

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s):

Title:

Year:

Version:

Please cite the original version:

All material supplied via JYX is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that
material may be duplicated by you for your research use or educational purposes in electronic or
print form. You must obtain permission for any other use. Electronic or print copies may not be
offered, whether for sale or otherwise to anyone who is not an authorised user.

On solving separable block tridiagonal linear systems using a GPU implementation of
radix-4 PSCR method

Myllykoski, Mirko; Rossi, Tuomo; Toivanen, Jari

Myllykoski, M., Rossi, T., & Toivanen, J. (2018). On solving separable block tridiagonal
linear systems using a GPU implementation of radix-4 PSCR method. Journal of
Parallel and Distributed Computing, 115(May), 56-66.
https://doi.org/10.1016/j.jpdc.2018.01.004

2018

On solving separable block tridiagonal linear systems
using a GPU implementation of radix-4 PSCR methodI

M. Myllykoskia,b,1,∗, T. Rossia, J. Toivanena,c,2

aDepartment of Mathematical Information Technology, University of Jyväskylä,
P.O. Box 35 (Agora), FI-40014 University of Jyväskylä, Finland

bDepartment of Computing Science, Ume̊a University, SE-90187 Ume̊a, Sweden
cDepartment of Aeronautics & Astronautics, Stanford University, Stanford, CA 94305, USA

Abstract

Partial solution variant of the cyclic reduction (PSCR) method is a direct solver
that can be applied to certain types of separable block tridiagonal linear sys-
tems. Such linear systems arise, e.g., from the Poisson and the Helmholtz equa-
tions discretized with bilinear finite-elements. Furthermore, the separability of
the linear system entails that the discretization domain has to be rectangu-
lar and the discretization mesh orthogonal. A generalized graphics processing
unit (GPU) implementation of the PSCR method is presented. The numerical
results indicate up to 24-fold speedups when compared to an equivalent CPU
implementation that utilizes a single CPU core. Attained floating point perfor-
mance is analyzed using roofline performance analysis model and the resulting
models show that the attained floating point performance is mainly limited by
the off-chip memory bandwidth and the effectiveness of a tridiagonal solver used
to solve arising tridiagonal subproblems. The performance is accelerated using
off-line autotuning techniques.

Keywords: fast direct solver, GPU computing, partial solution technique,
PSCR method, roofline model, separable block tridiagonal linear system
2010 MSC: 35J05, 65F05, 65F50, 65N30, 65Y05

IThis is an accepted version of a paper published in Journal of Parallel and Distributed
Computing. Please cite this article as: M. Myllykoski, T. Rossi, J. Toivanen, On solving
separable block tridiagonal linear systems using a GPU implementation of radix-4 PSCR
method, Journal of Parallel and Distributed Computing, 115, pp. 56–66, 2018, https://doi.
org/10.1016/j.jpdc.2018.01.004.

∗Corresponding author
Email address: mirko.myllykoski@jyu.fi (M. Myllykoski)

1The research of the first author was supported by the Academy of Finland [grant number
252549]; the Jyväskylä Doctoral Program in Computing and Mathematical Sciences; and the
Foundation of Nokia Corporation.

2The research of the third author was supported by the Academy of Finland [grant numbers
252549, 295897].

Preprint submitted to Journal of parallel and distributed computing February 16, 2018

https://doi.org/10.1016/j.jpdc.2018.01.004
https://doi.org/10.1016/j.jpdc.2018.01.004

1. Introduction

Separable block tridiagonal linear systems appear in many practical applica-
tions. In such a system, the coefficient matrix is presented in a separable form
using Kronecker matrix tensor products. A good example is a Poisson equation
with Dirichlet boundary conditions discretized in a rectangular domain using an5

orthogonal finite-element mesh and piecewise linear finite-elements. A similarly
treated Helmholtz equation either with absorbing boundary conditions (ABC)
[1, 2, 3] or a perfectly matched layer (PML) [4, 5], among others, also leads
to a suitable linear system when discretized using bilinear (or trilinear) finite-
elements [6]. Suitable linear systems can also be obtained using various finite10

difference approximations. Separable block tridiagonal systems appear as sub-
problems in a variety of situations. For example, a similarly discretized diffusion
equation with a suitable implicit time-stepping scheme (implicit Euler being the
simplest example) leads to the solution of a separable block tridiagonal linear
system on each time step and suitable systems appear in image processing ap-15

plications (see, e.g., [7]). In fact, the implementation described in this paper
has already been used in image denoising [8].

Several effective numerical methods have been derived by employing many
useful properties of the Kronecker matrix tensor forms. A comprehensive survey
of these so-called matrix decomposition algorithms (MDAs) can be found in [9].20

A MDA operates by reducing the linear system into a set of smaller sub-systems
which are solved independently of each other. The solution of the original linear
system is then obtained by reverting the reduction operation. MDAs are similar
to the well-known method of separation of variables and many MDAs utilize the
fast Fourier transformation method while performing the reduction operation.25

Cyclic reduction methods are a well-known class of numerical algorithms that
can be applied, among many other things, to tridiagonal and block tridiagonal
linear systems. A traditional cyclic reduction type method (see, e.g., [10, 11,
12, 13, 14, 15]) operates in two stages. The first stage generates a sequence
of sub-systems by recursively eliminating odd numbered (block) rows from the30

system. As a result, the size of each sub-system is approximately half of the
size of the preceding sub-system. This means that the reduction factor, or
the radix number as it is often called, is two. The sub-systems are solved in
reverse order during the back substitution stage of the algorithm. The reduction
operation often takes advantage of the properties of the coefficient matrix. For35

example, in certain cases, the sub-systems can be represented using matrix
rational polynomials which considerably simplifies the formulas and reduces the
amount of memory needed perform the computations [11, 13, 16]. A survey of
the cyclic reduction methods and their applications can be found in [17].

While scalar cyclic reduction (CR) method [10] and its parallel variant (par-40

allel cyclic reduction, PCR) [18] have become very popular methods for the
solution of tridiagonal linear systems on graphics processing units (GPUs) (see,
e.g., [19, 20, 21, 22, 23, 24, 25]), the block cyclic reduction type methods have
been a somewhat less popular topic. Comparisons between CPU and GPU im-
plementations of simplified radix-2 [13] and radix-4 [16] methods can be found in45

2

[26]. The paper concluded that the block cyclic reduction type methods consid-
ered in the paper are suitable for GPU computation and that the radix-4 method
is better able to utilize GPU’s parallel computing resources. The presented nu-
merical results indicate up to 6-fold speed increase for two-dimensional Poisson
equations and up to 3-fold speed increase for three-dimensional Poisson equa-50

tions. The implementations were compared against equivalent multi-threaded
CPU implementations run on a quad-core CPU.

This paper deals with a direct method called partial solution variant of the
cyclic reduction (PSCR). It is a cyclic reduction type method with MDA-type
features and it can be applied to separable block tridiagonal linear systems. The55

initial work on the (radix-2) PSCR method was done in the 80’s by Vassilevski
[27, 28] and Kuznetsov [29]. The method uses so-called partial solution tech-
nique [30, 31], which can be applied effectively to a separable linear system when
only a sparse set of the solution components is required and the right-hand side
vector has only a few non-zero elements. The technique is a special form of60

MDA. A more generalized radix-q algorithm was formulated later in [32] and a
parallel radix-4 CPU implementation was presented in [33]. Parallel implemen-
tations were also considered earlier in [34] and [35]. Here the radix number q
means that the system size is reduced by a factor of q on each reduction step.
The usual formulation of the PSCR method only distantly resembles the formu-65

lation of traditional block cyclic reduction methods. However, in certain special
cases, equivalent methods can be derived using a more traditional matrix ratio-
nal polynomial approach [13, 16]. If the factor matrices are tridiagonal, then the
arithmetical complexity of the PSCR method is O(n1n2 log n1) for n1n2×n1n2
problems and O(n1n2n3 log n1 log n2) for n1n2n3 × n1n2n3 problems.70

This paper presents a generalized GPU implementation of the radix-4 PSCR
method and in a sense this paper can be seen as a natural follow-up to [16].
The implementation can be applied to real and complex valued problems. The
underlying partial differential equation (PDE) that induces the linear system
can be two or three dimensional (i.e. each term in the tensor product form75

involves two or three factor matrices) and the factor matrices are assumed to be
tridiagonal and symmetric. Certain factor matrices are assumed to be positive
definite.

