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Abstract. We have examined the conductive properties of a carbon nanotube

(CNT) based thin film, which were prepared via dispersion in water by non-covalent

functionalization of the nanotubes with xylan, a type of hemicellulose. Measurements

of low temperature conductivity, Kelvin Probe Force Microscopy, and high frequency

(THz) conductivity elucidated the intra-tube and inter-tube charge transport processes

in this material. The measurements show excellent conductive properties of the as

prepared thin films, with bulk conductivity up to 2000 S/cm. The transport results

demonstrate that the hemicellulose does not seriously interfere with the inter-tube

conductance.

Keywords: Kelvin Probe Force Microscopy, carbon nanotube, hemicellulose, thin films,

electronic transport
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Conduction properties of carbon nanotube/hemicellulose thin films 2

1. Introduction

Mixtures of cellulose and carbon nanotubes (CNT) are usually comprehended as

composites, where the cellulose forms the host matrix and CNTs as filler material

enhance the electrical and thermal conductivity as well as the strength properties. Such

composites have been studied lately due to their potentially useful applications such as

sensors, actuators and electrostatic dissipation/electromagnetic interference shielding

materials [1, 2, 3, 4, 5, 6, 7]. They are normally prepared by separately dispersing the

cellulose and the CNT material and then mixing the two dispersions.

However, as has been reported in a few works[8, 9, 10, 11, 12], non-covalently bound

cellulose can be utilized as a dispersant (similar to surfactant molecules [13]) to disperse

CNTs in water. Here, the cellulose polymer molecules form complexes with the CNTs,

whose accurate nature is still under debate and study [11, 14]. Processability of CNTs

via dispersion in water has obvious advantages with respect to environmental concerns,

and enhances the prospects for scaled-up production of CNT based devices.

The method of using cellulose polymer as dispersant can still be used to prepare

CNT/Cellulose composites, as surplus cellulose can freely be mixed and thus the CNT

content be varied. CNTs are attractive in the field of composite technology as a very

small content of CNTs, in the range of 0.01% − 10%(wt) can percolate throughout

the host matrix. On the other hand, in CNT materials that have been prepared by

dispersing in water the CNT/cellulose complex (and not adding any extra cellulose),

the CNT content in the processed material can be around 50 %(wt). As the role of

the cellulose is solely that of a dispersant, then usually the cellulose is to be considered

a nuisance for the end purpose, and therefore the material is a dispersion and not a

composite, although the concepts and vocabulary seem to be somewhat varying in the

research literature on this developing topic. For electronic applications, dispersions of

CNT materials (often single wall carbon nanotubes (SWNT)) are processed into different

types of conductors, which range from truly 2D networks to essentially 3D films and

fibers. A prime example is the fabrication of conductive transparent thin films [15].

CNT materials that have been prepared with inclusion of dispersants are thus not

true composites; the CNT content is far above any percolation threshold. Nevertheless,

in electronic applications the tube-tube interconnectivity is crucial and is easily

interrupted if the tubes are complexed with molecular species. Even without this

complication, and the fact that normally, CNT material is a mixture of metallic and

semiconducting tubes, it is very difficult to model satisfactorily charge transport in

bulk CNT materials. As is usually discussed[16, 17, 18], the conduction process can be

divided into intra- and inter-tube resistance. The difficulty is then that the inter-tube

conduction processes are not well known in macroscopic assemblies of CNT, but are

usually presumed to occur at specific locations where crossing tubes are mechanically

connecting each other. The inter-tube resistance is most simply described as dependent

on an activation energy, and the total resistance can be thought to be the result of a

network of resistors where usually the inter-tube resistance dominates[19]. However,
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Conduction properties of carbon nanotube/hemicellulose thin films 3

many works also apply Variable Range Hopping theories that do not directly build on

mechanical network connectivity[20, 21].

To our knowledge, there is no comprehensive study of transport properties in

thin films of CNT/cellulose complex, where the role of cellulose is explicitly that of

a dispersant. Hamedi et al. [11] reported nanocellulose dispersed CNT films, or

composites, with a conductivity on the order of 100 S/cm, which is a rather high

level, but lower than what is reported for pure SWNT materials [22]. An effective

method for dispersing CNTs using hemicellulose (Xylan) as a dispersant material has

previously been reported by two of the authors in a patent[23]. In this paper, we report

on transport measurements in thin films consisting of CNT-hemicellulose (CNT-hc)

prepared using this method. These include low temperature transport, high frequency

(terahertz) conductivity measurements, and Kelvin Probe Force Microscopy (KPFM)

measurements of the local conductive properties on the current carrying CNT-hc devices.

