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Abstract. In this paper, we describe an interactive evolutionary algo-
rithm called Interactive WASF-GA to solve multiobjective optimization
problems. This algorithm is based on a preference-based evolutionary
multiobjective optimization algorithm called WASF-GA. In Interactive
WASF-GA, a decision maker (DM) provides preference information at
each iteration simple as a reference point consisting of desirable objec-
tive function values and the number of solutions to be compared. Using
this information, the desired number of solutions are generated to repre-
sent the region of interest of the Pareto optimal front associated to the
reference point given. Interactive WASF-GA implies a much lower com-
putational cost than the original WASF-GA because it generates a small
number of solutions. This speeds up the convergence of the algorithm,
making it suitable for many decision-making problems. Its e�ciency and
usefulness is demonstrated with a �ve-objective optimization problem.

Keywords:Multiobjective programming; Pareto optimal solutions; Ref-
erence point approach; Interactive methods; Evolutionary algorithms.

1 Introduction

Many real-world applications arising in e.g. engineering involve solving multiob-
jective optimization problems where several con�icting objectives must be opti-
mized over a set of feasible solutions. In many occasions, these problems can be
complex to solve because they deal with di�erent types of functions (nonlinear,
nondi�erentiable, discontinuous, etc.) and di�erent types of variables (contin-
uous, integer, binary, etc.). They may even involve black-box functions, whose
computational cost can be high.

Commonly, there is no solution where all the objectives can reach their indi-
vidual optima and we look for so-called Pareto optimal solutions. These solutions
are de�ned as solutions where an improvement of any objective always implies
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a sacri�ce in at least one of the others. The set of Pareto optimal solutions is
called the Pareto optimal set and its image in the objective space is known as
the Pareto optimal front. A decision maker (DM), a person who is interested in
solving the problem, decides which Pareto optimal solution best satis�es his/her
preferences and this solution is commonly known as the most preferred solution.

There exists a great amount of methods to deal with multiobjective optimiza-
tion problems in the literature. On the one hand, interactive Multiple Criteria
Decision Making (MCDM) methods are widely used due to the gradual incor-
poration of the DM's preferences into the solution process in order to generate
one or a small set of Pareto optimal solutions according to these preferences [13,
16]. On the other hand, during the last decades, Evolutionary Multiobjective
Optimization (EMO) algorithms have become very popular for solving di�er-
ent types of problems [1, 2]. Their main aim is the approximation of the whole
Pareto optimal front. However, although knowing the ranges of the objectives
functions and the con�ict degree among them can be of great help for having a
good knowledge of the problem itself, the task of identifying a single preferred
Pareto optimal solution that pleases the DM may not be easy. Also, approxi-
mating the whole Pareto optimal front may be impossible in e.g. large scale or
computationally complex problems. These di�culties can be managed by con-
sidering an interactive method that uses tools from an EMO algorithm. To be
more precise, one can incorporate preference information into EMO algorithms
to overcome various (computational and cognitive) challenges [8].

Some interactive EMO methods have been proposed in the literature, in-
cluding the following ones. The Reference-Point-Based NSGA-II (R-NSGA-II)
proposed in [5] modi�es NSGA-II [4] as follows. According to one or several refer-
ence points given by a DM, the crowding distance used in NSGA-II is replaced by
a preference distance, which equally emphasizes objective vectors that are close
to any of the reference points with respect to the Euclidean distance. In [21] an
interactive EMO method called the Preference Based Evolutionary Algorithm
(PBEA) was proposed, which modi�es the EMO algorithm IBEA [27]. PBEA al-
lows the DM to interactively give reference points, with which the binary quality
indicator of IBEA (which measures the minimal distance by which an individual
needs to be improved in each objective to become nondominated) is rede�ned
using an achievement scalarizing function [24] from MCDM. A Preference-based
Interactive Evolutionary (PIE) algorithm was proposed in [18]. Starting from
a solution selected from a randomly generated population or from a reference
point, PIE progressively improves the objective function values by minimizing
an achievement scalarizing function [15] at each iteration using a single-objective
evolutionary algorithm. The DM guides interactively the algorithm by deciding
from which solution, at which distance from the Pareto optimal front and in
which direction the search for the next solutions is continued. iMOEA/D [9] is
an interactive version of the well-known MOEA/D method [25], where a set of
solutions is shown to the DM at intermediate generations, who must choose one
of them. Then, the search is guided to the neighbourhood of the selected solution
by relocating the weight vectors which determine the search directions.
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In [23], an interactive EMO method called iPICEA-G , which is based on the
PICEA-G algorithm (Preference-Inspired Co-Evolutionary Algorithm) [22], was
proposed. In this method, the DM's preferences can be given either as a search
direction or as a reference point. In the former case, the DM has to indicate the
importance (s)he gives to each objective function and an angle between 0 and
Π/2 which determine the search range. This kind of information may be di�cult
to provide for the DM. In the case of a reference point, all objectives are given
the same importance and the search range is set according to the number of
objective functions. In [19], an interactive evolutionary algorithm was suggested
which tries to �nd the most preferred solution with a limited number iterations
expecting DM's involvement. The preference information is given by choosing a
desirable solution among a set of solutions.

