sizes of the variance components 
were then used to determine how to efficiently allocate the monitoring 
resources. Nutrient and chlorophyll-a statuses were linked to external loading 
utilizing a large amount of monitoring data and a hierarchical Bayesian 
approach. This linkage was the basis for developing a practical assessment tool 
for lake management. To evaluate the network of relationships affecting 
phytoplankton development between water quality variables, structural 
equation modelling was used. Model residual and parameter uncertainty, and 
thus uncertainty in the assessment result, were estimated using probabilistic 
Bayesian modelling. In general, the results of this study suggest that the used 
statistical methods appear to be particularly useful for decision-making under 
an adaptive management framework, as they enabled predictions to be made 
based on existing monitoring data and have measures of uncertainty associated 
with the outcomes. The results suggest that the uncertainties often stem from 
the lack of input data or insufficiently allocated monitoring. Therefore, it should 
be ensured that information gaps in the nutrient loading values, as well as in 
other, especially biological variables, are sufficiently covered.   
 
Keywords: Adaptive management; Bayesian inference; eutrophication; 
monitoring; statistical methods; uncertainty; Water Framework Directive.  
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1 INTRODUCTION  

1.1 Background and problem setting 

Aquatic ecosystems are an important natural resource and ecosystem service. 
They provide both provisional use of the waters, and recreational and cultural 
benefits. The concern about the condition of aquatic ecosystems has become 
more prominent over the past decades. Changing climate, anthropogenic 
pressures and new emerging pollutants have led to the deterioration of the 
status of the surface waters (Hering et al. 2015). To ensure sustainable use of 
water resources and the ecosystem services they provide requires protecting, 
enhancing and conserving the condition of the watercourses (Hallett et al. 2016). 
Concrete water management policies, processes and guidelines are set by 
legislation. There are several examples of legislative drivers at the national 
level: the US Clean Water Act (CWA), the South African National Water Act 
(NWA) and the Australian and New Zealand National Water Quality 
Management Strategy (NWQMS); binational: Great Lakes Water Quality 
Agreement (GLWQA) and on a multinational level: the European Water 
Framework Directive (WFD) and the Marine Strategy Framework Directive 
(MSFD). There are clear similarities between the US CWA approach and the 
European water management as both are based on the idea of aiming at the 
attainment of predetermined water quality standards (Hallett et al. 2016). The 
quality standards are based on several indicators and dependent on the 
characteristics of the watercourse.    

Environmental monitoring produces information to answer designated 
assessment and management questions (Loucks and van Beek 2005). Efficient 
use of the monitoring data provides a scientific background for decision making 
when assessing the condition, pressures, changes and causal relationships in 
aquatic ecosystems. For supporting water management many monitoring 
methods, such as traditional water sampling, remote sensing, biomonitoring, 
continuous water quality sensors and large-scale wireless sensor networks, 
produce data that have different spatial and temporal resolutions. Despite the 
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method of data collection, it is important to evaluate the quality of the data and 
ensure that they provide representative information about the water quality. 
This way it becomes possible to control the pressures through suitable 
management actions. Continuous, on-line water quality measurements have 
been seen as a promising way to gain more accurate nutrient loading estimates 
(Horsburg et al. 2010, Tattari et al. 2017). In addition, to gain more precise 
information, variability over time and space is necessary to quantify when 
planning efficient monitoring designs (Loucks and van Beek 2005) or evaluating 
existing programmes (Levine et al. 2014). This is because the required sampling 
frequency in time and the number of monitoring sites depend on the ecosystem 
variability.  

Changing environmental stress, societal demands and policy needs 
require constant adaptation of management and monitoring to answer the right 
questions and to meet current complex challenges (Lindenmayer and Likens 
2009, Lindenmayer et al. 2012). In addition, aquatic ecosystems are generally 
very dynamic, and their variability and responses are hard to predict (Williams 
2011). This introduces uncertainty which makes it difficult to estimate the 
effects of alternative scenarios and select the best management actions (Pahl-
Wolst 2007). Uncertainties can be estimated, e.g., by using the Bayesian 
modelling approach. The general philosophy behind the Bayesian approach is 
that the model parameters themselves follow some statistical (probability) 
distribution (Gelman et al. 2002). This feature means that the uncertainties 
related to model parameters can be explicitly defined. Bayesian models are also 
adaptive in the sense that their parameters, error variance, and thus their 
predictions can be updated when new information is gained. This is because the 
Bayesian approach facilitates the use of other information than just the current 
data. This information is known as prior information and it reflects the previous 
knowledge about the model parameters obtained, e.g., from previous studies or 
data. The prior information, expressed as a prior distribution is combined with 
the data which results in a posterior distribution. As estimating the posterior 
distribution is often complex and its exact form is unknown, the use of Markov 
Chain Monte Carlo (MCMC) or similar simulation tools are often used to solve 
this problem (e.g., Gilks et al. 2001). 

Mathematical models are necessary to support, supplement and integrate 
water management (Rekolainen et al. 2003, Loucks and van Beek 2005). 
Different modeling strategies, such as deterministic process-based models and 
statistical data-driven methods are complementary, and they are suitable for 
different scales and situations. Statistical methods are especially needed to plan 
data sampling, convert the data to information and to quantify uncertainty 
(Anon. 2001). There is a particular need for assessment methods that i) account 
for the uncertainty in the results, ii) are applicable on different scales, and iii) 
use monitoring data efficiently (see, e.g., Hering et al. 2010).  
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1.2 River basin management planning (II, III, IV)  

In 2000, the EU Water Framework Directive (WFD) (2000/60/EC) was 
implemented aiming at achieving good ecological and chemical status in all EU 
waterbodies. The WFD’s management approach is not based on national 
boundaries but on river basins, which are natural geographical and 
hydrological formations. Implementing the WFD is an iterative process where 
the member states have to deliver river basin management plans (RBMP) every 
six years to set out how to improve their water resources to achieve a good 
status. The first RBMPs were adopted in 2009 covering the implementation 
plans for 2009–2015 and the second in 2015 covering the years 2016–2021. The 
third management cycle ends in 2027 and at present it defines the final deadline 
for meeting the WFD objectives towards the good status of the waters. For the 
management plans, rivers, lakes and coastal waters have to be assessed, their 
pressures identified, programmes of measures (PoMs) set, and the impacts of 
the PoMs need to be evaluated. 

The status assessment is the base for defining and targeting the 
management measures. The WFD ecological status assessment is strongly based 
on a range of biological quality elements (phytoplankton, macrophytes, 
phytobenthos, benthic macroinvertebrates, and fish) that are especially sensitive 
to key environmental pressures, such as eutrophication or changes in physical 
habitats (hydromorphological alteration). The waterbodies are assessed and 
classified into one of the five ecological status classes (high, good, moderate, 
poor or bad), and these classes are defined as the amount of deviation from the 
undisturbed (reference) conditions. The reference conditions and thus the 
quality standards (i.e. class boundaries) vary depending on the type of the 
waterbody, and for this, the waterbodies are divided into different types 
according to their physical and morphological attributes (Anon. 2003a). The 
waterbody status class of a single indicator (metric) of the biological quality 
element (BQE) is often estimated as an average value (mean or median) of the 
metric over the 6-year assessment period. The status class estimates are 
inevitably associated with uncertainty that should be dealt with in a systematic 
way (Birk et al. 2012, and Reyjol et al. 2014). Calculating the uncertainty for a 
status class metric can be done using statistical models and information from 
different sources of variability (Clarke 2013, Carstensen and Lindegarth 2016). 
Further, the status class uncertainty should be given as probabilities, however, 
these have only been taken into account in fairly few assessment systems 
(Hering et al. 2010). 

In addition to the status assessment it is crucial to define the pressures that 
may cause the deterioration of the status. The decision whether to start PoMs is 
the class limit between ‘Good’ and ‘Moderate’ The predominant anthropogenic 
pressure in lakes and coastal areas in Europe is eutrophication which is largely 
caused by excessive nutrient loading from agriculture (Anon. 2012, Hering et al. 
2015). Assessment tools for modelling loading responses and calculating the 
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amount of nutrient loading reductions are an integral part of the RBMP (Anon. 
2001). Traditionally, empirical eutrophication models (e.g., Vollenweider 1968) 
have been used to link the incoming nutrient loading with the in-lake nutrient 
concentration. These models have been considered useful predictive tools for 
lake management (Brett and Benjamin 2008, Shimoda and Arhoditsis 2015). A 
widely used indicator of eutrophication is chlorophyll-a (chl-a) concentration to 
measure phytoplankton biomass (Carvalho et al. 2008). Chl-a has well-
documented relationships with the nutrient concentration, especially 
phosphorus (Lyche-Solheim et al. 2013). Chl-a reacts quickly to increased 
nutrient loadings thus being among the most sensitive and informative 
indicators for estimating the efficiency of eutrophication related management 
actions  

1.3 Monitoring for RBMP (I, II, V)   

Monitoring is an essential part of the management framework for gaining 
information to assist in decision making. The underlying questions behind any 
effective monitoring programme are what, where, when, and how often to 
measure (Gitzen et al. 2012). For RBMP it is important to collect enough 
representative data to assess the waterbody’s ecological status, to characterize 
human impacts, and to evaluate the responses to management actions (Hirst 
2008, Hallett et al. 2016). However, there are several stumbling blocks which 
undermine the reliability of the data produced by the ongoing long-term 
monitoring programmes. The objectives, the monitoring design and the extent 
of monitoring are often insufficiently considered (this is expressed in more 
detail in Lindenmayer and Likens 2009). Monitoring programmes have 
sometimes been criticized for being inefficient and lacking in focus (Lovett et al. 
2007). It seems that all too often that time and money are invested to obtain data 
before sufficient consideration has been given to how the data will or could be 
used and what is the value of the data compared to the costs (Loucks and van 
Beek 2005). Furthermore, without scientific knowledge for better justification, 
the development of monitoring programmes is often driven by the constant 
pressure to reduce monitoring costs. 

Currently, policy instruments, such as WFD, MSDF and the Nitrates 
Directive, largely steer the monitoring in Europe. For surface waters, WFD has 
proposed monitoring requirements for the biological, hydro-morphological and 
associated physico-chemical elements, especially for status assessment, 
identifying management needs, and targeting PoMs (Anon. 2003b). The 
requirements of the WFD have led to challenges for many member states to 
shift their monitoring programmes towards a more biologically-based and 
comprehensive approach (Martins et al. 2009, Collins et al. 2012). Especially in 
Finland and other Nordic countries, due to the high abundance of lakes, rivers, 
and the length of coastal waters coupled with limited resources for 
environmental administration, not all waterbodies can be monitored with the 
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intensity and frequency requested by the WFD (Andersen et al. 2016). Therefore, 
there is a need to evaluate the ongoing monitoring designs and to allocate the 
sampling efforts optimally to produce reliable information for status 
classification. Allocating the monitoring resources so that the uncertainty which 
is caused by spatial and temporal variation is minimized will, in turn, maximize 
the confidence of status classification (Carstensen 2007).   

The increased importance of the water management and the need for more 
spatially and temporally accurate data has speeded up the development and 
testing of new monitoring techniques. These techniques include, e.g., wireless 
sensor networks for monitoring water quality and weather parameters at the 
catchment level (Porter et al. 2005, Ojha et al. 2015). Such sensor networks 
produce spatially and temporally accurate data from several sites and for 
multiple parameters. The data can be used for many purposes and to answer 
multiple research questions related to water quality and quantity (see e.g. 
Seders et al. 2007 and Kido et al. 2008). Especially for water management issues, 
water quality sensors together with continuous water level information at the 
river mouths produce reliable nutrient loading estimates (Jones et al. 2012). 
More accurate loading estimates are important in areas where nutrient-
enrichment is particularly a problem. However, even though sensor networks 
produce useful information, they also pose challenges for data quality control 
and network maintenance (Porter et al. 2005).    

1.4 Adaptive monitoring and management  

The constant changes in environmental stress, social demands and thus also the 
management objectives urge a more adaptive approach for the management of 
waterbodies. The concept of adaptive management (Fig. 1), which is a broad 
‘learning from experience’ type of framework, is well described in the scientific 
literature (see e.g. Holling 1978, Pahl-Wostl 2007, Williams 2011). As an iterative 
learning process, adaptive management offers a framework for integrating 
management objectives and options, modelling, monitoring, stakeholder 
participation and decision making (Anon. 2004). The basic idea of adaptive 
management stems from the fact that the natural ecosystems are complex and 
unpredictable and their responses to management actions are largely uncertain 
(Anon. 2011). Because of this uncertainty, there is a need to gain more 
knowledge about the relationships, and cause-effects, and to iteratively manage 
the system based on the new information.  

The management actions should improve over time based on the 
information the monitoring programmes produce. Monitoring is a fundamental 
part of the adaptive management concept for gaining the information that is 
needed (Gitzen et al. 2012, Lindenmeyer and Likens 2009).  Additionally, the 
monitoring should adapt changing objectives, evolving knowledge and new 
techniques (Fölster et al. 2014). However, there should also be a balance 
between the adaptation and securing the integrity of the long-term time-series 
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(Lindenmeyer and Likens 2009, Fölster et al. 2014). The reasons for collecting 
data and the accuracy of the variables of interest have to be addressed when 
monitoring under the adaptive management framework (Loucks and van Beek 
2005).   

Although adaptive management suits local scale problems well, it is 
usually associated with large-scale and complex applications (Williams 2011). 
An example of small-scale adaptive monitoring would be using adaptation in a 
high-frequency monitoring scheme (adaptive sampling frequency) to improve 
and enhance the system’s capacity. Large-scale adaptive management has been 
adopted, e.g., in the US to estimate the total maximum daily loads of water 
bodies (TMDL; Reckhow 2005). The implementation of WFD sits well under a 
large-scale adaptive management framework as it is fundamentally an iterative 
learning process (Hering et al. 2010). The WFD requirement of maintaining and 
pursuing the good ecological status of European waters has shifted water 
management towards a more holistic and integrated approach (Kaika 2003). 
Statistical models have proved (Anon. 2011) particularly useful for decision 
making under an adaptive management framework as they enable to make 
predictions from the data and they have measures of uncertainty associated 
with the outcomes (Fig. 1).  

FIGURE 1 Conceptual graph of an adaptive monitoring and management cycle. 
Monitoring produces information for status assessment, which in turn is a 
base for the planning process. The plans for programmes of measures are 
implemented as management measures. The success of the management 
actions is again evaluated via monitoring and this produces the new status 
assessment (Modified from Stankey et al. 2005). The steps which are 
addressed in this thesis are highlighted as boxes with solid lines and the aims 
of this study (in bold text) are to evaluate the efficacy of the monitoring (I, II, 
V), the precision of status assessment (II, III, V) and the uncertainty in the 
loading responses (III, IV, V). 

Plan
Programmes of 

measures (III, IV, V)
Uncertainty

Act
Management actions

Monitor

(I, II, V)
Efficacy

Assess
Waterbody status 

assessment (II, III, V)
Precision



 

2 OBJECTIVES  

The main objective of this study is to develop and test statistical assessment 
tools which would help more adaptive river basin management planning. The 
specific interest was to determine if these methods could support status 
assessment and determination of loading reductions under uncertainty at 
different phases of the decision-making process related to the monitoring. The 
more specific aims were  

i) To evaluate how much maintenance and data quality control effort is
needed when operating a large-scale wireless sensor network (I).

ii) To study how the sampling design affects the ecological status class
probabilities and whether it is possible to better allocate the monitoring
resources (II).

iii) To develop and test an assessment tool for calculating required nutrient
loading reductions in lakes affected by eutrophication (III).

iv) To test and evaluate if the causal relationships in the water-related
questions could be addressed with a structural equation modelling
statistical method (IV, V).

v) To evaluate the uncertainties related to different assessment methods (II,
III, IV)

vi) To increase the awareness of different statistical methods suitable for
RBMP (V).

The wireless sensor network performance was evaluated based on the data 
from maintenance information and an automatic warning system (I). Due to the 
sparse and heterogenic nature of the long-term monitoring data and varying 
scales of management planning, hierarchical (II, III) and causal modelling 
frameworks (IV) were used for analysing the data. The applicability and usage 
of these methods were reviewed (V). Uncertainties in the model structures and 
assessment results were estimated using a Bayesian modelling framework (III, 
IV).  



 

3 MATERIALS AND METHODS 

3.1 Study sites and data 

3.1.1 General description 

The statistical analyses in this thesis were based on data with different spatial 
and temporal scales, ranging from the waterbody level to river basin and 
national scales (Fig. 2). The data analysed in II, III and IV are from national 
Finnish monitoring programmes whose data are stored in the open source 
database of the Finnish Environment institute (SYKE 2017). The data in II 
address lakes, rivers and coastal waterbodies, and in III and IV only lakes. The 
river basin scale data was collected during the wireless sensor network project 
in the Karjaanjoki river basin (I).  
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FIGURE 2 Geographical coverage of the study sites. Intensively measured coastal, lake 
and river waterbodies (II), Karjaanjoki sensor network (I), Lake 
Kuortaneenjärvi (III) and Lake Valkea-Kotinen (IV).    

3.1.2 National scale (II, III) 

The national scale studies include analyses of two (different) data sets. First, for 
analysing the uncertainty in the status assessment and evaluating the optimal 
sampling design the data from the most intensively monitored Finnish surface 
waterbodies were analysed (II). These data (2006–2012) include rivers (n = 74), 
lakes (n = 165) and coastal waters (n = 39) that represent broadly different water 
body types (see Appendix in II). The chl-a observations from the lakes (n = 
6,742) are from June to September and for coastal waterbodies from July to the 
1st week of September (n = 1,448). For rivers, the TP concentration represents 
the whole year (n = 10,406). The coastal data include 11 inner coastal 
waterbodies (connected to land), 10 open coastal waterbodies and 2 
waterbodies from the middle archipelago. 
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TABLE 1 Status class metrics, time spans, number of waterbodies, sampling sites and 
observations in different water categories (II). 

  
Lakes 
 

 
Rivers 

 
Coastal 

 
Metric 

 
chl-a (μg l-1) 

 
TP (μg l-1) 

 
chl-a (μg l-1) 

Sampling depth 0–2 m mainly 1 m or less 0–5 m 
Period  2006–2012 2006–2012 2006–2012 
Months Jun–Sep Jan–Dec Jul – 1st week of Sep 
Waterbodies (n) 165 74 39 
Sampling sites 257 115 67 
Samples 6,742 10,406 1,448 

 
 

The other national-scale monitoring data set was formed to examine the 
variation in chl-a-to-nutrient responses between different lake types. The data 
included July–August 1990–2007 chl-a, TP and TN concentrations from 2,246 
Finnish lake waterbodies with a total of 36,942 observations. The data structure 
was (naturally) hierarchical, as the individual observations belong to a 
sampling site, which in turn belongs to a water body, which are grouped to 
national lake types (see Aroviita et al. 2012). 

3.1.3 Regional scale (I) 

The aim of establishing a large-scale wireless sensor network in 2007-2008 was 
to establish multipurpose and multi-functional monitoring to study weather 
related environmental phenomena. The network was located in the Karjaanjoki 
river basin in south west Finland (Fig. 3). About 63 % of the 2,000 km2 
catchment is covered by forests and 18 % are agricultural areas. The main lakes 
in the area are Lake Hiidenvesi (area 29 km2, mean depth 6.7 m) and Lake 
Lohjanjärvi (area 92 km2, mean depth 12.7 m). Rivers Vanjoki and Vihtijoki 
transport waters to Lake Hiidenvesi from which the waters run into the Lake 
Lohjanjärvi along the River Väänteenjoki. Finally, the waters flow into the Gulf 
of Finland in the Baltic Sea via River Mustionjoki.  

When operating at its full capacity, the Karjaanjoki river basin sensor 
network hosted 77 sensor nodes. Of these, 55 were weather stations, 11 were 
water turbidity stations and 4 were nutrient measurement stations (measuring 
nitrate concentration, turbidity, water level and water temperature). In 
addition, there were 30 soil moisture sensors and 7 turbidity sensors connected 
to the weather stations. The sensor nodes were from several sensor 
manufacturers and the server services were provided by two different 
companies (for more details see Huitu 2009). Water related parameters were 
measured with spectrometers or optical backscatter sensors and soil moisture 
was measured using capacitance or reflectometry sensors. The frequency of the 
measurements varied from one measurement every 15 min. to one every hour. 
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The sensor network provided over 30,000 measurements per day and 20 million 
measurements during the 1.5 year evaluation period.   

The sensor instrumentation covered the entire Karjaanjoki river basin and 
three intensive measurement areas. Management practices were tested in the 
Hovi farm area and the effectiveness of a constructed wetland was evaluated. 
The Vihtijoki sub-catchment was intensively instrumented to gain validation 
data for sub-catchment level hydrological modelling. Thirdly, the nutrient 
balance of Lake Hiidenvesi was measured with water quality monitoring 
sensors at the inflow and outflow of the lake. In this thesis the focus is on the 
data quality and maintenance evaluation. The results of the applications of 
paper I are not presented here.  

3.1.4 Local scale (III, IV) 

For demonstrating the use of a loading modelling assessment tool in lake 
management planning, the eutrophic Lake Kuortaneenjärvi (area 15 km2, mean 
depth 3.3 m) was studied. The highly-humic lake is an important recreational 
lake in the Ostrobothnia region of Finland (Rautio and Aaltonen 2006). Its 
relatively large catchment area (1,266 km2) consists mostly of peatland and 
forests. The lake is exposed to heavy diffuse loading especially from agriculture 
but also from forestry, peat production and waste waters from scattered 
settlements. Lake Kuortaneenjärvi is regulated and the lake acts as a natural 
sedimentation pond for the lower parts of the catchment. This has led to strong 
release of phosphorus from bottom sediments (internal loading). As a 
consequence of the excessive external and internal nutrient loadings the lake 
has become hypereutrophic resulting in cyanobacterial blooms and occasional 
oxygen depletion in the deepest areas. The water quality has improved, as 
indicated by the slightly reduced nutrient and chl-a levels, in the past 10 years 
due to long-term and active management measures. Fish removals especially 
have directly affected the internal loading and improved the water quality (Sivil 
2006). Based on all quality elements the ecological status of Lake 
Kuortaneenjärvi is still moderate and an important measure to improve the 
(eutrophication related) status is to reduce the external loading on the lake 
(Westberg 2016). In this study the target nutrient loading for Lake 
Kuortaneenjärvi was estimated using measured TN and TP concentrations 
(annual averages 1991–2013). External nutrient loadings and water outflow 
estimates were taken from the national-level nutrient loading estimation tool 
Vemala (Huttunen et al. 2016). The limits and thus the targets for a good 
ecological status class for highly humic lake types are 20 g l-1 for chl-a , 45 g l-

1 for TP and 750 g l-1 for TN (see Table 1 in III). 
For studying the causal effects of phytoplankton development, Lake 

Valkea-Kotinen, a boreal lake with long monitoring data and active 
phytoplankton research was chosen. Lake Valkea-Kotinen is a small, pristine 
headwater lake in Southern Finland. The lake’s sheltered catchment area is 
dominated by forests and the lake is highly-humic and brown-coloured which 
also explains strong summer temperature stratification. The long-term 
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integrated monitoring (1990–) and lack of anthropogenic pressures has made 
Lake Valkea-Kotinen an important reference site, especially for climate change, 
and brownification studies (Vuorenmaa et al. 2011, Lehtovaara et al. 2014). The 
dataset for analysing the relationships affecting phytoplankton development 
was based on weekly sampling during 1990–1995 from the central part of the 
lake. Due to the strong stratification and seasonality, only the summer (Jun–
Aug), epilimnetic samples of chl-a, nutrient fractions (TP, TN, PO2, NO3 and 
NH4), water colour and temperature were chosen. Zooplankton counts from 
pooled sampling were strongly skewed and were thus transformed with 
natural logarithm prior to the analysis to ensure the multivariate normal 
assumption of the estimation methods.  

3.2 Methodology 

3.2.1 Sensor network maintenance and data quality control (I) 

The quality of the data of the sensor network is dependent on many aspects 
starting from the proper deployment of the sensors and stations. Additionally, 
maintenance, cleaning, calibration and automatic data quality control 
procedures are important steps when aiming to obtain reliable and useful data. 
For the River Karjaanjoki sensor network, extra emphasis was placed on 
evaluating the maintenance effort and developing automatic quality control 
algorithms, especially to provide alarms for maintenance needs.  

Several quality control tests were implemented to automatically detect 
possible errors in the sensor data (I). These tests were developed to replace 
earlier manual quality controls. The data quality problems that were regularly 
encountered included suspiciously high or low measurement values, missing 
data and observing the same value repeatedly. For missing data, two different 
tests were developed: 1) for checking long periods of missing data (over 24 
hours) and 2) for occasional missing values. The third test calculates the 
variance of the previous values and checks that there has been variation in the 
measurements for the last 24 hours. These tests were carried out sequentially 
and the fourth test was for inspecting whether the measured value is within the 
predetermined range. Compared to crude range tests that the sensor 
manufacturers offer, this algorithm accounts for site and sensor-specific 
variation. For weather sensors, the Finnish Meteorological Institute provided 
the range limits which were based on the monthly climate extremes of the 
hemiboreal climatic zone. The limit values for water related parameters and soil 
humidity were defined based on long site-specific data records. Based on the 
range test every measurement was given an information label (flag) indicating 
whether the measurement was correct, questionable or wrong.  

The tests were automatically run on a daily basis. The quality control 
system collected the possible warning messages on the quality checks and an e-
mail notification was sent to the data quality controller who made a decision 
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whether to inform the maintenance team or not. The maintenance effort was 
evaluated based on the log file where the maintenance and cleaning activities 
were stored. For evaluating the maintenance effort, records from a 4-month 
period were collected.   

3.2.2 Variance component estimation (II) 

The sampling uncertainty in the status classification is determined as the 
precision of the estimated metric mean and the confidence to which a water 
body can be assigned a status class. For assessing the mean and variance of the 
chl-a and TP status class in the intensive monitored waterbodies (Chapter 3.1.1) 
we used a statistical, mixed effects model. In the model the indicator is 
expressed as a linear sum of fixed and random variables (Pinheiro and Bates 
2000, Zuur et al. 2009).  