Computational and experimental studies on the microscopic nature of this complex will

be reported in a companion paper.

2. Experimental methods

2.1. Sample fabrication

We used double wall carbon nanotubes (DWNT) material from Unidym Co. (USA)‖,
which according to the manufacturer has an average length of 2 µm, diameters in the

range 2 - 3 nm, and purity of > 50 wt%. The commercially obtained xylan, that is the

hemicellulose (hc), was an extract from beech tree ¶. CNT-hc dispersion was prepared

by adding a mixture of 100 mg DWNTs, and 1 ml 2-propanol into 100 ml of water. The

mixture was sonicated for 1 min using a 300W sonicator (cooling was not considered to

be necessary). Xylan (100 mg) was added in four 25 mg portions, while sonicating for 4

min between each addition. 10 ml of this dispersion was diluted with 390 ml of water,

and sonicated further for 4 min. The diluted dispersion containing 25 mg DWNTs,

25 mg xylan in one liter of water was used as such for all experiments. This CNT-hc

dispersion was stable for at least one year at +4oC, which is demonstrated in Fig.1(a).

Imaging of depositions of this dispersion with scanning probe and electron microscopy

shows that it contains individual and still some bundles of tubes with diameters up to

around 10 nm.

CNT-hc films were deposited by either spin casting or drop-dry casting the

dispersion on pieces of commercially purchased highly doped silicon wafer which had

a 300nm thick silicon oxide insulation layer. In most cases electrodes were fabricated

on these prior to deposition of CNT-hc. The spinning speed (from 1000 rpm to 6000

rpm) was varied in order to obtain different film thicknesses. For thicker films the

drop-dry casting method was used, and the thickest films (> 100 nm) were obtained

‖ Unidym Inc, 1244 Reamwood AVE, Sunnyvale, CA 94089, USA
¶ Symrise Bio Actives GmbH, Porgesring 50, 22113 Hamburg, Germany
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Conduction properties of carbon nanotube/hemicellulose thin films 4

by multiple castings. Prior to the deposition of the CNT-hc, it was found helpful to

slightly hydrophilize the silicon oxide surface by a gentle treatment with O2 plasma

(Oxford RIE). To measure the film thickness we produced a sharp edge through it by

brushing the film with a wet cotton stick. The step height at the edge was measured

with AFM, as is shown in Fig.1(c).

The fastest spinning speeds of small amounts of solution did not produce continuous

films but instead individual tubes and fragments of CNT networks. We prepared

microelectrode structures that were used to catch some of these network fragments

for two-point conductivity measurements.

The following different experiments were undertaken:

(i) Low temperature DC-conductivity measurements of macroscopic thin films in four-

point electrode configuration, and of micron-sized CNT network fragments in two-

point configuration. The electrode structures for the former were ∼ 2 mm wide and

had a spacing of ∼ 100 µm between adjacent electrodes. The latter were measured

with microelectrode structures shown in Fig.1(d). Microelectrodes of different sizes

were used, but a width of 50 µm and separation of 5 µm was typical.

(ii) Kelvin Probe Force microscopy (KPFM) measurements of the potential

distributions in current-carrying CNT-hc devices with the same microelectrode

structure as in case 1).

(iii) Spectroscopic measurements of the high frequency conductivity at THz frequencies

of CNT-hc thin films on plain Si substrates.

The macroscopic electrodes (case 1) were fabricated by depositing gold (Au), using

an e-beam evaporator through a mechanical mask in an ultra-high vacuum (UHV)

chamber, while the microelectrodes (case 1,2) were fabricated by conventional electron

beam lithography (Raith e-Line). The Au electrode thickness of the latter was 40 nm,

and had 5 nm Ti film as the adhesion layer. The samples were attached onto chip

carriers, and bonded with aluminum wires for electrical connection to the measurement

apparatus. The highly doped silicon substrate could be connected as a back-gate

electrode, which was used especially for the microelectrode samples (Fig.1(d)). The high

frequency measurements (case 3) were done on high-resistivity float-zone silicon[24] that

does not absorb THz radiation.