Whatever algorithm is used, the �nal purpose of solving any multiobjective
optimization problem is that the DM can �nd her/his most preferred solution.
Thus, once a set of solutions that approximates the Pareto optimal front is found,
we cannot overlook the decision making phase in which the DM must make an
adequate decision to choose the �nal solution. Obviously, the DM plays an ac-
tive role in the process and an interactive method is supposed to be appealing
and acceptable to her/him because (s)he is involved in the process. However, it
is important to consider several issues. On the one hand, for decision making
purposes, only a few solutions must be analysed by the DM in order not to over-
whelm her/him. Comparing too many solutions may be di�cult in the presence
of a high number of objectives. On the other hand, asking preference information
in a format as simple as possible is very important since it makes the interactive
process more meaningful. Besides, if the DM feels that the solutions obtained
re�ect well enough her/his wishes, and they are improved progressively, (s)he is
more motivated and it is more likely that (s)he wants to keep on iterating until
the most preferred solution is found.

Based on this, in this paper, we concentrate on the decision making phase and
the interaction with the DM necessary for solving any multiobjective optimiza-
tion problem. Taking into account the previous ideas, we propose an interactive
EMO method that generates a small set of solutions at each iteration and which
needs from the DM preference information which is not cognitively demanding.
The interactive method proposed is called Interactive WASF-GA and it is an
interactive version of a preference-based EMO algorithm called WASF-GA [17].
At each iteration of Interactive WASF-GA, the DM indicates the number of so-
lutions to be compared and a reference point containing aspiration levels, that
is, objective function values that are desirable. According to this, WASF-GA is
executed iteratively to generate the desired number of solutions in the region of
interest de�ned by the given reference point. However, we do not only propose
an interactive algorithm, but we also suggest a user interface aimed at enhancing
the interaction with DM when solving a problem with Interactive WASF-GA.

The rest of this paper is organized as follows. In Section 2, we introduce the
main concepts and notations used, including a brief overview of the WASF-GA
algorithm. Interactive WASF-GA is motivated and described in Section 3, where
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we also carry out a comparative analysis with respect to other interactive EMO
algorithms. In Section 4, a computational implementation is described, showing
the graphical user interface proposed and the solution process of a �ve-objective
optimization problem. Finally, conclusions are drawn in Section 5.

2 Formulation and Background Concepts

2.1 Concepts and Notation

A general multiobjective optimization problem is de�ned by

minimize {f1(x), . . . , fk(x)}
subject to x ∈ S, (1)

where fi : S → R, for i = 1, . . . , k (k ≥ 2) are the objective functions that we
wish to optimize (to minimize in our case) simultaneously. The decision variables
x = (x1, . . . , xn)

T are referred to as solutions or decision vectors and they
belong to S ⊂ Rn, called the feasible set. The images of the solutions f(x) =
(f1(x), . . . , fk(x))

T are called objective vectors. The image of the feasible set in
the objective space Rk is called the feasible objective region Z = f(S).

Since, in the presence of con�icting objective functions, it is not possible
to �nd a solution where all the objectives can reach their individual optima,
there exist solutions that are mathematically incomparable. In these solutions,
no objective function can be improved without deteriorating at least one of the
others. A solution x ∈ S is said to be Pareto optimal if there does not exist
another x′ ∈ S such that fi(x

′) ≤ fi(x) for all i = 1, . . . , k and fj(x
′) < fj(x)

for at least one index j. The corresponding objective vector f(x) is called a
Pareto optimal objective vector. The set of all Pareto optimal solutions is called
a Pareto optimal set, denoted by E, and the set of all Pareto optimal objective
vectors is called a Pareto optimal front, denoted by f(E).

Given two objective vectors z, z′ ∈ Z, we say that z dominates z′ if and only
if zi ≤ z′i for all i = 1, . . . , k, with at least one strict inequality. In the context
of EMO algorithms, we refer to a nondominated set as a set of solutions whose
objective vectors are not dominated by the objective vector corresponding to
any other solution in the set.