For the status classification of a particular assessment period, a single 
observation (l) from a year (i) and month (j) and a sampling station (k), can be 
expressed as a sum of the (fixed) overall mean ( ) and the components of 
random variation between years ( ), months ( ), sampling sites ( ) 
and unexplained residual variation ( ) (Eq. 1). For simplicity, it was assumed 
that all variability is random. 

   (1) 

We assumed that the natural log-transformed chl-a and TP measurements, 
log(yijkl), in the observed data follow a normal distribution with a mean μ and 
variance 2, denoted as log(yijkl)~ (μ, 2). The variance components are assumed 
to be independent and normally distributed as follows: ~ (0, ), 

~ (0, ), ~ (0, ) and ~ (0, ). Because the chl-a and 
TP data were right-skewed they were log-transformed. Based on histograms the 
lognormality assumption was sufficiently valid. As the mean and the variance 
components are unknown they are estimated from the data with statistical 
modelling. The relative size of the estimated variance components reflects the 
uncertainty that stems from different sources. For comparing uncertainties 
between metrics, waterbodies or waterbody types, the metric precision, given 
as a relative standard error of the mean (RSE) is calculated from the estimated 
standard error divided by the estimated mean:  

RSE =      (2) 

The estimated variance components can now be used for finding an optimal 
sampling design in relation to the frequency and the size of temporal and 
spatial variation (based on Cochran 1977 and applied e.g. in Clarke 2013, 
Carvalho et al. 2013, Carstensen and Lindegarth 2016). The uncertainty of the 
waterbody metric mean (i.e. the total sampling variance,  can be calculated 
as follows:   
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  (3) 

In our case the maximum number of years (max(nryear)) is 7 (2006-2012), 
maximum number of months (max(nrmonth)) for lake chl-a is 4 (Jun–Sep), for 
coastal chl-a 3 (Jul – 1st week of Sep) and for river TP 12 (Jan-Dec). It is possible 
to choose the number of years (nryear), months (nrmonth), sites (nrsite) or samples 
(n) so that the overall variance is as small as possible. For example, if the 
variation between sampling sites is large the overall uncertainty can be reduced 
by increasing the number of sites that are monitored.  

The status class confidence is calculated using a normal probability 
distribution with the estimated metric mean and the overall uncertainty (Kelly 
et al. 2009, Lindegarth and Carstensen 2013). The probability of a class (pclass) 
depends on the status class limits for each waterbody type (see Appendix in II). 
Thus, the confidence of class ‘High’ is , confidence of class ‘Good’ 
is , confidence of class ‘Moderate’ , 
confidence of class ‘Poor’ is , and confidence of class ‘Bad’ is 

. These probabilities sum up to 100%. 
The results of the uncertainty analysis were used for statistical rules that 

the decision makers can utilize in practice when reallocating the sampling 
resources (Fig. 3.) The overall uncertainty (RSE), confidence of the status class 
and the variance sources were calculated for all 272 intensively monitored 
waterbodies, and the statistical rules could be applied to their monitoring 
schemes. When the status class confidence was high (over 80 %) and the overall 
error low (under 20 % or 10 % depending on the status class) the sampling 
could be reduced according to the smallest variance component. On the other 
hand, based on the decision rules, the waterbodies with the most uncertain 
status classification need more monitoring effort.  
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FIGURE 3 Statistical rules for aiding how to allocate the waterbody level monitoring  
effort in temporally optimal way.    

3.2.3 LLR model tool for lake managers (III) 

We have developed an assessment tool, called Lake Load Response (LLR), for 
estimating the lake-specific TP and TN loading reductions and the confidence 
of the status class with the given loadings. The chl-a concentration, a surrogate 
for algal biomass, is used as a biological metric. In-lake concentrations are 
estimated as a function of nutrient loading, outflow, sedimentation rate and the 
lake area following the parametrization of the well-known TP and TN mass-
balance models (Vollenweider 1968, Chapra 1975, also recently reviewed in 
Brett and Benjamin 2008). The in-lake TP (CTP, mg m-3) or TN (CTN, mg m-3) 
concentration can be expressed with the TP loading (LTP, mg d-1) or TN loading 
(LTN mg d-1), settling velocity (vs, m d-1) and the surface area of the lake (A, m2) 
as follows (Eq. 4): 

AvQ
LC

sout

TNTP
TNTP +

= /
/ (4) 

The external loading, concentration and outflow are from lake-specific data. 
The settling velocity, which is the only unknown parameter, is assumed to vary 
randomly according to a normal distribution with a mean μs and a variance s2. 
This is a fair assumption as the settling velocity is usually poorly defined and 
the input data are noisy. The model can now be formulated as follows: 

vs and  The nutrient concentrations ( ) 
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follow a normal distribution ( ) with a mean vs, x  and variance . The 
mean value is derived from the Vollenweider nutrient retention model (f) 
(Vollenweider 1968) with the observed lake-specific input data in vector x.   

The estimated concentrations (and thus the link from the loadings) are 
associated with the lake biology (chl-a) through a hierarchical linear regression 
model fitted to large amounts of data from Finnish lakes. The model was 
originally developed by Malve and Qian (2006). Here we fitted the chl-a-
nutrient response model to more recent data and used the updated lake types. 
The hierarchical chl-a model includes the overall mean for chl-a and the main 
effects of TP and TN concentrations, and their interaction and the random 
variability between lakes and lake types. The hierarchical chl-a model can be 
expressed as follows (Eq. 5-8): 

 
     (5) 

 
  (6) 

 
      (7) 

 
      (8) 

 
Here  is chl-a concentration of sample k from lake j of lake type i and 
matrix X contains the observed TN and TP values from the lake. Parameter 
vector ij consists of the lake-specific intercept ( 0,ij), log(TN) and log(TP) slopes 
( 1,ij, 2,ij) and their interaction ( 3,ij). Lake type specific parameters are 
analogously expressed as vector ij and the global scale parameters as vector . 
The beta parameters can be seen as fixed effects (see Chapter 3.2.3), contributing 
to the mean chl-a, and the 2 and 2 contribute to the variation. See also the 
notifications in Malve and Qian (2006) (and II).  

The applicability of the LLR tool to a single lake was demonstrated for 
Lake Kuortaneenjärvi (Chapter 3.1.4). The effect of external nutrient loading 
and associated uncertainties were estimated.  

3.2.4 Structural equation modelling (IV, V)  

To evaluate a network of relationships affecting phytoplankton development 
between water quality variables in Lake Valkea-Kotinen structural equation 
modelling (SEM) was used. SEM, also known as causal modelling and analysis 
of covariance structures, is a highly flexible and broad methodological 
framework (Kline 1998). SEM has been rarely used for aquatic ecosystems even 
though it provides a promising tool for complex water management issues, 
where the effects between physical, chemical and biological variables can be 
indirect and causal, these variables are often correlated and error-contaminated, 
and the assumptions of traditional methods are not met (Arhonditsis 2006). 
SEM explicitly incorporates measurement errors (uncertainty) in all variables 
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and allows the use of so called latent variables that are not directly measured, 
but they constitute of multiple indicator variables that conceptualize a theory of 
interests (e.g. phytoplankton community). The basic statistics in SEM are based 
on the associations between variables, as measured by as the covariance matrix 
( ). Estimating and evaluating the fit of SEM is done by comparing the model-
implied covariance matrix (with model parameters ) and an observed 
covariance matrix, The null hypothesis is that  = ( ).  

For studying the phytoplankton dynamics in Lake Valkea-Kotinen and 
testing the value of SEM we first created a conceptual model of factors affecting 
phytoplankton abundance. Based on the observed correlations of the variables 
(IV) and previous knowledge the final conceptual model included the 
interrelationships between phytoplankton (chl-a as proxy), grazing zooplankton 
(Copepods and Cladocerans), nutrients (TP) and physical environment (water 
colour and water temperature). This model led to an expected covariance which 
was tested against the covariance matrix based on the observed data of Lake 
Valkea-Kotinen. The unknown parameters were estimated using the maximum 
likelihood (ML), generalized least squares (GLS) and asymptotically 
distribution free method (ADF) by minimizing the difference between the 
sample-based and model-induced covariances. 

3.2.5 Bayesian inference for uncertainty analysis (III, IV, V) 

The parameter estimation for the nutrient retention model and hierarchical 
model was done according to the Bayesian framework (III). The only unknown 
model parameter in the nutrient retention model was the settling velocity. No 
previous knowledge about the variation in the settling velocity was available, 
thus so-called non-informative prior distribution for the estimation was used. In 
cases like this, the prior is termed ‘weak’ or ‘vague’ and the posterior 
distribution is mostly influenced by the data (Zuur et al. 2009). The uncertainty 
in the nutrient retention model outcomes is formed by the parameter and 
residual error variances ( 2 and s2) and in the chl-a model by the model error 
variance ( 2).          

SEM problems are often complex, and several parameters have to be 
estimated simultaneously. The Bayesian approach in SEM context makes 
specifying and solving these models more flexible (Gitzen et al. 2012) and 
allows for more precise estimation of the error terms. For the Lake Valkea-
Kotinen case (IV), we used Bayesian theory especially for estimating the error 
distributions to obtain more realistic information about the variation in the 
errors concerning zooplankton ( 4, 5) and TP ( 3). These variance estimates 
were then used for constraining the error variances in the final SEM analysis. 
For the Bayesian analysis we used non-informative priors.    



  

4 RESULTS 

4.1 Performance of the wireless sensor network (I) 

The wireless sensor network’s performance was evaluated from the network 
maintainer’s and data users’ perspectives based on 1.5 years of experience. The 
required maintenance effort of the sensors depended on the measured 
parameters. The most laborious maintenance effort was the cleaning of the 
turbidity sensors because of the biofouling of the optical lenses. In total, these 
required cleaning on 64 occasions during the evaluation period (Table 3). Also, 
problems with the battery contact (40 occasions) and decreasing battery voltage 
(48 occasions) were reported. For weather parameters the rain gauges caused 
problems as they were clogged up 18 times. The weather stations also collapsed 
12 times and there were other technical malfunctions 5 times. The 
abovementioned problems were manifested in the data as missing or suspicious 
values and they were detected with the automatic quality control tests (I, 
Chapter 3.2.1).  
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TABLE 3 Karjaanjoki wireless sensor network maintenance problems, how they 
occurred in the data and the intensity of the occasions during the evaluation 
period 6/2007–12/2008 (I). 

 
Problem 
 

Manifestation in the data 
 

Number of 
occasions 
 

Turbidity sensor biofouling 
 

Turbidity values increasing 
gradually 

64 

Decreasing battery voltage  Missing data and/or air humidity 
decreasing continuously 

48 

Problems with battery contact 
 

Missing data 40 

Organisms on the turbidity sensor 
 

Saw tooth pattern in the data several 

Rain gauge clogged up No accumulation of precipitation 
despite nearby rain 

18 

Station collapse Possible problems with wind data 
and/or no precipitation 

12 

Station malfunction Missing data or station down 
regardless of battery condition 

5 

   
Based on the four months evaluation period, on average 0.6 % of the weather 
station data and 1.4 % of the turbidity data were missing due to battery 
problems. However, the amounts of missing data varied between sites and for 
one turbidity sensor over 10 % of the measurements were missing. Further, 
there were only three events where the measurements were outside of the 
predetermined error and warning limits (see Chapter 3.2.1). These were two 
exceptionally cold summer nights when the air temperature was less than the 
warning limit for the hemiboreal climatic zone of < 2 C.  

4.2 Uncertainty in the status class and monitoring (II) 

The overall chl-a and TP metric mean uncertainty was estimated from the 
mixed effects model and expressed as the relative standard error of the mean 
(RSE %). The median total error was 10 % for the coastal chl-a, 6 % for the lake 
chl-a and 8 % for the river TP, varying considerably within the waterbody types 
(Fig. 4). In the individual lake waterbodies the chl-a uncertainty varied from 2 
to 34% and in coastal waterbodies from 5 to 32%. The TP uncertainty in the 
individual river waterbodies varied from 2 to 44%.    
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FIGURE 4  Total error (RSE %) of the mean metric for waterbody types for lakes, coastal 
areas and rivers. The box plots show the median, lower and upper quartiles 
and outliers. The box widths are proportional to the square roots of the 
number of observations in the water body type. The median RSE % of each 
water category is denoted as a vertical line (6 % for lakes and 10 % for the 
coastal chl-a, 8 % for river TP) (II).   

For waterbodies with a single intensively monitored sampling site, the overall 
uncertainty was divided into temporal variances between years and months, 
and the residual variance that included all the unexplained variation. The 
residual variation was the most dominant in several waterbody types  (Fig. 5). 
The annual variation was larger than the monthly variation for the coastal chl-a, 
and the other way around for the river TP. Between sampling site variation for 
waterbodies with more than one sampling site was the largest for lake chl-a 
within several lake types (see Fig. 5 in II).  
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FIGURE 5 Percentages of temporal (annual, monthly) and residual variance components 
in chl-a status class uncertainty (lakes and coastal waterbodies) and TP 
(rivers) in different waterbody types (figure from II).    

The confidence of the estimated status class was expressed as the probability of 
the most probable class. The confidence was generally high and the median 
probability of TP class within the river waterbodies was 96 %. For chl-a class 
within lake waterbodies the median probability was 83 % and within coastal 
waterbodies 88 %. However, the confidence of the class varied within the 
waterbody types (Fig. 6 in II) and between individual waterbodies. The lowest 
confidence of the status class was 43 % in lakes, 46 % in coastal waterbodies and 
47 % in rivers. 

The practical use for the uncertainty analysis was the statistical rules that 
can be used to support the decision making process when evaluating the 
efficiency of the monitoring and reallocating the sampling effort. For 108 (40 %) 
from the 272 intensively monitored waterbodies the sampling effort could have 
been reduced without losing the confidence of the status class. River TP mean 
estimate was usually precise and 63 % of the river waterbodies were sufficiently 
sampled for TP status classification. However, for chl-a the uncertainty was 
often high and, and based on the statistical rules, more sampling effort would 
be needed in almost 70 % of the intensively monitored coastal and lake 
waterbodies.   

4.3 Nutrient loading response tool (III) 

For increasing the precision of the chl-a-nutrient response a hierarchical 
Bayesian model was fitted (Chapter 3.2.2) to the large Finnish data set (Chapter 
3.1.1). Based on the posterior distributions of the overall chl-a mean (fixed 
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intercept), the overall TP, TN and their interaction (fixed slopes), the majority of 
the variation in the fixed effect is in the intercept, followed by the TP, TN and 
the interaction (III). There were substantial differences in the posterior 
distributions of the lake-type parameters. For example, the intercept of the large 
humic lakes showed larger positive chl-a differences compared to the overall 
mean of the other lake types.  

The LLR model tool was tested for Lake Kuortaneenjärvi (III). The 
observed relationship between the in-lake TP concentrations and the TP loading 
are within the 90 % of the nutrient model prediction error (Fig. 5). The model 
parameter and residual error were separated in the models and from the total 
prediction uncertainty the proportion of the model residual error was greater 
than the model parameter error (Fig. 6).   

 

 

FIGURE 6 Model fit of the loading model for TP (on the left) and TN (on the right). The 
90 % model parameter uncertainty is indicated in dark grey; the 90 % 
parameter uncertainty and residual error together are indicated in light grey. 
The observed values are shown as dots and horizontal dashed lines denote 
the status class limits (III). 

Based on the modelled concentration probability distributions, the mean TP 
value of Lake Kuortaneenjärvi most probably indicates a Poor status class (51 
%) and the TN indicates a Moderate status class (45 %). The status class 
probabilities of other classes are also considerable, 5–55 % for TP and 18–19 % 
for TN (Fig. 7).    
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FIGURE 7 Predictive probability distributions of TP (on the left) and TN (on the right) 
concentrations with average TP and TN loadings for Kuortaneenjärvi. 
Different colours denote different status classes and the proportion of the 
colour denotes the probability with which the status is achieved (III).  

According to the results, the phosphorus loading in Kuortaneenjärvi should be 
reduced by 30 % and the nitrogen loading by 13 % to achieve a Good nutrient 
status in the lake at 50 % confidence. On the other hand, with, e.g., 90 % 
confidence of exceeding the Good/Moderate TN class boundary the nitrogen 
loading reduction should be 60 %. The simultaneous effects of TP and TN 
loadings on the chl-a suggest a TP limitation of phytoplankton with low TP 
loadings and high TN loadings and a TN limitation with high TP and low TN 
loadings (Fig 7). Around the median chl-a concentration (25 g l-1), loading 
reductions made to both TP and TN would result in achieving the chl-a target 
G/M criteria of 20 g l-1. The chl-a model accounts for only the residual 
uncertainty and therefore the Moderate status class probability is 100 %. 
However, treating the nutrient model output as an input to the chl-a model 
introduces another source of uncertainty. Illustrating the effect of the nutrient 
model residual uncertainty on the chl-a prediction uncertainty the 25th and 75th 
percentiles from the simulated TP and TN distributions (Fig. 8) were calculated. 
The predictive chl-a distribution ends up wider and the confidence of the 
Moderate class is 73 % and confidence of Good, High and Poor classes 21 %, 4 
% and 2 %, respectively.  
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FIGURE 8 On the left: contours of chl-a showing the median chl-a estimate with different 
TP and TN loading combinations for Lake Kuortaneenjärvi. An asterisk 
indicates the median chl-a estimate with median nutrient loadings and dots 
indicate the observed loadings. On the right are the predictive probability 
distributions of chl-a concentrations when only the hierarchical chl-a model 
prediction uncertainty is accounted for (narrow bold line) and when the 
nutrient model parameters and residual uncertainty are accounted for. For 
the latter a different colour denotes the different status classes and the 
proportion of the colour denotes the probability with which the status is 
achieved (III). 

4.4 Causal modelling of phytoplankton development (IV) 

Structural equation modelling was tested to gain more insight into the 
phytoplankton development in the pristine small humic waters of Lake Valkea-
Kotinen.  The estimation methods (ML, GLS and ADF) used for the final SEM 
modelling gave similar results to the parameter estimates, and the ( 2) test 
statistic indicated a good model fit. The fit was further improved using the error 
parameters from the Bayesian uncertainty analysis ( 2 = 15.741, df = 10, p = 
0.107). The Bayesian analysis indicated that the most dominant errors were 
attached to the biological parameter variance estimates, particularly copepods 
var( 5). Based on the SEM results, the effects of the nutrients and water 
temperature on phytoplankton were positive and the effects of water colour 
and zooplankton grazing were weakly negative (Fig. 9 and Table 2 in IV). An 
initial correlation analysis indicated that the connection between water 
temperature and grazing was strong and this covariance could be accounted for 
and confirmed in SEM (0.86, p < 0.001, see also IV, Table 2). Copepods and 
Cladocerans describe the latent variable ‘Grazing’ relatively well as their 
loadings coefficients were high (0.61 and 0.83). TP did not fully represent the 
latent variable ‘Nutrients’ (0.56).     
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FIGURE 9 Structural equation model for Lake Valkea-Kotinen (n = 144). The measured 
variables are indicated in rectangles, latent (unmeasured) variables in ovals, 
and error terms in circles. The arrows indicate the direction of effects, and 2-
headed arrows indicate a correlation between variables. Numbers beside each 
arrow indicate the standardized path coefficient, or regression weights 
between the variables estimated using maximum likelihood (IV).  

 
    



 

5 DISCUSSION 

River basin management planning requires sufficient monitoring and suitable 
assessment tools for helping to estimate the status, loading responses and 
management impacts of water bodies. Environmental monitoring with wireless 
sensor networks produces large amounts of spatially and temporally 
representative data for multiple purposes (Hart and Martinez 2006, Hanson et 
al. 2016). These networks have been often evaluated by their technological 
challenges, such as communication and sensor failures (see, e.g., Akyildiz et al. 
2008). However, there are also other aspects that result in problems with data 
quality as was shown in the case of Karjaanjoki river basin sensor network (I). 
Especially the field work effort, including calibration sampling, cleaning of 
turbidity sensors and rain gauges, were found to be laborious, costly and time-
consuming (I). These findings do not differ from sensor networks studies 
especially related to water quality sensors as the performance of these networks 
relies strongly on regular maintenance activities and calibration data sampling 
(Xu et al. 2014, Pellerin et al. 2016). Ensuring good quality of any sensor 
produced data is highly important. Especially now that the costs of the sensors 
are falling and thus the amount of data and applications are increasing, there is 
a real need for automatic error diagnostics that alert maintenance needs in real-
time (Thessler et al. 2011). If the data quality does not meet the end-user’s 
requirements for data quality, there is a risk of the data being unused. Since 
deploying the Karjaanjoki sensor network, the water quality and weather data 
have been utilised, e.g., for determining more accurate suspended solids and 
phosphorus loads (Koskiaho et al. 2015), and soil moisture and weather data has 
been used for improving crop production processes at the farm level (Thessler 
et al. 2011). Despite the benefits gained with more accurate data, it has been 
difficult to find suitable long-term funding for maintaining such a large-scale 
sensor network. The current situation of the network is that 28 of the original 77 
sensor nodes are still gathering data. To date, the sensors located at the Hovi 
wetland have been producing valuable data for the retention performance 
studies (Koskiaho et al. 2009, Linjama et al. 2009).  
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Monitoring programmes serving the WFD implementation and aiming at 
producing data for reliable status assessments should account, and ultimately 
aim to reduce the natural spatiotemporal variation of the biological and 
supporting (physico-chemical) quality elements (Carstensen and Lindegarth 
2016, Cavallo et al. 2016).  Using extensive data sets and mixed effects modelling 
we were able to estimate the chl-a or TP status class uncertainty for 278 Finnish 
waterbodies by distinguishing the variation between years, months and 
sampling sites (II). Our results suggested that the uncertainty, expressed as total 
error of the chl-a mean value was higher in coastal waterbodies than in lakes, 
which is in line with the fact that the coastal ecosystems are highly 
heterogeneous and the chl-a is usually highly variable (Kauppila 2007, Borja et 
al. 2013). Estimations of uncertainty stemming from several sources of 
variability has been seen as a central element related to ecological status 
assessment (Hering et al. 2010). For the lake chl-a, the year-to-year and between 
months variation seem to have a considerable influence on the classification 
uncertainty (Carvalho et al. 2013, Søndergaard et al. 2015). Based on a pan-
European study, accounting for the spatial variation, it was shown that the 
within lake variability is smaller than between lake variation, which is in turn 
caused by eutrophication pressures and thus differences between TP levels 
(Thackeray et al. 2013). We were able to identify the most dominant sources of 
uncertainty and this information was used for developing practical decision-
making rules for allocating the sampling effort so that overall metric 
uncertainty is reduced (II). The most dominant error source was the residual 
variability (II), which means that the overall variability could not be explained 
by yearly, monthly and sampling site variances. Even though we used the most 
intensively measured waterbodies, and were able to account for some of the 
spatiotemporal variation, the uncertainty assessments could be improved using 
other sources of data and fixed covariates in the model. For example, 
accounting for spatial (and temporal) variation with satellite data and for 
temporal variation with automatic sensor data would provide another scale and 
additional information to be used in the uncertainty analysis (Aplin et al. 2006, 
Anttila et al. 2012). In our study, the precision of the chl-a estimates were 
improved using national-scale data and hierarchical modelling accounting for 
the uncertainty at different levels (III).  

When the precision of the status class metric is quantified, the uncertainty 
in the status classification can be assessed using probability distributions (II, 
III). However, when the ecological classification is expressed as probabilities 
there are different alternatives for setting the status class depending on how the 
probabilities are interpreted (Anon. 2003a). For example, the TN status class of 
Lake Kuortaneenjärvi (III) could be designated to three different status classes 
depending on which approach was applied. The fail-safe (/precautionary for 
the environment) approach designates the metric status to the ‘poor’ status 
class, because the probability of the class being better than ‘poor’ is less than 95 
% (81 %), so it cannot be said with enough certainty that the status is better than 
‘poor’. Following the benefit-of-the-doubt approach (precautionary for the 
polluter) leads to ‘good’ or ‘high’ status classifications, because the probability 
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of not being in a worse class is less than 95 %. Based on the face-value approach 
the status becomes ‘moderate’ assessed as the mean value with 45 % 
confidence. The face-value approach is adopted in the Finnish assessment 
scheme (Aroviita et al. 2012, Andersen et al. 2016), thus disregarding the 
uncertainty of the classification and putting the burden of proof on both the 
polluter and the environment. However, the final ecological status class is not 
determined with one single metric value of one biological quality element (such 
as a chl-a metric for the phytoplankton quality element) but is constituted from 
multiple quality elements and multiple status class metrics (Anon. 2003a). 
Therefore, it is important to broaden the statistical uncertainty assessments to 
include other quality elements as well. This has been done for lake macrophytes 
(Dudley et. al 2013), river benthic diatoms (Kelly et al. 2009) and eelgrass shoot 
density in coastal environment (Balsby et al. 2013). In Finland and other Nordic 
countries, the lack of biological quality data complicates estimating the relevant 
sources of uncertainty.   

When a waterbody suffering from eutrophication does not meet the 
ecological quality standards, the required nutrient loading reduction has to be 
evaluated. The LLR assessment tool (III) was developed for this purpose as it 
has the ability to combine external loading with the chl-a status. Even though 
such loading models, as in the LLR, are structurally and conceptually rather 
simple, the data and knowledge are often too limited for more complex 
ecosystem models or process-based mechanistic models (references in V, 
Shimoda and Arhonditsis 2015). Linking the empirical loading models to a 
statistical chl-a model seem to offer a promising tool assisting the management 
planning process. Hierarchical Bayesian modelling proved to be an efficient 
way to improve the chl-a predictions for a single lake using variation 
information from the national lake monitoring data (III, Malve 2007). 
Elsewhere, the hierarchical Bayesian approach has been taken with the nutrient 
loading modelling as well (Cheng et al. 2010). This would also be a significant 
improvement in development of the LLR as the clearest shortcoming of the LLR 
tool seemed to be the uncertainty related to the input loading data (III). This 
uncertainty could be reduced and thus the efficiency of management improved 
with more precise loading estimates and hierarchical structure of the nutrient 
modelling. However, these both require more and frequent lake-specific 
monitoring data, and automatic sensors, and sensor networks seem to provide a 
promising tool for this (I, Tattari et al. 2017).   