2.2. Measurements

The low temperature conductivity was measured with standard DC-techniques both for

macroscopic thin films (case 1) and the network fragments (case 2) in the temperature

range 4.2 − 300 K. For the measurements we used a 4K He-bath cryostat with the

sample inside a closed vacuum can.

KPFM measurements on the current carrying CNT-hc devices were performed in

air using an Agilent 5500 scanning probe microscope using the amplitude modulation

KPFM in a single-pass double frequency mode[25]. For the topographic images
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Conduction properties of carbon nanotube/hemicellulose thin films 5

acquisition the first resonance of the cantilever at 67 kHz was used and for KPFM

frequencies in the range 10-30 kHz were used for the VAC of 1.5 V bias between the

tip and sample. For the KPFM measurements presented in the manuscript a probe

with the evaluated tip apex radius of 7 nm ± 2nm was selected from commerical PPP-

EFM probes (Nanosensors) having Pt/Ir conductive coating. The tip apex radius was

evaluated according[26] by AFM imaging of double-wall carbon nanotubes with diameter

in the 2-4 nm range deposited on the atomically flat Au(111) crystalline terraces. All

measurements were carried out under dry N2 atmosphere. During the measurements a

voltage of ±(1− 6) V is applied between the CNT-hc device electrodes.

Terahertz time-domain spectroscopy was used to measure the THz radiation

transmitted through the CNT-hc films, and the bare silicon reference[27]. The complex,

frequency-dependent conductivity σ(ω) = σ1(ω) + iσ2(ω) of the CNT-hc films was

calculated from

σ(ω) =
1 + ns

Z0δ

(
1

T (ω)
− 1

)
(1)

where ns is the refractive index of the silicon substrate, Z0 is the impedance of free space,

δ is the thickness of the film and T (ω) is the experimental complex transmission[27].

The effective conductivity of the CNT-hc film was obtained over a frequency range from

0.2 THz to 2.5 THz, limited by the bandwidth of the THz pulses detected. Transmission

spectra were also obtained from 6.0 THz to 20.0 THz using a commercial FTIR to better

constrain the CNT-hc films’ absorption.

3. Results

3.1. DC-conduction measurements

Fig.1(b) shows a SEM image of a typical CNT-hc thin film. The temperature dependent

conductivity of six thin film samples is shown in Fig.2(a) with thicknesses in the range 8 -

40 nm. The room temperature conductivity of the thicker films is quite high, up to 2×103

S/cm. On the other hand, thinner films (< 20 nm) are less conductive. The conductivity

of all samples is relatively constant down to 50 K, but starts to decrease more rapidly

below 10 K. At room temperature, all CNT-hc samples exhibit Ohmic behavior with a

linear drain-current (IDS) response. At 4.2 K, the response becomes slightly non-linear,

but there is no gate dependence when tested from a back-gate configuration.

The inset of Fig.1(d) shows a close-up image of how the CNTs or CNT network

fragments are randomly placed on top of the electrode gap. We present here data

from two representative sample of a total of 6 measured samples. Randomly aligned

single CNTs in most cases do not directly cross the gap. SEM inspection reveals

that usually a few CNT junctions are required to cross the electrode gap, though in

this way little can be said about the electrical connectivity. Fig.2(b) displays gate

electrode controlled current and IV-curves at 4.2 K from the two typical CNT-hc network

fragments, measured over a 2.5 µm gap. A small but clearly discernible transport gap is
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Conduction properties of carbon nanotube/hemicellulose thin films 6

Figure 1. (a) Demonstration of the stability of typical CNT-hemicellulose (CNT-hc)

dispersions. The bottle on left side is weeks old, while the one on the right side is 4 years

old, and does not have any visible precipitation of CNT-hc complex. (b)SEM image of

(CNT-hc) thin film. Scale bar 200nm.(c) AFM image of a spin coated CNT-hc film,

where the sharp edge has been created as explained in the text. The inset shows height

profile data across the edge along the line superimposed on the AFM image.(d) SEM

image of microelectrode structure for measuring CNT-hc network fragments. Scale bar

10 µm. Inset: Close-up of electrodes with tubes visible. Scale bar 3 µm.

Figure 2. (a) Temperature dependence of conductivity of CNT-hc films with different

thicknesses. Inset: 1 K data in log scale of the 12 nm sample. (b) Low temperature (T

= 4.2 K) measurements of I vs Vds (top and right axis, red color) and I vs Vg (bottom

and left axis) of two typical CNT-hc network fragments. Electrode separations were 3

µm (black line) and 5 µm (blue line).