The implementation is tested using a Poisson equation with Dirichlet bound-
ary conditions and a Helmholtz equation with second-order ABC. In the both80

cases, the domain is rectangular and the discretization is performed using an
orthogonal finite-element mesh. In the case of the Poisson equation, the finite-
element space consists of piecewise linear elements, and in the case of the
Helmholtz equation, the finite-element space consist of bilinear elements. The
numerical results are analyzed using roofline performance analysis model [36].85

The model takes into account the available off-chip memory bandwidth and thus
provides a very extensive picture of how effectively computational and memory
resources are being utilized.

The rest of this paper is organized as follows: Section 2 introduces the
reader to the CR method. Section 3 describes the Kronecker matrix tensor90

product, the partial solution technique, and the PSCR method. Section 4 gives

3

a brief introduction to GPU computing and describes the GPU implementation.
Section 5 presents the numerical results and the roofline models. The final
conclusions are given in Section 6.

2. Scalar cyclic reduction method95

The PSCR method resembles the CR method in many respects. Thus, we
begin by describing the CR method in a simple setting in an attempt to in-
troduce the reader to the basic idea of cyclic reduction. Consider a tridiagonal
linear system

b1 c1

a1 b2
. . .

. . .
. . . c2k−2

a2k−1 b2k−1

u1

u2
...

u2k−1

 =

f1

f2
...

f2k−1

 , (1)

where ai, bi, ci, ui, fi ∈ K, i = 1, 2, . . . , 2k − 1, for some positive integer k. From
now on, we assume that the field K is either R or C. We focus on the equation
2j:

a2j−1u2j−2 + b2j−1u2j−1 + c2j−1u2j = f2j−1

a2ju2j−1 + b2ju2j + c2ju2j+1 = f2j

a2j+1u2j + b2j+1u2j+1 + c2j+1u2j+2 = f2j+1,

where j = 1, 2, . . . , 2k−1 − 1, a1 = c2k−1 = 0 and u0 = u2k = 0. We multiply
the equation 2j − 1 with αj = −a2j/b2j−1 and the equation 2j + 1 with βj =
−c2j/b2j+1:

αja2j−1u2j−2 − a2ju2j−1 + αjc2j−1u2j = αjf2j−1

a2ju2j−1 + b2ju2j + c2ju2j+1 = f2j

βja2j+1u2j − c2ju2j+1 + βjc2j+1u2j+2 = βjf2j+1.

We can now eliminate the unknowns u2j−1 and u2j+1 from the equation 2j.
When we apply this procedure to all even-numbered equations in the system,
we end up eliminating all odd-numbered unknowns. Furthermore, the new linear
system is tridiagonal which means that we can apply this procedure recursively.

More formally, we generate a sequence of tridiagonal sub-systems as follows:

Let a
(0)
i = ai, b

(0)
i = bi, c

(0)
i = ci, and f

(0)
i = fi, i = 1, 2, . . . , 2k − 1. Now, for

i = 1, 2, . . . , k − 1, we compute

α
(i)
j = −a(i−1)2j /b

(i−1)
2j−1 , β

(i)
j = −c(i−1)2j /b

(i−1)
2j+1 ,

a
(i)
j = α

(i)
j a

(i−1)
2j−1 , c

(i)
j = β

(i)
j c

(i−1)
2j+1 ,

b
(i)
j = b

(i−1)
2j + α

(i)
j c

(i−1)
2j−1 + β

(i)
j a

(i−1)
2j+1 ,

f
(i)
j = f

(i−1)
2j + α

(i)
j f

(i−1)
2j−1 + β

(i)
j f

(i−1)
2j+1 ,

(2)

4

where j = 1, 2, . . . , 2k−i − 1. Then, for i = k − 1, k − 2, . . . , 0, we solve each
sub-system using the formula

u
(i)
j =

{
(f

(i)
j − a

(i)
j u

(i+1)
(j−1)/2 − c

(i)
j u

(i+1)
(j−1)/2+1)/b

(i)
j , j /∈ 2N,

u
(i+1)
j/2 , j ∈ 2N,

(3)

where j = 1, 2, . . . , 2k−i − 1, a
(i)
1 = c

(i)

2k−i−1 = 0, and u
(i+1)
0 = u

(i+1)

2k−i = 0.100

Finally, u = u(0). The CR method can be easily generalized for linear systems
of arbitrary size in which case the arithmetical complexity of the method is
O(m), where m is the number of equation in the system.

3. PSCR method

3.1. Kronecker matrix tensor product forms105

The Kronecker matrix tensor product is defined for matrices B ∈ Kn1×n1

and C ∈ Kn2×n2 as follows

B ⊗ C =

b1,1C b1,2C . . . b1,n1

C
b2,1C b2,2C . . . b2,n1C

...
...

. . .
...

bn1,1C bn1,2C . . . bn1,n1C

 ∈ Kn1n2×n1n2 . (4)

The product has two properties which are the basis of many MDAs: First, let
D ∈ Kn1×n1 and E ∈ Kn2×n2 . Then,

(B ⊗ C)(D ⊗ E) = BD ⊗ CE ∈ Kn1n2×n1n2 . (5)

Second, let D ∈ Kn1×n1 and E ∈ Kn2×n2 . If the matrices D and E are nonsin-
gular, then product matrix D ⊗ C ∈ Kn1n2×n1n2 is also nonsingular and

(D ⊗ E)−1 = D−1 ⊗ E−1 ∈ Kn1n2×n1n2 . (6)

These two results can be derived from the definition of the Kronecker matrix
tensor product.

Generally speaking, the PSCR method considered in this paper can be ap-
plied to a linear system Au = f , with

A = A1 ⊗M2 +M1 ⊗A2 + c(M1 ⊗M2), (7)

where the factor matrices A1 ∈ Kn1×n1 and M1 ∈ Kn1×n1 are symmetric and
tridiagonal, A2,M2 ∈ Kn2×n2 , and c ∈ K. Thus, the coefficient matrix A is
symmetric and block tridiagonal. In addition, the factor matrix M1 is positive
definite. Linear systems of this form usually result from the discretization of
two-dimension PDEs. The method can also be used to solve three-dimensional
PDEs in which case the coefficient matrix A would be of the form

A1 ⊗M2 ⊗M3 +M1 ⊗A2 ⊗M3 +M1 ⊗M2 ⊗A3 + c(M1 ⊗M2 ⊗M3), (8)

5

where the factor matrices A2 and M2 are symmetric and tridiagonal, and
A3,M3 ∈ Kn3×n3 . In addition, the factor matrices M1 and M2 are positive
definite. From now on, we refer to linear systems with the coefficient matri-110

ces of the form (7) as two-dimensional problems and linear systems with the
coefficient matrices of the form (8) as three-dimensional problems.

The PSCR method reduces a three-dimensional problem into a set of two-
dimensional problems where the coefficient matrices are of the form

A2 ⊗M3 +M2 ⊗A3 + (c+ λ)(M2 ⊗M3), (9)

with λ ∈ K. The PSCR can be applied recursively to solve problems with (9).

3.2. Overview of the algorithm

This and the next two subsections describe the radix-q PSCR method using115

projection matrices similarly to [33]. We now loosely define sets J0, J1, . . . , Jk ⊂
N that will indirectly determine which block rows are eliminated during each
reduction step. The exact formulation of the PSCR method depends on how
these sets are chosen. In the case of the radix-q PSCR method, k = blogq n1c+1
and the sets fulfill the following conditions:120

1. J0 = {1, 2, 3, . . . , n1}, Jk = ∅.
2. Jk ⊂ Jk−1 ⊂ · · · ⊂ J1 ⊂ J0.

3. Let Ĵi = Ji ∪ {0, n1 + 1}, (ĵ
(i)
1 , ĵ

(i)
2 , . . .) be the elements of the set Ĵi in

ascending order, and

D
(i)
l = {j ∈ Ji−1 : ĵ

(i)
l < j < ĵ

(i)
l+1}. (10)

Then #D
(i)
l ≤ q − 1 for all i = 1, 2, . . . , k and l = 1, 2, . . . ,#Ji + 1.

Above #Ji and #D
(i)
l are the cardinalities of the sets Ji and D

(i)
l , respec-

tively. The consequence of the third condition is that the rows, that are to be125

eliminated during a reduction step, are distributed into groups of a size of no
more than q − 1. Examples of the sets J1, J2, . . . , Jk are given in Figure 1 and
in the following Section 3.4.