Based on the LLR results, Lake Kuortaneenjärvi does not meet the water 
quality standards of its lake type (highly humic). Therefore, the lake would 
benefit from nutrient loading reductions and as a result the status should 
improve (III). However, for Lake Kuortaneenjärvi the management actions for 
reducing external loadings have been ineffective and the recovery from 
eutrophication seems to be very slow, especially because of the substantial 
internal loading (Hjerppe et al. 2017). In addition, even though the relationship 
between nutrient enrichment and eutrophication is well-studied and widely 
acknowledged in inland waters, little is known about the combined effects of 
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diffuse pollution and other stressors such as climate change and morphological 
changes (Hering et al. 2015).   

The multiple pressures and multiple water quality variables with varying 
sensitivity to different pressures make water management very complex, and 
variables are also often multi-correlated and measured with some degree of 
uncertainty. This was also the case in the study of phytoplankton dynamics in 
Lake Valkea-Kotinen (IV). In this case the suitability of structural equation 
modelling was tested, which ought to provide a way to investigate the 
relationships in a more flexible way between a set of correlated variables 
(Reckhow et al. 2005, Arhonditsis et al. 2006). Due to a lack of detailed biological 
data, our model was a simplified conceptualization of phytoplankton dynamics, 
and could address only limited study questions. On the other hand, using the 
data that is available efficiently for lake management is the purpose of 
implementing these statistical methods. The main result, that an increase in 
nutrients and water temperature have positive effects while colour and grazing 
have negative effect on phytoplankton, was in line with the results of earlier 
studies (Peltomaa et al. 2013, Arvola et al. 2014). However, the effect of grazing 
was more distinct with SEM than with traditional regression models. We were 
also able to gain new insights from the more detailed exploration of the 
interactions between phytoplankton and zooplankton. This information can 
support the long-term research and interpretation of results at Lake Valkea-
Kotinen. Although the method has been used quite rarely in aquatic ecology so 
far (V), based on our experience with the Lake Valkea-Kotinen study, wider use 
of this statistical method is encouraged.  

The statistical methods described in this thesis were chosen for many 
reasons. Multilevel and causal modelling frameworks (III, IV) are well suited 
for analysing sparse and heterogenic long-term monitoring data, and operating 
at varying spatial levels. Also, statistical evaluation of ongoing monitoring 
programmes (II) is necessary because the importance and efficacy of the 
monitoring under question. One benefit of statistical modelling over 
mechanistic modelling is that the former is faster to use for many waterbodies 
either consecutively or even simultaneously, and existing monitoring data is 
used efficiently (V). However, these data should be reliable and representative 
for different modelling purposes as well. Especially in Finland and other Nordic 
countries, for many water bodies the data on biological quality elements and 
supporting elements available for RBMP purposes are far from representative, 
or at present lacking completely (Andersen et al. 2016). 

Statistical, data-based models are particularly useful for decision making 
under an adaptive management framework as they enable predictions to be 
made from the data and have measures of uncertainty associated with the 
outcomes (Anon. 2004). However, the definitions and expectations of adaptive 
management are complex and multidisciplinary. The term has been found hard 
to define explicitly and the framework is often challenging to implement in 
practice (Rist et al. 2012). There is a risk that adaptive management is only 
perceived as a “buzzword” and the actual systematic implementation remains 
abstract and loose. Therefore, all attempts to develop tools and methods for 
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iteratively evaluating the causes and responses make the implementation of 
adaptive management more practical. It has also been pointed out that adaptive 
monitoring and management frameworks are considered successful if they 
provide the right data for the information needs in question, and the 
information is gained with the money that is available at the time (Loucks and 
van Beek 2005). The requirement of cost-efficiency is often a justifiable reason 
for evaluating ongoing monitoring programmes. However, it should be borne 
in mind that the costs of monitoring compared to the benefits gained through 
improved understanding are still very low (e.g., see the value of information of 
marine monitoring in Nygård et al. 2016).   

 
   

 
 
 



 

6 CONCLUSIONS 

Operating under the adaptive management framework requires continuous 
learning about the functioning of ecosystem, and methods that can adapt to the 
increased knowledge. Based on the results of this thesis, long-term monitoring 
and spatial-temporally dense sensor networks offer valuable information for 
better decision making in RBMP given that the data quality is assured, and 
suitable statistical methods are used for analysing the data. Although the 
studied statistical methods seem to offer a useful tool for dealing with 
uncertainty and support the decision-making process, they still are not fully 
utilized for WFD implementation in Finland. Efforts towards implementing 
these methods in practice are being pursued more actively. Therefore, based on 
the findings of this thesis, it is suggested that: 

• The confidence (uncertainty) of the status classes should be
statistically evaluated starting with the single metrics as was done
here for chl-a and TP values. In order to gain broad and accurate
uncertainty estimates of spatiotemporal variation, multiple data
sources should be combined.

• Monitoring designs (frequency and coverage) should be
systematically and iteratively evaluated with objectives that serve the
RBMP

• Nutrient loading monitoring and modelling should be intensified
especially for waterbodies whose external loading reductions are
essential for improving their status. This can be partly done using
automatic water quality sensors which are placed optimally.

• At least some simple statistical uncertainty estimate should be
attached to any assessment tool to identify the information gaps and
to inform decision making
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YHTEENVETO (RÉSUMÉ IN FINNISH) 

Tilastollisia menetelmiä adaptiiviseen vesienhoidon suunnitteluun ja seu-
rantaan 
 
Yhteiskunnallinen huoli vesistöjen tilan heikentymisestä on kasvanut entises-
tään. Vesien tilaa ja sitä kautta niiden suojelua, hyödyntämistä ja virkistyskäyt-
töä uhkaavat erityisesti ihmisen toiminnan vaikutukset sekä ilmaston lämpe-
nemisestä aiheutuvat muutokset. Vesistöjen suojelemiseen ja tilan parantami-
seen tähtääviä toimia ohjataan lainsäädännöllä. EU:n vesipuitedirektiivin (VPD) 
tavoitteena on saavuttaa ja ylläpitää jäsenmaiden vesistöjen hyvä ekologinen ja 
kemiallinen tila. Kuuden vuoden välein tehtävissä vesienhoitosuunnitelmissa 
kuvataan vesistöalueittain vesien tila ja mahdolliset toimenpiteet tilan paran-
tamiseksi. VPD:n toimeenpanon myötä ekologisesta tilasta ja tilaan vaikuttavis-
ta tekijöistä halutaan aikaisempaa kokonaisvaltaisempi kuva painottaen erityi-
sesti biologisia tekijöitä sekä alueellista kattavuutta. Tämä on asettanut suuria 
haasteita vesistöjen seurantaan, tilanarviointiin ja hoitotoimenpiteiden suunnit-
teluun.  

Käytännössä vesienhoitosuunnitelmien laatiminen on vaiheittainen pro-
sessi, jossa vesistöjen seuranta tuottaa tietoa tilanarviointia varten, ja arvioidun 
tilan perusteella päätetään mahdollisista tilan parantamiseen tähtäävistä toi-
menpiteistä. Toteutettujen toimenpiteiden vaikutusten seurannalla saadaan 
edelleen uutta tietoa, jonka perusteella toimintatapoja voidaan muuttaa entistä 
tehokkaammiksi. Epävarmuutta päätöksentekoon aiheuttavat kuitenkin mm. 
toimenpiteiden vaikutusten arvioinnin vaikeus, aineistojen epäedustavuus, 
luonnollinen vaihtelu ja tilanarviointijärjestelmän monimutkaisuus. Vesienhoi-
don suunnittelun tuleekin olla adaptiivista, eli korjata seuranta- ja toimenpide-
ohjelmia sitä mukaa kun saadaan uutta tietoa vesien tilasta ja toimenpiteiden 
vaikutuksista. Ympäristönseurannan resurssien jatkuva väheneminen sekä pe-
rinteisen vedenlaatuseurannan korvaaminen uusilla menetelmillä on lisännyt 
tarvetta kehittää arviointimenetelmiä, jotka hyödyntävät tehokkaasti seuran-
noista saatavaa tietoa ja huomioivat arviointeihin liittyvän epävarmuuden. 

Tässä väitöstyössä on kehitetty ja testattu arviointityökaluja käytännön 
vesienhoidon suunnittelun tueksi. Tutkimuksessa on arvioitu eri tavoin tuote-
tun seurantatiedon luotettavuutta ja aineiston laatuun vaikuttavia tekijöitä. 
Työssä käytetyt tilastolliset menetelmät ottavat huomioon seuranta-aineistojen 
monitasoisen rakenteen, luonnossa esiintyvän ajallisen ja paikallisen vaihtelun 
sekä samalla tavoin ympäristöpaineeseen reagoivien vesi-muodostumien yhtei-
set tekijät. Menetelmät painottuvat erityisesti epävarmuuden arviointiin ja 
adaptiivisen vesienhoidon ja seurannan tarpeisiin.  

Ympäristönseurannassa on otettu käyttöön perinteisen vesinäytteenoton 
lisäksi jatkuvatoimisia mittareita sekä useista mittauspaikoista muodostuvia 
sensoriverkkoja. Tässä työssä arvioitiin Karjaanjoen valuma-alueella edelleen 
osittain toimivan vedenlaadun, maankosteuden ja säämittausten verkoston 
toimintaa. Lisäksi arvioitiin automatisoidun mittausverkon pystyttämiseen, 
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ylläpitoon ja laadunvarmistukseen liittyviä seikkoja erityisesti aineiston loppu-
käyttäjän näkökulmasta. Tällaisen sensoriverkoston on tuotettava luotettavaa ja 
käyttökelpoista aineistoa, jotta sitä voidaan käyttää hyödyksi erilaisissa ympä-
ristötietoa käyttävissä sovelluskohteissa. Aineiston laadun tarkkailua varten 
kehitettiin automaattinen laadunvarmistusjärjestelmä hälyttämään epäilyttävis-
tä tai puuttuvista mittaustuloksista ja sensoreiden huoltotarpeesta. Kehitetyn 
laadunvarmistusjärjestelmän avulla saatiin tietoa siitä, miten erilaiset sensorit 
toimivat ja kuinka paljon huoltotoimia tarvitaan laajan sensoriverkoston ylläpi-
toon. Karjaanjoen verkosto tuotti parhaimmillaan yli 10 miljoonaa mittausker-
taa vuodessa, joista vain murto-osa oli ennalta määrättyjen mittauspaikkakoh-
taisten hälytysrajojen ulkopuolella. Eniten huoltotarvetta aiheuttivat vedenlaa-
tumittareiden puhdistaminen ja mittausasemien virransaantiongelmat.       

Havaintoaineiston laatu ja kattavuus ovat avainasemassa myös VPD:n 
toimeenpanoa palvelevassa pintavesien perusseurannassa, jonka tavoitteina 
ovat erityisesti ekologisen tilan ja tilassa tapahtuvien muutosten arviointi. Ve-
sistöjen suuri määrä kuitenkin vaikeuttaa kattavien tila- ja vaikutusarvioiden 
tekemistä, eikä seurantamittauksia voida tehdä kaikista vesimuodostumista. 
Seurantaohjelmien tehokkuuden ja riittävyyden tilastollinen arviointi on vält-
tämätöntä, kun halutaan sekä tuottaa tietoa kustannustehokkaasti että arvioida 
laskennallisen tilaluokan luotettavuutta. Väitöskirjan toisessa osatutkimuksessa 
arvioitiin luokittelun luotettavuutta, vaihtelun lähteitä, sekä erilaisten koease-
telmien ja näytteenottomäärien vaikutusta luokittelun varmuuteen. Työssä käy-
tettiin laajaa, intensiivisesti mitattujen suomalaisten joki-, järvi- ja rannikko-
vesimuodostumien aineistoa. Lineaarinen sekamallinnus ja varianssikompo-
nenttien määrittäminen mahdollistivat nykyisen seurantajärjestelmän tuotta-
man aineiston tehokkuuden ja erityisesti resurssien uudelleenkohdentamisen 
arvioinnin. Tulosten avulla pystyttiin tunnistamaan sekä ne vesimuodostumat, 
joiden seurantaa tulisi lisätä, mutta erityisesti myös ne, joiden mittauksia voisi 
vähentää tai kohdentaa aikaisempaa tehokkaammin.     

Mikäli vesimuodostuma ei tila-arvion mukaan ole tavoitetilassaan, tilaa 
heikentävien kuormituslähteiden vaikutukset pitäisi pystyä mitoittamaan mah-
dollisimman tarkasti ja kustannustehokkaasti. Erityisesti rehevöitymisen vaiku-
tusten arviointi on keskeisessä osassa vesienhoidon toimenpiteitä suunnitelta-
essa. Kolmannessa osatutkimuksessa kehitettiin mallinnustyökalu (Lake Load 
Response, LLR) ravinnekuormitusvaikutusten arviointiin. LLR-työkalun avulla 
voidaan arvioida ulkoisen ravinnekuormituksen vaikutus järven kokonaisra-
vinteiden ja kasviplanktonin määrään sekä todennäköi-syyksiin saavuttaa ta-
voitetila. LLR on jo osoittautunut hyödylliseksi käytännön vesienhoitotyössä, 
koska se mahdollistaa kuormitusvähennystarpeen laskemisen useille vesimuo-
dostumille nopeasti ja melko suppeilla lähtötiedoilla. LLR-työkalun mallinnus 
perustuu yksinkertaisiin yhteyksiin vedenlaadun ja kuormituksen välillä. Mal-
linnuksessa hyödynnetään hyvin laajaa suomalaisten järvien havaintoaineistoa 
sekä hierarkkista mallinnusta, jonka avulla pystytään erittelemään epävarmuu-
det mallin rakenteessa ja havaintoaineistossa. Mallityökalun käyttöä testattiin 
Kuortaneenjärvelle, joka kärsii rehevöitymisestä, eikä ole saavuttanut tavoiteti-
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laa hoitotoimenpiteistä huolimatta. Tulosten perusteella Kuortaneejärven ulkoi-
sen kuormituksen vähennysten tulisikin olla merkittäviä, jotta hyvään tilaan 
päästäisiin. 

Rakenteeltaan yksinkertaiset tilastolliset mallit ovat tehokkaita, kun halu-
taan saada nopeasti tietoa useasta eri vesimuodostumasta ja esimerkiksi niiden 
kuormitusvähennystarpeesta. Vesien tilaan vaikuttavat tekijät ovat kuitenkin 
hyvin monimutkaisesti sidoksissa toisiinsa ja syy-seuraussuhteet ovat usein 
epäselviä. Neljännessä osatutkimuksessa testattiin tilastollista rakenneyhtälö-
mallinnusta arvioitaessa kasviplanktonin esiintymiseen vaikuttavien tekijöiden 
keskinäisiä suhteita. Tulosten perusteella saatiin lisätietoa mm. vesien tummu-
miseen liittyvän tutkimuksen tueksi, mutta ennen kaikkea kokemusta raken-
neyhtälömallien soveltuvuudesta vesienhoidon suunnittelun tarpeisiin. Erityi-
sen hyödylliseksi tämän lähestymistavan teki se, että toisin kuin useissa perin-
teisemmissä lähestymistavoissa, rakenneyhtälömallissa otetaan mittausvirhe 
huomioon ja selittävien tekijöiden välinen korreloituneisuus on sallittua.    

Kaiken kaikkiaan tässä työssä esitellyillä tilastollisilla menetelmillä pystyt-
tiin tuottamaan aikaisempaa tarkempia ennusteita vesien tilasta ja kuormitus-
vaikutuksista. Kaikissa näissä arvioinneissa on otettu huomioon epävarmuus, 
joka on väistämättä merkittävää, koska seurantatiedoissa on puutteita, toimen-
piteiden vaikutukset vesistöihin on hankala arvioida ja arviointimallien raken-
teita on välttämätöntä yksinkertaistaa. Tulosten mukaan epävarmuus johtuu 
hyvin usein mallinnuksen kannalta riittämättömistä syöttötiedoista tai huonosti 
allokoiduista seurannasta. Vaikka käytetyt tilastolliset menetelmät soveltuvat 
ekologisille muuttujille yleisemminkin, tässä työssä havaintoaineistona on käy-
tetty yksinkertaisia vedenlaatua kuvaavia muuttujia (kokonaisravinteet ja a-
klorofylli) nimenomaan biologisten aineistojen vähyyden vuoksi. Tehokkaan 
vesienhoidon kannalta sekä biologisia muuttujia että vesistöjen ravinnetaseita 
tulisi mitata entistä kattavammin. 

Toimiminen adaptiivisen vesienhoidon edellyttämällä tavalla vaatii jatku-
vaa oppimista ekosysteemien toiminnasta sekä menetelmiä, jotka pystyvät 
huomioimaan tiedon päivittymisen ja epävarmuuden päätöksenteossa. Tämän 
väitöstyön tulokset osoittavat, että sopivien tilastollisten mallinnusmenetelmien 
avulla laajoista seuranta-aineistoista saadaan tuotettua arvokasta tietoa vesien-
hoidon tueksi myös yksittäisen vesimuodostuman tasolla. Vaikka työssä käyte-
tyt tilastolliset menetelmät vaikuttavat lupaavilta erityisesti epävarmuuden ar-
vioinnissa, niiden käyttö on ollut suhteellisen vähäistä käytännön vesienhoidon 
suunnittelussa. Tutkimuksen perusteella voidaan ehdottaa, että jatkossa seuran-
taohjelmien tilastollista edustavuutta ja tarkkuutta, sekä tuotetun tiedon epä-
varmuutta pitäisi arvioida entistä systemaattisemmin, ja ennen kaikkea hyö-
dyntää tätä tietoa seurantojen, ja tilanarvioinnin ja hoitotoimenpiteiden kehit-
tämisessä. Lisäksi vesienhoidon suunnittelun tueksi kehitettyihin mallinnus-
työkaluihin tulisi liittää epävarmuusarvio, joka osaltaan auttaisi arvioimaan 
puutteet tiedontuotannossa, sekä epävarmuudet ja riskit hoitotoimenpiteiden 
vaikutuksissa. 
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Abstract: Sensor networks are increasingly being implemented for environmental 
monitoring and agriculture to provide spatially accurate and continuous environmental 
information and (near) real-time applications. These networks provide a large amount of 
data which poses challenges for ensuring data quality and extracting relevant information. 
In the present paper we describe a river basin scale wireless sensor network for agriculture 
and water monitoring. The network, called SoilWeather, is unique and the first of this type 
in Finland. The performance of the network is assessed from the user and maintainer 
perspectives, concentrating on data quality, network maintenance and applications. The 
results showed that the SoilWeather network has been functioning in a relatively reliable 
way, but also that the maintenance and data quality assurance by automatic algorithms and 
calibration samples requires a lot of effort, especially in continuous water monitoring over 
large areas. We see great benefits on sensor networks enabling continuous, real-time 
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monitoring, while data quality control and maintenance efforts highlight the need for tight 
collaboration between sensor and sensor network owners to decrease costs and increase the 
quality of the sensor data in large scale applications. 

Keywords: Sensor networks, agriculture, environmental monitoring, data quality, network 
maintenance. 

1. Introduction 

The rapid development of sensor and wireless communication technologies has increased the use of 
automatic (wireless) sensors in environmental monitoring and agriculture [1]. The availability of 
smarter, smaller and inexpensive sensors measuring a wider range of environmental parameters has 
enabled continuous-timed monitoring of environment and real-time applications [2,3]. This was not 
possible earlier, when monitoring was based on water sample collection and laboratory analyses or on 
automatic sensors wired to field loggers requiring manual data downloading. During the previous 
decades, environmental monitoring has developed from off-line sensors to real-time, operational 
sensor networks [4] and to open Sensor Webs. These are based on open, standard protocols, interfaces 
and web services [5-7].

Varying terminology, such as wireless sensor networks, environmental sensors networks [4] and 
geo-sensor networks [8], are used interchangeably to describe more or less the same basic concept of 
collecting, storing and sharing sensor data, but employing different technologies or having different 
functional focus [2]. All of these terms refer to a system comprised of a set of sensor nodes and a 
communication system that allows automatic data collection and sharing through internet based 
databases and services [2,4]. The sensor webs are also seen as an advanced part of sensor networks by 
some authors [4,8], while others differentiate between sensor networks and sensor webs. They 
emphasize that the latter are based on open Sensor Web enablement (SWE) standards and web 
services, and that sensor nodes are able to communicate with each other. This makes sensor webs 
interoperable and intelligent systems that can react to changing environmental conditions [2,5,6].  

Along with developments in sensor and communication technology, complex environmental 
problems such as eutrophication and climate change have rapidly increased the need for temporally 
and spatially accurate data [4]. Adaptation to more variable weather and environmental conditions 
increases the importance of (near) real-time information that is valuable in better timing and control of 
agricultural management practices such as irrigation and pesticide spraying, monitoring algae bloom, 
and developing flood and frost warning systems [1,3]. The agricultural and food sector has also faced 
growing demands for traceability and quality of products in terms of environmental impacts of food 
production and food safety. This means optimizing cultivation inputs so that high yields are obtained 
and environmental effects are minimized. Several multinational and national initiatives aiming to 
improve quality of sea, lake and river water need more accurate information on effective means to 
decrease contaminants and nutrient discharges to waters and lower their effects, such as cyanobacteria 
blooms [9-11].  
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In order to function properly, sensor networks for water monitoring and agriculture normally 
require a relatively dense deployment of sensors. This leads to applications that monitor mostly local 
weather and soil characteristics [4]. Agricultural sensor networks have been developed for frost [3] or 
crop pest warning [12]. They are also an essential component in more advanced decision support 
systems (DSS) for crop protection [13,14]. In precision agriculture the studies have been concentrated 
on spatial data collection through mobile, vehicle embedded sensors or in-situ sensors deployed in the 
field [1]. Precision irrigation and fertilization and husbandry monitoring systems based on sensor 
networks have also been developed [1,15]. In water monitoring sensor networks are used for 
monitoring water quality and hydrology of rivers, lakes and reservoirs and for flood warning [4,5,16-
19].

Although sensor networks still struggle with technical problems, such as energy-consumption, 
unreliability of network access and standard or software mismatches [20- 22], they have already been 
used for long-term monitoring under harsh outdoor conditions. They allow monitoring remote, 
hazardous, dangerous or unwired areas, for instance in the monitoring and warning systems for 
tsunamis, volcanoes, or seismologic phenomena. The sensor webs, in turn, are an emerging 
technology, that is not yet in operational use outside the test beds [6].

The sensor networks and sensor webs have a profound effect on the collection and analysis of 
environmental data. The data is very heterogeneous and may come from different in-situ, mobile or 
satellite sensors that have different temporal and spatial resolutions that may vary in accuracy and 
content [8]. Furthermore, the user has less control over data quality, and information needs to be 
extracted from a large amount of heterogeneous data. This highlights the importance of comprehensive 
metadata describing the sensors, data, and data quality, as well as the need for effective tools for data 
mining or other data gathering [4]. 

We present here a wireless sensor network (WSN), called SoilWeather, which aims to provide 
temporally and spatially accurate information, data services and (real-time) applications for water 
monitoring and agriculture on river basin and farm scales. We evaluate the performance of the network 
from the data user and network maintainer perspectives, and thus, focus on maintenance and data 
quality issues as well as applications. The technological development, solutions and standards are 
already comprehensively discussed in review articles of Yick et al. [21] and Akyildiz et al. [22]. We 
also discuss the challenges facing the SoilWeather WSN and the opportunities it has provided. Finally 
we conclude with the lessons learned from deployment and 1.5 years of running of network. 

2. SoilWeather sensor network and applications 

2.1. Karjaanjoki river basin 

SoilWeather is an operational river basin scale in-situ wireless sensor network that provides 
spatially accurate, near real-time information on weather conditions, soil moisture and water quality 
with a high temporal resolution all-year round. The network was established in Southern Finland 
during the years 2007 and 2008 and it covers the entire 2,000 km2 Karjaanjoki river basin which is 
located in south west Finland (Figure 1). The catchment is mainly covered by forest (63%) and 
agricultural areas (17.7%). In the north part of the area the River Vanjoki and River Vihtijoki bring 
waters to Lake Hiidenvesi (area 29 km2, mean depth 6.7 m) from which waters flow via River 
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Väänteenjoki to Lake Lohjanjärvi (area 92 km2, mean depth 12.7 m). Finally, the Mustionjoki river 
transports water from the river basin to the Gulf of Finland. In the northern parts of the river basin 
geology is dominated by quartz and feldspar. In the south the bedrock is granite. The soil is mainly 
clay, silt and glacial till [23]. 

Figure 1. Location of the Karjaanjoki river basin in Finland and the intensive measuring 
areas of Lake Hiidenvesi, the Hovi farm and the Vihtijoki sub-catchment. 
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The weather stations are evenly distributed around the catchment (Figure 2). They serve the 
purposes of catchment wide run off modeling. The turbidity and soil moisture sensors are scattered 
around the catchment as well, still majority of them are placed on the areas of different applications, 
which are explained later. Specific nutrient measurement stations are placed totally on the local 
application areas. 

Figure 2. The location of the different SoilWeather WSN stations and sensors in the 
Karjaanjoki river basin. (a) Nutrient measurement stations. (b) Water turbidity sensors. (c) 
Weather stations. (d) Soil moisture sensors.  
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There are three intensively measured areas within the river basin: Hovi farm, Vihtijoki sub-
catchment and Lake Hiidenvesi (Figure 1). The sensors are mainly located on land owned by private 
farmers, who are also the main users of the data. Eleven of the weather stations are placed in or close 
to potato crops for potato late blight warning. In addition data from one weather station close to a 
potato late blight control experiment at Jokioinen outside the SoilWeather network was used to 
evaluate the validity of potato late blight forecasts. The water measurements are obtained mainly in the 
rivers, but also in relatively small ditches and in constructed wetland within the Hovi intensive 
measurement area.  

