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Tässä tutkielmassa tarkastellaan valittujen variaatiolaskennan ongelmien ja näi-
den duaaliongelmien välisiä suhteita. Tutkielmassa esitetään aiheen yleinen teoria
ja annetaan esimerkkejä sovelluksista.

Tutkielman ensimmäisessä osassa määritellään konveksin analyysin keskeiset kä-
sitteet konveksi joukko, konveksi funktio ja konjugaattifunktio, sekä tarkastellaan
konveksin funktion jatkuvuutta ja subdifferentioituvuutta reaaliarvoisessa normi-
avaruudessa.

Tutkielman toisessa osassa määritellään heikon konvergenssin käsite ja Lp-avaruu-
det. Avaruuden Lp(Ω) refleksiivisyys todistetaan tapauksessa 1 < p < ∞. Toisen
osan päätteeksi todistetaan, että refleksiivisen Banach-avaruuden rajoitetulla jonolla
on heikosti suppeneva osajono.

Kolmannessa osassa määritellään primaali- ja duaaliongelma ja tarkastellaan näi-
den välisiä suhteita. Tutkielmassa keskitytään primaaliongelmiin, joiden objekti-
funktio on refleksiivisessä Banach-avaruudessa määritelty reaaliarvoinen, konveksi ja
alhaalta puolijatkuva funktio. Tutkielmassa osoitetaan, että primaaliongelmalla on
ratkaisu tapauksissa, joissa funktion lähtöjoukko on rajoitettu tai funktio on koersii-
vinen. Ratkaisu on yksikäsitteinen, mikäli objektifunktio on aidosti konveksi. Duaa-
liongelman ratkaisun olemassaolo näytetään tapauksessa, jossa primaaliongelma on
stabiili ja sillä on vähintään yksi tunnettu ratkaisu. Edellisessä tilanteessa primaali-
ja duaaliongelman ääriarvot ovat samat. Lopuksi osoitetaan, että mikäli primaali-
ja duaaliongelmalla on ratkaisu ja ongelmien ääriarvot ovat samat, linkittyvät on-
gelmien ratkaisupisteet toisiinsa erityisellä suhteella.

Neljännessä osassa määritellään Sobolev-avaruudet ja osoitetaan, että W k,p(Ω),
missä 1 < p < ∞ ja k ∈ N, on refleksiivinen Banach-avaruus. Todistuksissa
hyödynnetään tutkielman toisessa osassa saatuja tuloksia.

Tutkielman viimeisessä osassa tarkastellaan kolmea variaatiolaskennan ongelmaa:
epälineaarinen Dirichlet’n ongelma, Stokesin ongelma ja Mossolovin ongelma. Jokai-
sen ongelman osalta muodostetaan primaaliongelma, primaaliongelmalle konstruoi-
daan duaaliongelma, osoitetaan primaali- ja duaaliongelmien ratkaisujen olemassa-
olo ja ääriarvojen yhtäsuuruus sekä näytetään millaisen muodon ratkaisupisteiden
välinen suhde lopulta saa. Lisäksi osoitetaan, että epälineaarisen Dirichletin on-
gelman primaaliongelman ääriarvopiste on alkuperäisen ongelman heikko ratkaisu.
Stokesin ongelman tapauksessa näytetään, että primaaliongelman ja duaaliongelman
ratkaisuista muodostettu pari on alkuperäisen ongelman ratkaisu.
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1. Introduction

In this thesis, we study relations of given variational problems and their corre-
sponding dual problem. The main purpose is to present the general theory and to
give examples.

In section 2 we introduce some basic concepts of convex analysis. The first part
of the section deals with convex sets. In the second part of the section we introduce
convex functions. A function F : V → R̄, where V is a real vector space, is convex
if for every u, v ∈ V , we have

F (λu+ (1− λ)v) ≤ λF (u) + (1− λ)F (v) for all λ ∈ [0, 1].

We define the conjugate function of F , F ∗ : V ∗ → R̄, as follows

F ∗(u∗) = sup
u∈V
{ 〈u, u∗〉 − F (u)}.

In the beginning of section 3 we give the definition of weak convergence. Later
in the section we introduce Lp spaces and in Theorem 3.21 we show that Lp(Ω) is
reflexive when Ω ⊂ Rn and 1 < p < ∞. In Theorem 3.22 we show that a bounded
sequence of a reflexive Banach space has a weakly converging subsequence. The
proof is given in the case of Lp(Ω), 1 < p <∞.

In section 4 we consider the primal problem

(P) inf
u∈A

F (u),

where F : A → R is a proper convex lower semi-continuous function and A a non-
empty closed convex subset of reflexive Banach space V . In Theorem 4.7 we show
that if A is bounded or F is coercive over A, then P has at least one solution.
Moreover, the solution is unique if F is strictly convex in A. Given a normed space
Y and a function Φ : V ×Y → R̄ such that Φ(u, 0) = F (u), we have for every p ∈ Y
a perturbed problem

(Pp) inf
u∈V

Φ(u, p).

Let Φ∗ : V ∗ × Y ∗ → R̄ be the conjugate function of Φ. Finally, we have the dual
problem of P

(P∗) sup
p∗∈Y ∗

{−Φ∗(0, p∗)}.

In Theorem 4.9 we show that if P is stable and has a solution, then P∗ has at least
one solution and

−∞ < inf P = sup P∗ <∞.
In Theorem 4.12 we show that P is stable if Φ is convex, inf P is finite and there
exists u0 ∈ V such that p 7→ Φ(u0, p) is finite and continuous at 0 ∈ Y . In Theorem
4.13 we show that the solutions of P and P∗ are linked by the extremality relation

Φ(ū, 0) + Φ∗(0, p̄∗) = 0.

In section 5 we introduce Sobolev spaces and show that W k,p(Ω), where 1 < p <
∞, k ∈ N and Ω ⊂ Rn is a bounded smooth domain, is a reflexive Banach space.
In section 6 we give examples of applications of duality. Our first example is the
non-linear Dirichlet Problem

(1)

{
−div

(
|∇u|p−2∇u

)
= f, in Ω;

u = 0 on ∂Ω,

2



where 1 < p < ∞, f ∈ Lq(Ω) and q = p/(p − 1). In Lemma 6.2 we show that
u ∈ W 1,p

0 (Ω) is a weak solution to equation (1) if it is a minimizer of the functional

I(u) =
1

p

∫
Ω

|∇u(x)|p dx−
∫

Ω

f(x)u(x) dx.

In Theorem 6.3 we show that the problem

(P) inf
u∈W 1,p

0 (Ω)
I(u)

has a unique solution. The dual problem of P is of the form

(P∗) sup
r∗∈Lq(Ω)n

div r∗=f

[
− 1

q

∫
Ω

|r∗(x)|q dx

]
.

In Theorem 6.6 we show that P∗ possess a unique solution and

max P∗ = min P.

Our second example is the Stokes problem: Given f ∈ L2(Ω)n, we consider the
following system

(2)

 −∆u+∇p = f, in Ω;
div u = 0, in Ω;
u = 0, on ∂Ω,

where u = (u1, ..., un) : Ω→ Rn and p : Ω→ R. Let W = {v ∈ H1
0 (Ω)n, div v = 0}.

Then W is a Hilbert space with the inner product

((u, v)) =
∑

1≤i,j≤n

(Diuj, Divj) =
∑

1≤i,j≤n

∫
Ω

Diuj(x)Divj(x) dx.

In Lemma 6.7 we show that u ∈ W is a weak solution of equation (2), if it is a
minimizer of the functional

I(u) =
1

2
||u||2H1(Ω)n − (f, u) =

1

2

[
n∑
i=1

n∑
j=1

||Diuj||22

]
−
∫

Ω

f(x)u(x) dx.

In Theorem 6.8 we show that the primal problem

(P) inf
u∈W

I(u)

possesses a unique solution. The dual problem of P is

(P∗) sup
p∗∈L2(Ω)

{
− 1

2
||v(p∗)||2H1(Ω)n

}
,

where v(p∗) ∈ H1
0 (Ω)n satisfies

((v(p∗), w)) = (f, w) + (p∗, div w), for all w ∈ H1
0 (Ω)n.

In Theorem 6.10 we show that if P∗ is proper, then it has a solution. In Theorem
6.12 we show that problem (2) possesses a solution (ū, p̄∗), where ū is a solution of
the primal problem P and p̄∗ is a solution of the dual problem P∗. Moreover

inf P = sup P∗.
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Our last example is Mossolov’s problem

(P) inf
u∈H1

0 (Ω)

{
α

2

∫
Ω

|∇u(x)|2 dx+ β

∫
Ω

|∇u(x)| dx−
∫

Ω

f(x)u(x) dx

}
,

where α and β are positive constants and f ∈ L2(Ω) is given. In Theorem 6.13 we
show that P has a unique solution. The dual problem of P is

(P∗) sup
p∗∈L2(Ω)n

|p∗(x)|≤β a.e.

{
− 1

2α
||f − div p∗||2H−1(Ω)

}
.

In Theorem 6.16 we show that P∗ has at least one solution and

min P = max P∗.

2. Convex Analysis

In this section we introduce some basic concepts of convex analysis.

2.1. Convex sets. Let V be a real vector space.

Definition 2.1. A set A ⊂ V is said to be convex if for every two points u and v in
A the line segment [u, v] is contained in A, that is,

[u, v] = {λu+ (1− λ)v : λ ∈ [0, 1]} ⊂ A, for all u, v ∈ A.
The whole space V and the empty set ∅ are convex.

Definition 2.2. Let A ⊂ V and u1, ..., un ∈ A. The sum

λ1u1 + · · ·+ λnun, where λ1, ..., λn ≥ 0 and
n∑
i=1

λi = 1,

is said to be a convex combination of u1, ..., un.

Proposition 2.3. Let A ⊂ V be a convex set. Then A contains all of the convex
combinations of its elements.

Proof. If u1, u2 ∈ A and λ1, λ2 ≥ 0 such that λ1 + λ2 = 1, then by the definition of
convexity

λ1u1 + λ2u2 ∈ A.
Let m ∈ N, m > 2. We make an induction hypothesis that all the convex combina-
tions of less than m elements of A are contained in A. Let

u = λ1u1 + · · ·+ λmum, such that λ1, ..., λm ≥ 0 and
m∑
i=1

λi = 1,

be a convex combination of u1, ..., um ∈ A. Suppose that λ1 = 1. Then we have
λ2 = · · · = λm = 0 and u = u1 ∈ A. Thus we may assume that 0 < λ1 < 1. Let

v = λ′2u2 + · · ·+ λ′mum, where λ′i =
λi

1− λ1

.

Then λ′i ≥ 0 for i = 2, ...,m and

λ′2 + · · ·+ λ′m = 1.

Thus v is a convex combination of m − 1 elements of A. Hence v ∈ A. Since
u = (1− λ1)v + λ1u1, it follows that u ∈ A. �
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Proposition 2.4. The intersection of an arbitrary collection of convex sets is con-
vex.

Proof. Let {Aα}, α ∈ I, where I is the index set, be an arbitrary collection of convex
sets. Let u and v be two elements of the intersection

A =
⋂
α∈I

Aα.

For all α ∈ I the line segment [u, v] belongs to Aα and therefore it belongs to the
intersection A. �

Proposition 2.5. Let V and W be two real vector spaces, A ⊂ V a convex set and
L a linear mapping from V into W . Then L(A) is convex in W .

Proof. Fix λ ∈ [0, 1] and let x and y be two elements of L(A). There exists u and v
in A such that x = Lu and y = Lv. Then by the linearity of L

λx+ (1− λ)y = λL(u) + (1− λ)L(v) = L(λu) + L((1− λ)v)

= L(λu+ (1− λ)v).

Since A is convex, λu + (1 − λ)v belongs to A for all λ ∈ [0, 1]. Therefore L(λu +
(1− λ)v) is an element of L(A). This implies that L(A) is convex. �

2.2. Convex functions.

Definition 2.6. The epigraph of a function F : V → R̄ is the set

epi F = {(u, a) ∈ V × R : F (u) ≤ a}.

The epigraph is the set of points of V × R which lie above the graph of F . The
projection of epi F to V is the set

dom F := {u ∈ V : F (u) < +∞}.
We say that it is the effective domain of F .

Definition 2.7. Let A be a convex subset of V and F : A → R̄ a function. F is
said to be convex if for every u and v in A

(3) F (λu+ (1− λ)v) ≤ λF (u) + (1− λ)F (v) for all λ ∈ [0, 1],

whenever the right-hand side is defined. Inequality (3) must therefore be valid unless
F (u) = −F (v) = ±∞. F is said to be strictly convex if it is convex and for every
u, v ∈ A, u 6= v

F (λu+ (1− λ)v) < λF (u) + (1− λ)F (v) for all λ ∈ (0, 1),

whenever the right-hand side is defined.

Let A ⊂ V and F : A → R be a function. We can associate with F the function
F̃ on V by setting

F̃ (u) =

{
F (u) if u ∈ A;
+∞ if u /∈ A.

F̃ is convex if and only if A is a convex set and F is a convex function. This way
we only need to concern functions defined on the whole space V .

Definition 2.8. We say that a convex function F : V → R̄ is proper, if there is
u ∈ V such that F (u) is finite and F nowhere takes the value −∞.
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Definition 2.9. A function F : V → R̄ is said to be concave if −F is convex.

Proposition 2.10. Let F : V → R̄ be a convex function. Then the sublevel sets

Ea := {u : F (u) ≤ a}
are convex for all a ∈ R̄.

Proof. Fix a ∈ R̄ and λ ∈ [0, 1]. Let u, v ∈ Ea. If F (u) = −F (v) = ±∞, then

F (λu+ (1− λ)v) ≤ ∞,
meaning λu+ (1− λ)v ∈ Ea. Else, we have

F (λu+ (1− λ)v) ≤ λF (u) + (1− λ)F (v)

≤ λa+ (1− λ)a

= a,

which shows that λu+ (1− λ)v ∈ Ea. Thus Ea is convex. �

Definition 2.11. A function F : R→ R is non-decreasing if F (a) ≤ F (b) for every
a, b ∈ R, a < b. F is increasing if F (a) < F (b) for every a, b ∈ R, a < b.

Proposition 2.12. Let F : V → R be a convex function and G : R → R a
non-decreasing convex function. Then the composition G ◦ F : V → R is a convex
function. If F is strictly convex and G is an increasing convex function, then the
composition is strictly convex.

Proof. Let u, v ∈ V and λ ∈ [0, 1]. Then

G(F (λu+ (1− λ)v)) ≤ G(λF (u) + (1− λ)F (v))

≤ λG(F (u)) + (1− λ)G(F (v))

and hence G◦F is convex. If F is strictly convex and G is increasing, then for u 6= v
we have that

F (λu+ (1− λ)v) < λF (u) + (1− λ)F (v)

and that

G(F (λu+ (1− λ)v)) < G(λF (u) + (1− λ)F (v)) for all λ ∈ (0, 1).

Hence the composition G ◦ F is a strictly convex function. �

Proposition 2.13. Let A ⊂ R be an open interval and F : A → R a twice
continuously differentiable function. If F ′′ is non-negative in A, then F is convex.
If F ′′ is positive in A, then F is strictly convex.

Proof. Since F ′′ is non-negative, F ′ is non-decreasing on A. For x, y ∈ A, x < y and
λ ∈ [0, 1], we denote z = λx+ (1− λ)y. By the Fundamental Theorem of Calculus,
we have that

F (z)− F (x) =

∫ z

x

F ′(t) dt ≤ F ′(z)(z − x),

and that

F (y)− F (z) =

∫ y

z

F ′(t) dt ≥ F ′(z)(y − z).

Thus
F (z) ≤ (1− λ)F ′(z)(y − x) + F (x)
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and
F (z) ≤ −λF ′(z)(y − x) + F (y).

Multiplying both sides of the first inequality by λ, those of the second one by (1−λ)
and combining the two resulting inequalities together, we have

F (z) = λF (z) + (1− λ)F (z) ≤ λF (x) + (1− λ)F (y),

which gives us that F is convex. If F ′′ is positive, then F ′ is increasing on A. Let
x, y ∈ A, x < y, λ ∈ (0, 1) and z = λx+ (1− λ)y. We then have

F (z)− F (x) =

∫ z

x

F ′(t) dt < F ′(z)(z − x),

F (y)− F (z) =

∫ y

z

F ′(t) dt > F ′(z)(y − z).