The ideal objective vector and the nadir objective vector are de�ned, respec-
tively, as z? = (z?1 , . . . , z

?
k)
T such that z?i = minx∈E fi(x) (i = 1, . . . , k), and as

znad = (znad1 , . . . , znadk )T such that znadi = maxx∈E fi(x) (i = 1, . . . , k). That is,
the ideal and the nadir values are, respectively, the best and the worst values
that each objective function can achieve in the Pareto optimal front (that is,
they de�ne lower and upper bounds for the objective functions). While the ideal
objective vector can be easily obtained, the nadir objective vector is, in general,
more di�cult to calculate and typically we need to settle for approximations [3,
20]. In what follows, we assume that the Pareto optimal front is bounded and
that there are available estimations of the ranges of the objective function values.
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From the mathematical point of view, all Pareto optimal solutions can be
regarded as equally desirable and we need information about the preferences of
a DM to identify one as the �nal solution to be implemented [13]. A natural way
to express preferences consists of specifying desirable objective function values,
which constitute the components of the so-called reference point. A reference
point is given by q = (q1, . . . , qk)

T , where qi is an aspiration level for the objective
function fi provided by the DM, for all i = 1, . . . , k. Usually, q is said to be
achievable for (1) if q ∈ Z+Rk+ (where Rk+ = {y ∈ Rk | yi ≥ 0 for i = 1, . . . , k}),
that is, if either q ∈ Z or q is dominated by some Pareto optimal objective
vector. Otherwise, the reference point is said to be unachievable, that is, for an
unachievable reference point, all components cannot be achieved simultaneously
(in some situations, a reference point is unachievable because some components
cannot be achieved although other ones can be attained).

Once a reference point is given, a so-called achievement (scalarizing) function
(ASF) [24] can be minimized over the feasible set in order to �nd the Pareto
optimal solution which best �ts the reference point. These functions combine
the original objective functions with the preferences of the DM into a scalar
valued function. For an overview about ASFs, see [15].

2.2 WASF-GA Algorithm

As previously mentioned, the interactive method we proposed is based on the
preference-based EMO algorithm called WASF-GA [17]. This algorithm tries
to approximate the region of interest of the Pareto optimal front de�ned by a
reference point q given by a DM. In [17], the region of interest of the Pareto
optimal front associated to q is de�ned as followed. When q is achievable, the
region of interest is the subset of Pareto optimal objective vectors f(x), with
x ∈ E, which verify that fi(x) ≤ qi, for every i = 1, . . . , k. On the other hand, if
q is unachievable, the region of interest is formed by the Pareto optimal objective
vectors f(x), with x ∈ E, which verify that fi(x) ≥ qi, for every i = 1, . . . , k.
Therefore, in the achievable case, this region of interest contains all the Pareto
optimal solutions which dominate the reference point and, thus, which are the
most interesting solutions for the DM. In the unachievable case, the region of
interest is formed by the Pareto optimal solutions which are dominated by the
reference point. In this case, solutions lying in this region are likely to be more
appealing for the DM than the ones outside it because, at them, the objective
function values di�er from the aspiration values as little as possible, although
they do not improve any of them. The solutions outside this region may improve
some of the aspiration levels (and not all of them) but at the expense of a sacri�ce
in the rest of reference levels, what may not be so attractive for the DM.

To approximate the region of interest, WASF-GA maintains a diverse set
of nondominated solutions by considering, on the one hand, a prede�ned set of
weight vectors in the weight vector space (0, 1)k (let us consider Nµ vectors of
weights) and, on the other hand, by minimizing at each generation the ASF
proposed by Wierzbicki in [24] for the reference point given. Roughly speaking,
at each generation of WASF-GA, parents and o�spring are classi�ed into several
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fronts. This classi�cation is done according to the values that each individual
takes on the ASF, for the reference point and for each of the weight vectors
in the set. To be more precise, the �rst front is formed by the solutions which
reach the lowest value of the ASF for each of the Nµ weight vectors; the second
front is constituted by the individuals with the next lowest value of the ASF
for each of the Nµ weight vectors, and so on until every individual has been
included into some front. Afterwards, the solutions which are passed to the
next generation are those in the lower level fronts until completing the new
population. The solutions selected can be considered as the best individuals at
the current generation for minimizing the ASF with respect to the weight vectors
considered. The outcome of WASF-GA is the �rst front of the last generation,
which has Nµ individuals. From the practical point of view, the region of interest
is approximated by projecting the reference point onto the Pareto optimal front
in di�erent ways, by using the set of projection directions (or search directions)
de�ned by the inverses of the Nµ weight vectors considered.