J0
J1
J2
J3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 1: An example of the sets J0, J1, J2, J3 when q = 4 and n1 = 32. Indexes that belong
to each set are highlighted in black. The set Ji implies that block rows, that correspond
to indexes that belong to the set Ji−1 \ Ji, are eliminated from the system during the ith
reduction step.

With the sets J0, J1, . . . , Jk, we can define projection matrices

P̃ (i) = diag{p(i)1 , p
(i)
2 , . . . , p(i)n1

} ∈ Kn1 , i = 1, 2, . . . , k, (11)

6

with

p
(i)
j =

{
1, j /∈ Ji,
0, j ∈ Ji.

(12)

Based on these, we can define a second set of projection matrices: P (i) =
P̃ (i) ⊗ In2 , i = 1, 2, . . . , k.130

Under the assumption that a projected matrix P (i)AP (i) is nonsingular in
subspace Im(P (i)) for all i = 1, 2, . . . , k, the linear system Au = f can be solved
in two stages:

1. Let f (1) = f . Then, for i = 1, 2, . . . , k − 1: Solve the vector v(i) from

P (i)AP (i)v(i) = P (i)f (i) (13)

and compute

f (i+1) = f (i) −AP (i)v(i). (14)

2. Let u(k+1) = 0. Then, for i = k, k − 1, . . . , 1: Solve the vector u(i) from

P (i)AP (i)u(i) = P (i)f (i) − P (i)A(I − P (i))u(i+1) (15)

and compute

(I − P (i))u(i) = (I − P (i))u(i+1). (16)

Finally, u = u(1).

The rationale behind this recursive technique becomes clear after the follow-135

ing observations: Due to the special block tridiagonal structure of the coefficient
matrix A, only a sparse set of the solution components are actually required by
the update formulas (14) and (16), and the right-hand side vectors in the pro-
jected systems (13) and (15) have only a few non-zero elements. In this situation
the partial solution technique [30, 31] can be applied very effectively. In addi-140

tion, the projected systems (13) and (15) decouple into several independent
sub-systems.

3.3. Partial solution technique

We will now investigate how to solve independent sub-systems in (13) and
(15). Let us focus on a separable linear system Ãv = g with

Ã = Ã1 ⊗M2 + Ã1 ⊗A2 + c(M̃1 ⊗M2), (17)

where Ã1 ∈ Km×m and M̃1 ∈ Km×m are matching diagonal blocks from the
matrices A1 and M1, respectively. Let us have projection matrices R̃ ∈ Km×m

145

and Q̃ ∈ Km×m defining the required solution blocks and the non-zero blocks of
the right-hand side vector g, respectively. Based on these projection matrices,
we construct two additional projection matrices: R = R̃⊗ In2

and Q = Q̃⊗ In2
.

7

Thus, g ∈ Im(Q) and instead of solving the whole vector v, we are going to
solve only vector Rv.150

The vector Rv can be solved effectively by using the formula:

RÃ−1Q = (R̃W ⊗ In2)((Λ + cIm)⊗M2 + Im ⊗A2)−1(WT Q̃⊗ In2), (18)

where the diagonal matrix Λ ∈ Km×m and the matrix W ∈ Km×m have the
properties

WT Ã1W = Λ and WT M̃1W = Im. (19)

In other words,

W = [w1w2 . . . wm] and Λ = diag{λ1, λ2, . . . , λm} (20)

contain the eigenvalues λ1, λ2, . . . , λm ∈ K and the M̃1-orthonormal eigenvectors
w1, w2, . . . , wm ∈ Km, which satisfy the generalized eigenvalue problem

Ã1wj = λjM̃1wj . (21)

The formula (18) follows from the properties (5) and (6).
In the case of the radix-q PSCR method, the projection matrices R̃ and Q̃

contain no more than q+1 non-zero blocks, which means that only q+1 compo-
nents from each eigenvector are required to compute Rv. If the factor matrices
A2 and M2 are tridiagonal, then the arithmetical complexity of computing a155

partial solution is O(mn2), the most expensive operation being the solution of
m n2 × n2 tridiagonal linear systems.

3.4. Explicit formulas

This subsection gives explicit formulas in the special case when n1 = qk − 1
for some positive integer k. The method can be generalized for arbitrarily n1
but due to lengthy formulas we limit ourselves to presenting the method in this
special case. However, we emphasize that the implementation presented in this
paper is applicable for general n1. We begin by defining the sets J0, J1, . . . , Jk ⊂
N as

J0 = {1, 2, 3, . . . , n1},
Ji =

{
j · qi : j = 1, 2, . . . , qk−i − 1

}
, i = 1, 2, . . . , k − 1 and

Jk = ∅.
(22)

Clearly these sets fulfill the conditions enumerated in Section 3.2.
In summary, the radix-q PSCR method proceeds for a two-dimensional prob-160

lem as follows:

1. Solve a set of generalized eigenvalue problems

Ã
(i)
j w

(i)
j,l = λ

(i)
j,lM̃

(i)
j w

(i)
j,l , i = 1, 2, . . . , k, l = 1, 2, . . . ,mi, (23)

8

where Ã
(i)
1 , Ã

(i)
2 , . . . , Ã

(i)

qk−i ∈ Kmi×mi and M̃
(i)
1 , M̃

(i)
2 , . . . , M̃

(i)

qk−i ∈ Kmi×mi

are the non-zero diagonal blocks from the projected matrices P̃ (i)A1P̃
(i)

and P̃ (i)M1P̃
(i), respectively, in order starting from the upper left cor-

ner, and mi = qi − 1. This step can be considered as an initialization165

stage. The numerical stability of the PSCR method depends largely on
the properties of these generalized eigenvalue problems.

2. Let f (1) = f . Compute the vectors f (2) ∈ K(qk−1−1)n2 , f (3) ∈ K(qk−2−1)n2 ,
. . . , f (k) ∈ K(q−1)n2 by using the recursive formula

f
(i+1)
j = f

(i)
qj − T̂

(i)
j

mi∑
l=1

(w
(i)
j,l)mi

v
(i)
j,l − Ť

(i)
j

mi∑
l=1

(w
(i)
j+1,l)1v

(i)
j+1,l ∈ Kn2 , (24)

where

T̂
(i)
j = ((A1)jqi,jqi−1 + c (M1)jqi,jqi−1)M2 + (M1)jqi,jqi−1A2,

Ť
(i)
j = ((A1)jqi,jqi+1 + c (M1)jqi,jqi+1)M2 + (M1)jqi,jqi+1A2.

(25)

The vectors v
(i)
j,l ∈ Kn2 are solved from

(
A2 + (λ

(i)
j,l + c)M2

)
v
(i)
j,l =

q−1∑
s=1

(w
(i)
j,l)sqi−1f

(i)
(j−1)q+s. (26)

3. Compute the vectors u(k) ∈ K(q−1)n2 , u(k−1) ∈ K(q2−1)n2 , . . . , u(1) ∈
K(qk−1)n2 by using the recursive formula

u
(i)
qd+j =

mi∑
l=1

(w
(i)
d+1,l)jqi−1y

(i)
d,l ∈ Kn2 , j = 1, 2, . . . , q − 1,

u
(i)
qd+q = u

(i+1)
d+1 ∈ Kn2 , d < qk−i − 1,

(27)

where d = 0, 1, . . . , qk−i − 1. The vectors y
(i)
d,l ∈ Kn2 are solved from

(
A2 + (λ

(i)
d+1,l + c)M2

)
y
(i)
d,l =

q−1∑
s=1

(w
(i)
d+1,l)sqi−1f

(i)
qd+s

− K̂(i)
d (w

(i)
d+1,l)1u

(i+1)
d

− Ǩ(i)
d+1(w

(i)
d+1,l)miu

(i+1)
d+1 ,

(28)

where

K̂
(i)
d = ((A1)dqi+1,dqi + c (M1)dqi+1,dqi)M2 + (M1)dqi+1,dqiA2,

Ǩ
(i)
d = ((A1)dqi−1,dqi + c (M1)dqi−1,dqi)M2 + (M1)dqi−1,dqiA2,

(29)

K̂
(i)
0 = K̂

(i)

qk−i = 0, and u
(i+1)
0 = u

(i+1)

qk−i = 0. Finally, u = u(1).