By repeating the same argument as in the proof of convexity, we obtain that

F (z) < λF (x) + (1− λ)F (y),

which shows that F is strictly convex. �

From now on , we assume that V is a real normed vector space with a norm || · ||V .
We say that a sequence (uj) in V converges to u ∈ V , that is,

uj → u in V if ||uj − u||V → 0 as j →∞.

Definition 2.14. A function F : V → R̄ is said to be lower semi-continuous on V
if for all u ∈ V and all sequences (ui) in V converging to u, we have

(4) lim
ui→u

F (ui) ≥ F (u).

A continuous function is lower semi-continuous.

Proposition 2.15. Function F : V → R̄ is lower semi-continuous if and only if the
sublevel set

(5) Ea := {u ∈ V : F (u) ≤ a}
is closed for all a ∈ R.

Proof. Suppose F is lower semi-continuous. Fix a ∈ R. Let (uj) be a sequence in
Ea converging to u ∈ V . Then

F (u) ≤ lim
j→∞

F (uj) ≤ a,

from which follow that u ∈ Ea and that Ea is closed.
Suppose that Ea is closed for all a ∈ R. Fix u ∈ V and let (uj) be a sequence in

V converging to u. Now we have two cases: F (u) =∞ and F (u) <∞. For the first
case F (u) =∞, we claim that for every a ∈ R, there exists Na ∈ N such that

F (uj) > a for all j ≥ Na.

We argue by contradiction. Suppose that the claim does not hold. Then there is a
subsequence (ujk) of (uj) and there is b ∈ R such that

F (ujk) ≤ b, for all jk ∈ N.
This means that ujk ∈ Eb for all jk ∈ N. Since Eb is closed and the subsequence (ujk)
converges to u in V , we have u ∈ Eb. This means that F (u) ≤ b. This contradicts
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to our assumption that F (u) =∞. Thus in this case F is lower semi-continuous at
u.

For the second case F (u) <∞. We argue by contradiction. We assume that

m := lim
j→∞

F (uj) < F (u) = M.

Now for every ε > 0, there is a subsequence (ujk) ⊂ (uj) such that

F (ujk) < m+ ε.

This means that ujk ∈ Em+ε for all k ∈ N. Let ε = (M −m)/2. Now ujk → u, as
jk →∞. Since Ea is closed for all a ∈ R, we have u ∈ Em+(M−m)/2 and

F (u) ≤ m+
M −m

2
< M.

This is a contradiction. Hence we have

lim
j→∞

F (uj) ≥M.

This implies that F is lower semi-continuous at u. �

Proposition 2.16. A function F : V → R̄ is convex if and only if its epigraph
epi F is convex.

Proof. Suppose F is convex. Let (u, a), (v, b) ∈ epi F . Then F (u) ≤ a < ∞ and
F (v) ≤ b <∞. By the convexity of F , for all λ ∈ [0, 1], we have

(6) F (λu+ (1− λ)v) ≤ λF (u) + (1− λ)F (v) ≤ λa+ (1− λ)b

from which follows that(
λu+ (1− λ)v, λa+ (1− λ)b

)
= λ(u, a) + (1− λ)(v, b) ∈ epi F.

Therefore epi F is convex.
Assume then that epi F is convex. The projection of epi F to V is dom F ,

which is convex since epi F is convex and convexity is preserved by linear mappings.
We first show that F is convex in dom F . Indeed, for u, v ∈ dom F , we have(
u, F (u)

)
∈ epi F and

(
v, F (v)

)
∈ epi F . Since epi F is convex, then for any

λ ∈ [0, 1], we have

λ
(
u, F (u)

)
+ (1− λ)

(
v, F (v)

)
=
(
λu+ (1− λ)v, λF (u) + (1− λ)F (v)

)
∈ epi F,

which means that

F
(
λu+ (1− λ)v

)
≤ λF (u) + (1− λ)F (v).

This shows that F is convex in dom F . Since dom F is convex and F = +∞ in
V \ dom F , we know that F is convex in V . This finishes the proof. �

Proposition 2.17. A function F : V → R̄ is lower semi-continuous if and only if
its epigraph epi F is closed.

Proof. Define a function ϕ : V ×R→ R̄ by setting ϕ(u, a) = F (u)−a. We claim that
function F is lower semi-continuous on V if and only if ϕ is lower semi-continuous
on V ×R. Indeed, let

(
(uj, aj)

)
be a sequence in V ×R converging to (u, a) ∈ V ×R.

This means that

||uj − u||V → 0 and |aj − a| → 0 as j →∞.
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Assume first that F is lower semi-continuous. Then

ϕ(u, a) = F (u)− a ≤ lim
j→∞

F (uj)− a

= lim
j→∞

(
F (uj)− aj

)
= lim

j→∞
ϕ(uj, aj),

which shows that ϕ is lower semi-continuous. Conversely, we assume that ϕ is lower
semi-continuous. By our assumption

F (u)− a = ϕ(u, a) ≤ lim
j→∞

ϕ(uj, aj) = lim
j→∞

(
F (uj)− aj

)
.

Therefore

F (u) ≤ lim
j→∞

(
F (uj)− aj

)
+ a = lim

j→∞
F (uj),

which shows that F is lower semi-continuous. This proves the claim.
We notice that

ϕ−1((−∞, 0]) = {(u, a) ∈ V × R : ϕ(u, a) ≤ 0} = epi F

and that

ϕ−1((−∞, r]) is the translation of epi F by vector (0, r) ∈ V × R.
Since the translate of a closed set is closed, the sublevel sets ϕ−1((−∞, r]) of ϕ are
closed if and only if ϕ−1((−∞, 0]) = epi F is closed. Recall that Proposition 2.15
says that ϕ : V × R → R̄ is lower semi-continuous if and only if the sublevel set
ϕ−1((−∞, r]) is closed for all r ∈ R. Thus F : V → R̄ is lower semi-continuous if
and only if epi F is closed. �

Proposition 2.18.
i) Let {Fi}, i ∈ I, be any family of convex functions in V . Let F (x) = supi∈I Fi(x).

Then F is convex.
ii) Let {Fi}, i ∈ I, be any family of lower semi-continuous functions in V . Let

F (x) = supi∈I Fi(x). Then F is lower semi-continuous.

Proof. i) Proposition 2.16 states that a function is convex if and only if its epigraph
is convex. Therefore for every i ∈ I, epi Fi is convex. By Proposition 2.4 we have
that the intersection of an arbitrary collection of convex sets is convex. We notice
that

epi F =
⋂
i∈I

epi Fi.

Hence epi F is convex. Then F is convex, by Proposition 2.16. ii) Proposition 2.17
states that a function is lower semi-continuous if and only if its epigraph is closed.
For every i ∈ I, epi Fi is closed. Since the intersection of an arbitrary collection
of closed sets is closed, epi F is closed. Therefore, by Proposition 2.17, F is lower
semi-continuous. �

2.3. Continuity of convex functions.

Lemma 2.19. Let F : V → R̄ be a convex function. If there exists a neighborhood
W of u ∈ V such that

F (v) ≤M <∞ for all v ∈ W,
then F is continuous at u.
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Proof. By translation we may assume that u = 0 and F (u) = 0. Since W is a
neighborhood of 0, there exists a real number r > 0 such that B(0, r) ⊂ W . Let
ε ∈ (0, 1). If v ∈ B(0, εr), we have

F (v) = F
(

(1− ε)0 + ε
v

ε

)
≤ (1− ε)F (0) + εF (v/ε) ≤ εM.

Writing

0 =
ε

1 + ε

−v
ε

+
1

1 + ε
v,

we also have

0 = F (0) ≤ ε

1 + ε
F (−v/ε) +

1

1 + ε
F (v),

from which follows that

F (v) ≥ −εF (−v/ε) ≥ −εM.

Thus |F (v)| ≤ εM for every v ∈ B(0, εr). Therefore F is continuous at 0. �

Proposition 2.20. Let F : V → R̄ be a convex function. The following statements
are equivalent to each other:

(i) There exists a non-empty open set U on which F is not everywhere equal to
−∞ and

F (u) < a <∞ for all u ∈ U.
(ii) F is proper and continuous in the interior of its effective domain.

Proof. Suppose (ii) is true. Since F is proper, int(dom F ) 6= ∅ and F nowhere takes
the value −∞. Let u ∈ int(dom F ). Since F is continuous in int(dom F ), there
exists a neighborhood U of u and M <∞ such that F (v) < M for all v ∈ U . Thus
(ii) implies (i).

Suppose then that (i) is true. Then U ⊂ int(dom F ). By assumption, there exists
u ∈ U such that F (u) > −∞. From Lemma 2.19, we have that F is continuous at
u and hence bounded in a neighborhood of u.

We claim that F (v) > −∞ for all v ∈ int(dom F ). Indeed, suppose that there is
v ∈ int(dom F ) such that F (v) = −∞. Then by the convexity of F

F (λu+ (1− λ)v) ≤ λF (u) + (1− λ)F (v) = −∞ for all λ ∈ (0, 1)

and in particular, F (w) = −∞ for all w in the open line segment (u, v). This
contradicts the fact that u has a neighborhood in which F is finite. Hence F is
proper.

Fix u0 ∈ int(dom F ). Then there is ρ > 1 such that u1 = u + ρ(u0 − u) ∈
int(dom F ). Now define h : V → V by setting

h(v) =
ρ− 1

ρ
v +

1

ρ
u1, v ∈ V.

Then we have h(u) = u0 and h(U) is open set. It is easy to see that h is invertible.
For w ∈ h(U)

w =
ρ− 1

ρ
h−1(w) +

1

ρ
u1

and hence by the convexity of F

F (w) ≤ ρ− 1

ρ
F
(
h−1(w)

)
+

1

ρ
F (u1) ≤ ρ− 1

ρ
a+

1

ρ
F (u1) <∞.
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Therefore F is bounded from above in the neighborhood h(U) of u0. By Lemma
2.19, F is continuous at u0. This shows that F is continuous in int(dom F ). The
proof is finished. �

2.4. Conjugate function. The vector space V ∗ of bounded linear functionals over
V is said to be the (topological) dual of V and its elements are denoted by u∗.
Notation 〈u, u∗〉 denotes the value of u∗ ∈ V ∗ at u that is, 〈u, u∗〉 = u∗(u).

The continuous affine functions over V are of the type v 7→ l(v) + α, where l is a
continuous linear functional over V and α ∈ R.

We denote the set of functions F : V → R̄ which are pointwise supremum of a
family of continuous affine functions by Γ(V ). In addition, we denote

Γ0(V ) = {f ∈ Γ(V ) : ∃ u0 ∈ V such that −∞ < f(u0) <∞}.

THEOREM 2.21. The following statements are equivalent to each other:

(i) F ∈ Γ(V )
(ii) F is a convex lower semi-continuous function from V to R̄. If F takes value
−∞ then F ≡ −∞.

For the proof of Theorem 2.21, we need the second geometric form of Hahn-Banach
Theorem. For the proof we refer to [6, p. 58].

THEOREM 2.22 (Hahn-Banach, second geometric form). Let V be a real normed
space. Let A ⊂ V be a non-empty convex and compact set and B ⊂ V be a non-
empty convex closed set such that A ∩ B = ∅. Then there exists a closed affine
hyperplane H which strictly separates A and B, that is, if l(u) = α is the equation
of H , we have

l(u) < α for all u ∈ A and l(v) > α for all v ∈ B.

Proof of Theorem 2.21. We first claim that continuous affine functions over V are
convex and lower semi-continuous. Indeed, if G is a continuous affine function over
V , then G(u) = l(u)+α, where l is a continuous linear functional over V and α ∈ R.
For u, v ∈ V and λ ∈ [0, 1], we have

G(λu+ (1− λ)v) = l(λu+ (1− λ)v) + α = λ[l(u) + α] + (1− λ)[l(v) + α]

= λG(u) + (1− λ)G(v),

which shows that G is convex. Since G is continuous, it is lower semi-continuous.
This proves the claim.

By Proposition 2.16 and Proposition 2.17 the epigraph of continuous affine func-
tion is closed and convex set. If F : V → R̄ is a pointwise supremum of non-empty
family of continuous affine functions, then by Proposition 2.18 epi F is convex and
closed. From Propositions 2.16 and 2.17 we have that F is convex and lower semi-
continuous. Moreover, the pointwise supremum of an empty family is −∞ and if
the family under consideration is non-empty, F cannot take the value −∞. Thus
(ii) follows from (i).

Conversely, suppose that F : V → R̄ is a convex lower semi-continuous function
and that F (u) > −∞ for all u ∈ V . We show that F ∈ Γ(V ). If F ≡ ∞, then it is
the pointwise supremum of all continuous affine functions in V .

If F 6≡ ∞, then for ū ∈ V we fix a number ā such that ā < F (ū). We know epi F
is a closed convex set that does not contain the point (ū, ā). By Theorem 2.22, we
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can strictly separate epi F and the point (ū, ā) by a closed affine hyperplane H of
V × R. H is of the form

H = {(u, a) ∈ V × R : l(u) + αa = β},
where l is a continuous linear functional over V and α, β ∈ R. We have

l(ū) + αā < β and l(u) + αa > β, for all (u, a) ∈ epi F.

Suppose F (ū) <∞. Then (ū, F (ū)) ∈ epi F . Thus

(7) l(ū) + αF (ū) > β > l(ū) + αā,

from which follows that α
(
F (ū) − ā

)
> 0. Hence α > 0. From the inequality (7),

we obtain

(8) ā <
β

α
− 1

α
l(ū) < F (ū).

Now suppose F (ū) =∞. We have

l(ū) + αF (ū) ≥ β > l(ū) + αā,

from which follows that α
(
F (ū) − ā

)
≥ 0 and furthermore α ≥ 0. If α > 0, we

obtain (8). If α = 0, we have

β − l(ū) > 0 and β − l(u) < 0, for all u ∈ dom F.

Earlier in the proof, we showed that it is possible to construct a continuous affine
function h : V → R such that h(u) < F (u) for every u ∈ dom(F ). For every c > 0,
h(·)+c

(
β− l(·)

)
is a continuous affine function everywhere less than F and therefore

it only remains to choose c sufficiently large so that

h(ū) + c
(
β − l(ū)

)
> ā.

Finally, we have proved that for every ū ∈ V and ā ∈ R such that ā < F (ū), there
exists continuous affine function m : V → R such that

m(u) ≤ F (u), for all u ∈ V and ā < m(ū) < F (ū).

Thus F is a pointwise supremum of family of continuous affine functions. �

Definition 2.23. Let F : V → R̄ be a function. Define F ∗ : V ∗ → R̄ as follows

F ∗(u∗) = sup
u∈V
{ 〈u, u∗〉 − F (u)}.

We say F ∗ is the polar or conjugate function of F .

Definition 2.24. Let F : V → R̄ be a function. Define F ∗∗ : V → R̄ as follows

F ∗∗(u) = sup
u∗∈V ∗

{〈u, u∗〉 − F ∗(u∗)}.

We say F ∗∗ is the bipolar of F .

Lemma 2.25. Let F : V → R̄ be a function. Then F ∗ ∈ Γ(V ∗) and F ∗∗ ∈ Γ(V ).

Proof. If dom F = ∅, then F ∗ ≡ −∞. If dom F 6= ∅, then F ∗ is the pointwise
supremum of the family of continuous affine functions

〈u, ·〉 − F (u) for u ∈ dom F.

Hence F ∗ ∈ Γ(V ∗).
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Clearly F ∗∗ ≤ F . In fact, the bipolar of F is the pointwise supremum of maxi-
mal continuous affine functions everywhere less than F . Hence, F ∗∗ is the largest
minorant of F in Γ(V ). �

2.5. Subdifferentiability.

Definition 2.26. Let F : V → R̄ be a function and l : V → R̄ be a continuous
affine function everywhere less than F , that is, l(v) ≤ F (v) for all v ∈ V . We say
that l is exact at the point u ∈ V if l(u) = F (u).

Definition 2.27. A function F : V → R̄ is said to be subdifferentiable at the point
u ∈ V , if there exists a continuous affine function l : V → R̄ exact at u. Let l be of
the form

l(·) = 〈 · , u∗〉 − α, α ∈ R.
Then u∗ ∈ V ∗ is called a subgradient of F at u. The set of subgradients at u is called
the subdifferential at u and is denoted ∂F (u).

Proposition 2.28. Let F : V → R̄ be a function and u ∈ V . If ∂F (u) 6= ∅, then
F (u) = F ∗∗(u). If F (u) = F ∗∗(u), then ∂F (u) = ∂F ∗∗(u).