Page 6 of 15AUTHOR SUBMITTED MANUSCRIPT - NANO-115885.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Conduction properties of carbon nanotube/hemicellulose thin films 7

Figure 3. 20×20µm2 AFM topography (a) and KPFM surface potential (SP) images

of the CNT-hc device in the current carrying state (b). Local surface potential profiles

(c) taken across the dashed lines. The profile curves have been vertically offset for

clarity

seen in the other sample while its conductance is practically independent from external

electric field. The former has a low temperature (zero-bias) resistance of 50 kΩ while

the latter has c. 5 MΩ. As opposed to the macroscopic thin films, at low temperatures a

clearly discernible non-linearity appears in the IV-characteristics (at Vg = 0). The two

samples are different but together they represent well the variation among the samples.

3.2. Kelvin Probe microscopy measurements

A representative example of KPFM measurements for one of the microelectrode

structure with 20 µm wide electrodes is presented next. The AFM topography and

corresponding KPFM images of the inter-electrode region of the current-carrying device

acquired at different scan scales are shown in Fig.3(a, b) and Fig.4 (a, b), respectively.

The larger scale, low resolution KPFM image (Fig.3(b)) clearly indicates that the electric

potential along the electrode gap drops almost uniformly. To verify whether the current

is running uniformly through this electrode gap region we present in Fig.3(c) the local

potential profiles within it and parallel to the electrodes. Profile A indicates that the

potential has a linear drop almost uniformly along the electrode gap region. On the

other hand, profile B indicates that there are equipotentials parallel to the electrodes
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Conduction properties of carbon nanotube/hemicellulose thin films 8

Figure 4. Higher resolution 2 × 2µm2 AFM topography (a) and KPFM surface

potential images of the CNT-hc device in the current carrying state (b). The profile

curves have been vertically offset for clarity. Local surface potential profiles (c) taken

across the dashed lines in (b). The white arrows in (a) indicate the (tube-tube) contacts

at which the potential drops occur.

direction. These results demonstrate that the CNT-hc network film behaves as a uniform

conductor at scales larger than 10 µm. The situation changes dramatically at smaller

scales. The higher resolution KPFM image reveals considerably non-uniform potential

drop behavior. A representative example of a 2 × 2 µm2 KPFM image is shown in

Fig.3(b). The visualized potential distribution clearly correlates with the topography

image (Fig.4(a)). The profiles A and B in Fig.4(c) taken along the current carrying

CNT fragments demonstrate that the potential drops mainly at the intertube contacts

(labeled by the white arrows in Fig.4(a)). Nevertheless, it should be noted that there

are crossings of current-carrying CNTs with practically undistinguishable (within the

noise level) drop values, (see profile C in Fig.4(c)), which correspond to relatively low

intertube resistances.

3.3. THz time-domain spectroscopy

We obtained the complex conductivity of films with the thicknesses 130 nm, 470 nm,

and 1170 nm. As shown in Fig.5(a), the real conductivity σ1 (blue points) at room

temperature for the 130nm film has a weak frequency dependence, with a resonance
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Conduction properties of carbon nanotube/hemicellulose thin films 9

Figure 5. (a) Real (black lines) and imaginary (red lines) conductivity of a 130nm

CNT-hc film. (b) Similarly, for the 470nm film. The dashed lines are fits as described

in the text. The blue shaded areas show the contributions of the Drude term to the real

part of the conductivity. (c) Measured (blue and green points) and modelled (red and

black lines) amplitude transmission spectra from THz-TDS (left) and FTIR (right).

peaked at around ω0/2π. The dc limit to σ1 is around 2000 S/cm, in agreement with

the dc transport results in Fig.2. A suppressed imaginary conductivity σ2 (red points)

is clearly seen at low frequencies. Similar resonant behavior can be seen for the 470nm

film in Fig.5(b).