In the Hovi farm (25 ha) we measured soil moisture, weather and water quality at a field parcel 
level. The Hovi farm in Vakola is owned by the governmental MTT Agrifood Research Finland 
research institute. The soils are mainly clay, silt and glacial till and altitudinal variation is low (up to 
130 m). Crops include barley, grass, turnip rape and wheat. Constructed wetland was built at Hovi 
farm in 1998 for water treatment, biodiversity and landscape purposes. The catchment of the wetland 
(12 ha) is under cultivation. It is a relatively large constructed wetland, ca. 5 % of the whole catchment 
[24]. One turbidity sensor is installed in the middle of the wetland and two spectrometers measuring 
nutrient concentration are located in the inflow ditch and close to the mouth of the outflow ditch of the 
constructed wetland to monitor its effectiveness in nutrient retention. Additionally, there are five 
weather stations in the area of the Hovi farm. (Figure 3).The spatially dense instrumentation of Hovi 
enables monitoring and testing of water protection methods and management practises and studying 
nutrient leaching from agricultural land in varying weather conditions at the field parcel level.

Figure 3. The locations of the SoilWeather WSN's weather stations, soil moisture sensors, 
nutrient stations and turbidity sensors in the area of Hovi farm.  

The Vihtijoki sub-catchment, located in the north-west of the Karjaanjoki river basin, is 
instrumented with 25 weather stations and six water turbidity sensors. The turbidity sensors are located 
in the upper, middle and lower parts of River Vihtijoki to obtain validation data for the modelling 
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efforts on transport of phosphorus (P) and total suspended solids (TSS) at a catchment level. Here, the 
SWAT (Soil and Water Assessment Tool) model will be used. SWAT is a catchment-scale model that 
operates on a daily time step [25, 26] and simulates water and nutrient cycles. SWAT model needs 
time series of many weather parameters as a part of input data. We intend to test the sensitivity of the 
model to the frequency of weather stations, i.e. if, and how much, will the results improve when the 
number of the weather stations will be increased in the model-setup, which will be established in the 
Vihtijoki sub-catchment (Figure 1).   

Lake Hiidenvesi is one of the largest lakes in Southern Finland. It has recreational importance and it 
serves as a backup drinking water reserve for the inhabitants of the Finnish capital area. Restoration of 
the lake was started already in 1995 due to low water quality but improvements in water quality have 
not been gained so far [41]. The SoilWeather WSN has been used to monitor the water quality of the 
inflow and outflow of the lake using two nutrient measurement stations and one turbidity sensor.  

2.2. Sensors, sensor network and infrastructure 

The Soil Weather WSN hosts 70 sensor nodes altogether; 55 compact weather stations, four nutrient 
measurement stations, and 11 turbidity measurement stations. Six of the turbidity stations have water 
level pressure sensors as well.  The typical setup of a weather station includes a weather station core 
and sensors for air temperature, air humidity, precipitation, wind speed and wind direction. Connected 
to the weather station cores there are also sensors for soil moisture and for water turbidity so that the 
network observes in its entirety soil moisture in 30 sites, turbidity in 18 sites and water level in eight 
sites.

Table 1. The sensors used and the parameters measured in the SoilWeather WSN. 

Sensor node Sensors  Parameters  Producer's web page 

a-Weather station basic core Pt1000 Temperature www.a-lab.fi 

AST2 Vaisala HMP50   Humidity www.vaisala.com 

Davis Rain Collector II Precipitation www.davisnet.com 

Davis Anemometer Wind direction  

Davis Anemometer Wind speed  

Additional parameters  Decagon ECHO  
(capacitance) Soil moisture www.decagon.com 

FDR
(Frequency Domain 
Reflectometry) 

Soil moisture www.a-lab.fi 

OBS3+ Water turbidity www.d-a-instruments.com/ 

Keller 0.25 bar Water level www.keller-druck.ch 

Nutrient measurement station s::can spectrometer  Nitrate conc. www.s-can.at/ 

Water turbidity  

Water level  

Water temperature  
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Nutrient measurement stations measure water turbidity and nitrate concentration with spectrometers 
employing ultraviolet and visible (UV-Vis) wavelengths. The setup includes also sensors for water 
level and temperature. All the sensor nodes have been geo-located in the field using a hand-held GPS 
device Trimble GeoXT. The sensor nodes, sensors and parameters measured are shown in Table 1.  

SoilWeather WSN uses off-the-shelf sensors, nodes and server services provided by various sensor 
vendors.  Each sensor node has a central processing unit with a GSM modem and SIM-card installed 
either into a weather station core or into a nutrient measurement station. The weather station cores can 
be controlled remotely by SMS messages or locally by connecting sensor nodes to the computer. The 
cores can also be programmed to produce automatic SMS alerts e.g. on drought, frost or moisture 
conditions predisposing to plant diseases. 

The network uses time-based data collection. The frequency for nutrient measurements is once 
every hour, all the other sensors measure once every 15 min. Each sensor node collects and transmits 
the data independently to the database server, either as a SMS message (a-Weather station cores) or as 
a data call (nutrient measurement stations). The weather station cores are wireless and automatic; GSM 
and GPRS techniques are used in the data transfer and storing. GSM modems receive SMS messages, 
GPRS messages are transferred through HTTP interface. These messages are written to a message 
database and decoded with a parser program to measurements and timestamps. This information is 
then written to the final database. 

The near real-time data is available as graphs and downloadable tables in two different internet-
based data services provided by the sensor vendors. One of the services also supports XML-based data 
transfer. Diagram of the data flow in SoilWeather WSN is presented in Figure 4.   

Figure 4. The data flow (white arrows) and communication system with main data services 
of SoilWeather WSN. a-Lab sensor nodes refer to nodes employing a-Weather station 
cores, Luode sensor nodes refer to nutrient measuring stations. 
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The SoilWeather WSN functions all-year round.  Due to freezing of the sensors, measurements are 
less accurate in cold winter times, as there is no heating in the rain gauges or wind sensors. Also, the 
sensors located in rivers may be temporally removed during winter, as moving ice might break the 
sensor probes.

The weather stations are compact devices including all the sensors installed and they are easy to 
deploy. The weather stations are programmed to connect to the server automatically. For water 
turbidity and nutrient measurements, the easiness of deployment is very much dependent on 
environmental conditions, such as the ground material of the river bank and river bed, the river run-off, 
and existence of constructions. The sensor nodes are transferring data independently, and network is 
flexible to some extent; it does not demand reprogramming or updating of the existing nodes when 
new node or sensor is added. The sensor nodes use a battery package of two 6 V batteries.

At the moment, the data for the whole network is available only for participants of the project. The 
weather measurements are, however, freely available for the previous month through the open 
interface at the web site http://maasaa.a-log.net/ (in Finnish) and through the web site of Helsinki 
Testbed (http://testbed.fmi.fi/) after registration to researcher’s interface.

2.3. Data quality control and network maintenance 

We see data quality as a broad concept including aspects of deployment, maintenance, cleaning, 
calibration and automatic data quality control algorithms. Careful deployment of sensor probes is the 
basis for ensuring good data quality. The location of the probe should be representative, considering 
the parameter measured. Weather stations are located in open and relatively flat areas and water 
turbidity sensors in the main run-off in location with no nearby discharging ditches or tributaries. The 
probes are mainly deployed by the same experienced field assistants from nearby MTT Vakola farm 
and by following sensor specific procedure. However, the final location of the sensor probes was 
always decided by the application, and negotiations with the land owners. The probes are also located 
so that they do not hamper cultivation practices or the recreational use of the river. 

All the water and soil sensors are calibrated against water or soil samples, respectively. For weather 
stations no calibration in the field is done. Calibration samples for water measurements are taken once 
a month to ensure the quality of the sensor measurements and the correct functioning of the sensors. 
River discharges are available close to the location of the water measurements. Soil moisture 
calibration samples were taken soon after the deployment. 

Reliable functioning of the sensors requires maintenance often enough. We maintain sensors on a 
regular basis, twice a year, but also occasionally when additional maintenance is needed. The 
maintenance procedure is sensor type specific. For weather stations the batteries are changed once a 
year, the fixation of instruments is checked and fixed if needed, and the equipment is cleaned. The 
water turbidity sensors and nutrient measurement stations need extra care because the optical lenses 
get contaminated in the water. The spectrometers are cleaned automatically with air-pressure and in 
addition manually once a month. Some of the water turbidity sensors are equipped with automatic 
wipers. The wipers were not available during the first deployments so the sensors were manually 
cleaned in regular basis: in winter time every month and in summer time when needed, approximately 
once a week.
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Automatic data quality control system, that warns when suspicious data is received, was developed 
during the project to notify on maintenance needs. Different kinds of data quality problems that can 
occur in the SoilWeather WSN data are shown in Figure 5. In the first chart (a) there are two 
suspicious spikes in the temperature data. Rather common situation of missing data is shown in the 
second chart (b) and in the third chart (c) the wind speed is for some reason measuring the same value 
(0 m/s) all the time. In the beginning of the project there were only a few stations providing data to be 
checked and the quality control was carried out manually. As the amount of stations, and therefore the 
amount of the data, grew, it was essential to develop an automatic quality control and warning system. 
At the moment the system checks the data from all the a-Lab sensor nodes. For the four nutrient 
measurement stations Luode Consulting handles the quality control manually using their strong 
expertise and experience in this field.

Figure 5. Problems that have occurred in SoilWeather WSN data. Y-axis denotes different 
parameters and the x-axis denotes time (approx. 1 week). (a) Suspicious spike in air 
temperature data.  (b) Gaps in the air temperature data. (c) Wind speed is constantly 0 m/s 
(no variation). 

The automatic quality control runs under the UNIX system. The computer of the data quality 
controller logs in to the a-Lab server via SSH tunnel and retrieves data using Matlab Database 
Toolbox. . After the tests are run in Matlab, the quality controlled data is returned to a new database in 
a-Lab server. At the moment there are four different tests running in near real-time:  

1) missing data test 
2) missing observations test 
3) variation test and
4) range test.
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The missing data test checks if the data has been sent correctly. If no observations have come from 
the sensor within the period after the last check, the system saves an error report. Meanwhile the 
missing data test checks long periods of missing data, the second test searches for occasional missing 
values. The third test is for checking if the measurements vary over time. Presumably there is 
something wrong with the station or the sensor if the sensor measures the same value consistently (for 
24 hours in this case). Finally, the range test tests if the measurement lies between predetermined 
range values. For meteorological parameters limit values were configured based on seasonal climate 
extremes and limit values vary according to the month and the climatic zone. The climatic zone of the 
Karjaanjoki river basin is hemiboreal and the range values in this case for air temperature are shown in 
Table 2. Limit values for meteorological parameters are provided by the Finnish Meteorological 
Institute (FMI). Soil humidity, turbidity and water level ranges are defined for every sensor separately, 
depending on the characteristics of soil, riverbed and river hydrology. For every observation the 
system gives an information label (flag) that indicates the quality level of the observation according to 
the range test. The flag value indicates whether the observation is correct (between the range values), 
suspicious (differs slightly from the range value) or wrong (differs dramatically from the range value). 
The range test and the flagging follows the system used in FMI [28].  

Table 2. The monthly range limits (ºC) for air temperature in hemiboreal climatic zone. 
Warning_low and warning_high denotes the range limits for suspicious values, error_low 
and error_high the range limits for meteorologically impossible values.  

MONTH WARNING_LOW WARNING_HIGH ERROR_LOW ERROR_HIGH

1 -37 11 -47 17 
2 -35 11 -45 17 
3 -31 15 -41 22 
4 -19 23 -29 27 
5 -7 29 -17 31 
6 -2 32 -12 36 
7 2 33 -8 36 
8 0 32 -10 36 
9 -7 26 -17 31 

10 -16 19 -26 28 
11 -23 12 -33 20 
12 -35 10 -45 16 

All the error messages from the past 24 hours are collected and sent automatically by e-mail to the 
data controller every morning. After the notification, the controller checks the data manually and 
makes the decision weather to inform the maintenance team or not. All the maintenance and the 
cleaning activities are stored in the log file of the sensor node and the log file is available for users 
through the data services. 

2.4. Applications

SoilWeather WSN is designed to be a multi-functional network.  During the two-year pilot project, 
it has been utilised in the following applications:  
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in predicting potato late blight risk
in developing interpolation methods for weather parameters into 30 m resolution grid  
in monitoring water quality and nutrient retention in rivers and in constructed wetland 
in improving hydrological model at river basin scale 
in leaching model in sub-catchment scale 
in soil moisture model at field parcel level 
in precision agriculture.

It has also been used to study the relationship between local weather conditions and nutrient 
leaching. The network enables monitoring weather-related phenomena, such as heavy rains and the 
nutrient load peaks they induce. The SoilWeather WSN is used in research and in governmental 
monitoring tasks, but also by private farmers, who can use local data in planning and executing 
management practices. Here we present and analyze two applications in detail: predicting potato late 
blight risk in the farms, and the monitoring of constructed wetland. 

Potato late blight caused by an oomycete, Phytophthora infestans, is one of the most devastating 
potato diseases worldwide. The potato crop can be completely destroyed within a few days if the 
weather is conducive for disease progress (Figure 6).  In modern conventional potato production late 
blight can be effectively controlled with a range of chemical fungicides. The potato crop must be 
protected from emergence to harvest for each single day when weather enables late blight infection. 
Fungicide applications are necessary at 3 – 10 days intervals throughout the growing season resulting 
in 4 – 10 consecutive sprays in Nordic production and more than 20 sprays in the most intensive potato 
production regions in Western Europe [29, 30].  

Figure 6. Potato late blight can totally destroy potato crop. Consecutive fungicide 
applications (green area in the front) are needed for effective control of blight. (Photo: 
MTT.)

To optimize the number of fungicide applications per season numerous weather based blight 
forecast models have been developed since the 1950s [31]. In the Nordic countries a late blight 
forecast model (NegFry) developed by Fry et al. [32] has been widely used since the 1990s [13]. 
Dramatic changes in the epidemiology of potato late blight pathogen have made the old NegFry model 
unreliable in certain occasions [33, 31]. Therefore a more recent potato late blight model (LB2004) 
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introduced by Andrade-Piedra et al. [34] has been modified for use in the Nordic climate [35]. The 
characteristics of current Nordic potato late blight populations for the model development were studied 
in detail [36] and essential epidemiological parameters needed in the model were updated [37]. Sub-
model calculation periods when the temperature is over 8 °C and relative humidity is over 90 % [35] 
was used to predict blight risk in this study. 

The blight risk was calculated for the 11 weather stations at the potato fields and at the weather 
station at late blight control experiment at Jokioinen. The potato fields were visited twice a week from 
the last week of June to the first week of August. The occurrence of potato late blight was recorded 
and the onsets of blight epidemics were reported in the Web-Blight warning service (www.web-
blight.net). The severity of blight as a percentage of defoliated leaf area was assessed at the experiment 
at Jokioinen three times a week.  

Constructed wetland studies were made during 1999–2002 at the previously mentioned Hovi 
wetland [24]. As for the monitoring of water quality of inflow and outflow, the measurements were 
based on water sampling. Although the sampling earlier was flow-proportional and rather frequent, 
most of the days were left unmonitored. However, these days may include short-termed peaks of high 
runoff, which remain unknown. Typically, the gaps between the sampling days have been filled by e.g. 
linear interpolation, but the loading estimates tend to be more or less erroneous. Flow variations and 
thus also the error is particularly significant in small, agricultural, high-sloped catchments like the 
Hovi farm. For this defect, automatic sensors providing non-interrupted data offer a revolutionary 
improvement. To test this new monitoring approach in wetland research, s::can -sensors (Table 1) were 
installed in October 2007 for monitoring of the water entering and exiting the Hovi wetland at 1-hour 
interval. The first full 1-year results (from November 2007 through October 2008) on the retention 
performance of the wetland were compared with the previous, water-sampling –based results [38]. 

3. Results and discussion 

3.1. Performance of the network 

Several authors have discussed the reliability problems of WSNs. However, reliability is normally 
discussed from a technological perspective. Thus, diagnostic and debugging as well as communication 
protocols are analyzed in relation to the application and power-consumption [1, 21, 22]. These studies 
are important for recognizing missing measurements due to unreliable communication or sensor 
failure, but normally are unable to identify erroneous measurements. Sensor calibration and means to 
recognize and discard data from wrongly calibrated sensors has been also important aspect in ensuring 
data quality [8, 4].  

We analyze the performance of SoilWeather WSN by analyzing both missing and erroneous 
measurements, as well as the maintenance needed. The number and types of the maintenance visits are 
clarified and the problems with certain sensors are examined. The performance of the quality control is 
estimated by analyzing the number of erroneous and missing measurements. The better quality of the 
turbidity data is ensured by installing automatic cleaning wipers. The performance of turbidity wipers 
is analyzed by comparing turbidity values before and after the installation. 

There are several factors related to the communication network, the stations or sensors themselves 
and the outdoor conditions that can interfere with the data. The improper functioning of the 
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communication network can obstruct the data transfer and battery consumption. Under normal 
circumstances, the batteries should function properly for almost a year. However the strength of the 
signal within the GSM network can affect the battery age: a weak signal consumes more power from 
the station than a strong signal. Communication network problems can be seen as missing data or 
delayed data delivery. 

Different problems can occur depending on the location of the station, weather conditions, nearby 
forest stand or the characteristics of the river. For example rain gauges tend to fill with leaves, tree 
needles and bird droppings thus distorting the precipitation data. In winter time the turbidity sensors 
might get broken due to moving ice. The first winter of the project was warmer than usually allowing 
the turbidity sensors to stay in the water for the whole winter without problems of freezing. In normal 
winter (as the second winter was) majority of the turbidity sensors has to be picked up for the coldest 
months.  

Another problem concerning the turbidity measurements is the bio fouling of the optical lenses. 
Especially in summer time this is a big problem and the sensors would require cleaning on a regular 
basis, even daily in the most turbid waters. Also water plants, fish, gastropods or other objects in the 
water may affect the sensors. During the project we have discovered that almost without exception all 
the turbidity sensors need some kind of automatic cleaning system. At this point the wipers have been 
installed on the six sensors that have had most problems with biofouling or on sensors that are a long 
way from the MTT Vakola farm. The drastic effect of a wiper installed to a place that has normally 
very turbid water can be seen in Figure 7.

Figure 7.  An example of the effect of a turbidity wiper installed to one of the SoilWeather 
WSN's turbidity sensors. Turbidity measures a month before and after the wiper has been 
installed. The mean and standard deviation before and after installation. 

 After the wiper has been installed, the level of turbidity has decreased dramatically. In addition 
there is no sign of the growing trend caused by the gradual contamination of the sensor. The real 
increase and level of the turbidity can now be seen in the data. The single spikes still remain in the data 
as they are caused by occasional disturbances. Obviously the mean value and standard deviation have 
decreased significantly in the study period. The cleaning of the turbidity sensors has probably been the 
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most laborious maintenance task during the project. Furthermore the contamination of the turbidity 
sensors has caused most drastic errors to the data. With the help of the wipers these problems can 
partly be overcome. 

In addition to maintenance of the turbidity sensors, battery problems have been quite major ones as 
well. Before the right composition of the battery package had been discovered, the gaps in the data 
were due to battery voltage decreasing or problems with battery contact. There have been five 
mysterious malfunctions of the stations as well. These stations had to be sent back to vendor and 
wholly repaired and reprogrammed. The main reasons for maintenance, how they occur in the data and 
how many occasions there has been during 1.5 years period are shown in Table 3.  

Table 3. Maintenance intensity of SoilWeather WSN during 6/2007-12/2008.  

The automatic quality control and warning system developed for detecting the most drastic errors 
has worked relatively well. Here we analyze the suspicious and erroneous measurements for period of 
four months, from July 2008 to October 2008. Only very small fraction (0.06 %) of the measurements 
was outside the range of the limit values. The total numbers of suspicious and erroneous measurements 
defined by the range test are shown in Table 4.

Table 4. Number of the suspicious and erroneous measurements by range test during 
7/2008-10/2008.

Parameter Number of suspicious 

measurements

Number of  erroneous 

measurements

Air temperature 114 -

Water level 900 30

Air pressure  250 - 

Turbidity  323 80 

Air temperature was over the range limits for one station in one occasion due to few cold summer 
nights as the temperature decreased under the range value of 0 °C. Air pressure measurements have 
been below threshold value because of the decreasing battery voltage. In this case the problem was 
detected and solved fairly quickly. There have been 900 suspicious and 30 erroneous water level 
measurements. One of the water level sensors was for some reason pulled to the shore and another one 

Problem Manifestation in the data 
Number of 

occasions

1. Battery voltage decreasing  Missing data and/or air humidity decreases too much  48

2. Turbidity sensor contaminated  Turbidity values too high and increasing  64 

3. Problems with battery contact Missing data or station down Ca. 40 

4. Organisms on the turbidity sensor Saw tooth pattern in the data several

5. Rain gauge clogged up No accumulation of the precipitation despite of the nearby rain 18

6. Station fell down Possible problems with wind data and/or no precipitation 12

7. Station malfunction Missing  data or station down regardless of battery condition 5
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was installed in a place whose water level decreased so much that it had to be moved to another spot. 
The total number of suspicious and erroneous turbidity measurements was ca. 400. These (mostly too 
high) turbidity measurements were caused by single spikes in the data.    

In general the sensor nodes and data transfer have been working well with regards to the missing 
values. At this point we only report the total number of problem occasions. Detailed analysis of lost 
data and their time span will follow later.  For the weather stations the median of the proportion of the 
missing values was 0.6 % and for turbidity measurement stations 1.4 %. Due to different problems 
described earlier the variation was quite high: for some stations there have been missing values for 
over 10 % of the measurements. These missing values have usually been due to battery problems and 
therefore we have not found any differences according to the latitude component for example.  

For good network functioning, it is essential that we are informed as soon as possible if some of the 
sensors or stations are not working at all. Altogether we still see the need to develop further the data 
checks and this way reach an optimal data flow and quality of the data. The present ability to detect the 
most obvious problems is a good start for this.  

3.2. Performance of applications

Weather stations at the potato fields have been functioning relatively well. In the beginning of the 
season there were some technical errors in the measurement of relative humidity at some stations. The 
problems were solved and correct measurements were obtained during the critical period for potato 
late blight development. Blight risk at all potato fields was low until 9th of July. Between 10th and 25th

of July there were 10 – 15 days when the temperature was over 8 °C and the relative humidity over 90 
% for more than 10 hours. Blight risk was low from 26th July to 2nd August. From 3rd of August blight 
risk was very high until the end of August. 

Figure 8. Duration of periods (hours), when relative humidity was more than 90 % and 
temperature over 8 °C and progress of potato late blight epidemic (percentage of defoliated 
leaf area) at Jokioinen in non-protected susceptible potato cultivar in 2008.
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Blight was found at one field at the beginning of the high risk period 12th of July. After the high risk 
period the late blight was present in all fields at the end of July. During August the disease spread 
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rapidly causing severe damage to three fields, where fungicide applications were started too late. In the 
rest of the fields blight was adequately controlled by fungicide applications. Blight risk estimated by 
duration of moist periods was relatively well in line with the observed blight epidemics. 

In the field trial at Jokioinen blight progress was very similar to the potato fields at the SoilWeather 
network. Blight was found the 11th of July but the epidemic developed very slowly until August due to 
rather low blight risk. An epidemic exploded in the middle of August after several successive days 
when relative humidity was over 90 % more than 10 hours (Figure 8). 

In wetland monitoring the turbidity sensors and the weather stations were used. In order to be 
accurate and reliable, automatic monitoring with sensors needs water samples for calibration of 
sensors for the specific conditions of the measurement place. Moreover, concentrations of some 
important substances –such as dissolved P– can not be measured with commonly available sensors 
thus leaving the laboratory analyses of the sampled water as the only option. In this study, a total of 75 
samples  were taken from the inflow water (24 manually and 51 with a refrigerator-equipped sampler). 
As for the outflow, 21 samples were taken manually during the 1-year study period. All water samples 
were analyzed for turbidity and the concentrations of TSS, total P (TP), dissolved reactive P (DRP) 
and nitrate (with nitrite). 

The s::can sensors deployed in the Hovi wetland were calibrated using linear regression equations 
between the sample-based values and the simultaneous recordings of the sensors ("raw data"). Each 
recording of the raw data was then multiplied with the coefficient obtained by the regression equation 
of respective substance (turbidity or nitrate). Such calibrated values were used in the calculations of 
material fluxes. The final data curves were found to correspond well the sampled values [38], which 
suggested that the sensors functioned reliably. 

Because turbidity does not represent an amount of substance in water it can not, like nitrate 
concentration, be directly used in the calculation of material fluxes. Fortunately, in the case of Hovi, 
correlations between turbidity and the concentrations of TSS and TP were very high with a coefficient 
of determination (R2) of 0.86 or more. Thus, we could reliably transform the calibrated turbidity values 
into TSS and TP concentrations by multiplying them with the coefficients obtained from the linear 
regressions.

TSS and TP retentions in wetland (70 and 67%, respectively) were at a similar or slightly higher 
level than in the previous measurements. Meanwhile the value for nitrate retention (67%) was strongly 
increased. The improved nitrate retention suggests the positive effect of the vigorously expanded 
vegetation during the unmonitored time between the two study periods in the Hovi wetland.  

Wetland measurements with sensors have been thus far successful. The information obtained with 
new technology has not only provided more accurate retention figures, but also given new insight on 
the behavior of TSS and nitrogen in a CW. 

3.3. Benefits and challenges

Due to the high temporal resolution of the measurements, SoilWeather WSN provides significantly 
more accurate information on nutrient leaching in different weather conditions at parcel level than can 
be achieved by regular sampling. Figure 9 shows turbidity measured with the spectrometer. The 
turbidity measured from water samples during the same time period indicates that most of the nitrate 
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leaching peaks remains unnoticed highlighting the efficiency of sensor networks to monitor irregular, 
short events. The in-situ sensor networks provide point measurements that can be used as input in 
leaching models and, thus, improve the estimates of nutrient leaching at different scales. 

Figure 9. Turbidity samples (dots) and turbidity measured by spectrometer (solid line) 
from the constructed wetland of Hovi.  

The potato late blight forecast can be applied to justify precise timing of fungicide applications. In 
the future, forecasts for other crops and pests should be developed. Relatively good models that predict 
Sclerotinia diseases of oil seed crops exist [39]. More effort is needed to develop applications for 
cereal diseases while there is clear demand for such forecasts among farmers and advisors. 