Proof. Let u∗ ∈ ∂F (u). There exists a continuous affine function l such that l ≤ F
and l(u) = F (u). Necessarily, l(u) is finite and l is of the form

l(v) = 〈v, u∗〉 −
(
〈u, u∗〉 − F (u)

)
, v ∈ V.

Since l is everywhere less than F , we have by the definition of F ∗

〈u, u∗〉 − F (u) ≥ F ∗(u∗).

Again by the definition of the conjugate function,

〈u, u∗〉 − F (u) ≤ F ∗(u∗).

Thus

〈u, u∗〉 − F (u) = F ∗(u∗) and l(v) = 〈v, u∗〉 − F ∗(u∗), v ∈ V.
Therefore for all v ∈ V

l(v) ≤ F ∗∗(v) ≤ F (v),

from which follows that F (u) = F ∗∗(u).
By the definition of bipolar, we have that a continuous affine function

v 7→ 〈v, u∗〉 − α
is everywhere less than F if and only if it is less than F ∗∗. Hence, if F (u) =
F ∗∗(u), we have that u∗ ∈ ∂F (u) if and only if u∗ ∈ ∂F ∗∗(u). This proves the
Proposition. �

Proposition 2.29. Let F : V → R̄ be a function and F ∗ the conjugate function of
F . Then u∗ ∈ ∂F (u) if and only if

F (u) + F ∗(u∗) = 〈u, u∗〉.
Proof. Suppose u∗ ∈ ∂F (u). Then by the proof of Proposition 2.28, we have that

F (u) = l(u) = 〈u, u∗〉 − F ∗(u∗).
Suppose then that F (u) + F ∗(u∗) = 〈u, u∗〉. It follows that the continuous affine
function

〈·, u∗〉+ F (u)− 〈u, u∗〉
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is everywhere less than F and exact at u. Hence u∗ ∈ ∂F (u). �

Proposition 2.30. Let F : V → R̄ be a convex function which is finite and
continuous at a point u ∈ V . Then ∂F (v) 6= ∅ for all v ∈ int(dom F ).

For the proof of Proposition 2.30, we need the first geometric form of Hahn-Banach
Theorem. For the proof we refer to [6, p. 58].

THEOREM 2.31 (Hahn-Banach, first geometric form). Let V be a real normed
space. Let A ⊂ V be a open non-empty convex set and B ⊂ V be a non-empty
convex set such that A ∩ B = ∅. Then there exists a closed affine hyperplane H
which separates A and B, that is, if l(u) = α is the equation of H , we have

l(u) ≤ α for all u ∈ A and l(v) ≥ α for all v ∈ B.

Proof of Proposition 2.30. Since F is finite and continuous at u, it is bounded from
above in a neighborhood of u. By Proposition 2.20, we have that F is finite and
continuous at each point of int(dom F ). Hence we only need to show that ∂F (u) 6= ∅.

Since F is convex, epi F is a convex subset of V × R. Since F is continuous,
the interior of epi F is non-empty. The point (u, F (u)) belongs to the boundary of
epi F . By Theorem 2.31 we can separate it from the open non-empty convex set
int(epi F ) by a closed affine hyperplane

H = {(v, a) ∈ V × R : 〈v, u∗〉+ αa = β}, u∗ ∈ V ∗ and α, β ∈ R.

We have

〈v, u∗〉+ αa ≥ β for all (v, a) ∈ epi F(9)

and 〈u, u∗〉+ αF (u) = β.

We claim that α 6= 0. Indeed, if α = 0, then 〈v − u, u∗〉 ≥ 0 for all v ∈ dom F .
Since dom F is a neighborhood of u, there exists a real number r > 0 such that
B(u, r) ⊂ dom F . Let v ∈ V such that ||v||V < 1. Then u± rv ∈ B(u, r) and

〈u+ rv − u, u∗〉 ≥ 0 ⇔ ru∗(v) ≥ 0

〈u− rv − u, u∗〉 ≥ 0 ⇔ −ru∗(v) ≥ 0.

Therefore

u∗(v) = 0 for all v ∈ B(0, 1),

from which follows that u∗ ≡ 0. This is impossible, since the linear form of the
equation of the hyperplane is non-zero. This proves the claim.

By assumption F is finite and continuous at u. Hence there exists 0 < M < ∞
such that F (u) < M . Then

α(M − F (u)) = 〈u, u∗〉+ αM − 〈u, u∗〉 − αF (u) ≥ β − β = 0.

Thus we have α > 0. Dividing (9) by α, we obtain for all v ∈ dom F

β/α− 〈v, u∗/α〉 ≤ F (v) and β/α− 〈u, u∗/α〉 = F (u).

Combining these, we have

〈v − u,−u∗/α〉+ F (u) ≤ F (v) for all v ∈ V.
Now v 7→ 〈v−u,−u∗/α〉+F (u) is a continuous affine function everywhere less than
F and exact at a point u. Hence F is subdifferentiable at u and −u∗/α ∈ ∂F (u). �
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3. Weak convergence and reflexive Banach spaces

3.1. Weak convergence.

Definition 3.1. A sequence (uj) in V converges weakly to u ∈ V if

ϕ(uj)→ ϕ(u) as j →∞ for all ϕ ∈ V ∗.
In this case we write uj ⇀ u in V .

Proposition 3.2. Let (uj) be a sequence in V converging strongly to u ∈ V , that is

||uj − u||V → 0 as j →∞.
Then uj ⇀ u in V .

Proof. Let ϕ ∈ V ∗. Then there exists a positive real number M < ∞ such that
||ϕ||V ∗ ≤M . Hence

|ϕ(uj)− ϕ(u)| = |ϕ(uj − u)| ≤ ||ϕ||V ∗||uj − u||V ≤M ||uj − u||V → 0

as j →∞. �

Definition 3.3. A normed vector space (V, || · ||V ) is said to be complete if every
Cauchy sequence (uj) in V converges strongly to some u ∈ V .

Definition 3.4. A complete normed vector space (V, ||·||V ) is called a Banach space.

Lemma 3.5 (Mazur’s Lemma). Let V be Banach space and (un) a sequence in V
converging weakly to ū in V . Then for any n, there is N = N(n) ∈ N and λk ≥ 0,
k = n, · · · , N with

N∑
k=n

λk = 1, such that vn =
N∑
k=n

λkuk converges strongly to ū in V .

Proof. Refer to [9, p. 120]. �

Proposition 3.6. Let V be Banach space and A ⊂ V a closed convex set. Then A
is weakly closed.

Proof. Let (uj) be a sequence in A converging weakly to u ∈ V . By Lemma 3.5
there exists a sequence of convex combinations {vn} of {uj} converging strongly to
u. By Proposition 2.3 vn ∈ A for all n. Since A is closed, it follows that u ∈ A.
Thus A is weakly closed. �

Definition 3.7. A function F : V → R̄ is said to be weakly lower semi-continuous
on V if for all u ∈ V and all sequences (ui) in V converging weakly to u, we have

lim
i→∞

F (ui) ≥ F (u).

The proof of the following Lemma is similar to that of Proposition 2.17.

Lemma 3.8. A function F : V → R̄ is weakly lower semi-continuous if and only if
its epigraph epi F is weakly closed.

Proposition 3.9. Let F : V → R̄ be a convex and lower semi-continuous function.
Then F is weakly lower semi-continuous.

Proof. By Propositions 2.16 and 2.17 function is convex and lower semi-continuous
if and only if its epigraph is closed and convex set. Since F is convex and lower
semi-continuous, then by Proposition 3.6 epi F is weakly closed. By Lemma 3.8 F
is weakly lower semi-continuous. �

15



3.2. Lp spaces. In this section we let Ω be a bounded domain in Rn. We denote
the Lebesgue measure of a set A ⊂ Rn by m(A).

Definition 3.10. Let 1 ≤ p <∞. The set Lp(Ω) consists of all measurable functions
f : Ω→ R̄ such that |f |p is integrable, that is∫

Ω

|f |p dx <∞.

The set L∞(Ω) consists of all measurable functions f : Ω→ R̄ such that

sup
{
t ≥ 0 : m

(
{x ∈ A : |f(x)| > t}

)
> 0
}
<∞.

Definition 3.11. Let 1 ≤ p ≤ ∞ and f, g ∈ Lp(Ω). Then

g ∼ f if and only if g(x) = f(x) for almost every x ∈ Ω.

The equivalence class of an element f is denoted by

[f ] = {g ∈ Lp(Ω) : g ∼ f}.
Definition 3.12. Let 1 ≤ p ≤ ∞. We set

Lp(Ω) = {[f ] : f ∈ Lp(Ω)}.
Definition 3.13. Let 1 ≤ p <∞ and f : Ω→ R̄ be a measurable function. Denote

||f ||p =
(∫

Ω

|f |p dx
)1/p

and
||f ||∞ = sup

{
t ≥ 0 : m({x ∈ A : |f(x)| > t} > 0)

}
.

Proposition 3.14 (Young’s inequality). Let p be a real number such that 1 < p <
∞. Then for non-negative numbers a and b, we have

ab ≤ ap

p
+
bq

q
,

where q = p
p−1

.

Proof. If either a = 0 or b = 0, the inequality is trivial. We may therefore assume
that a, b > 0. We notice that the function f(t) = log t is a concave function in
(0,∞). Thus

log
(ap
p

+
bq

q

)
≥ 1

p
log ap +

1

q
log bq,

from which it follows that

log(ab) ≤ log
(ap
p

+
bq

q

)
,

that is,

ab ≤ ap

p
+
bq

q
.

�

Definition 3.15. Let 1 < p, q <∞ such that

1

p
+

1

q
= 1.

We say that p and q are conjugate exponents.
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Proposition 3.16 (Hölder’s inequality). Let p and q be conjugate exponents such
that 1 ≤ p, q ≤ ∞. Then ∫

Ω

|uv| dx ≤ ||u||p||v||q

for all u ∈ Lp(Ω) and v ∈ Lq(Ω).

Proof. Suppose first that p = 1 and q =∞. Then∫
Ω

|uv| dx ≤ ||v||∞
∫

Ω

|u| dx = ||v||∞||u||1.

Suppose 1 < p < ∞ and 1 < q < ∞. If ||u||p = 0, then u(x) = 0 for almost every
x ∈ Ω. In this case ∫

Ω

|uv| dx = 0

and the inequality is trivial. We may therefore assume that ||u||p, ||v||q > 0. Denote
for x ∈ Ω

ax :=
|u(x)|
||u||p

and bx :=
|v(x)|
||v||q

.

Then by Young’s inequality

|u(x)||v(x)|
||u||p||v||q

= axbx ≤
ax

p

p
+
bx
q

q
=
|u(x)|p

p||u||pp
+
|v(x)|q

q||v||qq
for every x ∈ Ω. Integrating over Ω, we obtain that

||u||−1
p ||v||−1

q

∫
Ω

|uv| dx ≤ 1

p
||u||−pp

∫
Ω

|u|p dx+
1

q
||v||−qq

∫
Ω

|v|q dx

=
1

p
+

1

q
= 1,

which gives us ∫
Ω

|uv| dx ≤ ||u||p||v||q.

�

Proposition 3.17 (Minkowski’s inequality). Let 1 ≤ p < ∞ be a real number and
u, v ∈ Lp(Ω). Then

||u+ v||p ≤ ||u||p + ||v||p.
Proof. The case p = 1 follows from the triangle inequality. Let 1 < p <∞. Then

||u+ v||pp =

∫
Ω

|u+ v|p dx ≤ 2p
∫

Ω

|u|p + |v|p dx = 2p||u||pp + 2p||v||pp <∞,

from which follows that u+ v ∈ Lp(Ω). We have for almost every x ∈ Ω

|u(x)+v(x)|p = |u(x)+v(x)||u(x)+v(x)|p−1 ≤ |u(x)||u(x)+v(x)|p−1+|v(x)||u(x)+v(x)|p−1

and hence by Hölder’s inequality

||u+ v||pp ≤
∫

Ω

(
|u||u+ v|p−1 + |v||u+ v|p−1

)
dx

≤ ||u||p
(∫

Ω

|u+ v|p
)(p−1)/p

+ ||v||p
(∫

Ω

|u+ v|p
)(p−1)/p

= ||u||p||u+ v||p−1
p + ||v||p||u+ v||p−1

p .
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This proves the proposition. �

Remark 3.1. For 1 < p <∞, we have ||u+ v||p = ||u||p + ||v||p if and only if u = λv
for some λ ∈ R.

Proposition 3.18. Let 1 ≤ p <∞. Then Lp(Ω) is a Banach space.

Proof. We show that Lp(Ω) is complete. Let (fj) be a Cauchy sequence in Lp(Ω).
We will show that there is f ∈ Lp(Ω) such that

||fj − f ||p → 0 as j →∞.
Since (fj) is a Cauchy sequence, there exists a subsequence (fjk) ⊂ (fj) such that

||fjk+1
− fjk ||p < 2−k,

for every k ∈ N. We define

gl(x) =
l∑

k=1

|fjk+1
(x)− fjk(x)| and g(x) =

∞∑
k=1

|fjk+1
(x)− fjk(x)|, l ∈ N.

For every l ∈ N the function gl is measurable and non-negative. Clearly, (gl) is an
increasing sequence and

gl(x)→ g(x) as l→∞ for almost every x ∈ Ω.

By Minkowski’s inequality

||gl||p ≤
l∑

k=1

||fjk+1
− fjk ||p ≤

l∑
k=1

2−k ≤ 1,

for all l ∈ N. Using the monotone convergence theorem [4, p. 186], we have∫
Ω

g(x)p dx = lim
l→∞

∫
Ω

gl(x)p ≤ 1.

Thus g ∈ Lp(Ω). Therefore 0 ≤ g(x) <∞ for almost every x ∈ Ω.
Since g(x) <∞ for almost every x ∈ Ω, the series

∞∑
k=1

[
fjk+1

(x)− fjk(x)
]

is absolutely convergent. Hence it is convergent for almost every x ∈ Ω. This means
that

fjl(x) = fj1(x) +
l−1∑
k=1

(
fjk+1

(x)− fjk(x)
)
→ fj1(x) +

∞∑
k=1

(
fjk+1

(x)− fjk(x)
)

as l → ∞ for almost every x ∈ Ω. Therefore (fjk) is a converging sequence for
almost every x ∈ Ω. Define

f(x) =

{
fj1(x) +

∑∞
k=1

(
fjk+1

(x)− fjk(x)
)
, when the limit exists;

0, elsewhere.

Then f is measurable and f ∈ Lp(Ω).
Let ε > 0. Since (fj) is Cauchy in Lp(Ω) there exists N ∈ N such that

||fj − fi||p < ε, when i, j ≥ N.
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Let j ≥ N . Finally, using Fatou’s Lemma [4, p. 243], we have∫
Ω

|f(x)− fj(x)|p dx ≤ lim inf
k→∞

∫
Ω

|fjk(x)− fj(x)|p dx < εp.

This implies that fj → f in Lp(Ω) as j →∞. Thus Lp(Ω) is complete. �

Remark 3.2. The following result can be obtained from the proof of Proposition
3.18: If fj → f in Lp(Ω), 1 ≤ p < ∞, then there exists a subsequence (fjk) ⊂ (fj)
such that fjk(x)→ f(x) for almost every x ∈ Ω.

The notation Ω′ ⊂⊂ Ω means that Ω′ ⊂ Ω.

Definition 3.19. Let 1 ≤ p ≤ ∞ and u : Ω → R be a measurable function. The
function u is said to be locally p-integrable if

u ∈ Lp(Ω′) for all Ω′ ⊂⊂ Ω.

We write u ∈ Lploc(Ω).

By a locally integrable function on Ω we refer to a function of class L1
loc(Ω). The

convergence in Lploc(Ω) is understood as convergence in Lp(Ω′) for each Ω′ ⊂⊂ Ω.

Remark 3.3. Let u ∈ Lp(Ω) and Ω′ ⊂⊂ Ω. From the monotonicity of the integral it
follows that ∫

Ω′
|u(x)|p dx ≤

∫
Ω

|u(x)|p dx <∞, 1 ≤ p <∞.

Hence u ∈ Lploc(Ω).

Proposition 3.20. Let p and q be conjugate exponents such that 1 < p, q < ∞. If
v ∈ Lq(Ω), then

ϕ(u) =

∫
Ω

u(x)v(x) dx

defines a bounded linear functional ϕ : Lp(Ω)→ R, and

||ϕ||Lp(Ω)∗ = ||v||Lq(Ω),

where Lp(Ω)∗ is the dual space of Lp(Ω).