9

4. Implementation

4.1. OpenCL and Nvidia’s GPU hardware170

A contemporary high-end Nvidia GPU contains thousands of processing ele-
ments (CUDA cores) which are grouped into multiple computing units (stream-
ing multiprocessors). GPU-side code execution begins when a special kind of
subroutine called kernel is launched. A kernel is executed in parallel by a large
set of work-items (threads) and each work-item is given a unique index number175

which makes branching possible. The work-items are grouped into work groups,
which are then mapped to the computing units. A computing unit can execute
multiple work groups concurrently but each work group is mapped to only a
single computing unit.

The processing elements inside the same computing unit share certain re-180

sources such as a register file, schedulers, special function units, and caches. The
schedulers can issue instructions from multiple independent instruction streams
(work-items) to the same processing element. This type of over-saturated pro-
cessing element occupancy is actually a desirable situation because then the
instruction pipeline can be kept more easily occupied. Because multiple pro-185

cessing elements share the same scheduler, the code is actually executed in a
synchronous manner. The hardware handles branches by going through all nec-
essary execution paths temporally disabling those processing elements that do
not contribute to the final result. Nvidia uses the term warp to describe a set
of 32 work-items that are executed together in this synchronized manner.190

OpenCL has two primary memory spaces:

Global memory is a large but relatively low bandwidth (off-chip) memory
space, which can be accessed by all work-items. Attainable memory band-
width depends largely on GPU’s microarchitecture and the used access
pattern. In case of older devices, a warp-coalesced access pattern, that195

is, a access pattern where the warp accesses memory locations that fall
within the same 128 byte memory block / L1 cache line, is usually the
fastest way to access the global memory. Newer devices can also benefit
from warp-coalesced access but the benefits are not as substantial because
only the L2 cache (32 byte cache line) can be used in most situations.200

Local memory is a fast (on-chip) memory space which can be used when mul-
tiple work-items that belong to the same work group want to share data.
The memory is divided into 32-bit (or 64-bit) memory banks organized
such a way that successive 32-bit (or 64-bit) words map to successive
memory banks. Each memory bank is capable of serving only one concur-205

rent memory request. This limits the number of effective access patterns
as simultaneous memory requests, that point to the same memory bank,
cause a memory bank conflict and are processed sequentially.

In addition, there are two additional memory spaces called constant memory and
private memory, but they are not used (explicitly) in our GPU implementation.210

10

4.2. General notes

The GPU implementation is based on the radix-4 PSCR method. The radix-
4 variant was chosen because it is relatively simple to implement but still nearly
optimal in the sense of arithmetical complexity [33]. Based on the numerical
results presented in [26], it is also likely that a radix-4 method will outperform215

a radix-2 method on a GPU, especially when the problem size is small.
Our GPU implementation can be applied to problems where the factor ma-

trices A1, A2, M1, and M2 in (7) are tridiagonal and symmetric. For three-
dimensional problem, the factor matrices A3 and M3 in (8) are also assumed to
be tridiagonal and symmetric. As mentioned earlier, the factor matrix M1 (and220

the factor matrix M2 when dealing with three-dimensional problems) is assumed
to be positive definite. The field K can be either R or C. The system size can
be arbitrary as long as the GPU has enough global memory to accommodate
the right-hand side vector, the factor matrices, the eigenvalues, the required
eigenvector components, guiding information, and workspace buffers. Here, the225

term guiding information refers to data structures that are used to map work
groups to different computational tasks inside the kernels.

The generalized eigenvalue problems (23) are solved on the CPU-side. This
is not a major limitation because the PSCR method is usually used when one
desires solve a large set of linear systems with (nearly) identical coefficient ma-230

trices. If the factor matrix M1 is not diagonal, then the generalized eigenvalue
problem is preprocessed with Crawford’s algorithm [37] leading to an ordinary
eigenvalue problem with the same eigenvalues. The eigenvalues are then solved
using the LR-algorithm [38] coupled with Wilkinson’s shift. The eigenvectors
are solved using the inverse iteration method after the eigenvalues have been235

computed.
OpenCL does not have a native support for complex numbers. In the GPU

implementation presented in this paper, a complex number is presented using
a vector of length two. Multiplications and divisions are implemented using
suitable precompiler conditionals/macros. This means that the same codebase240

can be used for real and complex valued problems.
Many aspects of the implementation are parametrized. For example, each

kernel has its own parameter that specifies the size of the work group. If the
system is complex valued, then the solver can be configured to store the real and
imaginary parts separately. Similarly, the solver can be configured to store the245

two halves of a 64 bit double precision floating-point number as two separate
32 bit chunks. In addition, several parameters control the way the tridiagonal
solver behaves. Optimal parameters that minimize the overall execution time are
selected by solving the arising integer programming problems using a differential
evolution [39, 40] method.250

4.3. Upper level implementation (levels 1 and 2)

The implementation of the PSCR method is divided into three levels: The
level 3 is the tridiagonal solver, which is responsible for solving the tridiagonal
subproblems in (26) and (28). The details are given in the next subsection.

11

The level 2 forms the right-hand side vectors for the aforementioned tridiagonal255

subproblems and computes the vectors (24) and (27). The level 1 is analogous to
the level 2 as it performs the same operations to a three-dimensional problem.
When the tridiagonal solver is excluded, the implementation consists of the
following seven kernels:

lx stage 11 forms the right-hand side vectors for the subproblems in (26).260

lx stage 12a computes the vector sums in (24).

lx stage y2b helps to compute the vector sums in (24) and (27).

lx stage 12c computes the vector f (i+1) in (24).

lx stage 21 forms the right-hand side vectors for the subproblems in (28).

lx stage 22a computes the vector sums in (27).265

lx stage 22c computes the vector u(i) in (27).

As the levels 1 and 2 are analogous to each others, they use the same codebase.
Level 1 kernels have a prefix l1 and level 2 kernels have a prefix l2.

The purpose of the kernel lx stage y2b is to distribute the task of comput-
ing the vector sums in (24) and (27). Each vector sum is divided into multiple270

partial sums which are then evaluated in parallel by the kernels lx stage 12a

and lx stage 22a. The same division into partial sums is then repeated recur-
sively by the kernel lx stage y2b using a tree-like reduction pattern. The size
of each partial sum is set by a parameter.

4.4. Tridiagonal solver (level 3)275

The tridiagonal solver used in our GPU implementation is a generalized and
extended version of the CR based tridiagonal solver used in our previous paper
[26]. The extended tridiagonal solver is based on the CR, PCR, and Thomas [41]
methods. The CR method has been shown to be reasonably effective on GPUs
due to its simplicity and parallel nature (see, e.g., [19, 20, 21, 22, 23, 24, 25]). In280

its basic formulation, the CR method suffers from many well-known drawbacks.
The two most significant ones of them, when GPUs are concerned, are:

• The memory access pattern disperses exponentially as the method pro-
gresses. This causes problems with the global memory because warp-
coalesced access is no longer possible and it causes problems with the285

local memory because work-items end up accessing data that is stored in
the same memory bank. These problems are tackled in this paper by using
different permutation schemes.

• The number of parallel tasks is reduced by a factor of two on each reduction
step which leads to low processing element occupancy. This further leads290

to suboptimal floating point and memory performance. The situation
is even worse in the complex valued case as the memory requirement is
doubled when compared to the real valued case but the number of parallel
tasks stays the same.

12

The PCR method uses the same reduction formulas as the CR method but295

the reduction operation is applied to every row in each reduction step. Thus, all
sub-systems are the same size and the arithmetical complexity of the method is
O(m logm). The benefits of using the PCR method are: a more GPU-friendly
memory access pattern, which does not cause additional memory bank conflicts,
and high processing element occupancy. The method is widely used for solving300

tridiagonal systems on GPUs; see, e.g. [19, 25].
And finally, the Thomas method is a special variant of the well-known LU-

decomposition method for tridiagonal matrices. The arithmetical complexity
of the method is O(m) and it is the most effective of all the three mentioned
methods. However, this sequential algorithm is not suitable for GPUs on its own.305

Thus, the method is often combined with the PCR method (see, e.g., [19, 22]).
This is possible because a PCR reduction step splits a linear system into two
independent sub-systems. After a few PCR reduction steps, the remaining sub-
systems can be solved effectively using the Thomas method.