Figure 1 gives a graphical idea of the working procedure of WASF-GA in a
biobjective optimization problem. The region of interest in the Pareto optimal
front has been highlighted with a bold line in both cases, and the arrows represent
the projection directions determined by a set of weight vectors. It can be seen
that, by varying the weight vectors and by emphasizing at each generation those
individuals which minimize the ASF for each weight vector, the region of interest
can be approximated by projecting the reference point onto the Pareto optimal
front using several projection directions, for both unachievable and achievable
reference points. For more details about WASF-GA, see [17].

(a) Achievable reference point (b) Unachievable reference point

Fig. 1. Idea of the working procedure of WASF-GA
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3 Interactive WASF-GA

Based on the success of interactive MCDM methods, we propose a new interac-
tive method using a preference-based EMO algorithm. In Interactive WASF-GA,
the preference information indicated by the DM at each iteration it are aspira-
tion levels for the objective functions, which determine a reference point denoted
by qit, and the number of solutions (s)he wants to compare, denoted by N it

S . The
set of new solutions is generated by applying the WASF-GA algorithm using as
many weight vectors as the number of solutions indicated by the DM, that is,
Nµ = N it

S at each iteration. Let us denote by µit,j the weights vectors used at
iteration it, for j = 1, . . . , N it

S .

3.1 Algorithm of Interactive WASF-GA

The steps of the Interactive WASF-GA are the following ones:

Step 1. Initialization. Initialize it = 1.

Step 2. Preference information I. If it > 1 and the DM wants
to generate new solutions using the previous reference point, set
qit = qit−1. Otherwise, ask the DM to specify a reference point
q and set qit = q.

Step 3. Preference information II. Ask the DM how many so-
lutions (s)he would like to see, N it

S . If it > 1 and N it
S = N it−1

S ,
set µit,j = µit−1,j for every j = 1, . . . , N it

S and go to Step 5.
Otherwise, continue.

Step 4. Generation of the weight vectors. Following the pro-
cedure described in [17], generate N it

S weight vectors, denoted
by µit,j for j = 1, . . . , N it

S .

Step 5. Generation of solutions. Generate N it
S solutions with

the WASF-GA algorithm using the set of weight vectors µit,j

for j = 1, . . . , N it
S , and show the solutions to the DM.

Step 6. Termination rule. Ask the DM to select the most pre-
ferred of the N it

S solutions and denote it by xit. If the DM
wishes to Stop, the solution process concludes with xit as the
�nal solution and f(xit) as a �nal objective vector. Otherwise,
set it = it+ 1 and go to Step 2.

Next, let us make some remarks about some aspects of the algorithm:

� When it = 1, the DM must give a reference point in Step 2 because no
reference point was provided previously.

� The number of solutions to be shown to the DM can be changed at each
iteration in Step 3, but (s)he can alternatively maintain the same number
along several iterations. In that case, the same set of weight vectors can be
used through these iterations and only the reference point changes.
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� When the DM decides to generate new solutions using the same reference
point, only the N it

S weight vectors must be recalculated. Given that the pro-
cedure described in [17] generates an initial large number of vectors from
which the weight vectors needed are selected, the new N it

S weight vectors
can be obtained using again the same initial vectors to reduce the compu-
tational e�ort. Furthermore, the weight vectors that were already used at
the previous iteration must be internally removed in order to assure that
di�erent solutions are provided to the DM.

� The �nal population generated at one iteration can be used as the initial
population at the next iteration, which allows to accelerate the speed of the
solution process. This increases the convergence speed of the algorithm since
the initial population is already close to the Pareto optimal front.

� In order to guarantee at least local Pareto optimality of the �nal solution,
the last solution chosen by the DM can be locally improved by minimizing
the ASF proposed in [24] using the objective function values achieved by this
solution as the reference point, with some local optimization method.

3.2 Comparative analysis

In order to compare Interactive WASF-GA with some of the reference point-
based interactive EMO algorithms mentioned in Section 1, we present Table 1,
which summarizes the main features of each algorithm. Next, we detail the in-
formation given on each column and, as an example, we explain this information
for the Reference-Point-Based NSGA-II algorithm [5]. In this algorithm, at each
iteration, the DM must specify one or several reference points, which is indicated
in the 'Preference information' column. At each iteration with preferences, the
outcome population shown to the DM consists of individuals in the �rst non-
dominated front of the last generation. This is indicated in the 'Solutions shown
to the DM' column. The'Computational cost' column contains the complexity of
the basic operations of each algorithm in one iteration, considering their worst
cases. In this column, k represents the number of objective functions and N is
the population size used. For the Reference-Point-Based NSGA-II algorithm, we
have used only one reference point and we have taken into account the compu-
tational cost needed for carrying out the nondominated sorting procedure, the
preference distance assignment, the preference distance sorting and the ε-based
selection strategy (see [5]). Finally, if the algorithm needs to set any additional
parameters to be executed, they are indicated in the last column. In the example
considered, a value for ε is necessary to compute the niching operator.