Proof. By Hölder’s inequality, we have that

|ϕ(u)| ≤
∫

Ω

|u(x)||v(x)| dx ≤ ||u||Lp(Ω)||v||Lq(Ω),

which implies that ϕ is a bounded functional on Lp(Ω) and

||ϕ||Lp(Ω)∗ ≤ ||v||Lq(Ω).

Next we prove the reverse inequality. We may assume that v 6≡ 0. Let

u(x) =
[
sgn v(x)

]( |v(x)|
||v||Lq(Ω)

)q/p

,

then u ∈ Lp(Ω) and

||u||pLp(Ω) =

∫
Ω

∣∣sgn v(x)
∣∣p( |v(x)|
||v||Lq(Ω)

)q

dx = 1.
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Note that q/p = q − 1 and that

ϕ(u) =

∫
Ω

[
sgn v(x)

]( |v(x)|
||v||Lq(Ω)

)q−1

v(x) dx =
1

||v||q−1
Lq(Ω)

||v||qLq(Ω) = ||v||Lq(Ω).

Then we arrive at

||v||Lq(Ω) = |ϕ(u)| ≤ ||ϕ||Lp(Ω)∗ ||u||p = ||ϕ||Lp(Ω)∗ .

This proves the proposition. �

THEOREM 3.21. Let p and q be conjugate exponents such that 1 < p, q < ∞.
Define a mapping J : Lq(Ω) → Lp(Ω)∗ as follows: for v ∈ Lq(Ω), J(v) ∈ Lp(Ω)∗ is
defined as

〈J(v), u〉 =

∫
Ω

u(x)v(x) dx, ∀u ∈ Lp(Ω).

Then J is an isometric isomorphism from Lq(Ω) onto Lp(Ω)∗.

Proof. Clearly, J is linear and by Proposition 3.20 J is an isometric mapping from
Lq(Ω) onto Lp(Ω)∗. Since J is isometric, it is necessarily injective. Therefore, in
order to show that J is isomorphism, we only need to show that J is surjective.

Let A denote the set of measurable subsets of Ω. Suppose first that m(Ω) < ∞
and let F : Lp(Ω)→ R be a bounded linear functional on Lp(Ω). If A ∈ A , then∫

Ω

|χA(x)|p dx ≤
∫

Ω

1 dx ≤ m(Ω) <∞,

which implies that χA ∈ Lp(Ω) for every A ∈ A . Therefore we may define a function
ν : A → R by setting ν(A) = F (χA). Let A1, A2, ... ∈ A be disjoint sets such that

A =
∞⋃
i=1

Ai.

Denoting

f(x) = χA(x) and fj(x) =

j∑
i=1

χAi
(x), j ∈ N,

we have that |fj| ≤ 1 for all j ∈ N and

χA = χ⋃∞
i=1 Ai

=
∞∑
i=1

χAi
.

Since fj(x) → f(x) for every x ∈ Ω, ||fj||p → ||f ||p as j → ∞ by the dominated
convergence theorem. It then follows that

(10) ||χA −
j∑
i=1

χAi
||p → 0 as j →∞.

From (10) and the fact that F is a bounded linear functional on Lp(Ω), we have

ν(A) = F (χA) = F
( ∞∑
i=1

χAi

)
=
∞∑
i=1

F (χAi
) =

∞∑
i=1

ν(Ai),

which implies that ν is a signed measure on A . If m(A) = 0, then ν(A) = F (χA) = 0
by the linearity of F . Thus ν is absolutely continuous with respect to Lebesgue
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measure and by the Radon-Nikodym Theorem [4, p. 196] there exists a function
v ∈ L1(Ω) such that

ν(A) = F (χA) =

∫
Ω

v(x)χA(x) dx for every A ∈ A .

First, let φ : Ω → R be a simple function. There are constants c1, ..., cl and
measurable sets C1, ..., Cl such that

φ(x) =
l∑

i=1

ciχCi
(x) for all x ∈ Ω.

Thus

F (φ) = F
( l∑
i=1

ciχCi

)
=

l∑
i=1

ciF (χCi
) =

l∑
i=1

ci

∫
Ω

v(x)χCi
(x) dx(11)

=

∫
Ω

v(x)
l∑

i=1

ciχCi
(x) dx =

∫
Ω

v(x)φ(x) dx.

Second, let φ : Ω → [0,∞) be a bounded measurable function. Then φ ∈ Lp(Ω).
There are simple functions (φi) such that

0 ≤ φi ≤ φi+1 ≤ φ and lim
i→∞

φi(x) = φ(x) for every x ∈ Ω.

Since |φi − φ|p ≤ |φ|p and |φ|p ∈ L1(Ω), by the dominated convergence theorem(∫
Ω

|φ− φi|p dx
)1/p

→ 0 as i→∞.

For every i ∈ N it holds

|φi(x)v(x)| ≤ |φ(x)v(x)| ≤ ||φ||∞|v(x)| ∈ L1(Ω).

Thus by the dominated convergence theorem, (11) and the continuity of F

(12) F (φ) = lim
i→∞

F (φi) = lim
i→∞

∫
Ω

v(x)φi(x) dx =

∫
Ω

v(x)φ(x) dx.

Third, let φ : Ω → R be a bounded measurable function. Let φ+ : Ω → [0,∞)
denote the positive part of φ and φ− : Ω → [0,∞) the negative part of φ. By (12)
it follows that

F (φ) = F (φ+ − φ−) = F (φ+)− F (φ−) =

∫
Ω

v(x)φ+(x)−
∫

Ω

v(x)φ−(x) dx

=

∫
Ω

v(x)
(
φ+(x)− φ−(x)

)
dx =

∫
Ω

v(x)φ(x) dx.

Next we will show that v ∈ Lq(Ω). Define functions h : Ω → R, h = |v|q−2v and
hj : Ω→ R as follows

hj(x) =

{
h(x), if |h(x)| ≤ j;
0, else.

For every j > 0, hj is a bounded measurable function and hence

(13)
∣∣∣ ∫

Ω

v(x)hj(x) dx
∣∣∣ = |F (hj)| ≤ ||F ||Lp(Ω)∗||hj||p <∞.
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On the other hand, we have∫
Ω

v(x)hj(x) dx =

∫
Ω∩{|h|≤j}

|v(x)|q dx

and

||hj||p =
(∫

Ω

|hj(x)|p dx
)1/p

=
(∫

Ω∩{|h|≤j}
(|v(x)|q−1)

q
q−1 dx

) q−1
q

=
(∫

Ω∩{|h|≤j}
|v(x)|q dx

) q−1
q
, for every j > 0.

Therefore, (13) can be written as(∫
Ω∩{|h|≤j}

|v(x)|q dx
) 1

q ≤ ||F ||Lp(Ω)∗ , ∀j > 0.

Since v ∈ L1(Ω), it follows that |v(x)| < ∞ for almost every x ∈ Ω. Thus ||v||q ≤
||F ||Lp(Ω)∗ and v ∈ Lq(Ω).

Define a functional F̃ : Lp(Ω)→ R as follows

F̃ (u) =

∫
Ω

v(x)u(x) dx.

By Proposition 3.20 F̃ ∈ Lp(Ω)∗ and ||F̃ ||Lp(Ω)∗ = ||v||Lq(Ω). In addition, we have

F̃ (ϕ) = F (ϕ) for every ϕ ∈ L∞(Ω). Let u ∈ Lp(Ω). For every j ∈ N, define
uj : Ω→ R by setting

uj(x) =

 j, if u(x) > j;
u(x), if |u(x)| ≤ j;
−j, if u(x) < −j.

Then uj ∈ L∞(Ω) and uj → u in Lp(Ω) as j →∞. We have

F̃ (u) = lim
j→∞

F̃ (uj) = lim
j→∞

F (uj) = F (u),

since F̃ and F are continuous. Thus F̃ (u) = F (u) for every u ∈ Lp(Ω) and

F (u) =

∫
Ω

v(x)u(x) dx, for every u ∈ Lp(Ω).

Suppose there are v1, v2 ∈ Lq(Ω) such that

F (u) =

∫
Ω

v1(x)u(x) dx and F (u) =

∫
Ω

v2(x)u(x) dx, for every u ∈ Lp(Ω).

It follows that ∫
Ω

(
v1(x)− v2(x)

)
u(x) dx = 0, for every u ∈ Lp(Ω)

and furthermore, v1(x) = v2(x) for almost every x ∈ Ω. Thus the function v is
unique.

Suppose then that m(Ω) =∞. Let i ∈ N \ {0} and denote Ωi = B(0, i) ∩ Ω. For
every i we have m(Ωi) <∞, Ω1 ⊂ Ω2 ⊂ · · · and

∞⋃
i=1

Ωi = Ω.
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Define functions Fi : Lp(Ωi)→ R as Fi(u) = F (ũ), where

ũ(x) =

{
u(x), if x ∈ Ωi ;
0, else.

Since u ∈ Lp(Ωi), it follows that ũ ∈ Lp(Ω) . Let u ∈ Lp(Ωi) such that ||u||Lp(Ωi) ≤ 1.
Then

Fi(u) = F (ũ) ≤ ||ũ||p||F ||Lp(Ω)∗ ≤ ||F ||Lp(Ω)∗ .

Hence Fi ∈ Lp(Ωi)
∗ and ||Fi||Lp(Ωi)∗ ≤ ||F ||Lp(Ω)∗ .

Fix i ∈ N \ {0}. There exists a unique vi ∈ Lq(Ωi) such that

Fi(u) =

∫
Ωi

vi(x)u(x) dx, for all u ∈ Lp(Ωi)

and ||Fi||Lp(Ω)∗ = ||vi||Lq(Ωi). Let i > j. By the uniqueness of vj, we have vi(x) =
vj(x) for all x ∈ Ωj ⊂ Ωi. Thus there is v such that

v(x) = lim
i→∞

vi(x), for almost every x ∈ Ω.

By the monotone convergence theorem∫
Ω

|v(x)|q dx = lim
i→∞

∫
Ω

|vi(x)|q dx = lim
i→∞
||Fi||qLp(Ω)∗ ≤ ||F ||

q
Lp(Ω)∗ .

Hence v ∈ Lq(Ω) and ||v||q ≤ ||F ||Lp(Ω)∗ . By the dominated convergence theorem

||vi − v||q → 0 as i→∞.

Let u ∈ Lp(Ω) and denote ui = uχΩi
. Again by the dominated convergence

theorem

||ui − u||p → 0 as i→∞.
Finally∫

Ω

|vi(x)ui(x)− v(x)u(x)| dx

≤
∫

Ω

|vi(x)ui(x)− vi(x)u(x)|+ |vi(x)u(x)− v(x)u(x)| dx

≤
∫

Ω

||vi||q||ui − u||p + ||vi − v||q||u||p dx

→ 0 as i→∞

and therefore

F (u) = lim
i→∞

F (ui) = lim
i→∞

Fi(ui) = lim
i→∞

∫
Ω

vi(x)ui(x) dx =

∫
Ω

v(x)u(x) dx.

The proof is complete. �

Remark 3.4. As a consequence of Theorem 3.21, a sequence (uj) in Lp(Ω), 1 < p <
∞, converges weakly to u ∈ Lp(Ω) if

lim
j→∞

∫
Ω

uj(x)v(x) dx =

∫
Ω

u(x)v(x) dx for all v ∈ Lq(Ω).
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3.3. Weak convergence in reflexive Banach space. Let V be a normed space.
Define a mapping J : V → V ∗∗ as follows: for u ∈ V , J(u) ∈ V ∗∗ is defined as

〈J(u), u∗〉 = 〈u, u∗〉, for every u∗ ∈ V ∗.
Space V is said to be reflexive if the mapping J is an isometric isomorphism. The-
orem 3.21 states that Lp(Ω), 1 < p <∞, is reflexive.

THEOREM 3.22. Let V be a reflexive Banach space and (uj) a bounded sequence
of V , that is, uj ∈ V for all j and there exists a real number M > 0 such that

||uj||V ≤M for all j ∈ N.
Then there exists a subsequence (ujk) ⊂ (uj) that converges weakly in V .

Proof. We will only prove the theorem for the case V = Lp(Ω), where 1 < p < ∞.
Let p ∈ (1,∞) and suppose (uj) is a bounded sequence of Lp(Ω). We may assume
that

||uj||p ≤ 1 for all j ∈ N.
Let U be the closure of the linear span of {u1, u2, ...}. Now, U is a closed linear
subspace of the reflexive space Lp(Ω), from which follows that U is reflexive [7, p.
192]. The set {

u : u =
k∑
i=1

qiui, qi ∈ Q, k ∈ N
}

is numerable and dense in U . Hence U is separable. From the reflexivity of U , it
follows that U = U∗∗ and thus U∗∗ is separable. Since U∗∗ is the dual of U∗, we have
that U∗ is also separable [9, p. 126].

Let {ϕ1, ϕ2, ...} be a countable dense set in U∗. Fix k ∈ N. By the analytic form
of Hahn-Banach Theorem [9, p. 106] there exists ψk ∈ Lp(Ω)∗ such that

〈u, ϕk〉 = 〈u, ψk〉 for every u ∈ U.
Hence we may assume ϕk ∈ Lp(Ω)∗ = Lq(Ω), where q is the conjugate exponent of
p. Define for every j, k ∈ N

Lj(ϕk) = 〈uj, ϕk〉 =

∫
Ω

uj(x)ϕk(x) dx.

By Hölder’s inequality, we have

(14) |Lj(ϕk)| ≤ ||uj||p||ϕk||q ≤ ||ϕk||q, for every j, k ∈ N.
From (14) we have that the sequence

(
Lj(ϕ1)

)
is bounded in R. Hence there exists

a converging subsequence
(
L

(1)
j (ϕ1)

)
with a corresponding subsequence (u

(1)
j ) ⊂ (uj).

Consequently, with (14) we see that the sequence
(
L

(1)
j (ϕ2)

)
is bounded in R and

therefore has a converging subsequence
(
L

(2)
j (ϕ2)

)
with a corresponding subsequence

(u
(2)
j ) ⊂ (u

(1)
j ). Continuing the process, we achieve for every m ∈ N sequences

(
L

(m)
j

)
and (u

(m)
j ), for which the limit

lim
j→∞

L
(m)
j (ϕk) = lim

j→∞
〈u(m)

j , ϕk〉

exists for every k ≤ m. Moreover, for diagonal sequences
(
L

(j)
j

)
and (u

(j)
j ), the limit

lim
j→∞

L
(j)
j (ϕk) = lim

j→∞
〈u(j)

j , ϕk〉
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exists for every element ϕk of the countable dense set {ϕ1, ϕ2, ...}.
Let ϕ ∈ U∗ and ε > 0. The set {ϕ1, ϕ2, ...} is dense in U∗ and therefore there

exists a function ϕk such that

||ϕ− ϕk||q ≤ ε.

The sequence
(
L

(j)
j (ϕk)

)
is a Cauchy sequence and hence there is an index Jε such

that

|L(i)
i (ϕk)− L(j)

j (ϕk)| < ε whenever i, j ≥ Jε.

Now

|L(i)
i (ϕ)− L(j)

j (ϕ)| ≤ |L(i)
i (ϕ)− L(i)

i (ϕk)|

+ |L(i)
i (ϕk)− L(j)

j (ϕk)|+ |L(j)
j (ϕk)− L(j)

j (ϕ)|

≤ ||ϕ− ϕk||q||u(i)
i ||p + ε+ ||ϕ− ϕk||q||u(j)

j ||p
≤ 3ε, whenever i, j ≥ Jε.

It follows that the sequence
(
L

(j)
j (ϕ)

)
is a Cauchy sequence in R and hence the limit

(15) lim
j→∞

L
(j)
j (ϕ) = lim

j→∞
〈u(j)

j , ϕ〉

exists for every ϕ ∈ U∗.
Define for every j ∈ N a function vj : U∗ → R by setting

vj(ϕ) := 〈u(j)
j , ϕ〉

and a function v : U∗ → R by

v(ϕ) := lim
j→∞

vj(ϕ).

We claim that v ∈ U∗∗. Indeed, vj is a linear function for every j ∈ N. Thus v is a
linear function. Since the limit (15) exists for every ϕ ∈ U∗, we have

sup
j
|vj(ϕ)| <∞ for all ϕ ∈ U∗.

By Banach-Steinhaus Theorem [7, p. 203]

sup
j
||vj|| <∞,

where || · || is the operator norm. This implies that v is bounded and the claim is
true.

