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Abstract
Illnesses caused by a variety of micro- and macro- organisms can negatively affect individuals’ fitness, leading to the 
expectation that immunity is under positive selection. However, immune responses are costly and individuals must trade-
off their immune response with other fitness components (e.g. survival or reproductive success) meaning that individuals 
with intermediate response may have the greatest overall fitness. Such a process might be particularly acute in species with 
strong sexual selection because the condition-dependence of male secondary sexual-traits might lead to striking phenotypic 
differences amongst males of different immune response levels. We tested whether there is selection on immune response 
by survival and reproduction in yearling and adult male black grouse (Lyrurus tetrix) following an immune challenge with 
a novel antigen and tested the hypothesis that sexual signals and body mass are honest signals of the immune response. We 
show that yearling males with highest immune response to these challenges had higher survival, but the reverse was true for 
adults. Adults with higher responses had highest mass loss and adult males with intermediate immune response had highest 
mating success. Tail length was related to baseline response in adults and more weakly in yearlings. Our findings reveal the 
complex fitness consequences of mounting an immune response across age classes. Such major differences in the direction 
and magnitude of selection in multiple fitness components is an alternative route underpinning the stabilising selection of 
immune responses with an intermediate immune response being optimal.

Keywords Ecological immunology · ELISA · Immunocompetance · Life history theory · Stabilising selection

Introduction

Within natural populations, individuals are constantly 
exposed to parasitic organisms that can have significant 
detrimental effects on their fitness (Poulin 2007). Infection 
and damage by parasites may be resisted by mounting an 
immune response, and so immune responses should be under 
positive directional selection (Råberg et al. 2000). How-
ever, mounting an immune response is complex as there are 

many potential trade-offs within the immune system (e.g. 
humoral vs cellular response, innate vs acquired immune 
responses; Norris and Evans 2000) and immune responses 
are costly (Nordling et al. 1998; Råberg et al. 2000; Råberg 
and Stjernman 2003; Møller and Saino 2004; Van der Most 
et al. 2011). Such costs may either lead to a degree of toler-
ance against pathogens and parasites or lead to trade off with 
other life-history traits (Sheldon and Verhulst 1996; Harsh-
man and Zera 2007) such as survival (Moret and Schmid-
Hempel 2000; Hanssen et al. 2004; Jacot et al. 2004; Møller 
and Saino 2004; Eraud et al. 2009) or reproductive success 
(Uller et al. 2006). A high immune response may, therefore, 
lower individuals’ fitness through increased energetic costs 
(Svensson et al. 1998; Martin et al. 2003; Eraud et al. 2005), 
or physiological costs due to the damage caused by the acti-
vated immune system, e.g. non-specific immune responses 
such as fever and cytotoxins (Sadd and Siva-Jothy 2006; 
Sorci and Faivre 2009). Conversely, a too-low immune 
response may lead to lower fitness because of higher parasite 
burdens (Hayward et al. 2011). Consequently, the immune 
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response is expected to be under stabilising selection with an 
intermediate response that manages or balances resistance 
versus tolerance, but does not necessarily eliminate, infec-
tion being optimal (Viney et al. 2005; Stjernman et al. 2008; 
Råberg et al. 2009; Graham et al. 2010).

In many species, a key fitness component is the ability 
of males to attract mates. Secondary sexual traits may have 
evolved in part to signal resistance to parasites (Hamilton 
and Zuk 1982), and there is considerable evidence that sex-
ual ornaments can honestly signal immune responses and 
immunocompetence (Saino et al. 1997; Zuk and Johnsen 
1998; Mougeot et al. 2004; Loyau et al. 2005; Bonato et al. 
2009). Females may, therefore, use signals as honest cues 
of male genetic quality relating to parasite resistance (Dunn 
et al. 2013). Hence in addition to survival (i.e. natural selec-
tion), mating success (i.e. sexual selection) may have a sig-
nificant role in driving optimal immune response.