Let us now analyse Table 1. Firstly, from the cognitive point of view, the
preference information required from the DM in Interactive WASF-GA is very
simple compared to some of the other methods. For example, in the PIE algo-
rithm or in iPICEA-G, the DM is asked for the percentage of distance to the
(unknown) Pareto optimal front or for a search angle, respectively. This type
of information may not be easy to understand by the DM. Secondly, as it can
be seen in the third column, the only method that generates exactly the num-
ber of solutions the DM wants to see is Interactive WASF-GA. Except from
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Table 1. Comparison of several methods

At each

iteration

Preference

information

Solutions shown

to the DM

Computational

cost

Additional

parameters

Interactive
WASF-GA

A reference point
and the number of
solutions to be
compared (NS)

The NS solutions
generated at the last

generation

O(k ·N ·NS) No

Reference-
Point-Based
NSGA-II [5]

One or several
reference points

First nondominated
front of the last

generation

O(k ·N2) To control the extent of
solutions, an ε-clearing
idea is used in the
niching operator

PBEA [21] A reference point Population of the
last generation

O(k ·N2) The extent of solutions
is controlled by an

operator δ
PIE [18] Preferential

weights, a
reference point
and the distance
to the Pareto
optimal front

A solution at the
distance indicated
to the Pareto
optimal front

O(k ·N) If the DM wants to
investigate solutions
previously obtained,

(s)he must indicate the
number of solutions to

be shown

iMOEA/D
[9]

The number of
solutions to be
shown and
choosing one

solution among a
set of solutions

Solutions at
intermediate
generations

O(k ·N2) The number of
iterations to be taken

and a reduction factor of
the preferred region

iPECEA-G
[23]

A reference point
or a search

direction with a
search angle

Population of the
last generation

O(k ·N2) Search angle to control
the extent of solutions

PIE (which generates one solution at each iteration) and i-MOEA/D, the rest
of methods show the solutions generated at the last generation. Consequently,
the number of solutions shown to the DM may be too high for making a fair
comparison and cannot be known beforehand. Besides, Interactive WASF-GA
shows nondominated solutions which approximate the region of interest, instead
of showing nondominated solutions generated at intermediate generations, as
in i-MOEA/D. This may be seen as a strength of our algorithm, since the so-
lutions found at intermediate generations may be still far from the region of
interest and may not give a good idea about the real trade-o�s among the ob-
jectives in this region. Thirdly, regarding the 'Computational cost' column, the
algorithm proposed has a much lower computational cost than those needed by
other algorithms given that the number of solutions the DM wants to compare
in Interactive WASF-GA, denoted by NS , is expected to be much lower than the
population size. The only method with a lower computational cost than Interac-
tive WASF-GA is PIE because this method internally solves a single-objective
(scalarized) optimization problem with a single-objective algorithm instead of
solving the multiobjective optimization problem itself. Finally, it is worthy to
mention that Interactive WASF-GA does not need to set any additional param-
eter during the solution process, while the other algorithms do require some
(see last column). In most of them, these additional parameters control the ex-
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tent of solutions in the region approximated in the Pareto optimal front and,
consequently, they a�ect the outcome of the algorithm.

The previous analysis highlights that, in comparison with some of the state-
of-art interactive EMO algorithms, Interactive WASF-GA requires very simple
preference information from the DM and it is able to generate exactly the number
of solutions the DM wants to see in the region of interest. Besides, its computa-
tional cost is quite limited and it does not need to set any additional parameter
during the solution process. As shortcomings of Interactive WASF-GA, we can
say that, on the one hand, the distribution of the NS weight vectors in�uences
the distribution of the solutions generated and, thus, special emphasis must
be taken for using weights which produce well-distributed projection directions
[17]. This may be overcome by producing a large number of weight vectors (e.g.,
100 or more) and then using the k-means clustering [12] to select the NS most
representative ones.