Figure 2: Examples of the permutation patterns during the stage A (on the left) and stage
B (on the right) of the tridiagonal solver. In this illustration, each work group contains four
work-items. In practice, the work group size is always some multiple of the warp size.

The tridiagonal solver that is used in our PSCR implementation has four310

main stages:

Stage A is used when the reduced system does not fit into the allocated local
memory buffer. It this case, the coefficient matrix and the right-hand side
vector are stored in the global memory and the local memory is used to
share odd numbered rows between work-items. Thus each odd-numbered315

row needs to be read only once from the global memory. The system
is divided into sections which are then processed independently of each
other. The size of each section is two times the size of the work group.
After a new sub-system has been computed using the CR method, each
section is permuted in such a way that all odd numbered rows from the320

previous sub-system are stored in the upper half of the section and all rows
from the new sub-system are stored in the lower half of the section. This
segmentation and permutation operation is repeated after each reduction
step. Figure 2 shows how the reduction stage proceeds.

13

The purpose of this permutation scheme is to store those rows that are325

needed during the next reduction step continuously in the global memory,
thus avoiding the exponential memory access pattern dispersion prob-
lem mentioned earlier. Each reduction and back substitution step can be
performed using multiple work groups, thus allowing a larger number of
work-items to be employed per tridiagonal system.330

Stage B is used when the reduced system fits into the allocated local memory
buffer but the number of remaining even numbered rows is higher than
the size of the used work group. Figure 2 shows how the reduction stage
proceeds. We refer reader to [26] (”middle stage“) for further details. The
simplified implementation presented in [26] benefited this additional step335

but the benefits did not translate to the generalized implementation. The
parameter optimizer kept this stage disabled during most test runs.

Figure 3: An example of the permutation pattern during the stage C of the tridiagonal solver.
In this illustration, each work group contains eight work-items.

Stage C is used when the reduced system fits into the allocated local memory
buffer and the number of remaining even numbered rows is at most the
same as the size of the used work group. Before the first reduction step,340

the system is permuted in such a way that all odd numbered rows are
stored in the upper half of the vector and all even numbered rows are
stored in the lower half of the vector. After the new sub-system has been
computed using the CR method, each vector is permuted in such a way
that all computed rows, that are going to be even numbered rows during345

the next reduction step, are stored in the first part of the vector, followed
by all computed rows, that are going to be odd numbered rows during the
next reduction step. This division and permutation operation is repeated
after each reduction step. This permutation pattern seems to be identical
with the one used in [20].350

Stage D solves the remaining system using a PCR-Thomas hybrid method
similar to [19, 22]. This stage can be disabled completely or the Thomas-
step can be skipped, if desired. In our implementation this is decided by
the differential evolution optimization of the execution time.

14

The permutations can be implemented effectively because the coefficient355

matrices are stored in a vector format and the reversal of the permutation
pattern during the back substitution stage is necessary only in the case of the
right-hand side vectors. The tridiagonal solver presented in [26] consisted of
simplified versions of the stages A, B, and C.

In total, the tridiagonal solver consists of five kernels. If it is necessary to360

use the global memory, then the following four kernels are used:

l3 gen glo sys is responsible for forming the coefficient matrices into the global
memory.

l3 a1 performs one stage A CR reduction step in global memory. If only one
work group is used per system, then the kernel performs all remaining365

stage A reduction steps.

l3 a2 performs one stage A CR back substitution step in global memory. If only
one work group is used per system, then the kernel mirrors the behavior
of the kernel l3 a1.

l3 bcd cpy sys copies the system into the local memory and performs the re-370

maining stages B, C and D.

If there is no need to use the global memory, then only one kernel (l3 bcd gen sys)
is used to performs all necessary operations.

The work group sizes, the amount of allocated local memory, switching points
between different stages, the number of work groups per system, and many other375

properties are parametrized and, thus, optimized.

5. Numerical results and discussion

5.1. Test problems

The first set of test problems is made out of two-dimensional and three-
dimensional Poisson equations with Dirichlet boundary conditions:{

−4 u = f, in Ω,

u = g, on ∂Ω.
(30)

In a rectangle, the discretization using piecewise linear finite-elements on an
orthogonal finite-element mesh leads the following factor matrices:

Aj = tridiag

{
− 1

hj,l−1
,
hj,l + hj,l+1

hj,lhj,l+1
,− 1

hj,l

}
∈ Rnj×nj ,

Mj = diag

{
hj,l + hj,l+1

2

}
∈ Rnj×nj ,

(31)

where j = 1, 2 or j = 1, 2, 3. Above, hj,l is the lth mesh step in the jth
coordinate axis direction. In addition, c = 0 in (7) or (8).380

15

The second set of test problems is made out of approximations of the Helmholtz
equation

−4 u− ω2u = f, in Rd,

limr→∞r
(d−1)/2

(
∂u

∂r
− iωu

)
= 0,

(32)

where d = 2, 3 and ω is the wave number. The second equation of (32) is the
Sommerfeld radiation condition which poses u to be a radiating solution. Here
i denotes the imaginary unit. The unbounded domain Rd must be truncated
to a finite one before finite element solution can be attempted. This means
that we must approximate the radiation condition at the truncation boundary.385

Two popular ways of achieving this are a PML [4, 5] and ABC [1, 2, 3]. If the
truncated domain is rectangular and the problem is discretized using bilinear (or
trilinear) finite elements on an orthogonal finite-element mesh, then the resulting
coefficient matrices can be presented using the Kronecker matrix tensor product
in a form which is suitable for the PSCR method (see, e.g., [6]).390

A second-order ABC was chosen for numerical experiments. For the two-
dimensional Helmholtz equation, c = −ω2 in (7) and the factor matrices are
defined as

Aj =

bj,1 aj,1

aj,1 bj,2
. . .

. . .
. . . aj,nj−1

aj,nj−1 bj,nj

 ∈ Cnj×nj (33)

and

Mj =

dj,1 cj,1

cj,1 dj,2
. . .

. . .
. . . cj,nj−1

cj,nj−1 dj,nj

 ∈ Cnj×nj , (34)

where

bj,l =
hj,l−1 + hj,l
hj,l−1hj,l

, l = 2, 3, . . . , nj − 1,

bj,1 =
1

hj,1
− iω

2
, bj,nj

=
1

hj,nj−1
− iω

2
,

dj,l =
hj,l−1 + hj,l

3
, l = 2, 3, . . . , nj − 1,

dj,1 =
hj,1
3

+
i

2ω
, dj,nj

=
hj,nj−1

3
+

i

2ω
,

aj,l = − 1

hj,l
, and cj,l =

hj,l
6
.

(35)

16

5.2. Comparisons and general analysis of the results

GPU experiments were carried out on a Nvidia GTX 1080 Ti GPU and an
Intel i5-6600 CPU was used in CPU experiments. A single-threaded variant of
the radix-4 PSCR CPU code presented in [33] was used as a CPU reference
implementation. All the experiments were performed using double precision395

floating point arithmetic. Due to certain limitations in Nvidia’s current OpenCL
drivers, the GPU implementation could access only up to 4GB of global memory
which limited the sizes of the numerical problems that could be considered. The
GPU implementation can solve slightly larger systems than presented here but
the parameter optimizer does not work properly when the required amount of400

global memory is close to 4GB. This is likely a memory fragmentation issue.

n1,n2 Intel i5-6600 GTX 1080 Ti
32 0.0001 0.0003 + 0.0000
64 0.0002 0.0003 + 0.0000

128 0.0011 0.0005 + 0.0001
256 0.0039 0.0005 + 0.0002
512 0.0200 0.0014 + 0.0010

1024 0.0829 0.0053 + 0.0029
2048 0.4005 0.0266 + 0.0105
4096 1.6845 0.1157 + 0.0426
8192 8.0182 0.5617 + 0.1662

Table 1: Execution and RAM-VRAM-RAM transfer times (in seconds) for the two-
dimensional Poisson equations (n1n2 degrees of freedom).

n1,n2 Intel i5-6600 GTX 1080 Ti
31 0.0001 0.0003 + 0.0000
63 0.0005 0.0003 + 0.0001

127 0.0027 0.0005 + 0.0001
255 0.0115 0.0011 + 0.0004
511 0.0593 0.0043 + 0.0017

1023 0.2292 0.0159 + 0.0054
2047 1.2619 0.0712 + 0.0208
4095 5.7642 0.2916 + 0.0817

Table 2: Execution and RAM-VRAM-RAM transfer times (in seconds) for the two-
dimensional Helmholtz equations (n1n2 degrees of freedom).