Currently there is some evidence to suggest that inter-
mediate immune responses may represent the optima. In 
blue tits (Cyanistes caeruleus), survival was highest at both 
intermediate parasite loads and intermediate levels of the 
primary humoral immune responsiveness to diphtheria and 
directional selection in the secondary response to tetanus 
(Råberg and Stjernman 2003; Stjernman et al. 2008). In 
Soay sheep (Ovis aries), high antibody titres were associ-
ated with higher overwinter survival but reduced fecundity, 
meaning that individuals had similar overall fitness irrespec-
tive of their antibody levels (Graham et al. 2010) and to 
our knowledge, selection on immune response by multiple 
components of fitness have only been studied in Soay sheep 
(Graham et al. 2010).

In this study, we quantified the magnitude of natural and 
sexual selection acting on immune response in yearling and 
adult male black grouse (Lyrurus tetrix). Male black grouse 
are under strong sexual selection, with females using multi-
ple condition-dependent ornaments (tail (lyre) length, blue 
structural colouration of feathers, red eye comb size) and 
behaviours (fighting, lek attendance, distance from lek cen-
tre) to select males (Alatalo et al. 1991; Hovi et al. 1994; 
Höglund et al. 1997; Rintamäki et al. 2001; Hämäläinen 
et al. 2012; Kervinen et al. 2016). Lekking is energetically 
demanding (Vehrencamp et al. 1989), with males losing 
considerable body mass during the breeding season (Leb-
igre et al. 2013) through their investment in lekking activity 
(Nieminen et al. 2016). Hence, it might be predicted that the 
energetic demands of a too-high immune response are costly 
for males, whereas a too-low response may make males vul-
nerable to parasites, also diminishing male performance. At 
the same time, different life stages may invest differently 
in immune response; juvenile males do not invest heavily 
in costly mating effort (Kervinen et al. 2012) or in large 
sexual ornaments (Kervinen et al. 2015), so may not face a 
trade-off between immune function and mating effort. Thus, 

selection acting either on male survival (viability selection) 
and mating success (sexual selection) may operate differ-
ently at different ages. We tested the combined role of viabil-
ity and sexual selection on adult and yearling male grouse 
immune response using a diphtheria-tetanus vaccine with 
or without the anthelmintic Levamisole hydrochloride. We 
first measured the humoral response of male black grouse to 
tetanus-diphtheria and tested whether (a) sexual ornaments 
and body mass predicted the initial antibody level or the 
peak response, and then whether initial antibody level or 
peak response were related to (b) male overwinter survival, 
(c) attendance at the lek and (d) male mating success.

Materials and methods

Study site and capture methods

Experimental vaccinations were carried out during the 
winters of 2002 and 2003, using male black grouse cap-
tured at five different winter flocks in Central Finland 
(Teerisuo, Valkeisuo, Lehtosuo, Kummunsuo, Koskenpaa; 
Fig. 1a, b). Birds were captured using walk-in traps baited 
with oat seeds. After capturing, males were weighed (to the 
nearest 10 g) with Pesola spring balance, and the maximum 
length of the lyre was measured (the length of the longest 
outer tail feathers). Males were aged as yearlings or older 
(based on the colour of their wing; Helminen 1963) and 
ringed with aluminium rings as well as marked with an indi-
vidual colour ring combinations for the observations on the 
lek. A blood sample (1–2 ml) was taken from the brachial 
vein of all males, centrifuged at 16,000 rpm and plasma 
was stored at − 80 °C until analysis. As well as vaccina-
tion of all captured 2002 and 2003 males, a subset of birds 
(initial capture: adults = 23, yearlings = 8, peak response 
recaptures: adults = 15, yearlings = 4) were dosed with lev-
amisole hydrochloride to remove underlying parasite loads. 
As we do not know the existing parasite load of each bird, 
levamisole treatment of some individuals allows us to look at 
the effect of vaccination on its own and in conjunction with 
existing parasite load.