On the other hand, one may think that it may be not assured that the
DM is shown exactly NS solutions because minimizing the ASF using di�erent
weight vectors does not assure to generate di�erent Pareto optimal solutions (for
example, in problems with discontinuous Pareto optimal fronts). In order to avoid
such a situation, more than NS weight vectors may be used in WASF-GA, e.g.
we can use N∗S = 2 ·NS vectors. In this way, more solutions are generated in the
region of interest and, afterwards, the set of solutions obtained may be �ltered
using e.g. the k-means clustering in order to get the NS most representative
solutions. This procedure, which is also used in [11], increases the computational
cost and it must only be applied in case this situation is internally detected.

4 Computational Implementation

In this section, we demonstrate the computational implementation created for
Interactive WASF-GA, which is in a preliminary development phase. It has been
developed in Java by using jMetal [7], a Java-based framework for multiobjec-
tive optimization. In order to check the performance of the method proposed, we
have introduced into the platform several test problems from the ZDT, DTLZ
and WFG families [6, 10, 26], respectively by now, for which the number of objec-
tives can vary between 2 and 6. Of course, this implementation must be further
improved so that other multiobjective optimization problems considered.

The main menu can be seen in Figure 2, where we consider the DTLZ2 test
problem with 5 objective functions. The information is organized as follows:

� Algorithm's con�guration. There are three parameters in this box: (a)
the number of solutions the DM would like to compare at the current iter-
ation; (b) the population size and (c) the number of generations, the latter
two being technical parameters. In the implementation, default values are
recommended for these technical parameter for each problem although they
can be modi�ed if so desired. For example, if the DM thinks that the solu-
tions are not good enough and (s)he wishes to obtain solutions closer to the
Pareto optimal front, one can allow more generations to be carried out.
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RP

Fig. 2. Interface of Interactive WASF-GA - DTLZ2 problem, iteration 1

� Problem's con�guration. In this box, the multiobjective optimization
problem to be solved is selected.

� Reference point. Approximations of the ideal and the nadir values are
provided to the DM in order to let her/him know the ranges of the objective
functions. By clicking on each slider and moving it, the DM can set the
aspiration level for each objective, and the corresponding numerical values
are shown in the Value column.

� Solution process. To generate theN it
S solutions the DM wishes to compare,

(s)he must click the Start button. If (s)he decides to take a new iteration
by changing some preference information (the reference point and/or the
number of solutions to be generated), (s)he must click the Next Iteration
button to generate new solutions.

� Solutions. Here, the objective values of the N it
S solutions obtained for the

current reference point are shown.
� Plot for the problem. The objective vectors of the solutions found and
the reference point are shown graphically in order to ease the comparison
among them. For bi-objective optimization problems, they are plotted inR2,
and also the Pareto optimal front is shown if it is known. For multiobjective
optimization problems with three or more objective functions, we use a value
path [14] representation to shown the solutions obtained, as can be see in
Figure 2. The reference point (labelled as RP) and each solution are plot by
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lines that go across di�erent columns which represent the objective function
values they reach. The lower and upper ends of each column represent the
total values range of each objective function, that is, its ideal and nadir
values, respectively.

� Log. The Log box indicates if there has been any error during the execution.

In what follows, we illustrate the performance of Interactive WASF-GA with
the DTLZ2 problem with 5 objectives. Let us assume that the preference infor-
mation given by the DM at the �rst iteration is the one shown in Figure 2, that
is, he set the �rst reference point as q1 = (0.34, 0.4, 0.3, 0.38, 0.33) and wanted
to generate four solutions (N1

S = 4). Analysing the value path and the objec-
tive values of the solutions generated, it can be seen that none of the solutions
obtained has improved any aspiration value. Besides, a careful analysis of them
highlights the con�ict degree among the objective functions. It can be observed
that, when a solution reaches an objective value closer to the corresponding as-
piration value, the values achieved by the rest of objective functions are further
from their aspiration values. This can be easily seen, for example, in solutions
S2 and S4, which attain values close to the aspiration levels for objective 5 and
objective 1, respectively, at the expense of the rest of the objective functions.

According to the above analysis, the DM decided to relax all the aspiration
levels and he set the new reference point as q2 = (0.36, 0.42, 0.33, 0.4, 0.36) for
generating four new solutions (N2

S = 4). The solutions generated are shown in
image and table (a) of Figure 3. As at the previous iteration, no solution reaches
or improves any aspiration level, but it can be seen that now the ranges of
objective values achieved by all the solutions are closer to their aspiration levels.
Based on this, the DM wished to have another iteration in order to check the
solutions that could be obtained if he maintained the same aspiration levels for
the objectives 1, 2 and 5 and he relaxed a bit more the ones for the objectives
3 and 4. He �xed the reference point as q3 = (0.36, 0.42, 0.38, 0.45, 0.36). The
four solutions (N3

S = 4) found can be seen in image and table (b) of Figure
3 and it can be observed that now they are even closer to the reference point.
Although the reference point was still unattainable, the DM was satis�ed enough
with solution S2. This solution improved the values achieved for the objective
functions 1, 2 and 5 when compared to the ones reached by most of the solutions
at the previous iteration and, at the same time, it attained the second best values
for the objectives 3 and 4. After three iterations the DM found the most preferred
solution and was convinced of its goodness.