4. Discussion

Simple performance criteria for the conductive properties of CNT composites are the

room temperature conductivity σ and the resistivity ratio RR = ρ(4.2K)/ρ(300K). As

even for the thinner films σ ∼ 100S/cm, and RR < 10, the thin film of CNT-hc complex

material of this work exhibit a relatively high conductivity which is comparable to pure

SWNT material [16, 20, 28, 17]. Therefore, the presence of the hemicellulose does not

seem to be detrimental to the charge transport properties, and we do not consider the

hemicellulose component as an a priori dominating factor of the conduction process, e.g.

as determining the intertube connectivity. However, even in pure bulk SWNT or DWNT

material, the transport properties are mainly interpreted in terms of a conduction

process between the tubes. In the discussion that follows, we demonstrate how the

different measurements illuminate the conductivity of our CNT-hc materials from this

point of view.
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Conduction properties of carbon nanotube/hemicellulose thin films 10

The KPFM measurements probe in a most concrete manner the relation between

the morphology of the current-carrying CNT-hc thin films and the conductivity. The

KPFM images reveal a uniform network of CNT-hc with an average length of ∼ 0.6

µm between the crossings of CNTs. The measurements strongly suggest that at the

microscopic level the voltage drop in crossed current-carrying CNTs concentrates to the

tube-tube contacts. However, the measurements bring to light two types of voltage drops

in the junctions between crossed current-carrying CNTs: a pronounced voltage drop and

a relatively low level voltage drop, which correspond to relatively high and low intertube

resistances, respectively. The high resistances could be explained by random occurrences

of thin insulating hemicellulose layer between the contact points of the CNTs junction.

The inspection of 17 regions of 2 × 2µm2 size of the scanned area reveals the presence

of at least two low resistive CNT junctions in ∼ 70% of the regions. Because of the

uniform structure CNT-hc in the thickness direction, the translation of the observed

surface potential structure is justified. From the KPFM measurement data, we can

judge that high conductivity in the composite CNT-hc films is dominated by the low

intertube contact resistances, that are not interrupted by an insulating hemicellulose

layer.

The low temperature conductance measurements on microelectrode structures

also directly illuminate the relation between properties at the single tube level and

the macroscopic conductivity. In Fig.1(d) we presented such with a few nanotubes

electrically connecting the electrode gaps individually or in random chains (we, however,

did not count the tubes individually). The strong sample-to-sample variation stems

trivially from the random deposition which gives a very fluctuating number and

orientation of a few interconnected nanotubes, and thus also a strongly varying number

of tube-tube junctions connecting the electrodes. Moreover, the unsorted DWNTs have

a distribution of different chiralities and thus a mix of metallic and semiconducting

tubes. The semiconducting character and their fluctuating appearance are manifest in

the variation of the strength of the field-effect in the microelectrode samples.

The measurements on the microelectrode structures show the resistance to vary

from a few 10’s of kΩ to a few MΩ, and could conceivably be explained by the more

conducting sample being dominated by metallic tubes and the other by semiconducting

ones. In Fig.2(b) the sample with the smaller resistance of a few 10’s of kΩ, which

is roughly independent of the gate voltage and about one order of magnitude larger

than the single tube resistance in the ballistic limit of 6.5 kΩ. This is compatible with

the conduction being determined by tube-tube junctions between metallic tubes. The

non-linearity in the low temperature I-V curve (Fig.2(b)) could then be due to Coulomb

blockade effects due to barriers at tube-tube or electrode-tube junctions. A Coulomb

charging energy of a few meVs is consistent with the transport data. For the more

resistive sample, which has a clear transport gap in the I-Vg curve, a semiconducting

bandgap, which in DWNTs is < 0.5 eV, is likely the main factor determining the

conductivity [29].

Next, we shift to the measurements on macroscopic thin films. In this kind of
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Conduction properties of carbon nanotube/hemicellulose thin films 11

material, the high frequency measurements can yield information on the intra-tube

conduction processes. The optical conductivity of CNTs at far-infrared and THz

frequencies has been studied in depth in the literature[27, 22, 30]

A reduced, or even a negative, imaginary conductivity (Fig.5) is a signature of the

motion of spatially-confined charges within an effective medium. This resonant behavior

can be alternatively thought of as an axial plasmon where electrons oscillate along

the CNTs length. For SWNTs, careful studies of the dependence of this far-infrared

absorption peak on the CNT length[30] and on separated metallic and semiconducting

SWNTs[22] have supported the plasmonic picture of AC conductivity. Experimentally-

derived conductivity spectra can be modeled as the sum of a plasmon resonance term,

corresponding to the finite optical conductivity of electrons in individual CNTs, and

by a Drude term σD(ω) = σD/(1 − iωτD) representing mobile carriers that undergo

percolative transport throughout the CNT-hc network with dc conductivity σD and

scattering time τD.