Now, U is reflexive and hence there exists an element u ∈ U such that

v(ϕ) = ϕ(u) for every ϕ ∈ U∗.

It follows that

lim
j→∞
〈u(j)

j , ϕ〉 = 〈u, ϕ〉 for every ϕ ∈ U∗.

Define T : U → Lp(Ω), T (u) = u. Let ψ ∈ Lp(Ω)∗. It follows that ψ ◦ T ∈ U∗. We
have

〈u(j)
j , ψ〉 = 〈u(j)

j , ψ ◦ T 〉 → 〈u, ψ ◦ T 〉 = 〈u, ψ〉

as j →∞. Thus u
(j)
j ⇀ u in Lp(Ω) and the proof is done. �
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4. Duality in convex optimization

4.1. The primal problem and the dual problem. Let F : V → R be a function.
We consider the minimization problem

(P) inf
u∈V

F (u).

This problem will be termed as the primal problem and we refer to it as P. We
denote the infimum by inf P and any element u of V such that F (u) = inf P will
be called a solution of P.

Definition 4.1. The problem P is said to be non-trivial if there exists u0 ∈ V such
that F (u0) <∞.

Suppose we are given a normed space Y with dual Y ∗ and a function Φ : V ×Y →
R̄ such that

Φ(u, 0) = F (u).

For every p ∈ Y
(Pp) inf

u∈V
Φ(u, p)

is said to be the perturbed problem of P with respect to the given perturbations.
Let Φ∗ : V ∗ × Y ∗ → R̄ be the conjugate function of Φ. Then Φ∗ ∈ Γ(V ∗ × Y ∗).

The problem

(P∗) sup
p∗∈Y ∗

{−Φ∗(0, p∗)}

is said to be the dual problem of P with respect to the given perturbations. The
supremum of P∗ is denoted by sup P∗ and any element p∗ of Y ∗ such that−Φ∗(0, p∗) =
sup P∗ is termed a solution of P∗. The problem P∗ is said to be non-trivial if there
exists p∗ ∈ Y ∗ such that −Φ∗(0, p∗) > −∞.

Definition 4.2. Let L : V → Y be a continuous linear operator. The function
L∗ : Y ∗ → V ∗ is said to be the transpose of L if

〈v, L∗y∗〉 = 〈Lv, y∗〉, for every v ∈ V and y∗ ∈ Y ∗.

Example 4.3. Let Λ : V → Y be a continuous linear mapping with transpose
Λ∗ ∈ L (Y ∗, V ∗). Let L : V → R̄ be of the following form

L(u) = F (u) +G(Λu),

where F : V → R and G : Y → R. Our primal problem P is of the form

inf
u∈V

[F (u) +G(Λu)].

We perturb our problem by defining the function Φ in the following way:

Φ(u, p) = F (u) +G(Λu− p).

For the conjugate function of Φ, we have

Φ∗(u∗, p∗) = sup
u∈V
p∈Y

[
〈u∗, u〉+ 〈p∗, p〉 − Φ(u, p)

]
= sup

u∈V
sup
p∈Y

[
〈u∗, u〉+ 〈p∗, p〉 − F (u)−G(Λu− p)

]
.
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For a fixed u, we set q = Λu− p. Then

Φ∗(0, p∗) = sup
u∈V

sup
q∈Y

[
〈p∗,Λu− q〉 − F (u)−G(q)

]
= sup

u∈V
sup
q∈Y

[
〈Λ∗p∗, u〉 − F (u) + 〈−p∗, q〉 −G(q)

]
= sup

u∈V

[
〈Λ∗p∗, u〉 − F (u) + sup

q∈Y

[
〈−p∗, q〉 −G(q)

]]
= sup

u∈V

[
〈Λ∗p∗, u〉 − F (u) +G∗(−p∗)

]
= F ∗(Λ∗p∗) +G∗(−p∗)

where F ∗ is the conjugate function of F and G∗ is the conjugate function of G.
Finally, our dual problem of P with respect to given perturbations takes the form

sup
p∗∈Y ∗

[
− F ∗(Λ∗p∗)−G∗(−p∗)

]
.

4.2. Relationship between the primal problem and its dual problem.

Proposition 4.4.
−∞ ≤ sup P∗ ≤ inf P ≤ ∞.

Proof. Let p∗ ∈ Y ∗. By definition

Φ∗(0, p∗) = sup
u∈V
p∈Y

[
〈p, p∗〉 − Φ(u, p)

]
≥ 〈0, p∗〉 − Φ(u, 0)

= −Φ(u, 0)

for all u ∈ V . Therefore for all u ∈ V and p∗ ∈ Y ∗

−Φ∗(0, p∗) ≤ Φ(u, 0)

and in particular sup P∗ ≤ inf P. �

Remark 4.1. If P and P∗ are non-trivial, then

−∞ < sup P∗ ≤ inf P <∞.

4.2.1. Primal Problem - Existence of Solution. In this section we let V be a reflexive
Banach space, A ⊂ V a non-empty closed convex set and F : A → R convex,
lower semi-continuous and proper function. Our primal problem is the minimization
problem

(16) (P) inf
u∈A

F (u).

Problem (16) is identical with the problem

(P∗) inf
u∈V

F̃ (u),

where

F̃ (u) =

{
F (u) if u ∈ A;
+∞ if u /∈ A.

THEOREM 4.5. The solutions of (16) is a closed convex set contained in A and
possibly empty.
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Proof. We denote m = inf P. Apart from the trivial cases where m = +∞ or
m = −∞, the set of solutions is the sublevel set

Em = {u ∈ V : F̃ (u) ≤ m}.

F̃ is convex and lower semi-continuous. By Propositions 2.10 and 2.15, we have that
Em is convex and closed. �

Definition 4.6. A function F : A→ R is coercive over A if

lim
||u||→∞

F (u) = +∞ for u ∈ A.

THEOREM 4.7. Let V be a reflexive Banach space, A ⊂ V a non-empty closed
convex set and F : A→ R a proper convex lower semi-continuous function.

(17) If the set A is bounded

or

(18) if F is coercive over A,

then the minimization problem (16) has at least one solution. Moreover, the solution
is unique if F is strictly convex in A.

Proof. Let (uj) be a minimizing sequence of problem (16), that is, uj ∈ A for all
j ∈ N and

lim
j→∞

F (uj) = inf
v∈A

F (v) := m.

Since F is proper there exists u0 ∈ A such that F (u0) < +∞. Therefore the problem
(16) is non-trivial and m < +∞.

We claim that (uj) is a bounded sequence in V . Indeed, if A is bounded, there
exists a real number M > 0 such that ||uj||V ≤ M for all j. Let F be coercive
over A and suppose that the sequence (uj) is unbounded. There is a subsequence
(ujk) ⊂ (uj) such that

||ujk ||V →∞, as jk →∞.
Since F is coercive

lim
j→∞

F (uj) = lim
jk→∞

F (ujk) = +∞.

This is a contradiction and therefore (uj) has to be bounded. This proves the claim.
V is a reflexive Banach space and (uj) is a bounded sequence in V . Hence by

Theorem 3.22 there exists a subsequence (ujn) ⊂ (uj) in A, which converges weakly
to an element u ∈ V . By Proposition 3.6 A is weakly closed. Therefore u ∈ A.

Since F is convex lower semi-continuous on A, by Proposition 3.9 it is weakly
lower semi-continuous in A. We have

(19) F (u) ≤ lim
jn→∞

F (ujn) = m.

This implies that u is a solution of (16). Moreover, F is proper convex function and
therefore −∞ < F (u) ≤ m.

Suppose F is strictly convex in A. We prove that the solution is unique. If u1 and
u2 are two different solutions of the minimization problem (16), then by Theorem
4.5 their convex combination 1

2
(u1 + u2) is also a solution. It follows that

F (
u1 + u2

2
) <

1

2
F (u1) +

1

2
F (u2) = m.
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This is a contradiction. Thus the solution is unique. �

4.3. Stability criterion. Consider the primal problem

(P) inf
u∈V

F (u) = inf
u∈V
{Φ(u, 0)}

and its dual problem with respect to given perturbations

(P∗) sup
p∗∈Y ∗

{−Φ∗(0, p∗)}.

In addition, in the rest of the section we assume in general that

Φ ∈ Γ0(V × Y ).

For p ∈ Y set

(20) h(p) = inf Pp = inf
u∈V

Φ(u, p).

Notice that h(0) = inf P. We consider the conjugate function of h:

h∗(p∗) = sup
p∈Y

[〈p∗, p〉 − h(p)]

= sup
p∈Y

[〈p∗, p〉 − inf
u∈V

Φ(u, p)]

= sup
p∈Y

[〈p∗, p〉+ sup
u∈V
{−Φ(u, p)}]

= sup
p∈Y

sup
u∈V

[〈p∗, p〉 − Φ(u, p)] = Φ∗(0, p∗).

Therefore

sup P∗ = sup
p∗∈Y ∗

{−Φ∗(0, p∗)} = sup
p∗∈Y ∗

{−h∗(p∗)} = h∗∗(0).

Definition 4.8. Problem P is said to be stable if h(0) is finite and h is subdiffer-
entiable at 0.

The stability of problem P∗ is defined in the same manner, just replacing P by
P∗ and h by h∗∗ in the definition. In general, a stable problem has the following
property: if we perturb our problem only a bit, then the solutions of the perturbed
problem should not differ too much from the original problem.

THEOREM 4.9. Let Φ ∈ Γ0(V ×Y ). If P is stable and has a solution, then P∗

has at least one solution and

−∞ < inf P = sup P∗ <∞.

Proof. Since P is stable, h(0) is finite and ∂h(0) 6= ∅. By Proposition 2.28, we have
that h∗∗(0) = h(0) ∈ R, that is

−∞ < inf P = h(0) = h∗∗(0) = sup P∗ <∞.

In addition, ∂h∗∗(0) = ∂h(0) 6= ∅. By Lemma 4.10 below, P∗ has at least one
solution. �

Lemma 4.10. The set of solutions of P∗ is identical to ∂h∗∗(0).
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Proof. p∗ ∈ Y ∗ is a solution of P∗ if and only if

−Φ∗(0, p∗) = sup
q∗∈Y ∗

{−Φ∗(0, q∗)}.

This can be written as

−h∗(p∗) = sup
q∗∈Y ∗

{−h∗(q∗)} = sup
q∗∈Y ∗

{〈0, q∗〉 − h∗(q∗)} = h∗∗(0).

By Proposition 2.29

h∗∗(0) + h∗(p∗) = 0 if and only if p∗ ∈ ∂h∗∗(0).

�

Lemma 4.11. Let Φ be convex. Then the function h : Y → R̄ defined as in (20)
is convex.

Proof. Let p, q ∈ Y and λ ∈ [0, 1]. We need to show

h(λp+ (1− λ)q) ≤ λh(p) + (1− λ)h(q),

whenever the right-hand side is defined. If h(p) =∞ or h(q) =∞, the inequality is
obvious. We can therefore assume that h(p) <∞ and h(q) <∞. For every a > h(p)
and b > h(q) there exists u, v ∈ V such that

h(p) ≤ Φ(u, p) ≤ a

h(q) ≤ Φ(v, q) ≤ b.

It follows that

h(λp+ (1− λ)q) = inf
w∈V

Φ(w, λp+ (1− λ)q)

≤ Φ(λu+ (1− λ)v, λp+ (1− λ)q)

≤ λΦ(u, p) + (1− λ)Φ(v, q)

≤ λa+ (1− λ)b.

The above inequality holds for all a > h(p) and b > h(q). Hence we have

h(λp+ (1− λ)q) ≤ λh(p) + (1− λ)h(q).

This proves the Lemma. �

THEOREM 4.12 (A stability criterion). Let us assume that Φ is convex, inf P
is finite and there exists u0 ∈ V such that p 7→ Φ(u0, p) is finite and continuous at
0 ∈ Y . Then P is stable.

Proof. By assumption h(0) = inf P is finite. The function p 7→ Φ(u0, p) is convex
and continuous at 0 ∈ Y . Therefore there exists a neighborhood U ⊂ Y of 0, on
which the function is bounded above, that is

Φ(u0, p) ≤M <∞ for all p ∈ U.
By Lemma 4.11 h is convex. In addition, we have

h(p) = inf
u∈V

Φ(u, p) ≤ Φ(u0, p) ≤M for all p ∈ U

and hence by Lemma 2.19, h is continuous at 0. Proposition 2.30 then implies that
h is subdifferentiable at 0. Thus P is stable. �
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4.4. Extremality relation.

THEOREM 4.13. If P and P∗ have solutions and

−∞ < inf P = sup P∗ <∞,

then all solutions ū of P and p̄∗ of P∗ are linked by the extremality relation

(21) Φ(ū, 0) + Φ∗(0, p̄∗) = 0.

Conversely if ū ∈ V and p̄∗ ∈ Y ∗ satisfy the extremality relation (21), then ū is a
solution of P and p̄∗ is a solution of P∗ and

−∞ < inf P = sup P∗ <∞.

Proof. If ū is a solution of P and p̄∗ is a solution of P∗ then by our assumption

Φ(ū, 0) = inf P = sup P∗ = −Φ∗(0, p̄∗).

Therefore

Φ(ū, 0) + Φ∗(0, p̄∗) = 0.

Conversely, suppose that ū and p̄∗ satisfy (21). By Proposition 4.4

−Φ∗(0, p∗) ≤ sup P∗ ≤ inf P ≤ Φ(u, 0), for all u ∈ V and p∗ ∈ Y ∗.

Since the pair (ū, p̄∗) satisfies (21), we have

Φ(ū, 0) = inf
u∈V

Φ(u, 0) = inf P,

−Φ∗(0, p̄∗) = sup
p∗∈Y ∗

{−Φ∗(0, p∗)} = sup P∗

and

−∞ < sup P∗ = inf P <∞.
�

Remark 4.2. The extremality relation (21) can be written as

Φ(ū, 0) + Φ∗(0, p̄∗) = 〈ū, 0〉+ 〈0, p̄∗〉 = 〈(ū, 0), (0, p̄∗)〉.

By Proposition 2.29 this is the same as (0, p̄∗) ∈ ∂Φ(ū, 0).

In summary, we have the following result.

THEOREM 4.14. Assume that V is a reflexive Banach space, Φ ∈ Γ0(V × Y ),
there exists u0 ∈ V such that p 7→ Φ(u0, p) is finite and continuous at 0 ∈ Y and
that u 7→ Φ(u, 0) is coercive over V . Under these conditions, P and P∗ each have
at least one solution,

inf P = sup P∗

and extremality relation (21) is satisfied.

Proof. The existence of solution of P follows from Theorem 4.7. The stability
criterion implies that P is stable and therefore by Theorem 4.9 we have that P∗

has at least one solution and

−∞ < inf P = sup P∗ <∞.

The extremality relation follows from Theorem 4.13. �
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5. Sobolev spaces

Definition 5.1. Let Ω ⊂ Rn. We say that the boundary of Ω, denoted by ∂Ω,
is C k if for each point u0 ∈ ∂Ω there exists r > 0 and a function γ : Rn−1 → R,
γ ∈ Ck(Rn−1) such that

Ω ∩B(u0, r) = {u ∈ B(u0, r) : un > γ(u1, u2, · · · , un−1)}.

Definition 5.2. We say that a domain Ω is of class C k, if its boundary ∂Ω is C k.

In this section, we let Ω ⊂ Rn be a bounded smooth domain, that is, Ω is C k for
some k ≥ 1.

5.1. Regularization. Let ρ be a non-negative smooth function on Rn vanishing
outside the unit ball and satisfying∫

Rn

ρ(x) dx = 1.

The function ρ is called a mollifier.

Definition 5.3. Let u ∈ L1
loc(Ω) and h > 0. The regularization of u is the convolu-

tion

uh(x) = h−n
∫

Ω

ρ
(x− y

h

)
u(y) dy,

provided h < dist(x, ∂Ω).

Lemma 5.4. Let Ω′ ⊂⊂ Ω and h < dist(Ω′, ∂Ω). If u ∈ L1
loc(Ω), then uh ∈ C∞(Ω′).

Proof. Fix i ∈ {1, ..., n} and denote

ρh(x) = h−nρ(
x

h
).

Let u ∈ L1
loc(Ω) and x ∈ Ω′. By the Fundamental Theorem of Calculus and Fubini’s

Theorem, we have

Diuh(x) = lim
k→0+

uh(x+ kei)− uh(x)

k

= lim
k→0+

1

k

∫
Ω

u(y)
[
ρh(x− y + kei)− ρh(x− y)

]
dy

= lim
k→0+

1

k

∫
Ω

u(y)

∫ k

0

Diρh(x− y + tei) dt dy

= lim
k→0+

1

k

∫ k

0

∫
Ω

u(y)Diρh(x− y + tei) dy dt

= lim
k→0+

1

k

∫ k

0

g(t) dt.