Experimental immune challenge and medication

A full timeline of the experiment is given in Fig. 1c. Experi-
mental males were injected with 300 µl of diphtheria-teta-
nus vaccine in the pectoral muscle (Finnish National Public 
Health Institute, diphtheria 38 Lf -limit of flocculation- and 
tetanus 10 Lf, mixed with adjuvant aluminium phosphate 
at 1.0 mg/ml). Diphtheria-tetanus is a commonly used to 
induce artificial immune responses in birds (Hasselquist and 
Nilsson 2012).
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To measure the antibody response against tetanus, males 
were recaptured repeatedly and blood sampled through-
out the winter. These repeated measurements enabled us 
to measure both the baseline and peak immune responses. 
Reproductive success in male black grouse is condition-
dependent and reproductive skew is high on leks (Ala-
talo et al. 1992; Kervinen et al. 2016). Leks act as units 
of competing males and any sham-injected males would 
be predicted to have higher fitness if mounting an immune 
response is costly. However, an accurate quantification of 
such an effect in black grouse using control and treatment 
groups would be extremely challenging because only a sub-
set of the males captured within winter flocks display on the 
studied leks and a handful of them manage to mate. Hence, 
we chose to focus on parameters linked to the dynamics of 
the immune response of the birds (baseline and peak levels) 

rather than a direct comparison of vaccinated and sham-
injected birds and acknowledge this limitation of our study.

Specific antibodies against tetanus were measured using 
ELISA with commercial anti-chicken antibodies (Sigma© 
6409); samples were run in duplicate. We also quantified 
diphtheria antibodies, but samples run in duplicate showed 
no repeatability suggesting that the assay was unreliable. 
Anti-chicken immunoglobulin G (IgG) Ab can be used to 
determine antigen-specific and total Ig concentrations in 
plasma of wild birds (Müller et al. 2004). ELISA-plates 
(Cliniplate EB, Thermolabsystems, Helsinki, Finland) were 
first coated with an antigen (tetanus toxoid, National Public 
Health Institute, Helsinki, Finland). Samples and standards 
were added into the wells and incubated for 3 h at room tem-
perature. After washing the plates, alkaline phosphatase con-
jugated anti-chicken IgG antibody (A-9171, Sigma Chemical 

Fig. 1  a Location of study sites (filled circles) in central Finland. 1: 
Köskenpaa, 2: Lehtosuo, 3: Teerisuo 4: Kummunsuo. 5: Valkeisuo; b 
an image of a male black grouse on the lek (photo by Gilbert Ludwig) 

and c timeline of the experiment carried out over 2002 and 2003. DT: 
Diphtheria-tetanus vaccination; DTL: Diphtheria-tetanus vaccination 
and levamisole treatment
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Co. St Louis, Mo, USA) was added to the wells and incu-
bated overnight at 4 °C. Finally, alkaline phosphatase sub-
strate pNPP (p-nitrophenyl phosphate, Sigma  104® phos-
phatase substrate, Sigma Chemical Co. St Louis, Mo, U.S.A) 
in 1 M diethanol amine buffer (1 mg ml−1) was applied. The 
absorbance of the plates was read in an ELISA reader at 
405 nm. The samples, standards and conjugated antibodies 
were diluted in 1% BSA (bovine serum albumin, Fraction V, 
Roche Diagnostics GmbH, Mannheim, Germany) prepared 
in PBS. 1% BSA-PBS was also used for masking the wells 
before applying the samples. After each incubation step, 
the plates were washed three times with PBS-0.05% Tween 
20. The assay was calibrated with a series of diluted stand-
ard samples applied on every plate. As a standard, pooled 
plasma from all immunised individuals measured was used. 
An arbitrary concentration of  106 Units  ml−1 (U ml−1) was 
given to the standard, and concentration of samples in each 
assay was expressed as U ml−1.