On the other hand, as the SoilWeather WSN provides over 30,000 measurements per day and data 
accumulates progressively over time, this poses significant data processing challenges. Due to the 
large amount of data erroneous or missing measurements need to be tracked and when possible, also 
corrected by automatic algorithms. Protocols for error diagnostics and debugging of WSNs have been 
developed that notify when measurements are missing due to communication, device or software faults 
[21, 40]. Determination on erroneous measurements, in turn, is sensor and environment specific, and 
base on statistical calculation and regular calibration samples.  

Good sensor data quality is a critical factor for data users. Evolving standardising and increasing 
joint use of sensor data has been seen to lead to unforeseen data availability in the future [4]. It is also 
more and more critical for data user combining different data sources to be informed of the quality of 
data by providing quality estimates for measurements and documenting data quality and the control 
procedure. Joint use of sensor networks and webs requires development of open standard protocols and 
interfaces as well as open source software products to discover and analyse sensor data from different 
sources [7, 4]. The internet based data services enable easy access to data and metadata by users and 
applications in the case of single sensor network. At the moment SoilWeather data is collected in two 
different servers and respectively in two web services provided by sensor vendors used. In addition, 
the download of the data tables needs to be done station by station. In the next phase of SoilWeather 
WSN, it is important to develop web services so that they support easy data access and use. Also data 
flows from sensors and calibration samples need to be integrated and easily available. 
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If the large amount of data poses challenges to the user of sensor networks, the maintenance of the 
large sensor network is a challenge for the data provider. The monitoring over a large area and 
especially the continuous sensing of water requires maintenance resources. The amount of the field 
work and maintenance costs may be the same as in field logger based sensing. The sensors measuring 
water quality need regular cleaning in the field and calibration samples need to be taken. Depending on 
the locations of the sensor nodes, one field worker can maintain 5-10 sensors per day. Total 
maintenance costs of the whole SoilWeather network including also laboratory analyses of water and 
soil samples, data transfer costs, and costs of replacement parts and batteries are not available yet. Still 
they should not be underestimated, because it plays a key role in ensuring the quality of sensor data.  

Major strength of the SoilWeather WSN is the tight collaboration between three governmental 
research institutes, Agrifood Research Finland, the Finnish Environment Institute and the Finnish 
Meteorological Institute. This way we have been able to establish a multipurpose network requiring a 
wide range of expertise and to develop a wide range of potential applications. The network is also 
established in collaboration with private enterprises including sensor vendors, data users and service 
developers. The low costs of the weather stations make it possible for individuals, such as farmers, and 
for small organizations to participate in the sensor networks in the future. Admittedly, data provided 
by the network would be interesting for other sectors such as tourism and traffic as well. 

Considering the maintenance efforts, increased collaboration, open standard protocols and 
interfaces are seen as being important in the future development of SoilWeather WSN. By 
collaboration it is possible to create a cost-effective monitoring system that covers wide areas, 
provides data of good quality from different types of sensors and encourages joint use of data. 
Maintenance costs are decreased if the work is done close to the sensor location, whereas synergy is 
obtained if data quality procedures and algorithms are defined and developed, and employed together 
over the large group of data providers. When the number of data providers becomes larger, the control 
over data quality decreases. Therefore it is important to ensure that the data collection, processing and 
data quality is well documented and delivered to the users. 

However, this collaboration requires open and widely used technology and standards that enable 
integration of different sensors and sensor data and flexible integration of new sensor nodes as well as 
tools for storing, archiving and delivering of data. The Sensor web enablement (SWE) of Open 
Geospatial Consortium (OGC) provides the needed standards and tools. It is also increasingly tested in 
a range of applications from earth observation through satellites to delivery of hydrological data [7]. If 
this technology shifts to operative use, it would also enable the discovery and exchange of data on a 
larger scale, through organizations, sectors and countries. 

In addition to challenges in data processing and field maintenance we see data sensitivity and the 
attitudes of data providers as a third challenge. Especially if data is to be made freely available through 
web services. In the SoilWeather network, data on water quality is available only for the participants 
of WSN, while the weather data is already publicly available. This is because we want first to ensure 
the good quality of water measurement data by fully operational quality control procedures. However, 
aquatic measurements are also considered more sensitive data than meteorological data. In the case of 
SoilWeather WSN, farmers often do not want nutrient leaching rates available for anybody to follow if 
there is even a minor risk that high rates could cause changes to the management practices of the farm. 
One should, however, notice that the aims of the authorities and farmers are more or less congruent: 
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both of them benefit from low nutrient leaching to the rivers. Thus, it is also a question of attitudes that 
hinder collaborative monitoring of water quality. The water quality data is also sensitive from the 
perspectives of other potential private data providers than farmers. These could be enterprises 
providing drinking water for example. The public sector, in turn, is already opening their large 
environmental databases and supporting joint use of data. For example, the Finnish Environment 
Institute has recently opened a web service, Oiva, which provides most of the hydrological and water 
quality data collected by the environmental authorities in Finland (http://www.ymparisto.fi/oiva, in 
Finnish).

4. Conclusions 

The SoilWeather network is still in the initial phase of the operation. Thus, not all the maintenance 
and sensor calibration procedures (particularly for soil) are fixed and data quality control algorithms 
for water and soil measurements are under the development. It is already clear that relatively high 
maintenance resources and effective data quality control are needed. However the maintenance efforts 
of the SoilWeather WSN can be decreased to some extent by the efficient organization of work, with 
good collaboration and by technical development of sensors and automatic cleaning systems. The 
amount of field work needed in aquatic data collection is higher than in meteorological and terrestrial 
data collection and the amount of fieldwork needed is expected to be no less than on the conventional, 
sampling based monitoring. 

At the moment, the automatic quality control tests run on the SoilWeather WSN reveal the most 
drastic errors in the data, and warn of missing data. However, there is a need for more sensitive tests. 
Tests that compare the values of neighboring stations would be effective in detecting the faults in 
precipitation data for example. Consistency tests, on the other hand, would test if different parameter 
values of the same station are physically and climatologically consistent. For example the values of 
turbidity and precipitation or turbidity and water level depend on each other.

In the future development of SoilWeather WSN, we have to address three major challenges: 1) a 
large amount of data, 2) cost-effective maintenance of WSN and 3) the sensitivity of the data and the 
attitudes of data-owners towards data sharing. These challenges from user and data provider 
perspectives need to be considered when building operational environmental monitoring systems over 
a large area. However, we see the benefits of continuous environmental monitoring, and the increased 
accuracy of provided data, large enough to motivate overcoming the challenges. Furthermore, 
challenges may be partly overcome by good collaboration and development of tools for data quality 
control and data processing. To ensure the quality of data and decrease the heterogeneity of 
measurements, there is a need for handbook for WSN data providers on how to carry out automatic 
monitoring of environment, particularly related to the water measurements. 

SoilWeather WSN is currently functioning and funded on a project basis. A great challenge will 
then be to find sustainable longer term funding. The obvious options are governmental funding or 
funding through beneficial business models that are developed on the WSN.  
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Abstract Implementation of the EU Water Framework

Directive (WFD) has set a great challenge on river basin

management planning. Assessing the water quality of lakes

and coastal waters as well as setting the accepted nutrient

loading levels requires appropriate decision supporting

tools and models. Uncertainty that is inevitably related to

the assessment results and rises from several sources calls

for more precise quantification and consideration. In this

study, we present a modeling tool, called lake load re-

sponse (LLR), which can be used for statistical dimen-

sioning of the nutrient loading reduction. LLR calculates

the reduction that is needed to achieve good ecological

status in a lake in terms of total nutrients and chlorophyll

a (chl-a) concentration. We show that by combining an

empirical nutrient retention model with a hierarchical chl-

a model, the national lake monitoring data can be used

more efficiently for predictions to a single lake. To esti-

mate the uncertainties, we separate the residual variability

and the parameter uncertainty of the modeling results with

the probabilistic Bayesian modeling framework. LLR has

been developed to answer the urgent need for fast and

simple assessment methods, especially when implementing

WFD at such an extensive scale as in Finland. With a case

study for an eutrophic Finnish lake, we demonstrate how

the model can be utilized to set the target loadings and to

see how the uncertainties are quantified and how they are

accumulating within the modeling chain.

Keywords River basin management � Water Framework

Directive � Lake water quality modeling � Bayesian
inference � Hierarchical modeling � Uncertainty

Introduction

Eutrophication is a major threat to freshwater ecosystems

(Carpenter et al. 1998). In many places, nutrient loading

from the catchment area into the receiving waters has in-

creased substantially above natural levels due to human

action. Concern about deterioration of the ecological con-

dition of surface waters due to elevated nutrient levels, and

other pressures, gave rise to the EU Water Framework

Directive (WFD, European Parliament and Council 2000).

For WFD work, each water body is classified into one of

the five different quality classes (high, good, moderate,

poor, and bad). The requirement is to have at least good

ecological condition in all surface waters by 2027 at the

latest. European water bodies have already been surveyed

and classified to identify those lakes that violate the current

eutrophication-related water quality standards.

Lakes vary in their characteristics which affect their

responses to elevated nutrient level (Malve and Qian 2006;

Jackson et al. 2007; Carvalho et al. 2013). Also the con-

centrations of total phosphorus (CTP) and total nitrogen

(CTN) that pose a risk for reduced water quality vary be-

tween lakes. This is why different lakes sharing some core

characteristics are grouped together to represent different

lake types. Each group is given specific class limits for CTP

and CTP as well as chlorophyll a (chl-a) concentrations.
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The limits are determined in relation to reference sites, so

the further the measured classification values are from the

limits of the ‘high’ class, the more the lake is presumed to

be under anthropogenic pressure.

The most effective way to tackle the eutrophication

problem and achieve permanent good condition in lakes

would be reducing external nutrient loading. In many de-

veloped countries, point source loading from industry and

municipalities is no longer the main concern, following

implementation of stricter environmental legislation and

strengthening of the requirements for purification of sew-

age effluent discharges. Hence, the focus of loading re-

duction has to be on diffuse loading from different land use

actions, mainly from agriculture (Carpenter et al. 1998;

Antikainen et al. 2008). Reducing diffuse phosphorus and

nitrogen loading (LTP and LTN) requires changes in land use

practices and creating structures that prevent leaching of

nutrients from the catchment into the recipient lake. These

all have high costs because of the large land areas involved.

For this reason, it is necessary to know the adequate, cost-

effective level of management actions. Above all, it is

essential to estimate the amount of LTP and LTN that a lake

system can tolerate, and how much the loading needs to be

reduced from its present level.

To link loading levels to receiving water body quality,

the predictive power of mechanistic or empirical water

quality models can be used (Borsuk et al. 2002; Chapra

2003). The modeling approach should be chosen consid-

ering the purpose of the modeling and the availability of

the data (Pätynen 2014). The scale of the required loading

reduction in terms of nutrient levels in a lake can be

identified using simple empirical mass-balance and nutrient

retention models. Cheng et al. (2010) examined seven

different phosphorus retention and nutrient loading models

based on Vollenweider’s (1968, 1975, 1976) studies. Ex-

ternal nutrient loading has also been linked to biological

factors, such as chl-a and phytoplankton biomass (Jeppesen

et al. 2005).

Usually, empirical models are driven from large cross-

sectional datasets which derive from national lake

monitoring programs. Yet fitting a global-scale model with

common parameters to all lakes does not sufficiently take

into account the intersystem variability (Cheng et al. 2010;

Reckhow 1993). Phillips et al. (2008) overcame the

heterogeneity problem of a large European dataset by

splitting the data to more homogenous groups according to

lake morphometry. They fitted separate linear regression

models to describe chl-a-nutrient relationships in these

groups. An even more efficient way would be to use a

hierarchical, multilevel model in which the whole dataset is

grouped into intermediate hierarchy levels inside the

model. The different hierarchy levels can be based on

different ecoregions (Lamon and Qian 2008), landscapes

(Wagner et al. 2011), or lake types (Malve and Qian 2006),

or on any such features that may cause variance at the lake

level in the processes of interest. The hierarchy of the

model enables using the data both from the study lake and

from the lakes with similar features to make the predic-

tions. In hierarchical model, lakes within the same type are

assumed to have similar chl-a response to changing nutri-

ent concentrations. Also a dataset of a lake type covers a

wider range of observations than that of a single lake.

The representation of a complex system with simple

empirical models clearly makes estimating the model error

essential, although it should also be done in more complex

modeling (see Doherty and Christensen 2011). In practice,

it is not enough to model only the possible outcomes, but it

is also important to know the margins within which to

operate when aiming to make sufficient reduction in the

external loading. The uncertainty that is related to the WFD

assessment results in the lake management and decision-

making process should be better accounted for and treated

more coherently (Nõges et al. 2009; Rekolainen et al. 2003;

Hering et al. 2010; Clarke 2012). The idea of uncertainty in

the implementation of WFD is parallel to margin of safety

(MOS) concept in the US EPA total maximum daily load

procedure (TMDL committee 2001). In both cases,

uncertainty is acknowledged both in the models selected as

well as in the results of models. The reduction of the MOS

can potentially lead to a significant reduction in imple-

mentation cost, and thus high priority should be on se-

lecting and developing models with minimal forecast error.

The uncertainty in water quality modeling arises from

several sources: not only from the model structure and

parameter uncertainty but also from the measurement error

(Rode et al. 2010). The measurement error (or unexplained

residual error) stems usually either from spatial and tem-

poral variability of the environment or from erroneous

analytical methods (Gronewold and Borsuk 2010). The

uncertainty can be handled and incorporated into a formal

decision analysis context with the probabilistic Bayesian

methods (Malve and Qian 2006; Malve 2007; Gronewold

and Borsuk 2009; Ramin et al. 2011). Bayesian inference

also offers a way to incorporate prior and new information

into the system.

In Finland, there are nearly 200,000 lakes. About 87 % of

the lakes’ surface area have been classified, i.e., all lakes

with surface area over 1 km2 (Finnish Environment Institute

2013). Over 700 of these lakes do not meet the WFD criteria

for good ecological water quality. The large amount of the

lakes makes the management planning challenging. There-

fore, for general and directional lake management, there is

an urgent need for simple and fast screening level methods

that operate at realistic time scales and with sensible costs.

In this paper, we introduce a lake load response (LLR) in-

ternet tool which we have been developed for helping the
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river basin managers to implement the WFD. LLR links the

effect of the LTP and LTN on the CTP, CTN and chl-a in a

lake. Due to its Bayesian modeling framework, LLR gives

probabilistic assessments of water quality. As LLR is tai-

lored especially for the Finnish WFD work, it acknowledges

the national lake typology and classification criteria in its

predictions. LLR calculates the effect of nutrient loading on

nutrient levels in a lake with models based on Vollenwei-

der’s (1968) retention model equation. It further links the

loading levels to chl-a concentration with a chl-a model that

builds upon the hierarchical linear model introduced by

Malve and Qian (2006). In this study, we fit the chl-a model

to the updated Finnish monitoring data with revised lake

typology. Combining simple water quality models in the

Bayesian modeling framework brings a significant im-

provement to the present situation where the Vollenweider’s

equation or traditional regression models are applied as such

in the WFD work. The Bayesian approach provides a very

intuitive way of summarizing the uncertainties associated

with the data analysis and is therefore useful for river basin

management planning. We demonstrate the use of the LLR

by applying it to the assessment of an eutrophic Finnish lake.

LLR enables estimating the lake-specific nutrient loading

reduction and the confidence of the WFD compliance.

Materials and Methods

The LLR Tool

The lake load response (LLR) is an open access internet

tool that has originally been developed for the Finnish

lake management (http://www.lakestate.vyh.fi). Although

LLR is tailored for the Finnish lakes, the method has been

also applied in the EU-funded research project WISER

(Water bodies in Europe: Integrative Systems to assess

Ecological status and Recovery, Hering et al. 2013, http://

www.wiser.eu/). During the project, the effect of CTP,

CTN and water temperature on chl-a in 461 European

lakes was examined.

Firstly in LLR, the effect of external nutrient loading on

in-lake nutrient concentrations is estimated using empirical

nutrient retention model (Vollenweider 1968) (Fig. 1). Se-

condly, the effect of in-lake nutrient concentration on chl-

a is estimated using hierarchical chl-a model. The uncer-

tainties are estimated using the Bayesian inference (Gelman

et al. 2003) and the MCMC simulations (Laine 2008). The

lake is represented as a continuously stirred tank reactor

(CSTR). Therefore, it is assumed that the lake is completely

mixed, there are no concentration gradients, and the nutrient

concentration in the lake is equal to the concentration which

is leaving the lake. CSTR assumption compromises well in

Finnish lakes that are usually very shallow.

As input data, LLR requires information on LTP and LTN
together with in-lake CTP and CTN and outflow (Qout). If

CTP and CTN observations are available from different parts

of the lake, those from the main basin are used, and if

samples are taken from different depths of the basin, the

volume-weighted average is calculated. Further, because of

the CSTR assumption, the loadings and the outflows are

given as annual loading sums normalized to daily units. For

lakes with long retention time, the loading is summed from

a number of years equivalent to the retention time. In ad-

dition, information about lake’s volume, mean depth, and

lake type is needed.

As a result, LLR produces lake-specific statistical dis-

tributions of CTP, CTN, and chl-a; the target nutrient

loadings; and the possible loading reductions. Results in-

clude the uncertainty estimates either as confidence regions

or as a description of a distribution.

Nutrient Retention Model

The nutrient retention model of LLR is based on the well-

known Vollenweider steady-state mass-balance model

(Vollenweider 1968, 1975, 1976) modified by Chapra

(1975). The model requires lake-specific coefficients and it

assumes that the in-lake nutrient concentration is equal to

the external nutrient loading minus the outflow and the loss

by sedimentation. Therefore, the in-lake CTP, CTN

(mg m-3) can be expressed with LTP, LTN (mg d-1), Qout

(m3 d-1), settling velocity (vs, m d-1), and the surface area

of the lake (A, m2).

CTP=TN ¼ LTP=TN

Qout þ vsA
ð1Þ

The only unknown parameter in the model (Eq. 1) is the

settling velocity (vs) which can be determined with the other

variables in the model. Instead of a single fit to the data, we

can think that the settling velocity has a statistical distribution.

This is a reasonable way of thinking as the settling velocity is

usually poorly defined and the input data are noisy.

In other words, we will assume that the settling velocity

and further the in-lake concentration, in the model (Eq. 1),

Fig. 1 Conceptual diagram of the LLR variables including discharge,

nutrient loadings, and in-lake concentrations
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vary randomly according to a normal distribution. The for-

mulation of the model can now be summarized as follows:

CTP=TN �N ðf ðvs; xÞ; s2Þ ð2Þ
vs �N ðls; r2s Þ; ð3Þ
where the nutrient concentration from the lake (CTP/TN) is

normally distributed (N ) with a mean value f ðvs; xÞ and an
error variance s2. The mean value is derived from the Vol-

lenweider nutrient retention model (f) with the observed

lake-specific input variables in vector x. The settling velocity

vs is normally distributed with a mean ls and a variance rs
2.

The parameter estimation is done according to theBayesian

framework where all the unknown parameters are first as-

signed a ‘prior distribution’ which describes the prior belief or

knowledge about the unknown parameters (Gelman et al.

2003). The input data are then used to modify the prior dis-

tributions for each unknown parameter, to give ‘posterior

probability distributions’. For fitting the parameters to the data,

we use inverse modeling package FME (Soetaert and Petzoldt

2010) in the R software package (R Core Team 2012). The

uncertainty is assessed using a Markov Chain Monte Carlo

(MCMC) algorithm with a delayed rejection and adaptive

Metropolis procedure (Haario et al. 2006; Laine 2008). The

retention model is first fitted to the input data, and the best-fit

parameter estimate is used to initiate the MCMC chain.

Therefore, we set the residualmean squares from the best fit as

the initial model variance.Without better knowledge about the

variation, we used the so-called non-informative prior distri-

bution (i.e., all values are equally likely) for vs estimation.

Hierarchical Chlorophyll a Model

The estimated in-lake CTP and CTN (Eq. 2) can be used to

predict the in-lake chl-a levels allowing the link between

external loadings and chl-a to be estimated. In this study,

we have fit the nutrient-chl-a model introduced by Malve

and Qian (2006) to more recent monitoring data and up-

dated Finnish lake typology. The typology is based on the

principles specified in the EU WFD (CIS Guidance

Document No 2 2005). According to the current Finnish

lake typology (Pilke 2012; Juutinen et al. 2009), the

naturally nutrient-rich (winter turbidity [5 FTU) and

naturally calcareous (alkalinity [0.4) and Northern Lap-

land lakes are first distinguished. The rest of the lakes are

then grouped into different types based on the surface area,

mean depth, natural water color, and the retention time.

The water quality criteria for good status have been defined

for all lake types and for CTP, CTN and chl-a separately

(Table 1) following the ecological classification guidelines

for Finnish lakes (Aroviita et al. 2012) which are based on

WFD (CIS Guidance Document No 10 2003).

The data produced by the national Finnish water quality

program are stored in a centralized database of the Finnish

Environment Institute (Mannio et al. 2000). The sampling

strategy and analysis methods have been described in Niemi

et al. (2001). For the modeling, we collected a dataset that

consists of 2246 Finnish lakes with a total of 36942 in-lake

chl-a, CTP, and CTN observations from July 1990 to August

2007. The surface area of the lakes ranges from 0.057 to

1377 km2, mean depth from 0.29 to 20.8 m, and volume from

0.000086 to 14.9 km3. The dataset includes several lakes of

each lake type, from 9 calcium-rich lakes to 388 shallow hu-

mus-rich lakes (Table 1). There is obvious variation in the

observed chl-a, CTP, and CTN between and within the lake

types (Fig. 2). The lowest chl-a median is in the northern

Lapland lakes (1.7 lg l-1) and the highest in nutrient-rich and

calcium-rich lakes (type 12, median = 35.7 lg l-1).

Malve and Qian (2006) showed that the chl-a variations

in Finnish lakes can be predicted with CTP, CTN, and their

interaction (CTP*CTN). Although CTP is usually the most

important determinant when assessing the amount of chl-a,

CTN can be more influential in non-humic lakes. We take

these varying responses in nutrient-chl-a relationship into

account using different nutrient intercepts and slopes for

separate lake types. In practice, the chl-a predictions are

almost solely based on data from the study lake when data

are abundant, or if there is a very large scatter in the chl-

a response to nutrient concentrations within lakes of the

same type. If data from the study lake are insufficient, the

predictions are based on the lake-type-specific data.

Our model (based Malve and Qian 2006) includes the

overall mean for chl-a; the main effects of CTP, CTN, and

their interaction; and the type-specific and lake-specific

adjustments. The full form of the hierarchical linear chl-a

model can now be summarized as follows:

logðchl - aijkÞ ¼ b0 þ b1 logðCTP
ijk
Þ þ b2 logðCTNijk

Þ þ b3 logðCTPijkÞ logðCTNijk
Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fixed effects

þ u0j=k þ u1j=k logðCTPijk Þ þ u2j=k logðCTNijk
Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

random effects of type

þ v0i=jk þ v1i=jk logðCTPijkÞ þ v2i=jk logðCTNijk
Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

random effects of lakes

þ eijk
|{z}

error term

; ð4Þ
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where chl-aijk is chl-a concentration of sample i from lake j

of lake type k. b0, b1, b2, and b3 are fixed global intercept

and slopes of CTP, CTN, and their interaction. CTP=TNijk
is

the ith observation from lake j in lake-type k. u0, u1, and u2
are lake-type-specific random intercepts and slopes for lake

j of the type k (denoted as j/k). v0, v1, and v2 are lake-

specific random intercepts and slopes for lake j of the type

k with observations i (denoted as i/jk). The residual error

term for observation i from lake j in type k is eijk.
We use terms ‘fixed’ and ‘random’ for model pa-

rameters such as they are used in a non-Bayesian statistical

context of mixed effects modeling (e.g., Zuur et al. 2009).

In the Bayesian analysis, there is no distinction between

fixed and random effects as all unknown parameters are

treated as random (Gelman et al. 2003). The only differ-

ence in the ‘fixed’ and ‘random’ effects is that their priors

are determined differently. The beta parameters (‘fixed’)

are assigned independent improper prior distributions and

the u and v parameters (‘random’) have common mean and

variance. The posterior distributions for all unknown pa-

rameters are generated with the observed summer time

nutrient data using MCMCglmm package (Hadfield 2010)

in the R software system (R Core Team 2012).

With the derived chl-a model parameter values and the

estimatedCTP andCTN from the nutrient retentionmodel, chl-

a with different loading values can be calculated. Because of

the Bayesian modeling framework and MCMC simulations,

the uncertainties that arise in LLR can be quantified. The

uncertainties come from the parameter and residual error of

the nutrient retention model (s2 and rs
2 in Eqs. 2, 3) and from

the residual error of the chl-a model (eijk in Eq. 4).

Lake Kuortaneenjärvi

We demonstrate the LLR framework for Lake Kuorta-

neenjärvi in Western Finland (Fig. 3). The surface area of

the lake is 14.6 km2 and the mean depth is 3.7 m. The

catchment area of the lake consists mostly of peat land and

forest and the lake is highly humic (lake type Rh). The

River Lapuanjoki runs through the Lake Kuortaneenjärvi

which is influenced by the heavy nutrient loading from

agriculture and forestry of the catchment. The lake acts as a

natural sedimentation basin within the catchment, en-

hancing the water quality of the lower parts, whereas the

lake itself has become eutrophic. The long-term

(1991–2013) averages of CTP, CTN, and chl-a are 65, 893,

and 28 lg l-1, respectively, all exceeding the limits for

good water quality of type Rh (Table 1). Based on the

physico-chemical indicators and especially on the biolo-

gical metrics (e.g., chl-a), the overall ecological condition

of the lake is moderate.