With this example, we have shown the behaviour of Interactive WASF-GA
and the user interface proposed. If the DM changes the reference point, we have
seen that the solutions generated are di�erent from the ones previously produced.
And if the DM indicates a higher or a smaller number of solutions, more or less
solutions are produced accordingly. We have not computationally compared our
algorithm with other interactive methods because a quantitative assessment of
interactive approaches is very di�cult in practice when interacting with a DM.
Furthermore, traditional comparative tables which evaluate the performance of
EMO algorithms after several independent runs are not meaningful for assessing
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Sol. f1 f2 f3 f4 f5

S1 0.4549 0.4384 0.41 0.484 0.4455
S2 0.4532 0.5132 0.404 0.474 0.3786
S3 0.4561 0.5132 0.3616 0.4334 0.4582
S4 0.3807 0.4972 0.415 0.4821 0.4509

(a) Iteration 2.

Sol. f1 f2 f3 f4 f5

S1 0.428 0.4333 0.4373 0.5103 0.4213
S2 0.4271 0.4871 0.4333 0.5033 0.3733
S3 0.4311 0.4889 0.4033 0.4747 0.4326
S4 0.3748 0.4751 0.4408 0.5087 0.425

(a) Iteration 3.

Fig. 3. Solution process of the DTLZ2 problem.

Interactive WASF-GA because we focus on the DM's interaction and the decision
making phase, and not only on the approximation of the Pareto optimal front.

5 Conclusions

In this paper, a new interactive evolutionary algorithm has been proposed for
solving multiobjective optimization problems. The new algorithm is called In-
teractive WASF-GA and it is based on the preference-based EMO algorithm
WASF-GA. At each iteration of Interactive WASF-GA, very easy to understand
preference information is asked to the DM: just a reference point (containing
desirable objective function values) and the number of solutions the DM wishes
to compare. According to this information, a set with this number of solutions
is generated in order to represent the region of interest of the Pareto optimal
front de�ned by the reference point given. Subsequently, the DM analyses the
solutions found and decides either to stop or to carry out a new iteration by
rede�ning the preference information.

While the original WASF-GA approximates the region of interest with a high
number of nondominated solutions, the interactive version only needs to generate
few representative nondominated solutions. This fact allows to accelerate the
solution process and reduces the computational cost needed. Besides, as the DM
just compares a small number of solutions in the region of interest in order to
�nd her/his most preferred solution, the solution process is not very demanding
and requires a low cognitive e�ort. Furthermore, Interactive WASF-GA is able
to generate as many solutions as the DM indicates, and this is a strength in
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comparison to other interactive EMO algorithms, which provide the DM with
sets of solutions that may be too large to be compared. Also, it is noteworthy
that Interactive WASF-GA does not need to set any additional parameter.

We have demonstrated the applicability of Interactive WASF-GA with a
�ve-objective optimization problem which has shown how our algorithm can be
used for reaching a solution interesting for the DM. Next, we plan to apply the
algorithm proposed to real-life multiobjective optimization problems.

Acknowledgements

This research was partly supported by the Spanish Ministry of Innovation and
Science (MTM2010-14992) and by the Andalusia Regional Ministry of Innova-
tion, Science and Enterprises (PAI groups SEJ-445 and SEJ-532).

References

1. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for
Solving Multi-Objective Problems. Second Edition. Springer, New York (2007)

2. Deb, K.: Multi-objective Optimization using Evolutionary Algorithms. Wiley,
Chichester (2001)

3. Deb., K., Miettinen, K., Chaudhuri, S.: Towards an estimation of nadir objective
vector using a hybrid of evolutionary and local search approaches. IEEE Transac-
tions on Evolutionary Computation 14(6), 821�841 (2010)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2), 182�197 (2002)

5. Deb, K., Sundar, J., Ubay, B., Chaudhuri, S.: Reference point based multi-objective
optimization using evolutionary algorithm. International Journal of Computational
Intelligence Research 2(6), 273�286 (2006)