Annual mating success and survival assessment

We monitored the lekking behaviour and mating success of 
male black grouse from late April to early May (i.e. during 
the mating season). These observations were undertaken 
daily (0300–0900 hours) from hides located in the vicin-
ity of the leks,. We drew activity maps at regular intervals 
and recorded the spatial location and current behaviour of 
each male (inactive, hissing, rookooing, or fighting; Höglund 
et al. 1997). Female presence on the leks was also recorded. 
All copulations were documented and partners identified 
(if ringed). We estimated each male’s lek attendance (pro-
portional to the highest attending male on the same lek). 
Males that were recorded in ≥ 30% of the activity maps 
and in ≥ 50% of the observation days were classified as ter-
ritorial and males that visited the leks less frequently than 
described above were classified as non-territorial and not 
attending the lek (Kervinen et al. 2012).

Males that were not captured or observed in the following 
year (all leks within 3 kilometres from the capturing place 
were also monitored) were regarded as dead. Males are very 
philopatric to their lekking sites (Lebigre et al. 2008), and 
lack of subsequent capture or sighting is a good proxy for 
survival. We cannot rule out the possibility that some males 
that were not observed may have dispersed to other unknown 
lekking areas, but male dispersal propensity is generally low 
and juvenile-biased (Alatalo et al. 1991; Caizergues and Elli-
son 2002; Warren and Baines 2002).

Statistical analysis

Experimental immune responses typically show a quad-
ratic relationship, so we considered two key parts of the 
response: baseline antibody titres at day 0 (hereafter 

baseline antibody level) and antibody titre levels during 
the peak response (days 20–40: hereafter peak response). 
The baseline antibody levels typically correlate with other 
natural antibodies, suggesting that they reflect the basic 
level of (polyclonal) natural antibodies in circulation, i.e. 
a baseline measure of immunocompetence (Mendes et al. 
2006). The peak response was chosen based on the consist-
ent pattern of males having their highest response during 
this period.

We first tested whether long-term measures of male 
quality (body mass at initial capture, lyre length) reflected 
baseline or peak response levels. We used linear models 
with tetanus level as the dependent variable and trait size 
as covariates. For peak response, levamisole treatment 
(yes/no) was included as a fixed factor. Models were run 
separately for yearlings and adults, as there is consider-
able age-dependency on sexual trait values (Kervinen et al. 
2015).

We assessed whether the immune response was costly 
by subtracting initial body mass levels from those col-
lected during the peak response. We then carried out a 
linear model with mass change as the dependent variable 
and peak response as a covariate, male age as a fixed factor 
and the interaction between male age and peak response.

We compared overwinter survival and baseline antibody 
level using a binomial generalised linear model with age 
(yearling, adult), log tetanus levels and their interaction as 
fixed factors. We then tested whether peak response values 
were related to overwinter survival (1 = alive, 0 = dead) 
using a binomial generalised linear model with levami-
sole treatment (levamisole/null) and log tetanus level as 
fixed factors. We then assessed whether the mass change 
caused by the immune response was linked to survival. We 
carried out a binomial GLM with survival as the depend-
ent variable and mass change and levamisole treatment 
as fixed factors. We carried this out separately for adults 
and yearlings.

High attendance at the leks is important for male mating 
success (Rintamäki et al. 2001), so we tested whether males 
that attended the lek and held a territory (yes/no) was related 
to log tetanus antibody level and levamisole treatment. Then 
using territorial males only, we tested whether male survival 
was related to antibody level. Sample sizes of non-territorial 
males was too low to analyse (N = 11).