Now if 0 ≤ t < 1
2

dist(x, ∂Ω′), then x+ tei ∈ Ω′ and

B(x, h) ∪B(x+ tei, h) ⊂ {x : dist(x,Ω′) < h} =: Ω′′.
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Therefore, with a small enough k

|g(t)− g(0)| ≤
∫

Ω

|u(y)||Diρh(x− y + tei)−Diρh(x− y)| dy

=

∫
Ω′′
|u(y)||Diρh(x− y + tei)−Diρh(x− y)| dy

≤
∫

Ω′′
|u(y)|max

Ω′′

{
|Di(Diρh)|

}
|t| dy

≤M |t|||u||L1(Ω′′),

from which follows that∣∣∣1
k

∫ k

0

g(t) dt− g(0)
∣∣∣ ≤ 1

k

∫ k

0

|g(t)− g(0)| dt

≤M
1

k
||u||L1(Ω′′)

∫ k

0

|t| dt→ 0, as k → 0+.

In conclusion

Diuh(x) = g(0) =

∫
Ω′
u(y)Diρh(x− y) dy =

(
u ∗ Diρh

)
(x) for all i ∈ {1, ..., n}.

�

Lemma 5.5. If u ∈ C(Ω), then uh → u uniformly on any domain Ω′ ⊂⊂ Ω.

Proof. We have

uh(x) = h−n
∫
|x−y|≤h

ρ
(x− y

h

)
u(y) dy

=

∫
|z|≤1

ρ(z)u(x− zh) dz.

Now if Ω′ ⊂⊂ Ω and h < 1
2
dist(Ω′, ∂Ω)

|u(x)− uh(x)| =

∣∣∣∣∣u(x)−
∫
|z|≤1

ρ(z)u(x− zh) dz

∣∣∣∣∣
=

∣∣∣∣∣
∫
|z|≤1

ρ(z)u(x) dz −
∫
|z|≤1

ρ(z)u(x− zh) dz

∣∣∣∣∣
≤
∫
|z|≤1

ρ(z)|u(x)− u(x− zh)| dz

≤ sup
|z|≤1

|u(x)− u(x− zh)|.

Since u is continuous over Ω, it is uniformly continuous over any compact subset of
Ω. In particular u is uniformly continuous over the set

Ω′′ := {x ∈ Rn : dist(x,Ω′) ≤ h}.

Fix ε > 0, there exists a positive real number δ, depending only on ε, such that

sup
|z|≤1

|u(x)− u(x− zh)| < ε for all x ∈ Ω′ when h < δ
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and hence

sup
Ω′
|u− uh| ≤ sup

Ω′
sup
|z|≤1

|u(x)− u(x− zh)| → 0 as h→ 0.

�

Definition 5.6. Let u : Ω→ R be a function. Denote

spt(u) = {x ∈ Ω : u(x) 6= 0}.

We say that spt(u) is the support of u.

Definition 5.7. We denote

C0(Ω) = {u ∈ C(Ω) : spt(u) ⊂ Ω and spt(u) is compact}

and

C∞0 (Ω) = C∞(Ω) ∩ C0(Ω).

Lemma 5.8. Let u ∈ Lp(Ω), 1 ≤ p < ∞, and ε > 0. Then there exists a function
v ∈ C0(Rn) such that

||u− v||p < ε.

Proof. Let u ∈ Lp(Ω). We extend u to be a function of Lp(Rn) by setting u(x) = 0
for every x ∈ Rn \ Ω. Let ε > 0. Since simple functions are dense in Lp(Rn), there
exists a simple function w : Rn → R, constants ci ∈ R\{0} and sets Ci, i ∈ {1, ..., l},
such that

||u− w||p ≤ ε and w(x) =
l∑

i=1

ciχCi
(x) for every x ∈ Rn.

Since Ω is bounded, it follows that Ci are bounded for every i ∈ {1, ..., l}. Therefore
for every i there exists a compact set Ki ⊂ Ci such that

m(Ci \Ki) <
( ε

|ci|2l

)p
.

Moreover, for every Ki there exists a function ϕi ∈ C0(Rn), 0 ≤ ϕi ≤ 1, such that

||χKi
− ϕi||p <

ε

|ci|2l
.
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Now ∣∣∣∣∣∣u− l∑
i=1

ciϕi

∣∣∣∣∣∣
p
≤ ||u− w||p +

∣∣∣∣∣∣w − l∑
i=1

ciϕi

∣∣∣∣∣∣
p

≤ ε+
l∑

i=1

|ci|||χCi
− ϕi||p

≤ ε+
l∑

i=1

|ci|
[
||χCi

− χKi
||p + ||χKi

− ϕi||p
]

< ε+
l∑

i=1

|ci|

[(∫
Rn

|χCi
(x)− χKi

(x)|p dx

)1/p

+
ε

|ci|2l

]

≤ ε+
l∑

i=1

|ci|

[
m(Ci \Ki)

1/p +
ε

|ci|2l

]

< ε+
l∑

i=1

|ci|

[
ε

|ci|2l
+

ε

|ci|2l

]
= ε+

l∑
i=1

ε

l
= 2ε,

where the second inequality follows from Minkowski’s inequality, Proposition 3.17.
The function v :=

∑l
i=1 ciϕi is a continuous function defined on Rn and hence the

claim is true. �

In the following theorem we don’t require the boundedness of Ω.

Proposition 5.9. Let u ∈ Lploc(Ω), 1 ≤ p <∞. Then uh converges to u in Lploc(Ω).

Proof. By Hölder’s inequality, we have

uh(x) =

∫
|z|≤1

ρ(z)u(x− zh) dz

=

∫
|z|≤1

(
ρ(z)1−1/p

)(
ρ(z)1/pu(x− zh)

)
dz

≤

(∫
|z|≤1

ρ(z) dz

)1/q(∫
|z|≤1

ρ(z)|u(x− zh)|p dz

)1/p

=

(∫
|z|≤1

ρ(z)|u(x− zh)|p dz

)1/p

.

Let Ω′ ⊂⊂ Ω and h < 1
2

dist(Ω′, ∂Ω). Then∫
Ω′
|uh(x)|p dx ≤

∫
Ω′

(∫
|z|≤1

ρ(z)|u(x− zh)|p dz

)
dx

=

∫
|z|≤1

ρ(z)

(∫
Ω′
|u(x− zh)|p dx

)
dz

≤
∫

Ω′′
|u(x)|p dx,
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where Ω′′ = {x ∈ Ω : dist(x,Ω′) < h}. This implies that

||uh||Lp(Ω′) ≤ ||u||Lp(Ω′′).

Fix ε > 0. Now, by Lemma 5.8 there exists a function v ∈ C0(Rn) such that

||u− v||Lp(Ω′′) ≤
ε

3
.

In addition, for a small enough h we have by Lemma 5.5

||v − vh||Lp(Ω′) ≤
ε

3
.

Therefore

||u− uh||Lp(Ω′) ≤ ||u− v||Lp(Ω′) + ||v − vh||Lp(Ω′) + ||vh − uh||Lp(Ω′)

≤ ε

3
+
ε

3
+ ||u− v||Lp(Ω′′)

≤ 2ε

3
+
ε

3
= ε,

for small enough h. Since this is true for all Ω′ ⊂⊂ Ω, it follows that uh converges
to u in Lploc(Ω). �

Remark 5.1. From the previous Proposition we also have the following result: if
u ∈ Lp(Ω), then uh converges to u in Lp(Ω).

5.2. Sobolev spaces. Let α be a multi-index, that is α = (α1, ..., αn), αi ∈ N∪{0}.
We denote

|α| = α1 + α2 + · · ·+ αn.

For a function u : Ω→ R, define

Dαu :=
∂|α|

∂α1
1 ∂α2

2 · · · ∂αn
n

u(x).

We denote

Diu(x) :=
∂

∂xi
u(x)

and

∇u(x) =

(
∂

∂x1

u(x),
∂

∂x2

u(x), · · · , ∂

∂xn
u(x)

)
is the gradient of u at x.

Definition 5.10. Let u be a locally integrable function on Ω. Locally integrable
function v is called the αth weak derivative of u if it satisfies∫

Ω

ϕv dx = (−1)|α|
∫

Ω

uDαϕ dx for all ϕ ∈ C∞0 (Ω).

We write v = Dαu.

Definition 5.11 (Sobolev space). Let p ≥ 1, k be a non-negative integer and

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for all |α| ≤ k}.
The space W k,p(Ω) is called a Sobolev space and the formula

||u||Wk,p(Ω) = ||u||k,p;Ω :=
∑
|α|≤k

||Dαu||Lp(Ω)

defines a norm on W k,p(Ω).
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Remark 5.2. Let

||u||′Wk,p(Ω) :=

(∫
Ω

∑
|α|≤k

|Dαu|p dx

)1/p

.

Then || · ||′
Wk,p(Ω)

is also a norm on W k,p(Ω). It is easy to prove out that || · ||Wk,p(Ω)

and || · ||′
Wk,p(Ω)

are equivalent.

Proposition 5.12. Let 1 ≤ p ≤ ∞ and k be a non-negative integer. Then W k,p(Ω)
is a Banach space.

Proof. We show that W k,p(Ω) is complete. Let ε > 0 and (uj) be a Cauchy sequence
in W k,p(Ω). Fix a multi-index α such that |α| ≤ k. Since (uj) is a Cauchy sequence
there exists an index J ∈ N such that

||uj − ui||Wk,p(Ω) < ε whenever i, j ≥ J.

We have

||uj − ui||p ≤ ||uj − ui||Wk,p(Ω) < ε

and

||Dαuj −Dαui||p ≤ ||uj − ui||Wk,p(Ω) < ε

whenever i, j ≥ J . This means that (uj) and
(
Dαuj

)
are Cauchy sequences in Lp(Ω).

Since Lp(Ω) is complete there exists functions u ∈ Lp(Ω) and uα ∈ Lp(Ω) such that

||uj − u||p → 0 and ||Dαuj − uα||p → 0 as j →∞.

Next we show that u ∈ W k,p(Ω). Let ϕ ∈ C∞0 (Ω). Since uj ∈ W k,p(Ω) for every
j, we have ∫

Ω

ujD
αϕ dx = (−1)|α|

∫
Ω

Dαujϕ dx.

By Hölder’s inequality we obtain∫
Ω

(uj − u)Dαϕ dx ≤
∫

Ω

|uj − u||Dαϕ| dx ≤ ||uj − u||p||Dαϕ||q

and ∫
Ω

(Dαuj − uα)ϕ dx ≤
∫

Ω

|Dαuj − uα||ϕ| dx ≤ ||Dαuj − uα||p||ϕ||q,

where q is the conjugate exponent of p. Hence∫
Ω

uDαϕ dx = lim
j→∞

∫
Ω

ujD
αϕ dx = lim

j→∞
(−1)|α|

∫
Ω

Dαujϕ dx = (−1)|α|
∫

Ω

uαϕ dx,

from which follows that Dαu = uα and u ∈ W k,p(Ω). Finally

||uj − u||Wk,p(Ω) → 0 as j →∞

and the proof is complete. �

Proposition 5.13. Let u ∈ L1
loc(Ω), α a multi-index and suppose that Dαu exists.

Then if h < dist(x, ∂Ω), we have

Dαuh(x) =
(
Dαu

)
h
(x).
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Proof.

Dαuh(x) = h−n
∫

Ω

Dα
xρ
(x− y

h

)
u(y) dy

= (−1)|α|h−n
∫

Ω

Dα
y ρ
(x− y

h

)
u(y) dy

= h−n
∫

Ω

ρ
(x− y

h

)
Dαu(y) dy =

(
Dαu

)
h
(x).

�

Definition 5.14. Let Ω ⊂ Rn and U be an open cover of Ω. We say that a
countable collection of functions

ϕj ∈ C∞0 (Rn)

is a partition of unity subordinate to the covering U if

(1) for every compact set K ⊂ Ω the intersection spt(ϕj) ∩K is non-empty for
only a finite number of ϕj;

(2) 0 ≤ ϕj ≤ 1 in Ω for every j;
(3) for every ϕj there exists an open U ∈ U such that spt(ϕj) ⊂ U ;
(4)

∑
j ϕj(x) = 1 for every x ∈ Ω.

Proposition 5.15. Let 1 ≤ p <∞. Then C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω).

Proof. Let u ∈ W k,p(Ω) and ε > 0. Define for i = 1, 2, ...

Ui := {x ∈ Ω : d(x, ∂Ω) >
1

i
}.

We notice that Ui is bounded for every i ∈ N, U1 ⊂⊂ U2 ⊂⊂ · · · ⊂⊂ Ω and

Ω =
∞⋃
i=1

Ui.

We set

Gi = Ui+1 \ U i−1, U0 = ∅, i ∈ N.
Now the collection {Gi} is an open cover of Ω and hence there exists a partition of
unity F subordinate to the covering {Gi} [10, p. 53]. We denote

Fi = {ϕ ∈ F : spt(ϕ) ⊂ Gi, spt(ϕ) ∩ Ui 6= ∅}.
Since Ui ⊂⊂ Ω and F is a partition of unity, we have #Fi < ∞. Moreover, the
sum

ϕi :=
∑
ϕ∈Fi

ϕ, i ∈ N,

is finite. This implies that ϕi ∈ C∞0 (Ω), spt(ϕi) ⊂ Gi and
∑∞

i=1 ϕi(x) = 1 for every
x ∈ Ω.

Now spt(uϕi) ⊂ Ui+1 and uϕi ∈ W k,p(Ω). If h < dist(U i+1, ∂Ω), we have by
Proposition 5.13

D|α|(uϕi)h =
(
D|α|(uϕi)

)
h

and hence by Proposition 5.9

(uϕi)h → uϕi and D|α|(uϕi)h → D|α|(uϕi) in Lp(Ω) as h→ 0,
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that is,

||(uϕi)h − uϕi||Wk,p(Ω) → 0 as h→ 0.

Therefore, for every i ∈ N, there exists hi < dist(Ωi, ∂Ωi+1) such that

||(uϕi)hi − uϕi||Wk,p(Ω) <
ε

2i
.

Define

ϕ :=
∞∑
i=1

(uϕi)hi .

It follows that ϕ ∈ C∞(Ω) and finally,

||u− ϕ||Wk,p(Ω) =
∣∣∣∣∣∣ ∞∑

i=1

(
uϕi − (uϕi)hi

)∣∣∣∣∣∣
Wk,p(Ω)

≤
∞∑
i=1

∣∣∣∣uϕi − (uϕi)hi
∣∣∣∣
Wk,p(Ω)

<
∞∑
i=1

ε

2i
= ε,

which completes the proof. �

Remark 5.3. Let 1 ≤ p <∞ and k ∈ N. Define

Hk,p(Ω) ={u ∈ Lp(Ω) : there exists a sequence (ϕj) in C∞(Ω) such that

ϕj → u in Lp(Ω) and Dαϕj → Dαu in Lp(Ω) for every α such that |α| ≤ k}.

Then, by Proposition 5.15 and the completeness ofW k,p(Ω), it follows thatHk,p(Ω) =
W k,p(Ω).

Definition 5.16.

W k,p
0 (Ω) = {u ∈ W k,p(Ω) : there exists a sequence (ϕj) in C∞0 ∩W k,p(Ω)

such that ϕj → u in W k,p(Ω) as j →∞.}

The space (W k,p
0 (Ω), || · ||k,p;Ω) is a Banach space since it is a closed subspace of

(W k,p(Ω), || · ||k,p;Ω).

Proposition 5.17 (Poincaré inequality). Let 1 ≤ p <∞. Then for all u ∈ W 1,p
0 (Ω)

(22) ||u||p ≤ C||∇u||p,

where C is a positive constant depending only on Ω and p.

Proof. Since Ω is bounded, Ω ⊂ [−M,M ]n for some M > 0. Let u ∈ C∞0 (Ω) and
extend u to be zero outside Ω. By the Fundamental Theorem of Calculus, we have

|u(x)| =
∣∣∣ ∫ x1

−M
D1u(t, x′) dt

∣∣∣ ≤ ∫ M

−M
|D1u(t, x′)| dt,
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where x′ = (x2, x3, ..., xn). By Hölder’s inequality, it follows that

|u(x)|p ≤

(∫ M

−M
|D1u(t, x′)| dt

)p

≤

(∫ M

−M
1

p
p−1 dt

)p−1(∫ M

−M
|D1u(t, x′)|p dt

)

= (2M)p−1

∫ M

−M
|D1u(t, x′)|p dt.