The complex conductivity σ(q, ω) for axial plasmons in CNTs was obtained from the

Boltzmann transport equation in the relaxation time approximation [31], and depends

on the wavevector q of the plasmon excited, its scattering time τ , and the Fermi velocity

vF ∼ 8 × 105 m/s. The overall optical response of a single SWNT was found to be

well approximated by that of a single axial plasmon:the fundamental resonance, with

q = π/L for tube length L. The plasmon frequency is given by ω0 = vqπ/L, where

vq is the plasmon mode velocity, which is a weak function of L [31]. This functional

dependence of ω0 on L has been reported for SWNTs, where for instance ω0/2π ∼ 2.7

THz for ∼ 1 µm long SWNTs with a 2 nm diameter[30]. In a defect-free linear CNT,

L should correspond to the physical length of the CNT. However, in real CNTs 2L is

instead the plasmon wavelength, and L can be interpreted as the mean distance along

the axis before an interruption (e.g. another tube, or a sharp bend in the CNT) occurs.

The total conductivity of an effective medium consisting of an ensemble of CNTs can

therefore be modeled as

σ(ω) =
σD

1− iωτD
+
∑
j

Aj(−iω + 1/τj)

(−iω + 1/τj)2 + (vF qj)2
(2)

where the first term captures any possible long-range, percolative transport, for instance

via CNT bundles or adjoining unbundled CNTs. The second term contains a sum over

all possible plasmon wavevectors qj, which in the single plasmon approximation, namely

that qj = π/Lj, amounts to a sum over all possible lengths Lj. The amplitude term

Aj represents the relative number of CNTs with that particular active length, and an

average over all possible orientations.

Here, we used two such resonances with L1 = 220 nm, L2 = 450 nm and τ1 =

τ2 = 300 fs for both samples in order to model the THz conductivity spectrum, shown

as the solid lines in the Fig.5. These parameters were held the same for the different

thickness samples: the active lengths and scattering time should be properties of the

CNT-hc and should not vary substantially with film thickness. The amplitude terms

were A1,2 = (7.1, 10.0)×1017 Sm−1s−1 for the 130 nm sample and A1,2 = (2.5, 6.0)×1017
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Conduction properties of carbon nanotube/hemicellulose thin films 12

Sm−1s−1 for the 470 nm sample. The Drude term was constrained by fitting the

amplitude of the transmission (the square root of the power transmission) obtained

from FTIR spectroscopy, shown in Fig.5(c). By re-arranging Eqn.1 one can write,

|T (ω)| = |1 + ns|/|1 + ns + σ(ω)Z0δ| (3)

, and use σ(ω) from Eqn.2 to create a modelled |T(ω)|. An iterative fit to the

experimental |T(ω)| from THz-TDS and FTIR yielded σD = 1589 ± 10 S/cm for the

470 nm film, with the same τD = 18± 1 fs assumed for both. The blue shaded areas in

Fig.5 (a) and (b) indicate the Drude contribution to σ1, which makes up a substantial

fraction of the overall THz conductivity.

The resonance frequency of the weaker plasmon contribution to the optical

conductivity indicates that plasmons oscillate over a length scale of between 220 nm

to 450 nm. As the average tube length is 2 µm, this shorter length scale over which

plasmons oscillate may indicate the typical distances between defects, or the average

distance between tube-tube contacts (estimated at 0.6 µm). The scattering time for

these electrons is long (∼ 300 fs) in comparison to that for electrons undergoing inter-

tube transport (∼ 18 fs). The scattering time τ is a measure of how quickly the direction

of the momentum is randomized: the shorter scattering time for percolative electrons

arises from electrons changing direction more substantially at junctions than along the

CNT.