6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimiza-
tion test problems. In: Congress on Evolutionary Computation, CEC-2002. pp.
825�830 (2002)

7. Durillo, J.J., Nebro, A.J.: jMetal: A java framework for multi-objective optimiza-
tion. Advances in Engineering Software 42, 760�771 (2011)

8. Figueira, J.R., Greco, S., Mousseau, V., Slowinski, R.: Interactive multiobjective
optimization using a set of additive value functions. In: Branke, J., Deb, K., Miet-
tinen, K., Slowinski, R. (eds.) Multiobjective Optimization, Interactive and Evo-
lutionary Approaches. pp. 97�120. Springer (2008)

9. Gong, M., Liu, F., Zhang, W., Jiao, L., Zhang, Q.: Interactive MOEA/D for multi-
objective decision making. In: 13th Annual Conference on Genetic and Evolution-
ary Computation, GECCO 2011. pp. 721�728 (2011)

10. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary
Computation 10(5), 477�506 (2006)

11. Luque, M., Ruiz, F., Steuer, R.E.: Modi�ed interactive Chebyshev algorithm
(MICA) for convex multiobjective programming. European Journal of Operational
Research 204(3), 557�564 (2010)



Interactive WASF-GA 15

12. MacQueen, J.B.: Some methods for classi�cation and analysis of multivariate obser-
vations. In: 5-th Berkeley Symposium on Mathematical Statistics and Probability.
vol. 1, pp. 281�297. Berkeley, University of California Pressley (1967)

13. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publish-
ers, Boston (1999)

14. Miettinen, K.: Survey of methods to visualize alternatives in multiple criteria de-
cision making problems. OR Spectrum 36(1), 3�37 (2014)

15. Miettinen, K., Mäkelä, M.M.: On scalarizing functions in multiobjective optimiza-
tion. OR Spectrum 24(2), 193�213 (2002)

16. Miettinen, K., Ruiz, F., Wierzbicki, A.P.: Introduction to multiobjective optimiza-
tion: Interactive approaches. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R.
(eds.) Multiobjective Optimization, Interactive and Evolutionary Approaches. pp.
27�58. Springer (2008)

17. Ruiz, A.B., Saborido, R., Luque, M.: A preference-based evolutionary algorithm
for multiobjective optimization: The weighting achievement scalarizing function
genetic algorithm. Journal of Global Optimization in press, DOI 10.1007/s10898-
014-0214-y (2014)

18. Sindhya, K., Ruiz, A.B., Miettinen, K.: A preference based interactive evolutionary
algorithm for multi-objective optimization: PIE. In: Takahashi, R., Deb, K., Wan-
ner, E., Greco, S. (eds.) Evolutionary Multi-Criterion Optimization, Proceedings.
pp. 212�225 (2011)

19. Sinha, A., Korhonen, P., Wallenius, J., Deb, K.: An interactive evolutionary multi-
objective optimization algorithm with a limited number of decision maker calls.
European Journal of Operational Research 233(3), 674�688 (2014)

20. Szczepanski, M., Wierzbicki, A.P.: Application of multiple crieterion evolutionary
algorithm to vector optimization, decision support and reference point approaches.
Journal of Telecommunications and Information Technology 3(3), 16�33 (2003)

21. Thiele, L., Miettinen, K., Korhonen, P., Molina, J.: A preference-based evolutionary
algorithm for multi-objective optimization. Evolutionary Computation 17(3), 411�
436 (2009)

22. Wang, R., Purshouse, R.C., Fleming, P.J.: Preference-inspired coevolutionary algo-
rithms for many-objective optimization. IEEE Transactions on Evolutionary Com-
putation 17(4), 474�494 (2013)

23. Wang, R., Purshouse, R.C., Fleming, P.J.: "Whatever works best for you" - a new
method for a priori and progressive multi-objective optimisation. In: Purshouse,
R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) Evolutionary Multi-
Criterion Optimization, Proceedings. pp. 337�351. Springer (2013)

24. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization.
In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making, Theory and Ap-
plications. pp. 468�486. Springer (1980)

25. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on Evolutionary Computation 11(6), 712�731
(2007)

26. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: Empirical results. Evolutionary Computation 8(2), 173�195 (2000)

27. Zitzler, E., Kuenzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., Burke, E., Lozano, J.A., Smith, J., Merelo-Guervos, J.J., Bullinaria, J.A., Rowe,
J., Tino, P., Kaban, A., Schwefel, H.P. (eds.) 8th International Conference on
Parallel Problem Solving from Nature - PPSN VIII. pp. 832�842. Springer (2004)