Integrating over x1 we obtain∫ M

−M
|u(x)|p dx1 ≤ (2M)p−1

∫ M

−M

∫ M

−M
|D1u(t, x′)|p dt dx1

= (2M)p
∫ M

−M
|D1u(t, x′)|p dt.

Therefore∫
Ω

|u(x)|p dx =

∫ M

−M
· · ·
∫ M

−M
|u(x)|p dx1 · · · dxn

≤ (2M)p
∫ M

−M
· · ·
∫ M

−M
|D1u(t, x2, ..., xn)|p dt dx2 · · · dxn

= (2M)p
∫

Ω

|D1u(x)|p dx

≤ (2M)p
∫

Ω

|∇u(x)|p dx

and hence

||u||p ≤ C||∇u||p for every u ∈ C∞0 (Ω).

Let then u ∈ W 1,p
0 (Ω). Now there exists a sequence (ϕj) in C∞0 (Ω) such that ϕj → u

in W 1,p(Ω) as j →∞. Since∣∣||v||p − ||w||p∣∣ ≤ ||v − w||p for all v, w ∈ Lp(Ω),

we have

||ϕj||p → ||u||p and ||∇ϕj||p → ||∇u||p as j →∞
and hence

||u||p = lim
j→∞
||ϕj||p ≤ C lim

j→∞
||∇ϕj||p = C ||∇u||p.

�

Remark 5.4. Let

||u||′′W 1,p(Ω) := ||u||Lp(Ω) + ||∇u||Lp(Ω).

Then||u||′′W 1,p(Ω) is equivalent to ||u||W 1,p(Ω). It follows from the previous proposition

that ||∇u||p and ||u||W 1,p(Ω) are equivalent norms on W 1,p
0 (Ω).

Proposition 5.18. Let 1 < p <∞ and k ∈ N. Then W k,p(Ω) is reflexive.

Proof. Fix k and let

N = N(n, k) =
∑

0≤|α|≤k

1
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be the number of multi-indexes α satisfying 0 ≤ |α| ≤ k. For 1 ≤ p ≤ ∞, denote
the product space

Lp(Ω)N =
(
Lp(Ω)

)N
= Lp(Ω)× ...× Lp(Ω)︸ ︷︷ ︸

N

.

The product norm of u = (u1, ..., uN) in Lp(Ω)N is given by

||u||Lp(Ω)N =

{ ∑N
i=1 ||ui||p, if 1 ≤ p <∞;

max1≤i≤N ||ui||∞, if p =∞.
From Theorem 3.21 it follows that Lp(Ω) is reflexive when 1 < p < ∞. Therefore
Lp(Ω)N is reflexive when 1 < p < ∞. Since closed subspace of a reflexive space is
reflexive, it suffices to find an isomorphism between W k,p(Ω) and closed subspace of
Lp(Ω)N .

Denote by α1, α2, ..., αN the multi-indexes satisfying 0 ≤ |αi| ≤ k. If 1 < p <∞,
the isomorphism is given by the mapping Φ : W k,p(Ω)→ Lp(Ω)N ,

Φ(u) = (Dα1u,Dα2u, ..., DαNu).

This proves the claim. �

6. Applications of duality

In this section we consider Ω ⊂ Rn to be a bounded smooth domain.

6.1. The non-linear Dirichlet problem. Let p and q be conjugate exponents
such that 1 < p, q < ∞. Given f ∈ Lq(Ω) we consider the following Dirichlet
problem

(23)

{
−div

(
|∇u|p−2∇u

)
= f, in Ω;

u = 0, on ∂Ω.

Definition 6.1. We say that u ∈ W 1,p
0 (Ω) is a weak solution of (23), if for any

ϕ ∈ C∞0 (Ω), we have∫
Ω

|∇u(x)|p−2∇u(x) · ∇ϕ(x) dx =

∫
Ω

f(x)ϕ(x) dx.

Lemma 6.2. Function u ∈ W 1,p
0 (Ω) is a weak solution to equation (23) if and only

if it is a minimizer of the functional I : W 1,p
0 (Ω)→ R

(24) I(u) =
1

p

∫
Ω

|∇u(x)|p dx−
∫

Ω

f(x)u(x) dx,

that is

I(u) = inf
v∈W 1,p

0 (Ω)
I(v).

Proof. Suppose u ∈ W 1,p
0 (Ω) is a minimizer of I. Fix ϕ ∈ C∞0 (Ω) and define a

function h : R→ R by setting

h(t) = I(u+ tϕ).

Since u is a minimizer,

h(0) = I(u) ≤ I(u+ tϕ) = h(t) for all t ∈ R.
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This implies that h′(0) = 0. We have

h′(t) =

∫
Ω

|∇(u(x) + tϕ(x))|p−2∇(u(x) + tϕ(x)) · ∇ϕ(x) dx−
∫

Ω

f(x)ϕ(x) dx.

Therefore

0 = h′(0) =

∫
Ω

|∇u(x)|p−2∇u(x) · ∇ϕ(x) dx−
∫

Ω

f(x)ϕ(x) dx,

which shows that u is a weak solution to equation (23).
Suppose then that u is a weak solution to (23). Fix w ∈ W 1,p

0 (Ω). By Young’s
inequality, we have∫

Ω

|∇u(x)|p−2∇u(x) · ∇
[
u(x)− w(x)

]
dx

=

∫
Ω

|∇u(x)|p dx−
∫

Ω

|∇u(x)|p−2∇u(x) · ∇w(x) dx

≥
∫

Ω

|∇u(x)|p −
∫

Ω

[
1

q
|∇u(x)|p +

1

p
|∇w(x)|p

]
dx

=
1

p

∫
Ω

[
|∇u(x)|p − |∇w(x)|p

]
dx.

Since u is a weak solution,∫
Ω

|∇u(x)|p−2∇u(x) · ∇
[
u(x)− w(x)

]
dx =

∫
Ω

f(x)(u(x)− w(x)) dx.

We have

1

p

∫
Ω

[
|∇u(x)|p − |∇w(x)|p

]
dx−

∫
Ω

f(x)(u(x)− w(x)) dx ≤ 0,

which is the same as

I(u) ≤ I(w).

Thus u is a minimizer of I. �

THEOREM 6.3. The problem

inf
u∈W 1,p

0 (Ω)
I(u)

has a unique solution.

Proof. By Propositions 5.12 and 5.18, W 1,p
0 (Ω) is a reflexive Banach space when

1 < p < ∞. We will apply Theorem 4.7 to prove the Theorem. We need to verify
that I is strictly convex, lower semi-continuous, coercive and proper over W 1,p

0 (Ω).
First, we show that I is strictly convex. Since u 7→

∫
Ω
fu dx is linear, it suffices

to show that the mapping

u 7→
∫

Ω

|∇u|p

is strictly convex. The function f(ξ) = |ξ|p defined on Rn is strictly convex. Thus
u 7→

∫
Ω
|∇u|p is strictly convex.
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Second, we claim that I is continuous. Fix u ∈ W 1,p
0 (Ω) and let ε > 0. For every

v ∈ W 1,p
0 (Ω) we have

|I(u)− I(v)| =

∣∣∣∣∣1p
(∫

Ω

|∇u(x)|p dx−
∫

Ω

|∇v(x)|p dx

)
+

∫
Ω

f(x)[v(x)− u(x)] dx

∣∣∣∣∣
≤ 1

p

∣∣∣||∇u||pp − ||∇v||pp∣∣∣+ ||f ||q||v − u||p.

There exists δ1 > 0 such that

|xp − yp| < εp

2
for all x, y ≥ 0 with |x− y| < δ1.

Hence

1

p

∣∣∣||∇u||pp − ||∇v||pp∣∣∣+ ||f ||q||v − u||p <
1

p

εp

2
+ ||f ||q

ε

2||f ||q
= ε,

whenever∣∣∣||∇u||p − ||∇v||p∣∣∣ ≤ ||∇u−∇v||p < δ1 and ||u− v||p <
ε

2||f ||q
.

Thus |I(u)− I(v)| < ε for all v ∈ W 1,p
0 (Ω) such that

||u− v||W 1,p
0 (Ω) = ||u− v||p + ||∇u−∇v||p < δ := 2 min

{
δ1,

ε

2||f ||q

}
.

This proves our claim. Since continuous functions are lower semi-continuous, I is
lower semi-continuous.

Third, the coerciveness of I follows from the Poincaré inequality and Hölder’s
inequality: ∫

Ω

|∇u(x)|p dx−
∫

Ω

f(x)u(x) dx

≥ 1

Cp
||u||pp −

(∫
Ω

|f(x)|q dx

)1/q(∫
Ω

|u(x)|p dx

)1/p

=
1

Cp
||u||pp − ||f ||q||u||p →∞ as ||u||p →∞.

Finally, let u ≡ 0. Then

I(u) =

∫
Ω

|∇u|p dx−
∫

Ω

f(x)u(x) dx = 0 <∞,

from which follows that I is proper. Therefore, the strictly convex functional I :
W 1,p

0 (Ω)→ R satisfies all the assumptions of Theorem 4.7. We conclude by Theorem
4.7 that I has a unique minimizer. This proves the Theorem. �

We proceed by constructing a dual problem for our minimization problem

inf
u∈W 1,p

0 (Ω)
I(u).

We do this as in Example 4.3. Set

V = W 1,p
0 (Ω), Y = Lp(Ω)n and Λ = ∇ : W 1,p

0 (Ω)→ Lp(Ω)n.
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It then follows that

V ∗ =
(
W 1,p

0 (Ω)
)∗

= W−1,q(Ω), Y ∗ =
(
Lp(Ω)n

)∗
= Lq(Ω)n

and Λ∗ = − div : Lq(Ω)n → W−1,q(Ω).

Define F : V → R̄ and G : Y → R̄ by setting

F (u) = −(f, u) = −
∫

Ω

f(x)u(x) dx

and

G(r) =
1

p

∫
Ω

|r(x)|p dx.

The primal problem takes the form

(25) (P) inf
u∈W 1,p

0 (Ω)
I(u) = inf

u∈W 1,p
0 (Ω)

[
F (u) +G(Λu)

]
.

In order to construct the dual problem, we consider the conjugate function of F
and G. For the conjugate function of F , we have

F ∗(u∗) = sup
u∈V
{〈u∗, u〉 − F (u)} = sup

u∈V
{〈u∗, u〉+ (f, u)}

= sup
u∈V
{〈u∗, u〉+ 〈f, u〉}

= sup
u∈V
〈u∗ + f, u〉

=

{
0, if u∗ + f = 0;
+ ∞, otherwise.

For the conjugate function of G, we have

G∗(r∗) = sup
r∈Y
{〈r∗, r〉 −G(r)} = sup

r∈Y
{〈r∗, r〉 − 1

p

∫
Ω

|r(x)|p dx}

= sup
r∈Y

{
n∑
i=1

∫
Ω

r∗i (x)ri(x) dx− 1

p

∫
Ω

|r(x)|p dx

}

= sup
r∈Y

{∫
Ω

r∗(x) · r(x) dx− 1

p

∫
Ω

|r(x)|p dx

}
.

By the Young’s inequality∫
Ω

r∗(x) · r(x) dx ≤
∫

Ω

|r∗(x)||r(x)| dx ≤
∫

Ω

[
1

q
|r∗(x)|q +

1

p
|r(x)|p

]
dx.

Thus

G∗(r∗) =
1

q

∫
Ω

|r∗(x)|q dx.

The dual problem of P is of the form

(26) (P∗) sup
r∗∈Lq(Ω)n

div r∗=f

[
−G∗(−r∗)

]
= sup

r∗∈Lq(Ω)n

div r∗=f

[
− 1

q

∫
Ω

|r∗(x)|q dx

]
.

Lemma 6.4. G∗ is lower semi-continuous and strictly convex over Lq(Ω)n.
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Proof. The proof is analogous to the proof of strict convexity and lower semi-
continuity of the functional I in Theorem 6.3. We first claim that G∗ is continuous.
Indeed, fix r∗ ∈ Y ∗ and let ε > 0. For all s∗ ∈ Y ∗

|G∗(r∗)−G∗(s∗)| =

∣∣∣∣∣1q
∫

Ω

|r∗(x)|q dx− 1

q

∫
Ω

|s∗(x)|q dx

∣∣∣∣∣
=

1

q

∣∣∣||r∗||Lq(Ω)n − ||s∗||Lq(Ω)n

∣∣∣.
There exists δ > 0 such that

|xq − yq| < qε for all x, y ≥ 0 with |x− y| < δ.

Hence
1

q

∣∣∣||r∗||qLq(Ω)n − ||s
∗||qLq(Ω)n

∣∣∣ < 1

q
qε = ε

whenever ∣∣∣||r∗||Lq(Ω)n − ||s∗||Lq(Ω)n

∣∣∣ ≤ ||r∗ − s∗||Lq(Ω)n < δ.

It follows that G∗ is continuous and in particular it is lower semi-continuous. Second,
we claim that G∗ is strictly convex. This follows from the fact that the function
ξ 7→ |ξ|q is strictly convex on Rn. �

Lemma 6.5. P is stable.

Proof. Theorem 6.3 states that P has a unique solution and from the proof of
Theorem 4.7 we have that inf P is finite. By Theorem 2.21, F ∈ Γ0(V ) and G ∈
Γ0(Y ). Thus Φ(u, r) = F (u) + G(Λu − r) ∈ Γ0(V × Y ). In particular, Φ is convex
over V × Y . There exists u0 ∈ V such that F (u0) < ∞, G(Λu0) < ∞, G being
continuous at Λu0. Hence Theorem 4.12 implies that P is stable. �

THEOREM 6.6. Problem P in (25) has P∗ in (26) as its dual problem. P
possesses a unique solution ū and P∗ a unique solution r̄∗. We have

max P∗ = min P

and the following extremality relation

r̄∗i (x) = − |∇ū(x)|p−2Diū(x) a.e. x ∈ Ω.

Proof. The existence of a unique solution to problem P was shown in Theorem 6.3.
By Lemma 6.5, P is stable and by Theorem 4.9, P∗ has a solution and

−∞ < inf P = sup P∗ <∞.
Since G∗ is strictly convex, the solution of P∗ is unique.

By Theorem 4.13 our unique solutions ū and r̄∗ satisfy the extremality relation

(27) Φ(ū, 0) + Φ∗(0, r̄∗) = 0,

which can be written as

0 = F (ū) +G(Λū) + F ∗(Λ∗r̄∗) +G∗(−r̄∗)
=
[
F (ū) + F ∗(Λ∗r̄∗)− 〈Λ∗r̄∗, ū〉

]
+
[
G(Λū) +G∗(−r̄∗)− 〈−r̄∗,Λū〉

]
.

By the definition of conjugate function, we have

G(Λū) +G∗(−r̄∗)− 〈−r̄∗,Λū〉 ≥ 0.
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Hence

(28) F (ū) + F ∗(Λ∗r̄∗)− 〈Λ∗r̄∗, ū〉 = 0

⇔ Λ∗r̄∗ + f = 0 ⇔ div r̄∗ = f

and

(29) G(Λū) +G∗(−r̄∗) + 〈r̄∗,Λū〉 = 0

⇔ 1

p

∫
Ω

|∇ū(x)|p dx+
1

q

∫
Ω

|r̄∗(x)|
p

p−1 dx = −
∫

Ω

r̄∗(x)∇ū(x) dx

⇔ − r̄∗(x)∇ū(x) =
1

p
|∇ū(x)|p +

1

q
|r̄∗(x)|

p
p−1 for a.e. x ∈ Ω

⇔ − r̄∗(x) = |∇ū(x)|p−2∇ū(x) for a.e. x ∈ Ω.

�

6.2. The Stokes problem. Given f ∈ L2(Ω)n, we consider the following system

(30)

 −∆u+∇p = f, in Ω;
div u = 0, in Ω;
u = 0, on ∂Ω,

where u = (u1, ..., un) : Ω → Rn and p : Ω → R. We use the notation H1
0 (Ω) =

W 1,2
0 (Ω) for

W = {v ∈ H1
0 (Ω)n, div v = 0}.