Tables 1 and 2 show the results obtained with the two-dimensional test
problems. The initialization times are excluded from the tabulated execution
times. The initialization time depends on the properties of the generalized
eigenvalue problems (23) but in general the initialization time is one order of405

magnitude longer than the actual solution time. Figure 4 shows the observed
speedups when the Nvidia GTX 1080 Ti GPU was used instead of one core of
the Intel i5-6600 CPU. The right-hand side vector transfer times are excluded
from the speedup calculations. For the Poisson equations, the GPU is up to 16
times faster and for the Helmholtz equations, the GPU is up to 20 times faster.410

17

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 100 1000 10000

cp
u
 r

u
n
 t

im
e
 /

 g
p
u
 r

u
n
 t

im
e

n1 = n2

Poisson
Helmholz

Figure 4: A execution time comparison between the Intel i5-6600 CPU and the Nvidia GTX
1080 Ti GPU for the two-dimensional problems.

The size of the problem determines the number of work-items that can be
used which further determines how effectively the processing elements can be
utilized. In addition, each kernel launch causes some additional overhead which
has the largest impact on small problems as shown in Figure 6. These two ob-
servations explains why the speedup goes up as the problem size increases. The415

fact that the observed speedup flattens in the case the large Poisson equations
will be discussed in Subsection 5.3.

n1,n2, n3 Intel i5-6600 GTX 1080 Ti
31 0.0058 0.0017 + 0.0001
44 0.0160 0.0029 + 0.0004
63 0.0478 0.0047 + 0.0009
90 0.2422 0.0182 + 0.0021

127 0.7523 0.0396 + 0.0053
180 2.2483 0.1109 + 0.0158
255 6.5014 0.2734 + 0.0408
361 28.368 1.3070 + 0.1216
511 87.272 3.6158 + 0.3226

Table 3: Execution and RAM-VRAM-RAM transfer times (in seconds) for the three-
dimensional Poisson equations (n1n2n3 degrees of freedom).

Tables 3 and 4 show the corresponding results for the three-dimensional test
problems. The initialization times are again excluded from the tabulated exe-
cution times. However, unlike in the case of the two-dimensional test problems,420

the initialization time is generally negligible when compared to the solution
time. The speedup graph in Figure 5 shows that the GPU is up to 24 times
faster at solving the Poisson equations and up to 18 times faster at solving the

18

n1,n2, n3 Intel i5-6600 GTX 1080 Ti
31 0.0150 0.0030 + 0.0002
44 0.0432 0.0075 + 0.0009
63 0.1327 0.0137 + 0.0015
90 0.7330 0.0570 + 0.0040

127 2.1733 0.1358 + 0.0102
180 6.9103 0.4161 + 0.0308
255 20.007 1.0900 + 0.0819
361 86.519 5.1603 + 0.2426

Table 4: Execution and RAM-VRAM-RAM transfer times (in seconds) for the three-
dimensional Helmholtz equations (n1n2n3 degrees of freedom).

 0

 5

 10

 15

 20

 25

 10 100 1000

cp
u
 r

u
n
 t

im
e
 /

 g
p
u
 r

u
n
 t

im
e

n1 = n2 = n3

Poisson
Helmholz

Figure 5: A execution time comparison between the Intel i5-6600 CPU and the Nvidia GTX
1080 Ti GPU for the three-dimensional test problems.

Helmholtz equations.
Figures 6 and 7 show how the execution time is distributed among differ-425

ent kernels on the Nvidia GTX 1080 Ti GPU. For the small two-dimensional
problems, the execution time is dominated by the overhead, as expected. For
the larger two-dimensional problems, the execution time is dominated by the
tridiagonal solver (l3-kernels). Therefore, the main efforts to improve the imple-
mentation should be directed toward the tridiagonal solver. Some effort should430

also be directed towards the kernel lx stage 21. The transition point where the
tridiagonal solver begins to use the global memory (stage A) can be seen clearly
at n1 = 1023. For the three-dimensional problems, the overhead is negletable
and the execution time is again dominated by the tridiagonal solver.

Based on numerical experiments, the GPU implementation appears to be435

as numerically stable as the reference CPU implementation. The parameter
optimization provided some additional benefit when compared to non-optimized

19

31
44

63
89

127
180

255
361

511
723

1023
1447

2047
2895

4095

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

overhead / idle
l3_bcd_gen_sys
l3_bcd_cpy_sys
l3_gen_glo_sys
l3_a2
l3_a1
l2_stage_22a
l2_stage_21
l2_stage_12c
miscellaneousn1 = n2

pr
op

or
tio

n
of

 th
e

ru
n

tim
e

Figure 6: Execution time distribution for the two-dimensional Helmholtz equations on the
Nvidia GTX 1080 Ti GPU. Miscellaneous includes all remaining kernels.

31 44 63 89 127 180 255 361

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

overhead / idle
l3_bcd_gen_sys
l2_stage_22c
l2_stage_21
l2_stage_12c
l2_stage_12a
l2_stage_11
l1_stage_21
l1_stage_12c
miscellaneousn1 = n2 = n3

pr
op

or
tio

n
of

 th
e

ru
n

tim
e

Figure 7: Execution time distribution for the three-dimensional Helmholtz equations on the
Nvidia GTX 1080 Ti GPU. Miscellaneous includes all remaining kernels.

generic parameters which try to maximize processing element utilization by
using large work groups and utilizing the local memory as much as possible. In
case of the largest two-dimensional problems the parameter optimization lead440

up to 94% improvement. In other cases the improvements were more modest;
average improvement being about 11%.

5.3. Roofline models

The roofline model [36] is a performance analysis tool which takes into ac-
count the available off-chip memory bandwidth. The model gives a much more445

accurate picture than what can be obtained by simply counting the floating
point operations (flop). This is especially true in the case of GPUs since the
theoretical floating point performance can be remarkably high but the actual
attainable floating point performance is limited in several ways, including the

20

global memory bandwidth. The roofline model has been previously successfully450

applied to GPUs; see, e.g., [42].
Basically, the application of the roofline model produces a two-dimensional

scatter plot, assigning ”operational intensity” to the horizontal axis, and ”at-
tained floating point performance” to the vertical axis. Here the operational
intensity is defined as

operational intensity =
number of floating point operations

number of bytes of (off-chip) memory traffic
. (36)

The model includes two device specific upper limits for the attainable floating
point performance. The first upper limit is the theoretical peak floating point
performance of the device. The second upper limit is determined by the peak
(off-chip) memory bandwidth and calculated by

peak (off-chip) memory bandwidth× operational intensity. (37)

The point where these two upper bounds intersect is called device specific bal-
ance point. If the operational intensity of an algorithm is lower than the device
specific balance point, then the algorithm is considered to be memory-bound;
otherwise the algorithm is considered to be compute-bound. The actual at-455

tained floating point performance should be close to the upper limit specified
by the operational intensity of the algorithm.

The analysis presented in this paper is based on computing an estimate for
the number of floating point and memory operations on test run by test run ba-
sis. These estimates take into account the problem size and the parameters. The460

test run specific operational intensity and attained floating point performance
were then derived from these estimates.

Figure 8 shows global memory roofline models for the Nvidia GTX 1080 Ti
GPU. Based on the information provided by Nvidia, the theoretical peak double
precision floating point performance was estimated to be about 332 GFlop/s465

(368 GFlop/s boosted) and the theoretical peak global memory bandwidth to
be about 484 GB/s. This means that the device specific balance point is about
0.69 Flop/Byte, or alternatively, 5.49 flops per double precision number.

For the two-dimensional problems, the measurement points form two distinct
clusters. The first cluster includes the cases in which the tridiagonal solver uses470

the global memory (stage A) and the second cluster includes the cases where
the global memory is not used. For the two-dimensional Poisson equations, the
clusters are located near (0.28 Flop/Byte, 136 GFlop/s) and (1.03 Flop/Byte,
148 GFlop/s). For the two-dimensional Helmholtz equations, the clusters are
located near (0.41 Flop/Byte, 173 GFlop/s) and (1.13 Flop/Byte, 139 GFlop/s).475

In the case of the three-dimensional Poissons and Helmholtz equations, the
clusters are located near (1.07 Flop/Byte, 235 GFlop/s) Flop/Byte and (1.32
Flop/Byte, 217 GFlop/s) Flop/Byte, respectively.