Knowledge of the scattering time permits the effective mobility, µ, and carrier

density, n, of the composite to be calculated from µ = eτ/m∗ and σD = ne2 τ/m∗

, given the experimental τ and σD. A very rough estimate for m∗ in our DWNTs

can be obtained by considering m∗ for SWNTs, which crucially depends on the CNT

diameter d [32, 33, 34]. The outer shell diameters ranged from 2 nm to 3 nm in the

present case. For d = 3.0nm, m∗ = 0.026 me, increasing to m∗ = 0.038 me for d =

2.0 nm[32]. To facilitate a comparison with uniform conductive films we calculated the

effective mobility and effective carrier density of our composite using µ = eτ/m∗ and

σD = ne2 τ/m∗ , assuming that m∗ = 0.03 me. Taking the Drude lifetime τ = 18 fs

for long-range charge transport yields µ = 1054 cm2/Vs. For the 130 nm film, with

σD = 2335 S/cm, the carrier density is n = 1.4 × 1019 cm−3. However we emphasize

that there is a large uncertainty in the effective mass that may change these numbers

significantly. In addition to the variation with CNT diameter, the mass for SWNTs also

varies substantially with chemical potential as the bands are highly nonparabolic[32],

and this discussion further ignores complications like tube-tube interactions and a finite

CNT curvature. Further, a strong THz electromagnetic response may be expected from

a metallic inner shell if the outer shell is semiconducting.

Finally, we examine the low temperature dc-transport measurements, for which the

intertube transport has decisive importance. In the macroscopic thin films, electrically

connected paths percolate through the material. One can assume those paths that

are dominated by semiconducting tubes to turn non-conducting at low temperature.

The thin films exhibited no gate effect, even at low temperatures. Upon reducing the
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Conduction properties of carbon nanotube/hemicellulose thin films 13

thickness, down to ∼ 10 nm, the level of conductivity drops by an order of magnitude

from the bulk values. This is normal in most types of thin films as a consequence of

increased disorder. At low temperatures the inter-tube resistance leads to thermally

activated hopping/tunneling processes that govern the overall DC charge transport.

The inset in Fig.2(a) presents the conductivity down to 1.3 K at a log-log scale for one

representative thin film sample. From the conductivity data, we can judge that at as

T → 0K, the temperature dependence is weakly activated and the samples are close to

the metal-insulator transition boundary [35]. We estimate that the activation energy is

in the meV-range. We may thus assume that the intertube connections have relatively

low resistance, but they dominate over the scattering within the tubes. It follows from

the activated nature of the dc-conductivity that the conductivity decreases at the lowest

temperatures, which is more or less always seen in all CNT-materials. This brief analysis

of the low temperature dc-transport properties is consistent with that stemming from

the KPFM- and the optical conductivity measurements.

As one example of the potential of these materials in applications, we demonstrate

the efficiency of these CNT-hcs as broadband absorptive filters, by calculating the

attenuation of the films on which we measured the optical conductivity. This was

relatively frequency independent (as the transmission is relatively flat) up to 2.5 THz.

The attenuation increases with film thickness to around ∼ 30 dB for the 1170 nm-thick

film, suggesting that CNT-hcs are effective for electromagnetic shielding applications

at least up to 2.5THz, and with enhanced shielding for thicker films. The benefit of

CNT-hc compared to CNTs is an easier dispersal, and the fabrication of stable and

uniform films without decreasing the electrical conductivity relative to pure CNTs.

Indeed, the exceptional conductive performance of the CNT-hc films persists from dc

all the way up to terahertz frequencies. Recent studies on bundles of SWNTs using

THz spectroscopy reported similarly high conductivities for thin films, as long as the

nanotubes are sufficiently long and densely packed[36, 37, 38].

5. Conclusions

The CNT-hc complex has the advantage of relatively easy dispersal in water, which

enables the fabrication of stable and uniform films in an environmentally friendly

way, and with an electrical conductivity comparable to pure CNT material. In low

temperature DC measurements, a relatively weakly increasing resistivity of the CNT-

hc is seen, showing that the material is close to the metal-insulator transition. High

frequency measurements reveal a weak maximum in conductivity at THz frequencies,

which is consistent with plasmon resonances in individual CNTs combined with DC-

conductivity across intertube connections.

The high conductivity can be understood as a combination of several factors:

(i) The excellent conductive properties of 1D charges moving along the CNTs.

(ii) The contribution of metallic CNT, which constitute a substantial share as the CNTs

were not sorted by their chirality.
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Conduction properties of carbon nanotube/hemicellulose thin films 14

(iii) A low contact resistance between CNTs in the present case, as proven

microscopically with Kelvin probe force microscopy in this manuscript. Essentially

the hemicellulose (xylan), which wraps the nanotubes and makes it easy to disperse

them in water, does not act as an electrical barrier to conduction.
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