As the lake is not in good ecological status, it is im-

portant to estimate the loading reductions and the prob-

abilities of exceeding concentration criteria. As an input to

LLR, we used the measured CTP and CTN from the deepest

part of Lake Kuortaneenjärvi 1991–2013. As the external

loadings to Lake Kuortaneenjärvi are not available from

the measurements, we obtained them as well as the water

outflow estimations of 1991–2013 from the operational

watershed simulation and nutrient loading estimation

model VEMALA (Huttunen et al. submitted) of the Finnish

Environment Institute. VEMALA uses third-order catch-

ment division as the spatial dimension and 1 day as the

Table 1 Finnish lake types, concentration maxima of CTP and CTN, and chl-a for good water quality and number of lakes (n) in chl-a model

Number in LLR Code Name of the type Criteria for good water quality n

CTP (lg l-1) CTN (lg l-1) Chl-a (lg l-1)

1 Vh Small and medium low humic lakes 18 500 7 375

2 Ph Small humic lakes 28 700 15 343

3 Kh Medium humic lakes 28 660 12 129

4 SVh Large low humic lakes 18 500 7 67

5 Sh Large humic lakes 25 600 11 46

6 Rh Highly humic lakes 45 750 20 200

7 MVh Shallow low humic lakes 25 600 8 82

8 Mh Shallow humic lakes 40 750 20 384

9 MRh Shallow very humic lakes 55 850 25 388

10 Lv Lakes with a very short retention time 40 610 8 88

11 PoLa Lakes in northern Lapland 12 300 5 11

12 RrRk Nutrient-rich and calcium-rich lakes (subtype not defined) 55 930 20 57

13 Rr Nutrient-rich lakes (subtype of RrRk) 55 930 20 68

14 Rk Calcium-rich lakes (subtype of RrRk) 30 750 20 9
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time increment and simulates the whole land area of Fin-

land, including cross-border watersheds, and all the rivers

and lakes (ca. 58,000) with an area of at least one hectare.

VEMALA simulates the main components of the hydro-

logical cycle, leaching of the total phosphorus, total ni-

trogen, and suspended solids from fields and forests and

their transport in rivers and lakes up to the Baltic Sea. The

nutrient loading sources are agriculture, forests, scattered

settlements, and point sources. The diffuse loading

simulation in the VEMALA version we have used is based

on a regression model between nutrient concentration and

runoff. The scattered settlements and point sources are

included as input data. The nutrient loading calculation is

calibrated by the nutrient observations. Therefore, the ac-

curacy of loading estimates is highly dependent on the

available observation time series. In case of Lake

Kuortaneenjärvi, the frequency of needed measurements

somewhat varied. Typically, (i) daily Qin observations, (ii)

CTP and CTN measured four times a year from the incoming

river discharge, and (iii) CTP, CTN, and chl-a measured four

times in a summer from the lake were available.

Results

Chlorophyll a Model

The posterior distributions for all unknown parameters of

the hierarchical chl-a model were obtained using MCMC

simulations. A majority of the variation in the fixed effect

is found in the intercept, followed by CTP, CTN, and the

interaction (Fig. 4). Differences in the lake-type intercepts

Fig. 2 Observed Chl-a, CTP,

and CTN for different lake types

in Finland. The box plots show

the median, first, and third

quartile (‘‘hinges’’) and 95 %

confidence interval of median

(‘‘notches’’). The box widths are

proportional to the square roots

of the number of observations in

the lake type
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illustrate different effects for different lake types. The in-

tercept values of lake types correct the global chl-a value

either upwards or downwards depending on their sign. For

example, large humic lakes (Fig. 4b, type 5) show a larger

lake-type intercept than other lake types. The lake-type

slopes for CTP and CTN vary between lake types. The dif-

ferences in the lake-type slopes effects are not as distinct as

that for the intercept, although, e.g., for the northern Lap-

land lakes (Fig. 4c, type 11), the CTP effect is negative and

varies more than in other lake types.

Lake Kuortaneenjärvi Case Study

The nutrient retention model was fitted to Lake Kuorta-

neenjärvi’s data and the relationship between the lake CTP/TN

and LTP/TN was obtained (Fig. 5). The observed CTP is

mostly around the Moderate/Poor class limit (65 lg l-1).

The observed CTN varies from good to poor level but most

often it is in the moderate one. Because the parameter error

and residual error of the nutrient retention models were

calculated separately, we could differentiate their effects to

the model prediction uncertainty. The uncertainty that rises

from the model parameter error is substantially smaller

than that from the residual error (Fig. 5).

Lake Kuortaneenjärvi’s CTP and CTN probability distri-

butions were obtained from the nutrient retention model

with normally distributed settling velocity and model

residual error (Fig. 6). According to the LLR results, the

probability of achieving good status with the current av-

erage LTP level (1.45 g m2 a-1) is 4 %, thus the lake does

not meet the WFD CTP criterion for good ecological water

quality. The most probable phosphorus status is poor, with

the probability of poor class being 51 %. According to

CTN, the most probable status with the long-term average

LTN (2727 g m2 a-1) is moderate (45 %). The probability

of achieving good status with the current loading level is

46 %.

For estimating the nutrient loading reduction, the rela-

tionship between external loading and in-lake nutrient

concentration was derived with median outflow and ex-

ternal loading values varying from very small loadings to

large (but possible) values (Fig. 7). In order to achieve

good phosphorus status on average, the external LTP should

not exceed 1.0 g m2 a-1 (Fig. 7a). Therefore, it should be

reduced by 30 %. In case of CTN, as the critical LTN is

23 g m2 a-1 (Fig. 7b), the required loading reduction

should be about 13 %. From these results, we could make

estimates on any confidence level. For example, if the re-

quired confidence of achieving the target is 90 %, or in

other words, if the limit is exceeded with a probability of

10 %, then the LTN reduction should be about 60 %.

Possible effects of nutrient loadings to chl-a level can be

examined by the lake-specific contour lines simulated with

the chl-a model (Fig. 8a). The nutrient loadings were ex-

trapolated for a larger range than that of observed in the

Lake Kuortaneenjärvi. This is statistically justified in the

case of a hierarchical regression model, where the lake-

type observations cover a larger range than in a single lake.

With low LTP and high LTN, the contour lines are parallel to

y-axis indicating phosphorus limitation within this range

(Fig. 8a). On the other hand, with high LTP and low LTN,

the LTN reductions would affect the chl-a level most. With

given average of annual daily loadings (asterisk in Fig. 8a),

the median chl-a is 25 lg l-1 exceeding the good chl-

a criteria for this lake type (20 lg l-1). Both LTP and LTN
reductions affect the chl-a level helping to achieve the

good level.

Substituting the estimated lake-type and lake-specific

parameter values and the median values of simulated nu-

trient concentration distributions to the chl-amodel the chl-

a distribution with given loading values was calculated.

This predictive probability distribution of chl-a (Fig. 8b)

shows that the lake is in moderate condition (100 %).

At a moment, our chl-a model accounts only for the

residual variance in the chl-a model. Considering also the

nutrient retention model residual variance, the predictive

posterior variance of chl-a increases considerably. For il-

lustrating this effect, we substituted the 25th and 75th

percentiles (in addition to median values) from the

Fig. 3 Map of Lake Kuortaneenjärvi catchment and Finland
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simulated CTP and CTN distributions to the chl-a model.

The predictive chl-a distribution is now larger and the

probability of the lake being in moderate condition is 73 %

and the probability of achieving the target chl-

a (20 lg l-1) is 25 % (Fig. 9).

Discussion and Conclusions

The link from external nutrient loadings to the lake’s eco-

logical status (determined here by chl-a) is a key to solve the

problem of estimating loading responses and needed loading
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Fig. 4 Chl-a model posterior box plots for a the unknown fixed effects and b lake-type intercepts, c lake-type slopes for CTP, and d lake-type

slopes for CTN

Fig. 5 Model fit of the retention model for a LTP and b LTN. The

90 % model parameter uncertainty as dark gray; the 90 % parameter

uncertainty and residual error together as light gray. The observed

values are shown as dots and horizontal dashed lines denote the status

class limits
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reductions. With LLR, we could quantify these effects by

combining the well-known Vollenweider nutrient retention

model to hierarchical chl-a model. Using a hierarchical

model, structure allowed us to include into our model all the

available information, of which somemight apply regardless

of the lake type. This enhances the possibility for predictions

outside the range of observations from a single lake.

The posterior box plots in our study show that for some

groups the intercepts and slopes are similar, but for some

other groups they can vary a lot suggesting that some

groups could be combined to gain more group-specific

data. On the other hand, the lakes in northern Lapland are

too heterogeneous for discrete generalizations. Although

LLR is tailored for WFD lake types, it has to be admitted

that the Finnish lake typology is not optimal for hierar-

chical modeling as pointed by Lamon (Lamon et al. 2008).

We need to consider this in the LLR development and

instead of using the lake types in the hierarchy we should

utilize the metrics used to create the typology.

The nutrient retention model results for Lake Kuorta-

neenjärvi showed that nearly all the modeled values are

inside the 90 % confidence intervals. Therefore, both nu-

trient models fit the lake-specific data rather well. How-

ever, the observed values are from quite a narrow range,

which makes the predictions uncertain outside the observed

range. As for most lakes in Finland, there are no mea-

surements of the external loading for Lake Kuortaneenjärvi

and the ranges of the observed values are too narrow for

reliable predictions. This is a recognized shortcoming of

the nutrient retention model in LLR. We can obtain

simulated loading values from hydrological loading models

(such as VEMALA) as LLR input, but those do not fully

Fig. 6 Predictive probability distributions of a CTP and b CTN with current LTP and LTN. Different colors denote different WFD status classes

and the proportion of the color denotes the probability with which the status is achieved

Fig. 7 In-lake a CTP and b CTN as a function of LTP and LTN with median estimates and 90 % confidence regions. Observed median loadings are

shown as broken vertical lines and status class limits as horizontal lines
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compensate for true measurements. Most importantly, with

more comprehensive nutrient balance data, we could im-

prove the nutrient retention model performance. Fitting the

retention model in the hierarchical Bayesian framework

would help transfer information across different lake types

and therefore support the predictions in lakes with narrow

range of observations (Cheng et al. 2010). For this purpose,

we have already started to collect nutrient balance data

from Finnish lakes. Unfortunately, these data are scarce,

due to the high costs and laboriousness of their collection at

the moment. In addition, the highest loading events often

happen outside the growing season, and are related to high

runoff events and un-vegetated ground (especially fields).

There can be high inter-annual variation in the timing and

amount of loading due to differences in rain events and

temperatures during autumn-spring, which makes loading

assessment challenging (Puustinen et al. 2007). Currently,

we have a dataset of nutrient balances from 12 lakes suf-

ficiently well documented to be used as a basis for loading-

lake response predictions. Since it is known that nutrients

are the main cause of eutrophication, even more effort

needs to be put into studying the external nutrient loading

and its sources. Hopefully, as the importance of the issue is

acknowledged and automatic monitoring techniques are

developed, more data will become available for building up

more reliable loading calculations.

However, with many eutrophic lakes, the external

loading is not the only source of nutrients, and thus does

not completely explain the in-lake nutrient concentrations.

Obviously, this hinders predictions of the target loading.

For instance, it has been estimated that the amount of

phosphorus released from the sediment of Lake Kuorta-

neenjärvi during summer is approximately half the amount

of the external loading. The effect of this internal loading

can also be seen in the phosphorus model fit where an

increase in the external loading does not significantly affect

simulated CTP. Taking into account the internal loading is

already in progress in the LLR development.

The validity of the loading values is also significant for

reducing the uncertainty that arises from several sources.

Although using a hierarchical model structure in the chl-

a model increases the model accuracy compared to the

Fig. 8 a Contours of chl-a showing the median chl-a estimate with

different LTP and LTN combinations for Lake Kuortaneenjärvi.

Asterisk indicates the median chl-a estimate with median loadings

and dots the observed loadings. b Predictive probability distribution

of chl-a with median LTP and LTN

Fig. 9 Predictive probability distributions of chl-a concentration

when only the hierarchical chl-a model prediction uncertainty is

accounted (narrow bold line) and when the nutrient model parameter

and residual uncertainty are accounted for. For the latter, different

colors denote different WFD status classes and the proportion of the

color denotes the probability with which the status is achieved
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traditional regression models (Malve and Qian 2006), the

variation in the input data and the parameter and residual

errors in the nutrient models bring a significant amount of

uncertainty to the chl-a distribution. Therefore, we should

acknowledge that the median value from the nutrient re-

tention model used for chl-a predictions also has uncer-

tainty. Calculating the chl-a distribution not only with the

median nutrients but also with the variability attached to

them gives a better estimate of the unexplained residual

uncertainty, which in the case of Lake Kuortaneenjärvi is

considerable. We need to improve the loading monitoring

in order to reduce the uncertainty and to improve the ef-

ficiency of management.

Despite the many aspects that need to be improved in the

LLR tool, there is an urgent need for such fast and simple

assessment tool for use in implementing the WFD, espe-

cially at such an extensive scale as in Finland. Although we

are planning to develop LLR further, the aim is to keep it

relatively simple to use and the data requirements modest.

Currently, target nutrient loadings have been calculated

with LLR for at least 50 lakes in Finland. Our study shows

that the simplified modeling approach together with Baye-

sian inference offers a powerful tool for the decision-mak-

ing process in the river basin management.
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nen was funded by Maj and Tor Nessling foundation, the VALUE

doctoral school and the Maa- ja vesitekniikan tuki ry.

References

Antikainen R, Haapanen R, Lemola R, Nousiainen JI, Rekolainen S

(2008) Nitrogen and phosphorus flows in the Finnish agricultural

and Forest Sectors, 1910–2000. Water Air Soil Pollut

194:163–177
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teet ja niiden soveltaminen (Guidelines for the ecological and

chemical status classification of surface waters for 2012–2013—

updated assessment criteria and their application). Ympäristö-
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Abstract 

The factors affecting phytoplankton development in a small boreal, dystrophic lake during summer strati cation ere 
explored using structural equation models (SEM). Phosphorus had the highest positive impact on phytoplankton, and 
higher temperatures also enhanced the biomass. Water colour, and to a lesser extent intense zooplankton grazing, 
restricted phytoplankton biomass. razers generally seemed to be ineffective at controlling phytoplankton, ho ever, 

hich could be partly due to the high abundance of Gonyostomum semen (Raphidophyceae), a large motile algae not 
readily grazed by zooplankton. The importance of ater colour, a signi cant factor in dystrophic lakes, emerged clearer 
in SEM than from regression models. SEM proved to be an effective and informative technique for exploring the 
factors affecting phytoplankton development, the role of each variable, and their interactions. Incorporating Bayesian 
analysis into the traditional SEM enabled a more detailed examination of variation in the variable estimates and possible 
sources of uncertainty and provided more reliable error estimates. We used total chlorophyll a as a proxy for total phy-
toplankton biomass, but the results clearly indicated that some of the emerging questions could have been better 
addressed by separating different phytoplankton groups. Nevertheless, SEM provided ne  insights from standard data, 
and e encourage its further applications in aquatic science. 

Key words: boreal lakes, chlorophyll a, path analysis, ater colour

Introduction

Many lakes in the boreal region are dystrophic ith high 
concentrations of coloured dissolved organic matter 
( DOM) and iron. The resulting bro n ater colour 
affects light penetration into the lake. In addition, the 
surface of bro n ater lakes absorbs heat more ef ciently, 

hich may lead to stronger strati cation and alterations to 
the thermal structure (Mazumder and Taylor 1994, Houser 
2006, Arvola et al. 2010). There has been a rising trend in 
the concentration of dissolved organic carbon (DOC) 
together ith ater colour in the lakes of Nordic regions 
recovering from acidi cation (Monteith et al. 2007). In 
addition, the arming climate is predicted to further 

increase the leaching of DOC and humic substances from 
peat land and forested catchments into the lakes (Freeman 
et al. 2001, Naden et al. 2010). This on-going bro ni ca-
tion of lakes is highly relevant to phytoplankton because it 

ill decrease the depth of the euphotic zone and may 
constrain primary production (Carpenter et al. 1998, 
Arvola et al. 2014). 

Likely changes in strati cation may also be signi cant. 
Phytoplankton communities in small dystrophic lakes are 
often dominated by agellate taxa (e.g., Arvola 1986, 
Lepistö and Rosenström 1998) that can regulate their 
vertical position in the ater column (Salonen et al. 1984, 
Smolander and Arvola 1988) and hich may also be able 
to avoid grazers to some extent. All these issues affect the 
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intervariable relationships ithin the ecosystem and 
complicate the analysis of variable interactions.

Lake Valkea-Kotinen in southern Finland is a national 
long-term ecological research (LTER) site here the con-
centration of DOC and ater colour have increased from 
1990 to 2009 (Vuorenmaa et al. 2014). Although negative 
correlations bet een ater colour and phytoplankton 
(biomass, primary production, and chlorophyll a) ere 
detected, in step ise regression analysis the possible 
effect of colour as unclear (Peltomaa et al. 2013, Arvola 
et al. 2014). Moreover, the in uence of zooplankton 
grazing on the phytoplankton in Lake Valkea-Kotinen is 
not kno n in detail (Arvola 2014 and its references) and 
should be further examined, although e ould expect 
grazing, like colour, to decrease the phytoplankton 
biomass (Carpenter et al. 1998).

The use of linear regression to explain the interactions 
bet een variables is common in ecology. Due to uncon-
trollable variation, heterogeneity, auto-correlation, and 
gaps or zeros in environmental monitoring data, ho ever, 
linear regression may not be the best option among other 
routinely applied statistical methods (Whittingham et al. 
2006, Zuur et al. 2010). The assumptions of linear 
regression, hich in practice the data seldom meet, are 
ignored at the expense of analytical po er. To obtain 
maximum bene t from long-term monitoring data and 
reveal the variable interactions and underlying patterns 
(Bolker et al. 2009), some more appropriate methods 
could be applied. Hence, e took a different approach to 
study the factors affecting phytoplankton development in 
Lake Valkea-Kotinen by using structural equation 
modelling (SEM). SEM is idely used in psychology and 
economics and is increasingly used in ecology (Pätynen et 
al. 2013). The method has also sho n potential for use in 
phytoplankton studies (Arhonditsis et al. 2006, 2007a, 
2007b, Liu et al. 2010, Salmaso 2011). SEM is able to 
process dif cult data that are autocorrelated, non-normal, 
or even incomplete. Problems ith sampling error 
(statistical) and variation can also be overcome. Even 
more appealing is the basic property of SEM that enables 
examination of not only the causal relationships bet een 
several variables, but also the importance of each variable 
separately (Shipley 2002). Thus, examining its applicabil-
ity and evaluating its suitability for ider use ithin 
aquatic studies ould be valuable.

We tested the applicability of SEM for deeper (and more 
statistically correct) examination of variable interactions in 
Lake Valkea-Kotinen than that gained through linear 
regression. We particularly explored hether SEM ould 
identify colour and grazing as important negative factors for 
phytoplankton development in Lake Valkea-Kotinen. In 
general, e aimed to gain deeper insight into the interac-
tions bet een phytoplankton of a small dystrophic lake and 

the variables that have been routinely measured: ater 
colour, nutrients, temperature, and zooplankton. To our 
kno ledge, until no  SEM has not been applied to this 
kind of environment; hence, our study provides additional 
information regarding its performance and utility. By incor-
porating Bayesian analysis into SEM and by examining the 
posterior distributions, e expected to gain additional 
information about the different variables and the uncertain-
ties associated ith them as ell as improve the modelling 
by allo ing smaller sample sizes (Arhonditsis et al. 2006) 
and providing more reliable error estimates. 

Materials and methods

Study area and data

Lake Valkea-Kotinen is a small head ater lake (area 
0.042 km2, mean depth 2.5 m, maximum depth 6.5 m) in 
southern Finland (61 14 32.1 N; 25 3 46.5 E). The lake 
is surrounded by a forested catchment and can be 
considered a reference site due to lo  anthropogenic 
in uence, hich is especially bene cial in modelling 
studies because of fe er interfering factors. The organic 
carbon load from the catchment gives the lake a noticeably 
bro n colour (1990 1995 median of 134 mg Pt L 1). 
Because of its small size and sheltered position, the lake is 
dimictic and produces a steep thermal and oxygen strati -
cation in the summer, ith a 1.5 2 m thick epilimnion. 
The depth of the euphotic zone is approximately the same 
(Peltomaa and O ala 2010), so e focused our study on 
the ater layer at 0 2 m. Because of the strong seasonality 
and distinct differences bet een summer and inter 
conditions (the sampling frequency decreased during 

inter), e included only measurements from the ice-free 
period. Further, e considered only the period bet een 
the overturns in spring and autumn; thus, from each year 
the rst and last sampling dates ere included hen the 
temperature difference bet een the surface and the bottom 
layer as 2 C. 

For the modelling, e utilized data collected as a part 
of the long-term monitoring of Lake Valkea-Kotinen. The 
epilimnetic samples for concentrations of chlorophyll a, 
nutrients (total phosphorus, total nitrogen, PO4-P, NO3-N, 
and NH4-N), ater temperature, and colour ere from 0 to 
1 m and 1 to 2 m in 1990 1995. Data from some sampling 
occasions had to be omitted because 2 of the methods 
applied for parameter estimations (generalized least 
squares and asymptotically distribution-free estimates, 
discussed later) do not permit missing values. We also had 
counts for 3 zooplankton groups: cladocerans, copepods, 
and rotifers. The zooplankton sampling differed in that 2 
parallel samples ere taken at 1 m intervals from the 
surface to 5 m depth and pooled for a combined sample. 
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Because the zooplankton data ere strongly ske ed, e 
transformed it using natural logarithms. More detailed de-
scriptions of the sampling and analyses can be found from 
Peltomaa et al. (2013), Arvola et al. (2014), and 
Lehtovaara et al. (2014).

Structural equation modelling

We used the AMOS soft are of SPSS for SEM to study 
the effects of different variables on phytoplankton 
development in Lake Valkea-Kotinen. Because the 
technique has received limited attention ithin aquatic 
sciences, e brie y describe the different SEM steps used 
in our study. We rst created a conceptual model of the 
variables to be included in the SEM based on previous 
kno ledge of the processes taking place in lakes in 
general. Hence, our model as con rmatory because our 
aim as to validate a hypothesis about the system function 
using SEM. In a more dynamic modelling process, SEM 
could also be used as an exploratory tool to develop ne  
hypotheses and test them through experiments or further 
observation and, nally, ith a con rmatory model.

SEM has 2 types of variables: observed and latent. The 
bene t of latent variables is that they can be unmeasura-
ble, yet (preferably) describable through measured 
variables (Shipley 2002). The inclusion of latent variables 
also captures the unreliability of measurements in the 
model and distinguishes SEM from simple paths analysis 
( hich can be considered a special case of SEM). For 
example, in our model e used chlorophyll a to model the 
latent variable Phytoplankton  because it is kno n to 
serve as a proxy for phytoplankton abundance, yet does 
not completely describe it. To gain tentative information 
about the variable interactions and ho  they could be 
grouped to form latent variables, e examined the Lake 
Valkea-Kotinen data ith principal component analysis 
and linear regression. SEM as nally created ith the 
selected variables, creating paths bet een different 
variables and the direction of effects as ell as indicating 
probable correlations bet een them (Fig. 1).

After establishing the SEM, estimates for the paths 
(parameters) ere calculated ith the help of maximum 
likelihood estimation (ML), generalized least squares 
(GLS), and the asymptotically distribution-free (ADF) 
method, so that the model as able to create a variance
covariance (or correlation) matrix for the variables, 
congruent to the one observed (Hershberger et al. 2003). 
The null hypothesis (H0) in SEM is that the observed 
covariance matrix equals the model-implied matrix, and the 
model can be accepted; hence, an important feature for in-
terpretation of results is the acceptance, not rejection, of H0.

One assumption of the ML estimation, hich is most 
often used for parameter estimation in SEM, is multivari-

ate normal data, yet non-normality of observational data is 
unfortunately common. The zooplankton data ere ln-
transformed because they ere strongly ske ed for all 
zooplankton groups, but transforming total phosphorus 
and especially the chlorophyll a data ould also have 
been necessary to gain multivariate normality for the 

hole dataset. Transformation of chlorophyll a as not 
possible, ho ever, because it led to identi cation 
problems in the model (i.e., ith parameter estimation). 
Because non-normality increases the risk of type 1 error 
(rejecting a valid model), e used ML for estimates but 
also used GLS and ADF for comparison.

We performed a 2 test in AMOS to con rm the 
congruity bet een the observed and modelled matrices. 
Accepting H0 means that the 2 test value should be as 
small as possible, degrees of freedom should be high, and 
p  0.05 (e.g., Shipley 2002, Hershberger et al. 2003, 
Grace et al. 2010). Eventually e tested several possible 
models ith slight variations in the included variables, 
repeating the process from the development of the SEM to 
the 2 test, before the best model as selected for this 
research.

Phytoplankton

Chlorophyll a

Nutrients

Colour

Temperature

Grazing

Copepods Cladocerans
Total

phosphorus

0.94

1.00-0.14

0.38

0.86

-0.10

0.83 0.560.61

2

1

345

Fig 1. Structural equation model for Lake Valkea-Kotinen (n = 144). 
Measured variables are indicated ith rectangles, latent 
(unmeasured) variables ith ovals, and error terms ith circles. 
Arro s indicate the direction of effects, and 2-headed arro s 
indicate correlation bet een variables. Numbers beside each arro  
indicate the standardized path coef cient, or regression eights 
bet een variables, estimated using maximum likelihood. A 2 test of 
the congruence bet een the measured and modelled correlation 
matrices yielded a 2 value of 15.741 (10 df, p = 0.107).
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After constructing a model ith the help of the other 
techniques, e performed Bayesian analysis to obtain 
more realistic estimates for error term variances for zoo-
plankters and total phosphorus, and thus to improve the 
Lake Valkea-Kotinen SEM, by leaving the variances un-
constrained (not setting them as 1). After obtaining the 
variance estimates, e set them as constraints in the 
conceptual model and performed ne  estimates ith ML, 
GLS, and ADF, hich are presented as nal results. 
Bayesian SEM does not rely on asymptotic theory, hich 
allo s smaller sample sizes (Arhonditsis et al. 2006) 
compared ith traditional SEM in hich the number of 
observations should be 200 or more (Shipley 2002), a 
value not reached ith our data (n = 144). Also, con rma-
tion of the results ith ML, GLS, and ADF as 
appropriate. The variances in posterior distributions of 
Bayesian analysis yielded additional information about 
the different variables and uncertainties associated ith 
them, hich can then be used to decide hich variables 
should be measured more frequently for better model 
accuracy and to better ans er questions of interest. 
Bayesian analysis can also indicate multimodality in the 
estimations, hich may be relevant for interpreting 
results. In this study e did not add prior information into 
the Bayesian analysis, but instead used at, uninformative 
priors and let the data drive the process.