For male mating success, we carried out Poisson general-
ised linear mixed effects model (GLMM) with treatment and 
log tetanus level (either baseline or peak response level) as 
fixed factors and lekking site (year and site combined) as a 
random factor. We included both linear and quadratic terms 
in the model to test for selection toward the intermediate 
response level. All analysis was run in R 2.15.2 (R Develop-
ment Core team 2012), with generalised linear-mixed effects 
models run using the lme4 package (Bates et al. 2011).
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Results

Tetanus response

In total, we caught 121 birds with 68 recaptures and resam-
pled during the peak response (Fig. 1c). Baseline antibody 
level on day 0 correlated with peak values for yearlings 
(Spearman’s rank order correlation: rS = 0.35, p = 0.042), 
but not adults (Spearman’s rank order correlation: rS = 0.08, 
p = 0.668). Adult males (12.80 ± 0.08) had higher base-
line antibody levels than yearlings (12.52 ± 0.10; Welch’s 
2 sample t test: t112.11 = − 2.21, p = 0.029) and higher peak 
responses (adults: 14.06 ± 0.20; yearlings: 13.35 ± 0.19; 2 
sample t test: t66 = − 2.61, p = 0.011).

Tail length and immune response

For yearlings, tail length only tended to be positively related 
to baseline antibody level (Table 1). By contrast, lyre length 
was significantly positively related to adult male baseline 
antibody level (Table 1; Fig. 2). For yearling and adult 
males, no phenotypic trait was significantly related to peak 
antibody response (Table 1), but in both cases the relation-
ship with tail length tended to be positive in yearlings and 
adult males (Table 1).

Survival and immune response

As predicted if tetanus was a novel immune chal-
lenge, survival was unaffected by baseline antibody 
levels (β  ±  SE  =  0.33  ±  0.34, Z  =  0.96, p  =  0.338), 
age (β  ±  SE  =  3.96  ±  7.20, Z  =  0.55, p  =  0.582) 
or its interaction with baseline antibody levels 
(β ± SE = − 0.34 ± 0.56, Z = − 0.61, p = 0.541). How-
ever, survival was significantly related to the interaction 
between peak antibody response and age (Table 2). Spe-
cifically, there was positive selection on antibody response 

in yearling males, but negative selection in adult males 
(Fig. 3a). Levamisole treatment did not influence male 
survival significantly (Table 2).

Mass loss was significantly related to the interaction 
between male age and peak response (male age x peak 
response: β ± SE = − 26.90 ± 10.15, t = − 2.65, p = 0.011; 
male age β  ±  SE  =  −  385.45  ±  140.34, t  =  −  2.75, 
p  =  0.008; peak response: β  ±  SE  =  −  9.35  ±  7.01, 
t = 1.33, p = 0.189). For adults, higher responses were 
associated with greater mass loss, whereas in yearlings, 
no such pattern occurred (Fig. 4a). In turn, adults males 
with greatest mass loss had lower survival (Survival: 
β ± SE = 45.06 ± 19.52, t = 2.31, p = 0.031; Levami-
sole: β ± SE = − 40.35 ± 19.79, t = − 2.04, p = 0.054; 
Fig. 4b), but this was not found in yearlings (Survival: 
β ± SE = 4.76 ± 15.87, t = 0.30, p = 0.767; Levamisole: 
β ± SE = − 8.23 ± 40.98, t = − 0.20, p = 0.842).

Table 1  Results of linear 
regression models for 
phenotypic traits (maximum 
lyre length, body mass), 
treatment (with or without 
Levamisole) and initial or peak 
antibody levels for yearling and 
adult male black grouse

Age Variable Fixed factor β ±SE t P

Yearling Initial antibody level Maximum lyre length (cm) − 0.03 0.13 − 0.21 0.835
Log body mass (g) 2.58 2.32 1.11 0.270

Yearling Peak response Maximum lyre length (cm) 0.50 0.28 1.78 0.086
Log body mass (g) − 1.49 4.34 − 0.34 0.734
Levamisole treatment 0.16 0.61 0.26 0.797

Adult Initial antibody level Maximum lyre length (cm) 0.17 0.07 5.59 0.012
Log body mass (g) − 0.53 1.58 − 0.34 0.739

Adult Peak response Maximum lyre length (cm) 0.22 4.99 1.37 0.180
Log body mass (g) − 2.84 5.00 − 0.57 0.574
Levamisole treatment 0.88 0.43 2.05 0.050
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Table 2  Results of GLM 
models the response of (a) 
male survival in relation to age 
(adults and yearlings males 
combined), peak antibody 
response, levamisole treatment 
and the interaction between age 
and peak antibody response