These roofline models indicate that the implementation is memory-bound
for large two-dimensional problems. More careful look into the data reveals480

that the implementation becomes memory-bound when the tridiagonal solver

21

 10

 100

 1000

 0.1 1 10

Poisson 2D

 10

 100

 1000

 0.1 1 10

Helmholtz 2D

 10

 100

 1000

 0.1 1 10

Poisson 3D

 10

 100

 1000

 0.1 1 10

Helmholtz 3D

Figure 8: Roofline models for the Nvidia GTX 1080 Ti GPU. The horizontal axis shows the op-
erational intensity [Flop/Byte] and the vertical shows the attained floating point performance
[GFlop/s].

switches to using the stage A. The models also explain the observed flattening
in the speedup shown in Figure 4. The model predicts that obtainable float-
ing point performance for the first cluster of two-dimensional Poisson equations
is only 484 GB/s × 0.28 Flop/Byte = 136 GFlop/s, which matches the ob-485

served performance perfectly. Thus, as the second cluster reached 148 GFlop/s
performance, the obtained floating point performance is expected to drop.

In other cases the models do not completely explain the observed results as
the obtained floating-point performance is slightly lower that what is predicted
by the models. Several explanations were considered ranging from memory bank490

conflicts to potential GPU driver problems and limitations. In the end, we came
to the conclusion that the most important issue to consider in this regard is the
limited amount of local memory available in contemporary GPUs, which has the
unfortunate side effect of severely restricting the number of work groups that
can be executed simultaneously in a computing unit. This is likely to lead to a495

low processing element occupancy.
It appears that the CR-PCR-Thomas hybrid tridiagonal solver is unable to

maintain the required processing element occupancy even though it is possible
in principle by utilizing the PCR-Thomas hybrid method sufficiently. This is

22

due to the fact that the increase in arithmetical complexity would negate any500

gains made. Actually, there was little discernible benefit from using the Thomas
stage at all and in most cases only the CR and PCR stages were used.

6. Conclusions

This paper presented a generalized GPU implementation of the radix-4
PSCR method and numerical results obtained with the implementation for four505

test problems. The results indicate up to 24-fold speedups when compared to
an equivalent CPU implementation utilizing a single CPU core. The highest
speedups were obtained with the three-dimensional Poisson equations. The nu-
merical results indicate that the presented GPU implementation is effecient and
that GPUs provide demonstrable benefit in the context of the cyclic reduction510

and MDA methods. The presented roofline models indicate that the perfor-
mance is, for the most part, limited by the available global memory bandwidth
and the effectiveness of the tridiagonal solver used to solve the arising tridiag-
onal subproblems. The differential evolution parameter optimization improved
the average performance by 11%.515

Acknowledgements

The research of the first author was supported by the Academy of Finland
[grant number 252549]; the Jyväskylä Doctoral Program in Computing and
Mathematical Sciences; and the Foundation of Nokia Corporation. The research
of the third author was supported by the Academy of Finland [grant numbers520

252549, 295897]. The paper was revised while the first author was working at
Department of Computing Science, Ume̊a University, Sweden. We want to thank
the anonymous reviewers for their valuable feedback. We feel that the paper
has been significantly improved thanks to these comments and suggestions.

References525

[1] A. Bayliss, M. Gunzburger, E. Turkel, Boundary conditions for the numer-
ical solution of elliptic equations in exterior regions, SIAM J. Appl. Math.
42 (2) (1982) 430–451. doi:10.1137/0142032.

[2] B. Engquist, A. Majda, Absorbing boundary conditions for the numerical
simulation of waves, Math. Comput. 31 (139) (1977) 629–651. doi:10.530

1090/S0025-5718-1977-0436612-4.

[3] D. Givoli, Non-reflecting boundary conditions, J. Comput. Phys. 94 (1)
(1991) 1–29. doi:10.1016/0021-9991(91)90135-8.

[4] J. Berenger, A perfectly matched layer for the absorption of electromagnetic
waves, J. Comput. Phys. 114 (2) (1994) 185–200. doi:10.1006/jcph.535

1994.1159.

23

http://dx.doi.org/10.1137/0142032
http://dx.doi.org/10.1090/S0025-5718-1977-0436612-4
http://dx.doi.org/10.1090/S0025-5718-1977-0436612-4
http://dx.doi.org/10.1090/S0025-5718-1977-0436612-4
http://dx.doi.org/10.1016/0021-9991(91)90135-8
http://dx.doi.org/10.1006/jcph.1994.1159
http://dx.doi.org/10.1006/jcph.1994.1159
http://dx.doi.org/10.1006/jcph.1994.1159

[5] J. Berenger, Three-dimensional perfectly matched layer for the absorption
of electromagnetic waves, J. Comput. Phys. 127 (2) (1996) 363–379. doi:

10.1006/jcph.1996.0181.

[6] E. Heikkola, T. Rossi, J. Toivanen, Fast direct solution of the Helmholtz540

equation with a perfectly matched layer or an absorbing boundary con-
dition, Inter. J. Numer. Meth. Engrg. 57 (14) (2003) 2007–2025. doi:

10.1002/nme.752.

[7] M. Myllykoski, R. Glowinski, T. Kärkkäinen, T. Rossi, New augmented La-
grangian approach for L1-mean curvature image denoising, SIAM J. Imag-545

ing. Sci. 8 (1) (2015) 95–125. doi:10.1137/140962164.

[8] M. Myllykoski, R. Glowinski, T. Kärkkäinen, T. Rossi, A GPU-accelerated
augmented Lagrangian based L1-mean curvature image denoising algorithm
implementation, in: M. Gavrilova, V. Skala (Eds.), WSCG 2015 : 23rd
International Conference in Central Europe on Computer Graphics, Vi-550

sualization and Computer Vision’2015 : Full Papers Proceedings, Union
Agency, 2015, pp. 119–128.

[9] B. Bialecki, G. Fairweather, A. Karageorghis, Matrix decomposition algo-
rithms for elliptic boundary value problems: a survey, Numer. Algorithms
56 (2011) 253–295. doi:10.1007/s11075-010-9384-y.555

[10] R. W. Hockney, A fast direct solution of Poisson’s equation using Fourier
analysis, J. Assoc. Comput. Mach. 12 (1965) 95–113. doi:10.1145/

321250.321259.

[11] O. Buneman, A compact non-iterative Poisson solver, Technical report 294,
Institute for Plasma Research, Stanford University, Stanford, CA (1969).560

[12] D. Heller, Some aspects of the cyclic reduction algorithm for block tridi-
agonal linear systems, SIAM J. Numer. Anal. 13 (1976) 484–496. doi:

10.1137/0713042.

[13] T. Rossi, J. Toivanen, A nonstandard cyclic reduction method, its variants
and stability, SIAM J. Matrix Anal. Appl. 20 (1999) 628–645. doi:10.565

1137/S0895479897317053.

[14] R. A. Sweet, A cyclic reduction algorithm for solving block tridiagonal
systems of arbitrary dimension, SIAM J. Numer. Anal. 14 (1977) 706–719.
doi:10.1137/0714048.

[15] R. A. Sweet, A parallel and vector variant of the cyclic reduction algorithm,570

SIAM J. Sci. Statist. Comput. 9 (1988) 761–765. doi:10.1137/0909050.

[16] M. Myllykoski, T. Rossi, A parallel radix-4 block cyclic reduction algo-
rithm, Numer. Linear Algebra Appl. 21 (2014) 540–556. doi:10.1002/

nla.1909.

24

http://dx.doi.org/10.1006/jcph.1996.0181
http://dx.doi.org/10.1006/jcph.1996.0181
http://dx.doi.org/10.1006/jcph.1996.0181
http://dx.doi.org/10.1002/nme.752
http://dx.doi.org/10.1002/nme.752
http://dx.doi.org/10.1002/nme.752
http://dx.doi.org/10.1137/140962164
http://dx.doi.org/10.1007/s11075-010-9384-y
http://dx.doi.org/10.1145/321250.321259
http://dx.doi.org/10.1145/321250.321259
http://dx.doi.org/10.1145/321250.321259
http://dx.doi.org/10.1137/0713042
http://dx.doi.org/10.1137/0713042
http://dx.doi.org/10.1137/0713042
http://dx.doi.org/10.1137/S0895479897317053
http://dx.doi.org/10.1137/S0895479897317053
http://dx.doi.org/10.1137/S0895479897317053
http://dx.doi.org/10.1137/0714048
http://dx.doi.org/10.1137/0909050
http://dx.doi.org/10.1002/nla.1909
http://dx.doi.org/10.1002/nla.1909
http://dx.doi.org/10.1002/nla.1909

[17] D. A. Bini, B. Meini, The cyclic reduction algorithm: from Poisson equation575

to stochastic processes and beyond, Numer. Algorithms 51 (1) (2008) 23–
60. doi:10.1007/s11075-008-9253-0.