Because the datasets in some earlier studies (e.g., 
Arvola et al. 2014) ere not identical to ours, e also 
created a regression model for better comparison bet een 
SEM and linear regression. The data and the included 
variables ere exactly the same as in SEM.

Results

The nal SEM for Lake Valkea-Kotinen included nutrients 
(total phosphorus) and grazing (cladocerans and copepods) 
as latent variables, and temperature and ater colour as 
measured variables that together had the strongest effect on 
phytoplankton (Fig. 1). The correlation bet een temperature 
and grazing as strong and as thus included in the model. 
All other variables, including the other nutrient fractions 
and the rotifers, ere excluded from the nal model because 
they ere not supported by the data. The correlation 
matrices (Table 1) and estimates ith different methods 
(ML, GLM, and ADF) supported each other (Table 2), and 
the 2-test values indicated equally good model ts for each 
of them (Table 3). The Bayesian analysis supported the 
other estimates and indicated that the highest uncertainty 
derives from the biological variables because their deviation 
in posterior distributions increased (Table 2). Using the 
error variances estimated ith the Bayesian method for ML, 
GLM, and ADF estimates slightly improved the 2-test 
values for the nal SEM (Table 3).

In SEM, the direct paths bet een different variables 
can be examined for direction and strength of their inter-
actions. The standardized path coef cients bet een 
variables are equivalent to the standardized regression 

eights (Fig. 1), and, similarly, regression p-values can be 
calculated for each path to better evaluate the importance 
of each variable independently (Table 2). When latent 
variables are included, ho ever, the total standardized 
effect of measured variables on the dependent variable is 
calculated by multiplying the effect bet een the measured 
and latent variable by that bet een the latent and 
dependent variable. Hence, a positive effect of total 
phosphorus and temperature on phytoplankton 
development in Lake Valkea-Kotinen as found (Fig. 1; 
Table 2). In contrast, the negative effect of colour and 
zooplankton (grazing) is not as strong; colour seems to be 
a more in uential factor, hile the total standardized 
effect of cladocerans on phytoplankton can be calculated 
as 0.83  ( 0.10) = ( 0.08) (Fig. 1; Table 2).

In the regression model, the effect of total phosphorus 
and ater temperature on chlorophyll a as signi cant 
(Table 4). The effect of colour as negative, ith an 
acceptable signi cance level (p = 0.044). There as no 
clear effect of either cladocerans or copepods on 
chlorophyll a, and the adjusted R2 for the overall model 

as 0.40.

Discussion

We created SEM that revealed the selected variable inter-
actions in Lake Valkea-Kotinen. According to our SEM 
analysis, ater temperature and nutrients explained most 
of the phytoplankton biomass development in the lake. 
The positive effect of ater temperature and nutrients as 
higher than the negative effects of colour and grazing; the 
effect of grazing as especially more distinct ith SEM 
than in a regression model. The possibility to add correla-
tions (and interactions) bet een explanatory variables 
improved the description of the studied system. The 
biggest differences bet een our SEM and the step ise 
regression presented by Arvola et al. (2014) as that the 
latter excluded temperature altogether, and the effect of 
zooplankton as not taken into account. The inclusion of 
zooplankton in our regression model is also poorly 
justi ed (see individual p-values in Table 4) because it did 
not further improve the model. If a step ise method had 
been used instead of entering the selected variables, 
cladocerans and copepods ould have been omitted from 
the model.

The questions and the conceptual model could involve 
only the measured variables (or those latent variables that 
could be described ith the measured variables), hich 
kept our SEM  simple and limited the study questions. We 
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expected to be able to include total nitrogen or the 
different nutrient fractions together ith total phosphorus 
or in place of it under the latent variable ‘Nutrients’ 
because Lake Valkea-Kotinen had sho n signs of co-limi-
tation of phosphorus and nitrogen during the 1990s 
(Järvinen 2002, Vuorenmaa et al. 2014), and the dissolved 
fractions ould better re ect the actual interaction 
bet een nutrients and phytoplankton. The step ise 
multiple regression analysis in Arvola et al. (2014) 
included phosphate, ammonia, and dissolved inorganic 
nitrogen together ith total nitrogen, total phosphorus, 
primary production, and colour as explanatory variables 

for chlorophyll a, ith adjusted R2 = 0.552. Their results 
are not directly comparable to ours, ho ever, mostly 
because their study period as longer (1990 2009), but 
also because their data included the measurements from a 

xed period of eeks 20 39 each year. Thus, although 
also from the open ater period, their data included some 
occasions hen the ater column as not strati ed. In our 
trials ith different models, total nitrogen seemed to be 
the least relevant variable, in ating the 2 values if it as 
added. In contrast, the 2 values remained lo  for 
phosphate and nitrate-nitrite, and the greatest problem in 
identifying causalities arose from the many values of 

Temperature Colour Total phosphorus Chlorophyll a log(Copepods) log(Cladocerans)
Temperature Observed 1.000

ML 1.000
GLS 1.000
ADF 1.000

Colour Observed 0.181 1.000
ML 0.000 1.000
GLS 0.000 1.000
ADF 0.000 1.000

Total phosphorus Observed 0.151 0.159 1.000
ML 0.000 0.000 1.000
GLS 0.000 0.000 1.000
ADF 0.000 0.000 1.000

Chlorophyll a Observed 0.380 0.261 0.562 1.000
ML 0.294 0.140 0.510 1.000
GLS 0.281 0.133 0.488 1.000
ADF 0.333 0.098 0.519 1.000

log(Copepods) Observed 0.514 0.024 0.062 0.182 1.000
ML 0.513 0.000 0.000 0.135 1.000
GLS 0.510 0.000 0.000 0.125 1.000
ADF 0.533 0.000 0.000 0.147 1.000

log(Cladocerans) Observed 0.719 0.201 0.179 0.288 0.505 1.000
ML 0.714 0.000 0.000 0.188 0.481 1.000
GLS 0.682 0.000 0.000 0.167 0.471 1.000
ADF 0.710 0.000 0.000 0.196 0.488 1.000

Table 1. Correlation matrix for variables in the Lake Valkea-Kotinen structural equation model. For each pair of variables, the correlations 
from observed data (columns) and those from the maximum likelihood (ML), generalized least squares (GLS), and asymptotically distribution 
free (ADF) estimation methods are presented.
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those variables that fell under their analytical detection 
limit during the strati ed period. A similar situation for 
phosphate as reported for Lake Washington data 
(Arhonditsis et al. 2006), and more frequent measure-
ments or higher n for values above the detection limit 

ould be needed to catch some of the interplay bet een 
phosphate and chlorophyll a. Arvola et al. (2014), ith the 
notably larger dataset from 1990 2009 (n = 332), still 
reported the correlation coef cient bet een chlorophyll a 
and phosphate in Lake Valkea-Kotinen to be r = 0.544 and 
nonsigni cant bet een chlorophyll a and nitrate. Another 
process that could interfere ith the interaction bet een 
epilimnetic nutrients and phytoplankton is the ability of 
some agellate taxa, like cryptophytes and Gonyostomum 
semen, to migrate bet een the epilimnion and 
hypolimnion to access additional nutrients in deeper ater 
(Salonen et al. 1984, Salonen and Rosenberg 2000). 

Although e used SEM mostly as a con rmatory tool, 
one promising feature of SEM as the possibility to 
explore different model options and test the effect of 
inclusion or exclusion of some variables on the model 
outputs. As seen from the standard deviations of the 
posterior distributions (Table 2), the effect of grazing on 
phytoplankton as the most uncertain and varied on a 

ide scale above and belo  zero. In earlier studies (Arvola 
et al. 2014, Lehtovaara et. al. 2014) and also in the 
regression analysis here, the interplay bet een phytoplank-
ton and zooplankton remained unclear, perhaps because it 
is not straightfor ard and not easily detected by traditional 
methods. During the model building phase, hen the 
included variables changed and different datasets ere 

used (e.g., from summer and autumn months separately), 
the effect of grazing could occasionally turn positive, 

hich also occurred ith copepods in the regression 
model. et Bayesian analysis sho ed there as actually 
multimodality in the posterior distribution, ith the 
positive effect eventually gaining the higher peak 
(maximum likelihood). This nding is some hat contra-
dictory to conventional vie s, and although only a side 
product of the modelling, it raises interesting questions 
about the phytoplankton zooplankton relationship in this 
lake. The presence of G. semen may, at least partly, explain 
the eak relation bet een phytoplankton and grazing in 
the nal model as ell as suggest a counterintuitive 
positive relation in the trials. G. semen is often abundant in 
Lake Valkea-Kotinen during the late summer; during 
1990 2003 it averaged 48  of the total yearly phytoplank-
ton biomass and during 1991 1994 95  (Peltomaa et al. 
2013). G. semen seems to be effectively grazed only by 
some large cladocerans, hereas copepods are not able to 
control its abundance (Lebret et al. 2012). Stable isotope 
analyses have indicated that G. semen is hardly grazed in 
Lake Valkea Kotinen (Jones et al. 1999), and thus the 
effect of zooplankton on G. semen may be negligible or 
may even further boost its gro th by eliminating the 
competing species and recycling nutrients, as demonstrated 
by Bergquist and Carpenter (1986) and Elser and Goldman 
(1991). The different sampling technique for zooplankton 
compared to other variables could also have an effect, 
ho ever, even though the zooplankton abundance in the 

hole 5 m ater layer probably re ected mostly that in the 
epilimnion (Lehtovaara et al. 2014).

Maximum likelihood Generalised least squares Asymptotically 
distribution-free

Bayesian

 Estimate SE p Estimate SE p Estimate SE p Estimate SE SD
Cladocerans  Grazing 1.954 0.262 <0.001 1.770 0.232 <0.001 1.789 0.192 <0.001 2.022 0.002 0.325
Phytoplankton  Colour 0.197 0.096 0.040 0.196 0.102 0.054 0.165 0.106 0.118 0.195 0.000 0.098
Phytoplankton  Grazing 4.625 4.237 0.610 4.798 8.421 0.569 5.083 5.346 0.120 3.826 1.787 30.339
Phytoplankton  Nutrients 5.736 0.753 <0.001 6.054 0.765 <0.001 5.433 0.555 <0.001 5.844 0.006 0.846
Phytoplankton  Temperature 2.494 1.191 0.041 2.514 1.247 0.044 3.430 1.343 0.011 2.364 0.230 4.022
Covar(Temperature, Grazing) 1.793 0.320 <0.001 1.711 0.304 <0.001 1.875 0.218 <0.001 1.851 0.002 0.350
Var(Grazing) 0.317 0.088 <0.001 0.326 0.087 <0.001 0.348 0.068 <0.001 0.325 0.001 0.095
Var(Colour) 272.291 32.202 <0.001 238.446 30.011 <0.001 190.246 24.725 <0.001 282.184 0.151 34.000
Var(Nutrients) 14.508 4.195 <0.001 12.709 3.591 <0.001 15.866 4.191 <0.001 15.336 0.022 4.455
Var(Temperature) 13.308 1.574 <0.001 12.153 1.499 <0.001 13.030 1.114 <0.001 13.981 0.006 1.698
Var( 5) 0.617 0.003 0.181
Var( 4) 0.619 0.001 0.086
Var( 3) 34.555 0.018 4.341

Table 2. Path coef cients and variances ith 4 different estimation methods for the Lake Valkea-Kotinen structural equation model. The 
estimate for path coef cients is the mean value. Depending on the method, standard errors (SE) together ith p-values (p) or standard 
deviations (SD) are also given for the estimates. The Bayesian method provided error variances for copepods ( 5), cladocerans ( 4), and total 
phosphorus ( 3).
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In addition to cladocerans and copepods, there are also 
protozoans and rotifers present in the lake that ere not 
included in the model. The rotifer data are available, but 
the principal component analysis sho ed that they did not 
group ith the other zooplankton; there as a clear 
seasonal pattern in the highest densities of each group, 

ith those of rotifers and cladocerans clearly diverging 
(Lehtovaara et al. 2014). Thus, the latent variable 
Grazing  is not as straight for ard as the measured 

colour values, and e are missing information about the 
true grazing pressure, a problem not even the inclusion of 
latent variables can solve.

The negative effect of colour clearly out eighed that of 
grazing, and a negative correlation bet een colour and phy-
toplankton biomass as also found in Lake Valkea-Kotinen 
during 1990 2004 (Peltomaa et al. 2013). While higher 

ater colour reduces light availability for photosynthesis, its 
effect on the shallo  epilimnion of Lake Valkea-Kotinen 
may not be as clear as the model implies (Jennings et al. 
2010 and references). Seasonal variation in the colour values 
tends to be lo est during the summer months (Arvola et al. 
2014), hen the transport of organic matter from the 
catchment is lo  and the ater column is stable. Hence, 
although bro n ater colour constrains primary production 
(Carpenter et al. 1998, Arvola et al. 2014), some caution 
should be exercised hen interpreting the model outputs 
quantitatively because the matching seasonality bet een 
colour and phytoplankton may partly explain the higher 
biomass of phytoplankton during decreasing colour values.

The questions that emerged regarding grazing as ell 
as many of the other interactions could be better addressed 

ith species-level phytoplankton data. The role of one 

species, G. semen, seems to be especially important, and 
therefore it ould be useful to kno  more about its 
ecological constraints and effects. Some of the detailed in-
teractions during the gro ing season are obscured hen 
modelling only total chlorophyll a, and even the impact of 

ater temperature varies bet een species (Reynolds 2006, 
apparent also in Lake Valkea-Kotinen; Peltomaa et al. 
2013). Regardless of these issues, e propose that the SEM 
presented here provides supporting information for the 
long-term research at Lake Valkea-Kotinen and is a 
po erful method to analyse ecological data and, in 
particular, their complex interactions. Compared to other 
methods like linear regression, SEM is perhaps more 
dif cult to adopt, yet its better suitability for empirical 
data, highlighted earlier, is a clear bene t. In addition to the 
problematic assumptions, many of the methods are unable 
to describe the system as a net ork of causalities, thus 
eliminating their use for detailed predictions about the 
dynamics of the system. Moreover, linear regression, hich 
is perhaps the most idely used method for describing the 
relationship bet een variables ( hich usually are not linear 
in nature), should only be used for predictions ithin the 
upper and lo er limits of the original dataset. Extrapolat-
ing to drastically different conditions is thus inadvisable 
and potentially restricting. This problem can be overcome 

ith Bayesian SEM by using prior information, but if SEM 
is to be used for predictions it must be tested ith an 
independent dataset from the lake. We also note that the 
SEM strategy of comparing alternative models to assess 
relative model t makes it more robust than regression, 

hich can be highly susceptible to interpretation error due 
to misspeci cation (Garson 2012).

Maximum likelihood Generalized least squares Asymptotically distribution-free
B A B A B A

2 15.430 16.018 11.564 13.786 15.175 15.384
df 8 11 8 11 8 11
p 0.051 0.140 0.172 0.245 0.056 0.166

Table 3. 2-test values, degrees of freedom (df), and p-values for the Lake Valkea-Kotinen structural equation model ith different estimation 
techniques before (B) and after (A) utilizing error variances gained from Bayesian analyse for copepods, cladocerans, and total phosphorus.

1 SE 2 t p
Constant 17.355 16.646 1.043 0.299
Total Phosphorus 1.757 0.231 0.503 7.596 0.000
Temperature 2.108 0.636 0.319 3.313 0.001
Colour 0.199 0.098 0.136 2.035 0.044
log(Cladocerans) 1.205 1.738 0.067 0.693 0.489
log(Copepods) 0.429 1.980 0.017 0.217 0.829

Table 4. Unstandardized ( 1) and standardized ( 2) regression coef cients ith standard errors (SE) given for the unstandardized coef cients 
and t-test (t) and p-values (p) for the chosen indicators of chlorophyll a in Lake Valkea-Kotinen.
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A high data requirement has previously restricted SEM 
studies, but the dilemma of missing data can (to some 
extent) be eased by utilizing the Bayesian modelling 
frame ork. Bayesian modelling also allo s us to take the 
Lake Valkea-Kotinen SEM as a starting point, as prior 
information, for studies of other lakes. Especially hen 
applying models for lakes ith limited available data 
(e.g., to support lake management), e should aim to 
evaluate and develop modelling methods that ould be 

exible and simple to apply regardless of data availability. 
In future studies, ho ever, a comparison bet een 
modelling coarse and detailed data should be conducted to 
further assess the utility of SEM for less-studied lakes as 

ell as to estimate the minimum data needed for an 
acceptable model.

In conclusion, SEM for Lake Valkea-Kotinen sho ed 
that during summer strati cation, nutrients and temperature 
enhanced phytoplankton gro th in a dystrophic lake, 

hereas high ater colour as a signi cant restricting 
factor. The effect of zooplankton grazing on phytoplankton 

as also negative, yet eak. We ere able to explore the 
phytoplankton zooplankton interaction in more detail 
using Bayesian SEM, hich provided ne  insights about 
variable interactions in a dystrophic lake and supporting 
information for the long-term research at Lake Valkea-
Kotinen. Considering the many bene cial features of SEM 
for analysing monitoring data, e encourage its further ap-
plications in aquatic science.
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Abstract

The development of modelling in aquatic ecology has focused on mechanistic biogeochemical 
models.  However, such models have substantial data requirements for inputs and also for proper 

absence of proper uncertainty analysis for the model results. This makes the use of the outputs 
for public policy making (e.g. in lake management) rather questionable.  We see no compelling 
reason (other than lack of awareness of choices) why all lakes and all questions should necessarily 

ways they have been used to extract maximum information from existing data. These methods 

any one method over the others.  Rather, we want to stimulate debate about the remaining 
unknown factors in lake modelling as well as about the balance between data and models, and 
the still too uncritical way in which model outputs are interpreted and used for decision making.

Keywords: Chlorophyll a; lake management; phytoplankton; statistical modelling; uncertainty.

Introduction

With ecological modelling there is a need to consider 
carefully, not only the theoretical validity of the model 
equations, but also their reliability and consistency in 

showed through meta-analysis that the performance of 
mechanistic aquatic biogeochemical models declines the 
more they shift from physical and chemical processes to 

biological components of planktonic systems.  Also, when 
the models are used for forecasting or as baselines to study 
new systems, there is a need to consider very carefully the 
uncertainty in the model outputs and the information they 
are actually yielding (Clark et al., 2001).

In this review we do not intend to go deeper into 

face these questions.  Rather, we wish to consider how, 
from a more practical and basic standpoint, these issues 
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joint-development of the (strongest) existing mechanistic 
biogeochemical models, with very detailed descriptions 
of the aquatic system (see Jørgensen, 2010; Mooij et al., 
2010; Trolle et al., 2012).  Although the development of 
these models has been intense during recent decades and 
many methodological improvements have been achieved 
(see  Jørgensen, 2010 for a short review), it is not clear 
that the problems highlighted above are overcome when 
applying the models to study new interactions outside 
their base equations and the environment into which they 

drawback with applying process-based biogeochemical 
models for management purposes (besides expensive 
licenses, high computational costs and complexity) is 
that they require a substantial quantity of both detailed 
data for input and independent data for validation.

This means that for a lake that has not been well 
studied, the credibility of the model and its function in 
the new system may become impossible to judge and its 

this is often the situation when utilising models in lake 
management, even though the predictive power of models 
during the decision-making process would then be 
crucial.  For example, many of the lakes covered by the 
EU Water Framework Directive (European Parliament & 
Council, 2000), that presents water quality requirements, 

good quality process-based modelling.  One solution 
could be to apply less complex models for less studied 
systems.  However, in many cases the simple equations 

exploring the system function.  The right time and 
space scale is crucial for addressing more detailed 
questions, and the often averaged predictions of simple 

(Arhonditsis et al., 2006; Kruk & Segura, 2012), even 

ways to exploit sparse data.  An even stronger reason 
to think that statistical methods can represent a good 

are neither clear nor stable, so that the possibilities to 
make accurate measurements of everything essential 

of the predictive accuracy of mechanical models has 

very detailed models inevitably become very complex 

Doherty & Christensen, 2011).  This has raised particular 
criticism of the use of biogeochemical models as a basis 

(2004) reporting on the lack of uncertainty analyses in 153 

However, with most commonly used statistical 
methods, we soon face the (often ignored) problem that 
data or model residuals do not meet the assumptions 

variables, independence of observations or a correct model 
anyway 

or not understanding the true meaning of the assumptions 
can in the worst case lead to false models and false 
interpretations of the system.  Especially with observational 
data, problems arise with traditional linear models (and 
regressions) as one of their essential features is to assume 
only the dependent variable to be subject to measurement 

a need to identify novel methods that do not have, or can 

if we seek to learn about causal relationships in nature we 
cannot rely only on controlled experiments (Shipley, 2002).

Here we consider two methods, linear mixed modelling 
(LMM) and structural equation modelling (SEM), to 
promote the idea that instead of concentrating too much 
on developing all-embracing models we should constantly 
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seek new and adequate modelling tools to extract the most 
ecological information from the available data, while at the 
same time acknowledging the unpredictability and multi-
dimensionality of nature, that may be simply impossible 
to compress into equations.  It is crucial to recognise 
the stochasticity of nature and handle it in the right way 
(Clark et al., 2001), as well as to bear in mind the heuristic 

Both LMM and SEM appear to represent interesting 
alternatives for studies with environmental data, although 
at present their ecological applications, especially for 
aquatic environments, are still growing.  The reasons these 
methods have not been used more in general have mostly 
been inadequate computing power and lack of freely 

methods are of course more complicated to adopt than 

In the case of path analysis, from which SEM is derived, and 
the original work of geneticist Sewall Wright,  it was also 
not able to compete with Fisher’s methods at the beginning 
of the 20th century and was ignored (Shipley, 2002).

We will introduce the use of LMM and SEM for 
phytoplankton- and eutrophication-related studies 

more customary methods.  Although there are several 
other methods, these two were selected because they:

have interesting, novel approaches to study ecological 
questions;
are relatively easy to adopt with the help of some 
statistical support;
do not require extensive input data;
are executable using normal computing power;
already have some published applications for 
aquatic environments, including phytoplankton, for 
comparison;
can be applied with free software like R (R 
development core team, 2012).

In addition, they can be combined with Bayesian 
inference.  In the Bayesian mode of thinking, external 
information outside the observed dataset can also be 
used in the analysis.  Assimilating this so-called prior 
information from earlier studies or literature helps to 

utilise all the available information about the phenomenon.  
Moreover, any new information gained afterwards can 
easily be added into the model.  In Bayesian inference, 
model parameters are considered as random variables 
and they are assigned a probability distribution (Ellison, 
2004).  In environmental decision making, the Bayesian 
approach is appealing, as the uncertainty and error in 

and considered.  One limitation of Bayesian analyses 

requirement for computing power.  However, this 
problem is overcome with the help of modern computing 
software.  A thorough and mathematically emphasised 
introduction to Bayesian data analysis can be found in 
Gelman et al. (2003) and a more practical introduction 
for ecologists in Ellison (2004) and Clark (2005).

Linear Mixed Modelling and 
Structural Equation Modelling in 
phytoplankton studies

We undertook a search in the Web of Science (
thomsonreuters.com/web-of-science) concentrating on 
those articles that actually introduced an application for 
phytoplankton and perhaps linked this to eutrophication 
problems.  Because the selected statistical methods can 

modelling we conducted the search with: (‘phytoplankton’ 
OR ‘chlorophyll’) AND (‘structural equation model*’ OR 
‘causal model*’ OR ‘latent variable structural equation*’ 
OR ‘analysis of covariance structure*’) (taken from Rigdon, 

possible non-linear applications and did the search with: 
(‘phytoplankton’ OR ‘chlorophyll’) AND (‘hierarchical 

For SEM the number of relevant articles was 13 and for 
LMM seven.  We could not access one of the SEM articles 

authors it is closely related to some of the other papers.  From 

approach.  Some additional papers listed in the search had 
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chlorophyll a only as a proxy for some other factor and 

papers reviewed was published before 2004 and most were 
quite recent.  As a comparison, a query for SEM without 
the restricting terms phytoplankton and chlorophyll a 

When looking at the number of citations and the 

here, two issues arose.  Firstly, the papers have not generally 
gained many citations, and secondly they are mostly cited 
in journals like Ecological Modelling and Environmental 
Modelling and Software.  This indicates that currently they 
do not really represent the ‘mainstream’ aquatic modelling 
that reaches the more common limnology-related journals.

Mixed effects models

After using linear regression, the step towards linear mixed 

lme and gls packages for R, some basic statistical programs 
like SPSS (IBM) have a guided function for mixed 
modelling.  The advantages of LMM compared to linear 
regression arise from its capacity to cope with temporal 
and spatial correlation and repeated measurements for all 
types of data.  LMM is especially suitable for complicated 

where the observations are naturally grouped so that the 
individual samples in the same group are not independent.

In the linear mixed model the response variable is 

overall mean value of the dependent variable, in which 
we are usually interested.  The random part of the model 
expresses the covariance structure of the data, and we are 
not interested in the variables as such (see e.g. Clark, 2007).  

and the random part the covariance structure of selected 
variables between and within lakes.  Constructing LMM 

the same way as for linear regression modelling.  By 

be additive, depending on the relationships between the 

how to apply additive mixed modelling to phytoplankton 
time series data that have several complicating factors.  
They used data for which the environmental variables and 
phytoplankton variables had sometimes been measured 

phytoplankton species, possible temporal and spatial 
correlation, as well as heterogeneity and non-linear trends 
over time.  In addition the data were irregularly spaced 

laboratories.  The example is a very good introduction and 
discusses not only the advantages of mixed modelling, 
but also the emerging problems and possible solutions.