Models of male mating success were limited to adult males and in relation to linear and quadratic functions 
of (b) initial antibody response or (c) peak antibody levels and levamisole treatment

Response variable Explanatory variables β ±SE z p

(a) Survival Peak antibody response 0.49 0.36 1.37 0.132
Age 17.45 6.97 2.50 0.012
Levamisole treatment 1.05 0.66 1.59 0.111
Peak antibody response* Age − 1.24 0.51 − 2.45 0.014

(b) Mating success Initial antibody response (linear) 51.05 22.85 2.23 0.026
Initial antibody response (quadratic) − 1.94 0.88 − 2.21 0.027
Levamisole treatment − 0.48 0.30 − 1.59 0.112

(c) Mating success Peak antibody response (linear) 18.93 4.59 4.12 < 0.001
Peak antibody response (quadratic) − 0.66 0.16 − 4.11 <0.001
Levamisole treatment 0.32 0.33 0.95 0.344
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Lek attendance, mating success and immune 
response

There was a tendency for males with higher peak responses 
to be non-territorial (β ± SE = − 0.63 ± 0.36, z = − 1.75, 
p  =  0.080; Fig.  3b), but there was no effect of levam-
isole (β ± SE = − 0.27 ± 0.80, z = − 0.34, p = 0.737). 
Amongst territorial males, there was a tendency for males 
with higher peak responses to die before the next year 
(β ± SE = − 0.89 ± 0.51, z = − 1.74, p = 0.082), but there 
was no effect of levamisole treatment (β ± SE = 1.90 ± 1.19, 
z = 1.60, p = 0.117).

Males with intermediate baseline antibody level had 
higher male mating success (Table 2), but there was no 
relationship between levamisole and male mating success 
(Table 2). Male mating success was significantly related to 
an intermediate peak response (Table 2; Fig. 5). Again, lev-
amisole treatment had no effect on mating success (Table 2).

Discussion

Immune response and tail length

Despite a widespread expectation that sexual ornaments can 
honestly signal immune responses (Saino et al. 1997; Zuk 
and Johnsen 1998; Mougeot et al. 2004; Loyau et al. 2005; 
Bonato et al. 2009), there is considerable inter-species vari-
ance in this effect; some studies finding no relationship (e.g. 
Westneat et al. 2003), others finding that different compo-
nents of the immune system are reflected in different traits 
(Bonato et al. 2009). In our study, a long-term measure of 
male quality (lyre length) was positively related to baseline 
antibody levels for adult males but not yearlings and tended 
to be related to peak response in yearlings and adults. Of 

all traits, lyre length (i.e. tail length) we might be predicted 
to have a strong relationship to immunocompetence as it is 
negatively related to parasite load in black grouse (Höglund 
et al. 1992). Linked to this, tail length has been related to 
peak antibody response barn swallows Hirundo rustica 
(Saino et al. 1997) and cell-mediated immunity in peacocks 
Pavo cristatus (Møller and Petrie 2002), but not antibod-
ies in pheasants (Smith et al. 2007). A genetic analysis has 
shown a positive relationship between tail (train) length and 
MHC diversity in peacocks (Hale et al. 2009), suggesting 
that males with greater MHC diversity are healthier and, 
therefore, better able to produce large trains and have better 
general immunocompetence. Our data confirm the potential 
for tail length to signal male immunity, but also suggest that 
such a pattern may also be age-specific. The discordance 
between adults and yearling may reflect selection against 
poor quality males in yearlings; as a consequence, only high 
quality yearling males survive to the following year thereby 
strengthening the relationship between the sexual signal and 
baseline antibody response. Alternatively, yearling males 
may invest more in somatic maintenance. Our results are 
only indicative of a relationship that tail length may signal 
some component of immunity, but further work is needed 
to fully understand the mechanisms and the genes underpin-
ning this.