[18] R. W. Hockney, C. R. Jesshope, Parallel computers: architecture, program-
ming and algorithms, Bristol : Adam Hilger, 1981.

[19] A. Davidson, Y. Zhang, J. D. Owens, An auto-tuned method for solving580

large tridiagonal systems on the GPU, in: Proceedings of the 25th IEEE
International Parallel and Distributed Processing Symposium, IEEE, 2011,
pp. 956–965.

[20] D. Göddeke, R. Strzodka, Cyclic reduction tridiagonal solvers on GPUs
applied to mixed precision multigrid, IEEE T. Parall. Distr., Special issue:585

High performance computing with accelerators 22 (1) (2011) 22–32. doi:

10.1109/TPDS.2010.61.

[21] M. Kass, A. Lefohn, J. Owens, Interactive depth of field using simulated
diffusion on a GPU, available as Pixar Technical Memo 06-01 (2006).

[22] H.-S. Kim, S. Wu, L. Chang, W. W. Hwu, A scalable tridiagonal solver for590

GPUs, 42nd International Conference on Parallel Processing (2011) 444–
453doi:10.1109/ICPP.2011.41.

[23] J. Lamas-Rodriguez, F. Arguello, D. Heras, M. Boo, Memory hierarchy
optimization for large tridiagonal system solvers on GPU, in: IEEE 10th
International Symposium on Parallel and Distributed Processing with Ap-595

plications (ISPA), ASP-DAC ’09, IEEE, IEEE Press, Piscataway, NJ, USA,
2012, pp. 87–94. doi:10.1109/ISPA.2012.20.

[24] S. Sengupta, M. Harris, Y. Zhang, J. D. Owens, Scan primi-
tives for GPU computing, in: Proceedings of the 22Nd ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Graphics Hardware, GH ’07,600

Eurographics Association, Aire-la-Ville, Switzerland, 2007, pp. 97–106.
doi:10.2312/EGGH/EGGH07/097-106.

[25] Y. Zhang, J. Cohen, J. D. Owens, Fast tridiagonal solvers on the GPU,
in: Proceedings of the 15th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming PPoPP 10, no. 1, ACM Press, 2010, pp.605

127–136. doi:10.1145/1693453.1693472.

[26] M. Myllykoski, T. Rossi, J. Toivanen, Fast Poisson solvers for graphics pro-
cessing units, in: P. Manninen, P. Öster (Eds.), Applied Parallel and Scien-
tific Computing, Vol. 7782 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2013, pp. 265–279. doi:10.1007/978-3-642-36803-5_610

19.

[27] P. Vassilevski, Fast algorithm for solving a linear algebraic problem with
separable variables, C.R. Acad. Bulgare Sci. 37 (1984) 305–308.

25

http://dx.doi.org/10.1007/s11075-008-9253-0
http://dx.doi.org/10.1109/TPDS.2010.61
http://dx.doi.org/10.1109/TPDS.2010.61
http://dx.doi.org/10.1109/TPDS.2010.61
http://dx.doi.org/10.1109/ICPP.2011.41
http://dx.doi.org/10.1109/ISPA.2012.20
http://dx.doi.org/10.2312/EGGH/EGGH07/097-106
http://dx.doi.org/10.1145/1693453.1693472
http://dx.doi.org/10.1007/978-3-642-36803-5_19
http://dx.doi.org/10.1007/978-3-642-36803-5_19
http://dx.doi.org/10.1007/978-3-642-36803-5_19

[28] P. Vassilevski, Fast algorithm for solving discrete poisson equation in a
rectangle, C.R. Acad. Bulgare Sci. 38 (1985) 1311–1314.615

[29] Y. A. Kuznetsov, Numerical methods in subspaces, Vychislitel’-nye Pro-
cessy i Sistemy II 37 (1985) 265–350.

[30] A. Banegas, Fast Poisson solvers for problems with sparsity, Math. Comput.
32 (1978) 441–446. doi:10.2307/2006156.

[31] Y. A. Kuznetsov, A. M. Matsokin, On partial solution of systems of linear620

algebraic equations, Sov. J. Numer. Anal. Math. Modelling 4 (1989) 453–
468. doi:10.1515/rnam.1989.4.6.453.

[32] Y. A. Kuznetsov, T. Rossi, Fast direct method for solving algebraic systems
with separable symmetric band matrices, East-West J. Numer. Math. 4
(1996) 53–68.625

[33] T. Rossi, J. Toivanen, A parallel fast direct solver for block tridiagonal sys-
tems with separable matrices of arbitrary dimension, SIAM J. Sci. Comput.
20 (1999) 1778–1796. doi:10.1137/S1064827597317016.

[34] A. Abakumov, Y. A. Yeremin, Y. A. Kuznetsov, Efficient fast direct method
of solving Poisson’s equation on a parallelepiped and its implementation in630

an array processor, Sov. J. Numer. Anal. Math. Model. 3 (1988) 1–20.

[35] S. Petrova, Parallel implementation of fast elliptic solver, Parallel Comput.
23 (8) (1997) 1113–1128. doi:10.1016/S0167-8191(97)00046-X.

[36] S. Williams, A. Waterman, D. Patterson, Roofline: An insightful visual per-
formance model for multicore architectures, Commun. ACM 52 (4) (2009)635

65–76. doi:10.1145/1498765.1498785.

[37] C. R. Crawford, Reduction of a band-symmetric generalized eigenvalue
problem, Commun. ACM 16 (1) (1973) 41–44. doi:10.1145/361932.

361943.

[38] H. Rutishauser, Solution of eigenvalue problems with the LR-640

transformation, U.S. Bur. Stand. Appl. Math. Ser. 49 (1958) 47–81.

[39] R. Storn, On the usage of differential evolution for function optimiza-
tion, in: Fuzzy Information Processing Society, 1996. NAFIPS., 1996
Biennial Conference of the North American, 1996, pp. 519–523. doi:

10.1109/NAFIPS.1996.534789.645

[40] R. Storn, K. Price, Differential evolution — a simple and efficient heuristic
for global optimization over continuous spaces, J. Global Optim. 11 (4)
(1997) 341–359. doi:10.1023/A:1008202821328.

[41] S. D. Conte, C. de Boor, Elementary numerical analysis: an algorithmic ap-
proach, 3rd Edition, International series in pure and applied mathematics,650

McGraw-Hill, New York, Montreal, 1980.

26

http://dx.doi.org/10.2307/2006156
http://dx.doi.org/10.1515/rnam.1989.4.6.453
http://dx.doi.org/10.1137/S1064827597317016
http://dx.doi.org/10.1016/S0167-8191(97)00046-X
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1145/361932.361943
http://dx.doi.org/10.1145/361932.361943
http://dx.doi.org/10.1145/361932.361943
http://dx.doi.org/10.1109/NAFIPS.1996.534789
http://dx.doi.org/10.1109/NAFIPS.1996.534789
http://dx.doi.org/10.1109/NAFIPS.1996.534789
http://dx.doi.org/10.1023/A:1008202821328

[42] K.-H. Kim, K. Kim, Q.-H. Park, Performance analysis and optimization
of three-dimensional FDTD on GPU using roofline model, Comput. Phys.
Commun. 182 (6) (2011) 1201–1207. doi:10.1016/j.cpc.2011.01.025.

27

http://dx.doi.org/10.1016/j.cpc.2011.01.025

	Introduction
	Scalar cyclic reduction method
	PSCR method
	Kronecker matrix tensor product forms
	Overview of the algorithm
	Partial solution technique
	Explicit formulas

	Implementation
	OpenCL and Nvidia's GPU hardware
	General notes
	Upper level implementation (levels 1 and 2)
	Tridiagonal solver (level 3)

	Numerical results and discussion
	Test problems
	Comparisons and general analysis of the results
	Roofline models

	Conclusions