In practice, a hierarchical model structure has proved 

(for example from environmental monitoring) in which 
the number of monitored lakes is large but the number of 
observations for some individual lakes may be small.  Thus, 
to make predictions for one lake, all pieces of information 
can be put together by weighting the most relevant 

the help of the whole dataset (so-called ‘borrowing strength 
theory’).  The selected papers gave examples of how water 
quality data can be further grouped into intermediate 

Qian, 2008), landscapes (Wagner et al., 2011) or lake types 

similarities that these features may bring at the lake level to 
the processes of interest.  This demonstrates the advantage 

of, say, lake depth on the phosphorus–chlorophyll a 
relationship (see also Phillips et al., 2008), without having to 
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split the big dataset for separate regression, and thus gain 
a more powerful yet realistic model (Malve & Qian, 2006).

The idea can also be used the other way round, 
to test into what kind of groups it is reasonable to 
divide lakes for their assessment, so that the groups 
actually explain variation in the responses (Cheruvelil 
et al., 2007).  For the intercalibration of ecological data 
within EU countries, Thackeray et al. (2013) used 
hierarchical modelling to show that variation within 
certain proxies for eutrophication (chlorophyll-a 
concentration, Phytoplankton Trophic Index and total 
cyanobacterial biovolume) was highest at the among-lake 
level and not among persons handling the samples.

All the above mentioned studies applied LMM, 
whereas the additive method has been used by Carvalho 
et al. (2011) when trying to determine risk factors for 
cyanobacterial blooms.  Their modelling showed that at a 
national scale the lake water colour followed by alkalinity 
increased the risk.  The additive method has also been used 

(Salmaso et al., 2012).  Thus, the studies are very similar 
to those done with LMM, but with the additive method 
allowing non-linear relationships between variables.

In three of the papers (Malve & Qian, 2006; Lamon & 
Qian, 2008; Wagner et al., 2011), Bayesian inference has been 
included into the modelling.  Lamon & Qian (2008) stated 
that, because of problematic data, the Bayesian method 
was essential for their model estimates.  When the number 
of hierarchy levels and the number of model parameters 

to complex equations.  Thus, obtaining analytical or 
closed-form solutions to them becomes impossible, leaving 
the Bayesian sampling-based approach as the only option 
(Clark, 2007).  Actually it is more a rule than an exception 

Bayesian context is a bit confusing, as all the parameters are 
random (Gelman et al., 2003).  Therefore, it is more common 
to use the term hierarchical Bayes, whenever there is a 
mixed/multilevel modelling and a Bayesian approach is 

involved.  From a more practical point of view, the posterior 
distributions from Bayesian analysis give a more tangible 
idea of the uncertainty in estimates (Malve & Qian, 2006).

tools to make the most of sparse monitoring data, and, 
on the other hand, to make deductions that take into 
account the natural variation between sites.  Malve & Qian 

preciseness of the hierarchical levels may not be clear.  
For instance, there has been debate (Lamon et al., 2008) 
about the accuracy of dividing Finnish lakes into the 

whereas Wagner et al. (2011) point out that they had to 
make a lot of assumptions with the landscape data.  Of 
course, the selected hierarchy may not always highlight 

phytoplankton species may be more consistent among 

Structural equation modelling

Structural equation modelling (SEM) is a component of 
applied multivariate statistical analyses that emphasises 

within which new techniques can be added as they 
become available (Grace et al., 2010).  Essentially SEM 
is an extension of the general linear model, but a rather 
deeper introduction to SEM than to LMM is probably 

of SEM can be found from Shipley (2002).  Nevertheless, 
using SEM programs does not actually require a very 
detailed understanding.  R has packages for SEM, but it 

commercial packages, which are more visual.  Some free 
student versions are available, for instance SPSS AMOS 
(IBM), but unfortunately that does not include the Bayes 
function.

Unlike for linear regression, in SEM it is possible to 
include multiple dependent variables and hence to obtain 
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correlation as well as non-normal or incomplete data.  One 
useful property for ecosystem studies that distinguishes 
SEM from simple path models is the inclusion of latent 
variables (Shipley, 2002).  A latent variable is one that 
cannot be measured directly, and hence it can be more 
hypothetical and theoretical (Hershberger et al., 2003).  

include a latent variable if it can still be observed through 
directly measurable variables that are linearly related to 
it (Shipley, 2002).  The inclusion of latent variables also 
allows us to capture the unreliably of measurement in 
the model.  For instance, we can measure some nutrient 
fractions from the water, but since we know they do 
not explain the growth of phytoplankton directly as 
such, we create a latent variable ‘nutrients’ (see e.g. Fig. 
4 in Arhonditsis et al., 2006 for illustrative example).

it against empirical data or to explore the potential 

theories (Hershberger et al., 2003).  Especially when 
building up theories it is necessary to consider very 
carefully what is the quality and the representative-

conceptual model and a path diagram of the interactions 

model development (this is why using R instead of the 

with them the model building starts simply by drawing the 
variables and paths between them, which is not possible 
in R).  Besides literature, principal component analysis 
(Chou et al., 2012) and/or linear regressions (Liu et al., 

on responsible variables, before constructing SEM.
Of the 12 articles we selected, half introduce SEM for 

on chlorophyll-a concentrations and phytoplankton 

within the community (Arhonditsis et al., 2006, 2007a, b; 
Liu et al., 2010; Salmaso, 2011; Gudimov et al., 2012).  One 
climatic-change-related review uses SEM as part of the 

analysis to elucidate some of the key causal relationships 

phytoplankton (Shimoda et al., 2011).  The planktonic 
food web and prey–predator interactions are studied in 
one of the articles (Shinada et al., 2005), and four articles 
focus on biodiversity, often also including a regional 

After establishing the conceptual model, estimates 
for the paths (parameters) are calculated with the help 
of maximum likelihood estimation or weighted least 
squares, so that the model is able to create a variance-
covariance (or correlation) matrix for the variables, 
congruent to the one observed (see Hershberger et al., 
2003).  A key element in model building is that inclusion 
or exclusion of a pathway should be based on theoretical 

In addition, the pathways should be kept to a minimum 
and the model as simple as possible (Grace et al., 2010).  
Indeed, SEM with too many interacting variables becomes 
onerous to interpret and follow (as in Stomp et al., 2011).

The null hypothesis in SEM is that the observed 
covariance matrix equals the model-implied one and 
that the model can be accepted.  Hence, a very important 
feature for the interpretation of results is that the aim is 
the acceptance of H0, not rejection.  For instance X2-test 
can be used to test the congruity between the observed 
and modelled matrices.  The value of X2 should be as 
small as possible, degrees of freedom should be high and 
p higher than 0.05 (see e.g. Shipley, 2002; Hershberger et 
al., 2003; Grace et al., 2010).  There are also other options 
that can be used instead of or together with the X2-test, like 
the root mean square error of approximation (RMSEA) 

et al., 2005; Arhonditsis et al., 2007a; Chou et al., 2012).

to see the direction and strength of their interactions.  

variables are equivalent to the slopes in normal 
regression.  However, when latent variables are included, 
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the dependent variable is calculated by multiplying 

and that between the latent and dependent variables.
Interestingly, the studies selected show that physical 

factors, especially temperature, more consistently 

Arhonditsis et al., 2007a; Chou et al., 2012), although 

places (Arhonditsis et al., 2007b).  The role of nutrients 
varied and the addition of some key growth element 
such as phosphate (if comparing Arhonditsis et al., 
2007a and b) did not markedly improve the model.  As 
Arhonditsis et al. (2006) pointed out, in phosphorus-
limited environments the normal monitoring sampling 
frequency is too low for detecting the actual relationship 
between phytoplankton and phosphate concentrations, 

that included separate phytoplankton groups instead 
of total chlorophyll a
elucidating the more detailed interactions, such as between 
temperature, nutrients, zooplankton and phytoplankton 
(Arhonditsis et al., 2006; Shimoda et al., 2011).

The interpretation of SEM results is perhaps the 
most critical part, especially when latent variables are 
present.  Some of the articles were confusing to read, 
when for instance SEM with X2

was reported to be the best model.  Also, there was some 
incoherence in interpreting the results.  In Liu et al. (2010) 
the latent variable ‘toxic substances’ was included in the 
model and some of the substances were argued to have 

which does not support the authors’ interpretation.
Besides illustrative introductions to applying 

SEM correctly in ecological studies (Shipley, 2002; 
Hershberger at al., 2003; Grace et al., 2010), there are 
good papers discussing how to incorporate results 
from SEM studies into research papers (Hoyle & Panter, 

to confuse the reader or omit any information that 
enables the logic of modelling to be followed and the 
right interpretation of the results.  With the freedom that 
is mentioned as one of the appealing features of SEM 
(Arhonditsis et al., 2006), there also comes responsibility.

There were four studies that combined Bayesian 
inference with SEM (Arhonditsis et al., 2006, 2007a, b; 
Gudimov et al., 2012).  One of them (Gudimov et al., 
2012) used Bayesian networks, which enables assessment 

various models (with uncertainties) into one framework.  
The biggest advance in including the Bayesian approach, 
especially with SEM, is that it does not rely on asymptotic 
theory, thus allowing smaller sample sizes (Arhonditsis 
et al., 2006).  As the inferential tests of SEM are otherwise 
asymptotic, the required sample size is high (Shipley, 2002).  
Some extra information can also be gained compared 
to the maximum likelihood method, if there is more 
than one local maximum for describing the phenomena.

Concluding remarks

LMM and SEM are both illustrative and interesting tools 
to explore aquatic environments.  With both methods 

variables and phytoplankton are highlighted in published 
studies.  For this reason – the possibility of deriving 
‘hints’ of underlying processes, even of those not directly 
observable (Malaeb et al., 2000), which can then be used 
in developing further ideas and studies – ecological 

exploration and creativeness when using models as a tool, 
instead of the idea that we should aim for a ‘perfect’ model, 
capable of describing the system as we see it.

are by no means the only ones, or necessarily the most 
suitable for addressing every question.  There are some 

sparse, big datasets, whereas SEM can more readily 
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to understand how LMM (like regression) can be utilised 
in lake management and predictions, but for SEM there 
is also a good demonstration in Arhonditsis et al. (2006).  
Although it puts one outside of ‘the comfort lines’, 
whether the customary model is the best one to be used 
for new kinds of questions should always be considered.  
No one is capable of mastering all the techniques, which 
strengthens the case for interdisciplinary cooperation.

Whatever the technique, it is important to keep in 
mind that, although the theory behind the statistical 

modelling, some degree of subjectivity involved when 

information in the publications for anyone interested to 
repeat the modelling process to judge its logic (Hoyle 

true when introducing novel methods. However, since 
free software for statistical modelling is available, and 
the calculations are done through standard statistical 
equations, the methods are actually, at their best, 
very transparent ways for using models in science.

As discussed earlier, proper uncertainty analysis 
should be customary in ecological modelling, especially 
when used as a basis for public policy making.  In fact, 
not all LMM and SEM papers referred to here considered 

intervals or similar were most used for model outputs 
(Malve & Qian, 2006; Arhonditsis et al., 2007a, b; Wagner 
et al., 2011; Gudimov et al., 2012) and some papers 
including Bayesian analysis introduced few posterior 
distributions for the estimates (Arhonditsis et al., 2006; 

analysis is not just in the awareness and in the possibility 
to evaluate the model performance.  In situations when 
the uncertainty in model results for management 
planning becomes unacceptable, they can still be used 

targeted to decrease the uncertainty (Lamon & Qian, 2008). 
Related to this, there should in general be some 

consideration of the minimum amount of data that is 

needed to do any kind of modelling for a study lake, 
especially if we go into more detailed questions about 
eutrophication or phytoplankton.  In management projects, 
models are unfortunately sometimes seen as a substitute 

mathematical models can never tell us what has happened 

  Even with 
adequate sample sizes, but too long sampling intervals, 
SEM was not able to catch all the interesting interactions.  
Another issue is the importance of sampling done after 
modelling, to verify the model results and see if they hold.

Besides these questions about proper modelling 
technique and data, we agree with Ramin (2013) that more 
critical evaluation of the limits of modelling is needed.  Our 
trust in models is sometimes too great, although there are 
still many indisputable unknown factors.  A good example 
is how many current modelling studies aim to illustrate 

high importance, the use of models to predict the future 

highly misleading.  The predictive power of models 
decreases fast the further the simulation proceeds from the 
starting point, especially with phytoplankton (Arhonditsis 

environment for which we now calibrate the models will 
not be the same in a hundred years, which challenges the 

al., 2001).  As a more concrete point of comparison with 
aquatic modelling, one can consider the long tradition 
of meteorological studies and modelling, and the 
accuracy of weather forecasts for the coming weekend!

The validity of the model results is of course also a 

average processes being easier to ‘capture’.  However, then 
the information content (see Clark et al., 2001) of model 

known (which is often done through calibration and really 
ignores the true cause of results), should we instead be 
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from taking place, and at the same time focus the modelling 

for management and public policy making should be 
evaluated very carefully.  That it ‘saves money’ is often 

proper uncertainty analysis it can even be a false one.

Acknowledgements

We thank Roger Jones (University of Jyväskylä) for 
improving the language of the manuscript.  He and Timo 

for useful suggestions and comments regarding the 
manuscript.  Anita Pätynen was funded by the Maj and 
Tor Nessling foundation and the VALUE doctoral school.

References

state of mechanistic aquatic biogeochemical modeling.  Marine 

Ecology Progress Series 271, 13-26.

Arhonditsis, G.B., Stow, C.A., Steinberg, L.J., Kenney, M.A., 

Lathrop, R.C., McBride, S.J. & Reckhow, K.H.  (2006).  Exploring 

Bayesian analysis.  Ecological Modelling 192

Arhonditsis, G.B., Paerl, H.W., Valdes-Weaver, L.M., Stow, 

C.A., Steinberg, L.J. & Reckhow, K.H. (2007a).   Application 

of Bayesian structural equation modeling for examining 

phytoplankton dynamics in the Neuse River Estuary (North 

Carolina, USA).  Estuarine, Coastal and Shelf Science 72, 63-80.

Arhonditsis, G.B., Stow, C.A., Paerl, H.W., Valdes-Weaver, L.M., 

Steinberg, L.J. & Reckhow, K.H.  (2007b).  Delineation of the role 

of nutrient dynamics and hydrologic forcing on phytoplankton 

Ecological 

Modelling 208, 230-246.

long-term experiment with a plankton community.  Nature 451, 

822-825.

Boomsma, A. (2000).  Reporting Analyses of Covariance Structures.  

Structural Equation Modeling 7, 461-483.

Davies, P.S. & Tyler, A.N. (2011).  Cyanobacterial blooms: 

statistical models describing risk factors for national-scale 

lake assessment and lake management.  Science of the Total 

Environment 409, 5353–5358.

Cheruvelil, K.S., Soranno, P.A., Bremigan, M.T., Wagner, T. & 

Martin, S.L. (2007).  Grouping lakes for water quality assessment 

and monitoring: the roles of regionalization and spatial scale.  

Environmental Management 41, 425–440.

Chou, W.-R., Fang, L.-S., Wang, W.-H. & Tew, K.S. (2012).  

zooplankton diversity: a multivariate statistical model analysis.  

Environmental Monitoring and Assessment 184

Clark, J.S. (2005).  Why environmental scientists are becoming 

Bayesians.   8, 2-14.

Clark, J.S. (2007).  Models for Ecological Data: An Introduction.  

Princeton University Press, Princeton.  617 pp.

Clark, J.S., Carpenter, S.R., Barber, M., Collins, S., Dobson, A., 

Foley, J.A., Lodge, D.M., Pascual, M., Pielke, R. Jr., Pizer, W., 

Pringle, C., Reid, W.V., Rose, K.A., Sala, O., Schlesinger, W.H., 

Wall, D.H. & Wear, D. (2001).  Ecological forecasts: an emerging 

imperative.  Science 293, 657-660.

Doherty, J. & Christensen, S. (2011).  Use of paired simple 

and complex models to reduce predictive bias and 

quantify uncertainty.  Water Resources Research 47, W12534, 

Ellison, A.M. (2004).  Bayesian inference in ecology.   

7

European Parliament & Council (2000).  Directive 2000/60/EC 

of the European Parliament and of the Council of 23 October 

2000 establishing a framework for Community action in the 

 

L 327

Communities, Brussels.

Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B. (2003).  Bayesian 

Data Analysis (2nd edition).  Chapman & Hall/ CRC.  668 pp.

systems.  Ecological Monographs 80, 67-87.



72

DOI: 10.1608/FRJ-6.2.704

Pätynen, A., Kotamäki, N. & Malve, O.

© Freshwater Biological Association 2013

(2012).  Continuous Bayesian network for studying the causal 

in Lake Simcoe, Ontario, Canada.  Environmental Science & 

Technology 46

Hershberger, S.L., Marcoulides, G. A. & Parramore, M.M. (2003).  

Structural equation modeling: an introduction.  In: Structural 

Equation Modeling: Applications in Ecological and Evolutionary 

Biology (eds B.H. Pugesek, A. Tomer & A. von Eye), pp. 3-41.  

Cambridge University Press, Cambridge.

models.  In: Structural Equation Modeling: Concepts, Issues, and 

Applications (ed. R.H. Hoyle), pp. 158-176.  Sage Publications, 

Inc., California.

Jørgensen, S.E. (2010).  A review of recent developments in lake 

modelling. Ecological Modelling.  221

Kenney, M.A., Arhonditsis, G.B., Reiter, L.C., Barkley, M. & 

and expert elicitation to select nutrient criteria variables for 

south-central Florida lakes.  Lake and Reservoir Management 25, 

Korhonen, J.J., Wang, J. & Soininen, J. (2011).  Productivity-

diversity relationships in lake plankton communities.  PLoS 

ONE 6, e22041, doi:10.1371/journal.pone.0022041

Kruk, C. & Segura, A.M. (2012).  The habitat template of 

phytoplankton morphology-based functional groups.  

 698

Lamon, E.C. III & Qian, S.S. (2008).  Regional scale stressor-response 

models in aquatic ecosystems.  Journal of the American Water 

Resources Association 44, 771-781.

Lamon, E.C. III, Malve, O. & Pietilainen O.P. (2008).  Lake 

in Finnish lakes.  Environmental Modelling & Software 23

lake water chemistry on chlorophyll a: a multivariate statistical 

model analysis.  Ecological modelling 221, 681-688.

structural equation medeling to investigate relationships 

among ecological variables.  Environmental and Ecological 

Statistics 7

Malve, O. (2007).  Water Quality Prediction for River Basin 

Management.  Doctoral Dissertation.  Helsinki University of 

Technology.  Available at , 

as at December 2013.

Malve, O. & Qian, S.S. (2006).  Estimating nutrients and 

chlorophyll a relationships in Finnish lakes. Environmental 

Scence & Technology 40, 7848-7853.

between species richness and turnover in a phytoplankton 

community.  Ecology 93, 2435-2447.

Mooij, W.M., Trolle, D., Jeppesen, E., Arhonditsis, G., Belolipetsky, 

P.V., Chitamwebwa, D.B.R, Degermendzhy, A.G., DeAngelis, 

J.A., Fragoso, C.R. Jr., Gaedke, U., Genova,  S.N., Gulati, 

R.D., Håkanson, L., Hamilton, D.P., Hipsey, M.R., ‘t Hoen, 

Prokopkin, I. G., Rinke, K., Schep, S.A., Tominaga, K., Van Dam,  

A.A., Van Nes, E.H., Wells, S.A. & Janse, J.H. (2010).  Challenges 

and opportunities for integrating lake ecosystem modelling 

approaches.  Aquatic Ecology 44, 633-667.

sciences.  Science 263, 641-646.

Modeling in Ecology and Evolution. Princeton University Press, 

New Jersey.  732 pp.

Phillips, G., Pietiläinen, O.-P., Carvalho, L., Solimini, A., Lyche 

Solheim, A. & Cardoso, A.C. (2008). Chlorophyll–nutrient 

dataset.  Aquatic Ecology 42, 213-226.

R Development Core Team (2012). R: A Language and 

Environment for Statistical Computing. R Foundation for 

www.R-project.org.

Ramin, M. (2013). Towards a structural and methodological 

improvement of eutrophication modelling. Doctoral Dissertation. 

University of Toronto. Available at 

, as at December 2013.

Ramin, M., Labencki, T., Boyd, D., Trolle, D. & Arhonditsis, G.B. 

Ecological Modelling 

242, 127-145.

Modern 

management



DOI: 10.1608/FRJ-6.2.704

73Alternative lake models

Freshwater Reviews (2013) 6, pp. 63-74 

Erlbaum Associates, Inc., New Jersey.

Robson, B.J., Hamilton, D.P., Webster, I.T. & Chan, T. (2008).  Ten 

steps applied to development and evaluation of process-based 

biogeochemical models of estuaries.  Environmental Modelling & 

Software 23

validation.  Ecological modelling 90

Salmaso, N. (2011).  Interactions between nutrient availability 

phytoplankton community changes in Lake Garda, Northern 

Italy.   660

Salmaso, N., Buzzi, F., Garibaldi, L., Morabito, G. & Simona, M. 

phytoplankton development: a case study from large lakes 

south of the Alps.  Aquatic Sciences 74, 555-570.

Sadraddini, S., Gudimov, A. & Arhonditsis, G.B. (2011).  Our 

current understanding of lake ecosystem response to climate 

change: what have we really learned from the north temperate 

 37

variations of plankton food web structure in the coastal 

Journal of 

Oceanography  61, 645-654.

Shipley, B. (2002).  

to Path Analysis, Structural Equations and Causal Inference.  

Cambridge university press, Cambridge.  332 pp.

freshwater phytoplankton.  Ecology 92

Thackeray, S.J., Nõges, P., Dunbar, M.J., Dudley, B. J, Skjelbred, B., 

Morabito, G., Carvalho, L., Phillips, G., Mischke, U., Catalan, J., 

de Hoyos, C., Laplace, C., Austoni, M., Padedda, B.M., Maileht, 

K., Pasztaleniec, A., Järvinen, M., Lyche Solheim, A. & Clarke, 

R.T. (2013). Quantifying uncertainties in biologically-based 

water quality assessment: a pan-European analysis of lake 

phytoplankton community metrics. Ecological Indicators 29, 

34-47.

Trolle, D., Hamilton, D.P., Hipsey, M.R., Bolding, K., Bruggeman, 

Arhonditsis, G.B., Gal, G., Bjerring, R., Tominaga, K., Hoen, J., 

Downing, A.S., Marques, D.M., Fragoso, C.R. Jr., Søndergaard, 

M. & Hanson, P.C. (2012).  A community-based framework for 

aquatic ecosystem models.   683, 25-34.

Wagner, T., Soranno, P.A., Webster, K.E. & Spence Cheruvelil, 

K. (2011).  Landscape drivers of regional variation in the 

relationship between total phosphorus and chlorophyll in lakes. 

Freshwater Biology 56, 1811-1824.

.  

Springer.  574 pp.

exploration to avoid common statistical problems.  Methods in 

Ecology and Evolution 1, 3-14.

During the past four years, as her still on-going PhD 
work, M.Sc. Anita Pätynen
kinds of models and techniques, e.g. PROTECH, 

out how well they can be applied with Finnish lake 

together the often sparse monitoring data (with strong 
seasonal variation) and model applications. Already 
for her Master’s diploma work (Aquatic Sciences, 

took part in developing the Lake Load Response 
model tool at the Finnish Environment Institute, 
that is developed to ease the use of models in lake 
management. She has been actively involved in the 
lake management and Water Framework Directive 
related work at the Modelling and Assessment unit 
of the Finnish Environment Institute since the start of 
her Master’s diploma work at 2008. 



74

DOI: 10.1608/FRJ-6.2.704

Pätynen, A., Kotamäki, N. & Malve, O.

© Freshwater Biological Association 2013

M.Sc. Niina Kotamäki (Finnish Environment 

is in applying sophisticated statistical methods in 
water quality modelling e.g. hierarchical Bayesian 
and structural equation modelling. She has been 
developing and using statistical and process-based 
phytoplankton models in lake ecosystems.

Dr Olli Malve has enthusiastically pursued 
methods for predicting and managing hydrological, 
chemical and biological processes in surface waters 
and achieved exceptional experience in modelling 
complex systems. The problem of decision making 
under uncertainty has inspired him to explore 
combinations of mechanistic and statistical methods 
using Bayesian inference and MCMC sampling 
methods. To accomplish this and to apply the 
developed methods in river basin management he has 
collaborated with many statisticians, mathematicians, 
biologists and environmental managers. As the editor 

he has participated knowledge transfer activities on 

modelling team in Finnish Environment Institute.


	Statistical Methods for Adaptive River Basin Management and Monitoring
	ABSTRACT
	CONTENTS
	LIST OF ORIGINAL PUBLICATIONS
	1 INTRODUCTION
	1.1 Background and problem setting
	1.2 River basin management planning (II, III, IV)
	1.3 Monitoring for RBMP (I, II, V)
	1.4 Adaptive monitoring and management

	2 OBJECTIVES
	3 MATERIALS AND METHODS
	3.1 Study sites and data
	3.2 Methodology

	4 RESULTS
	4.1 Performance of the wireless sensor network (I)
	4.2 Uncertainty in the status class and monitoring (II)
	4.3 Nutrient loading response tool (III)
	4.4 Causal modelling of phytoplankton development (IV)

	5 DISCUSSION
	6 CONCLUSIONS
	Acknowledgements
	YHTEENVETO (RÉSUMÉ IN FINNISH)
	REFERENCES
	ORIGINAL PAPERS
	WIRELESS IN-SITU SENSOR NETWORK FOR AGRICULTURE AND WATER MONITORING ON A RIVER BASIN SCALE IN SOUTHERN FINLAND: EVALUATION FROM A DATA USER’S PERSPECTIVE
	A PRACTICAL APPROACH TO IMPROVE STATISTICAL PERFORMANCE OF WFD MONITORING NETWORKS
	STATISTICAL DIMENSIONING OF NUTRIENT LOADING REDUCTION - LLR ASSESSMENT TOOL FOR LAKE MANAGERS
	CAUSAL ANALYSIS OF PHYTOPLANKTON DEVELOPMENT IN A SMALL HUMIC LAKE USING STRUCTURAL EQUATION MODELLING
	ALTERNATIVE APPROACHES TO MODELLING LAKE ECOSYSTEMS



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