Immune response, survival and mating success

Previous studies have shown a positive relationship 
between immune response and survival in early life stages 
such as nestlings (Christe et al. 1998; Cichoń and Dubiec 
2005). Conversely, there is a negative relationship between 
a strong immune response and survival in reproductive-
aged individuals (Hanssen et al. 2004; Møller and Saino 
2004) often mediated by nutrition (Houston et al. 2007; 
Valtonen et al. 2010). Our results are in line with these 
earlier studies. Yearling males generally do not invest in 
lekking activity (Kervinen et al. 2012), and, therefore, 
individuals might be better able to cope with the high 
costs of an immune response. In contrast, adults with high 
responses were less likely to survive than those with weak 
responses. Lekking is energetically demanding (Vehren-
camp et al. 1989), very active males lose a considerable 
proportion of their body mass (Lebigre et al. 2013) and 
post-lekking mortality is particularly high (Alatalo et al. 
1991). Our results suggest that the costs of mounting an 
immune response occur in conjunction with the costs of 
lekking, possibly because of the dual increase in physi-
ological costs of lekking and immunity (Hasselquist and 
Nilsson 2012; Van Dijk and Matson 2016). We do not 
have direct evidence of the specific costs of a too-high 
immune response but these could also include nutrient 
costs, autoimmunity or oxidative stress (Costantini and 

Fig. 5  The number of copulations in relation to log tetanus antibody 
level during the peak response (20–40 days) for adult birds (N = 25). 
The significant quadratic regression line is shown (solid line)
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Møller 2009; Hasselquist and Nilsson 2012). We showed 
that adult males had a decline in body mass while mount-
ing their immune response and this was associated with 
reduced survival; this suggesting that the energetic costs 
may partly cause the fitness costs we observed in adult 
males.

Previous studies have also shown that an immune chal-
lenge is costly because individuals reduce their repro-
ductive effort (Jacot et al. 2004; Ahtiainen et al. 2005; 
Rantala et al. 2010; Gershman et al. 2010), but studies 
have also reported no relationship (Westneat et al. 2003) or 
even a positive relationship between the level of immune 
response and reproductive success (Ekblom et al. 2005; 
Ahtiainen et al. 2006). In black grouse, we found that birds 
with a higher peak immune response tended to have lower 
lek attendance and not hold a territory, an important pre-
requisite of any mating success (Rintamäki et al. 2001; 
Kervinen et al. 2016), and that males with intermediate 
peak immune responses had greater reproductive success. 
In some species, individuals with high reproductive effort 
have reduced antibody production (Deerenberg et al. 1997; 
Nordling et al. 1998). Conversely, individuals with too-low 
immune responses may be poor quality males unable to 
afford the dual costs of an immune response and lekking 
(Loyau et al. 2005). Our results suggest that males with 
highest mating success have reduced immune response, 
either through a better overall immunocompetence, toler-
ance of infection or as a result of a trade-off between lek-
king and antibody production. Either way, these opposite 
patterns may combine to result in an overall stabilising 
selection acting on the immune responsiveness.

Conclusions

In summary, our data indicate that individuals with inter-
mediate immune responses have higher fitness in male 
black grouse, through the opposite selection acting on 
survival (dependent on males’ age class) and direct sta-
bilising selection acting on male mating success. Our 
results demonstrate that different components of fitness 
may select in different directions on immune response and 
adds to the small body of work that suggests an interme-
diate immune response may be optimal (Nordling et al. 
1998; Stjernman et al. 2008; Graham et al. 2010). In addi-
tion, it reinforces the need to use multiple-components of 
fitness when examining optimal immunity (Graham et al. 
2011). In addition, this study shows how ornaments can 
honestly signal both baseline and response values in dif-
ferent ways. Future work should integrate these findings 
into longer-term life history to assess adaptive immune 
response across and individual’s lifespan and what 

trade-offs individuals make between different fitness com-
ponents and immune response.
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