It follows that W is a Hilbert space with the norm

||u||H1(Ω)n =

(∫
Ω

∑
1≤i,j≤n

|Diuj|2 dx

)1/2

and inner product

((u, v)) =
∑

1≤i,j≤n

(Diuj, Divj) =
∑

1≤i,j≤n

∫
Ω

Diuj(x)Divj(x) dx.

If v ∈ W , then problem (30) has a variational formulation:∑
1≤i,j≤n

∫
Ω

Diuj(x)Divj(x) dx −
∫

Ω

div v(x)p(x) dx =

∫
Ω

f(x) · v(x) dx

⇔ ((u, v)) = (f, v).

Lemma 6.7. Function u ∈ W is a weak solution of equation (30), that is,

(31) ((u, v)) = (f, v) for all v ∈ W

if and only if it is a minimizer of the functional

I(u) =
1

2
||u||2H1(Ω)n − (f, u) =

1

2

[
n∑
i=1

n∑
j=1

||Diuj||22

]
−
∫

Ω

f(x)u(x) dx.
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Proof. The proof is similar to that of Lemma 6.2. Suppose u is a minimizer of I.
Let v ∈ W and define a function h : R→ R as follows

h(t) = I(u+ tv).

By assumption

h(0) = I(u) ≤ I(u+ tv) = h(t) for all t ∈ R.
This implies that h′(0) = 0. We have

h′(t) =
n∑
i=1

n∑
j=1

∫
Ω

(Diuj(x) + tDivj(x))Divj(x)−
∫

Ω

f(x)v(x) dx.

Therefore

h(0) =
n∑
i=1

n∑
j=1

∫
Ω

Diuj(x)Divj(x)−
∫

Ω

f(x)v(x) dx = 0,

which is the same as (31).
Suppose then that u satisfies (31). Fix w ∈ W . We have

((u, u− w)) =
n∑
i=1

n∑
j=1

∫
Ω

1

2

[
|Diuj(x)|2 + |Di(uj(x)− wj(x))|2 − |Diwj(x)|2

]
dx.

Therefore
n∑
i=1

n∑
j=1

∫
Ω

1

2

[
|Diuj(x)|2 − |Diwj(x)|2

]
dx− ((u, u− w))

=− 1

2

n∑
i=1

n∑
j=1

∫
Ω

|Di(uj(x)− wj(x))|2 dx ≤ 0.

Since u satisfies (31), we have

((u, u− w)) =

∫
Ω

f(x)
(
u(x)− w(x)

)
dx.

Therefore
n∑
i=1

n∑
j=1

∫
Ω

1

2

[
|Diuj(x)|2 − |Diwj(x)|2

]
dx−

∫
Ω

f(x)
(
u(x)− w(x)

)
dx ≤ 0,

which implies that

I(u) ≤ I(w).

Thus u is a minimizer of I. �

Set

V = H1
0 (Ω)n, Y = L2(Ω) and Λ = div : H1

0 (Ω)n → L2(Ω).

It follows that

V ∗ =
(
H1

0 (Ω)n
)∗

= H−1(Ω)n, Y ∗ = L2(Ω) and Λ∗ = −∇ : L2(Ω)→ H−1(Ω)n.

Define F : V → R̄ and G : Y → R̄ by setting

F (u) =
1

2
||u||2H1(Ω)n − (f, u)

47



and

G(p) =

{
0 if p = 0
+ ∞ otherwise.

Our primal problem has the form

(P) inf
u∈W

I(u) = inf
u∈H1

0 (Ω)n
[F (u) +G(Λu)].

THEOREM 6.8. The primal problem P possesses a unique solution.

Proof. The proof is similar to that of Theorem 6.3. By Propositions 5.12 and 5.18,
W ⊂ H1

0 (Ω)n is a reflexive Banach space. Therefore, in order to apply Theorem
4.7 to prove the Theorem, we need to verify that I is strictly convex, lower semi-
continuous, coercive and proper over W .

The strict convexity follows from the fact that the function x 7→ x2 is strictly
convex over R. This can be shown with Proposition 2.13. Since I is continuous in
W , it is lower semi-continuous. We have

(f, u) ≤ ||f ||L2(Ω)n||u||L2(Ω)n =
n∑
j=1

||fj||2||uj||2

and hence

I(u) =
1

2
||u||2H1(Ω)n − (f, u)

≥ 1

2
||u||2H1(Ω)n −

n∑
j=1

||fj||2||uj||2

≥ 1

2
||u||2H1(Ω)n − C

n∑
j=1

||fj||2||u||H1(Ω)n →∞ as ||u||H1(Ω)n →∞,

for some positive constant C. This implies that I is coercive. Finally, let u = 0̄ =
(0, ..., 0). Then u ∈ W and I(u) = 0 <∞ meaning that I is proper. �

For the conjugate function of F , we have

F ∗(Λ∗p∗) = sup
v∈V
{〈Λ∗p∗, v〉 − F (v)−G(Λv)}

= sup
v∈H1

0 (Ω)n

{
(p∗, div v) + (f, v)− 1

2
||v||2H1(Ω)n −G(Λv)

}
.

Lemma 6.9. v(p∗) ∈ H1
0 (Ω)n is a maximizer of

(p∗, div v) + (f, v)− 1

2
||v||2H1(Ω)n

if it satisfies

(32) ((v(p∗), w)) = (f, w) + (p∗, div w), for all w ∈ H1
0 (Ω)n.

Proof. Denote

I(v) = (p∗, div v) + (f, v)− 1

2
||v||2H1(Ω)n .

Fix p∗ ∈ L2(Ω) and let u ∈ H1
0 (Ω)n such that it satisfies (32). Then

((u, u− w)) = (f, u− w) + (p∗, div(u− w)) for all w ∈ H1
0 (Ω)n.
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Now

((u, u− w)) ≤ (f, u− w) + (p∗, div(u− w)) +
1

2

n∑
i=1

n∑
j=1

∫
Ω

|Di(uj − wj)|2 dx.

In the proof of Lemma 6.7, we showed that

1

2

[
||u||2H1(Ω)n − ||w||2H1(Ω)n

]
= ((u, u− w))− 1

2

n∑
i=1

n∑
j=1

∫
Ω

|Di(uj − wj)|2 dx.

Therefore
1

2

[
||u||2H1(Ω)n − ||w||2H1(Ω)n

]
≤ (f, u− w) + (p∗, div(u− w)),

which can be written as

(p∗, div w) + (f, w)− 1

2
||w||2H1(Ω)n ≤ (p∗, div u) + (f, u)− 1

2
||u||2H1(Ω)n .

Thus I(w) ≤ I(u) for every w ∈ H1
0 (Ω)n and u is a maximizer. �

By the Lemma 6.9, the supremum is attained at a point v(p∗) ∈ W such that
v(p∗) satisfies (32). Hence

F ∗(Λ∗p∗) = sup
v∈H1(Ω)n

{
(p∗, div v) + (f, v)− 1

2
||v||2H1(Ω)n −G(Λv)

}
=
{((

v(p∗), v(p∗)
))
− 1

2
||v(p∗)||2H1(Ω)n

}
=

1

2
||v(p∗)||2H1(Ω)n .

For the conjugate function of G we have

G∗(p∗) = sup
p∈Y
{〈p∗, p〉 −G(p)} = 〈p∗, 0〉 − 0 = 0.

The dual problem of P is

(P∗) sup
p∗∈L2(Ω)

{
− 1

2
||v(p∗)||2H1(Ω)n

}
.

THEOREM 6.10. If P∗ is proper, then the dual problem P∗ possesses a solution.

Proof. Let (p∗m) in L2(Ω) be an maximizing sequence of P∗, that is,

−1

2
||v(p∗m)||H1(Ω)n → sup P∗ as m→∞.

By Theorem 6.8, problem P possesses a unique solution ū and inf P <∞. Since

sup P∗ ≤ inf P <∞
and P∗ is proper, we have that sup P∗ is finite. Moreover, the sequence

(
v(p∗m)

)
is

bounded in H1
0 (Ω)n.

We claim that the sequence
(
∇p∗m

)
is bounded in H−1(Ω)n. Indeed, let ψ ∈

H1
0 (Ω)n. Since v(p∗m) is bounded and satisfies (32) for every m ∈ N, we have∣∣∣∣∣
∫

Ω

∇p∗m(x)ψ(x) dx

∣∣∣∣∣ =
∣∣∣(f, ψ)− ((v(p∗m), ψ))

∣∣∣
≤ ||f ||H−1(Ω)n||ψ||H1(Ω)n + ||v(p∗m)||H1(Ω)n||ψ||H1(Ω)n < M
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with some M <∞. Thus for every m ∈ N the mapping

ψ 7→
∫

Ω

∇p∗m(x)ψ(x) dx = (∇p∗m, ψ)

is a bounded linear functional on H1
0 (Ω)n. In particular,

(
∇p∗m

)
is bounded in

H−1(Ω)n by Banach-Steinhaus Theorem [7, p. 203]. Hence the claim is true.
Since Ω is a bounded smooth domain, by [8, p. 14] there is a constant C > 0 only

depending on Ω such that

||p∗m||L2(Ω)/R ≤ C||∇p∗m||H−1(Ω)n ,

where

L2(Ω)/R =
{
p ∈ L2(Ω) :

∫
Ω

p(x) dx = 0
}
.

There is subsequence (p∗mi
) ⊂ (p∗m) and p∗ ∈ L2(Ω)/R such that

p∗mi
⇀ p∗ in L2(Ω)/R as mi →∞.

Since H1
0 (Ω)n is reflexive, its dual space H−1(Ω)n is also reflexive. Now by Theorem

3.22, there is a subsequence of (p∗mi
), still denoted by itself, such that

∇p∗mi
⇀ ∇p∗ in H−1(Ω)n as mi →∞.

Now, F is convex lower semi-continuous and by Proposition 3.9 it is weakly lower
semi-continuous. Thus

−F (Λ∗p∗) ≥ − lim inf
m→∞

F (Λ∗p∗m) = lim sup
m→∞

−F (Λ∗p∗m) = sup P∗,

which implies that p∗ is a solution of P∗. �

THEOREM 6.11. P∗ is proper.

Proof. We show that there is an element p∗ ∈ L2(Ω) such that

||v(p∗)||H1(Ω)n <∞,
where v(p∗) ∈ W satisfies (32). Indeed, v(p∗) is a weak solution of the Stokes
equation  −∆v = f −∇p∗, in Ω;

div v = 0, in Ω;
v = 0 on ∂Ω.

For every f ∈ L2(Ω)n there exists v ∈ H1
0 (Ω) and p∗ ∈ L2(Ω) such that (32) is

satisfied. For the proof we refer to [8, p. 31]. Thus P∗ is proper. �

THEOREM 6.12. Problem (30) possesses a solution (ū, p̄∗), where ū is a solution
of the primal problem P and p̄∗ is a solution of the dual problem P∗. Moreover

inf P = sup P∗.

Proof. From Theorems 6.8 and 6.10, we have the existence of the pair (ū, p̄∗). By
Lemma 4.10, the set of solutions of P∗ is identical to ∂h∗∗(0). Thus h∗∗ is subdif-
ferentiable at 0. Since h∗∗(0) is also finite, by definition the problem P∗ is stable.

We claim that h is lower semi-continuous at 0. Indeed,

h(0) = F (ū) ≤ inf
u∈H1

0 (Ω)n
{F (u) +G(Λu− p)} = h(p) for every p ∈ L2(Ω).
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Hence

h(0) ≤ lim inf
p→0

h(p),

meaning h is lower semi-continuous at 0. Therefore, at the point 0 h coincides with
its largest minorant of class Γ(L2(Ω)), which is h∗∗. It follows that

inf P = h(0) = h∗∗(0) = sup P∗.

By Theorem 4.13 we have the following extremality relation

F (ū) + F ∗(Λp̄∗) = 0.

This can be written as

1

2
||ū||2H1(Ω)n − (f, u) +

1

2
||v(p̄∗)||2H1(Ω)n = 0

⇔ 1

2
((ū, ū))− (f, ū) +

1

2
((v(p̄∗), v(p̄∗))) = 0

⇔ −1

2
(f, ū) +

1

2
(f, v(p̄∗)) +

1

2
(p̄∗, div v(p̄∗)) = 0.

Since div v(p̄∗) = 0, we have

(f, v(p̄∗)− ū) = 0.

It follows that ū = v(p̄∗) almost everywhere. Thus u satisfies (32) and the pair
(ū, p̄∗) is the solution of (30). �

Remark 6.1. The solution of P∗ is not unique. However, the solution is unique
except for additive constants.

6.3. Mossolov’s problem. Consider the minimization problem

(33) inf
u∈H1

0 (Ω)

{
α

2

∫
Ω

|∇u(x)|2 dx+ β

∫
Ω

|∇u(x)| dx−
∫

Ω

f(x)u(x) dx

}
,

where α and β are positive constants and f ∈ L2(Ω) is given. We set

V = H1
0 (Ω), Y = L2(Ω)n and Λ = ∇ : H1

0 (Ω)→ L2(Ω)n,

from which follows that

V ∗ =
(
H1

0 (Ω)
)∗

= H−1(Ω), Y ∗ = L2(Ω)n and Λ∗ = −div : L2(Ω)n → H−1(Ω).

Define F : V → R̄ and G : Y → R̄ as follows:

F (u) =
α

2
||u||2H1(Ω) − (f, u), ||u||H1(Ω) = ||∇u||2,

and

G(p) = β

∫
Ω

|p(x)| dx.

The primal problem

(P) inf
u∈H1

0 (Ω)

[
F (u) +G(Λu)

]
is identical with (33).

THEOREM 6.13. The primal problem P possesses a unique solution.
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Proof. By Propositions 5.12 and 5.18, H1
0 (Ω) is a reflexive Banach space. It is easy

to verify that the function
u 7→ F (u) +G(∇u)

is strictly convex, lower semi-continuous, coercive and proper over H1
0 (Ω). The result

follows from the Theorem 4.7. �

For the conjugate function of F , we have

F ∗(u∗) = sup
u∈H1

0 (Ω)

{
〈u∗, u〉 − F (u)

}
= sup

u∈H1
0 (Ω)

{
〈u∗, u〉+ (f, u)− α

2
||u||2H1(Ω)

}
= sup

u∈H1
0 (Ω)

{
〈u∗ + f, u〉 − α

2
||u||2H1(Ω)

}
.(34)

Lemma 6.14. The maximum of (34) is attained at the point u ∈ H1
0 (Ω), which

satisfies

(35) α(∇u,∇w) = (u∗, w) + (f, w) for every w ∈ H1
0 (Ω).

Proof. The proof is analogous to the proof of Lemma 6.9. Thus we omit the details.
�

It follows that

F ∗(u∗) = sup
u∈H1

0 (Ω)

{
〈u∗ + f, u〉 − α

2
||u||2H1(Ω)

}
= 〈u∗ + f, u〉 − 1

2
〈u∗ + f, u〉

=
1

2
〈u∗ + f, u〉〈u

∗ + f, u〉
〈u∗ + f, u〉

=
1

2α

〈u∗ + f, u〉2

||u||2H1(Ω)

=
1

2α
||u∗ + f ||2H−1(Ω),

since

||u∗||H−1(Ω) = sup
u∈H1

0 (Ω)

|〈u∗, u〉|
||u||H1(Ω)

.

For the conjugate function of G

G∗(p∗) = sup
p∈L2(Ω)n

{
〈p∗, p〉 −G(p)

}
= sup

p∈L2(Ω)n

{
〈p∗, p〉 − β

∫
Ω

|p(x)| dx
}

= sup
p∈L2(Ω)n

{∫
Ω

p∗(x)p(x)− β|p(x)| dx
}

=

{
0, if |p∗(x)| ≤ β for almost every x ∈ Ω;
+∞, otherwise.

The dual problem of P can be written as

(P∗) sup
p∗∈L2(Ω)n

[
− F ∗(Λ∗p∗)−G∗(−p∗)

]
.
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And further as

(36) sup
p∗∈L2(Ω)n

|p∗(x)|≤β a.e.

{
− 1

2α
||f − div p∗||2H−1(Ω)

}
.

Lemma 6.15. P is stable.

Proof. Theorem 6.13 states that P has a unique solution and inf P is finite. The
functions F and G are convex and lower semi-continuous over V and Y respectively
and hence by Theorem 2.21 Φ(u, p) = F (u)+G(Λu−p) ∈ Γ0(V ×Y ). In particular,
Φ is convex over V × Y . There exists u0 ∈ V such that F (u0) <∞, G(Λu0) <∞,
G being continuous at Λu0. Thus by Theorem 4.12, P is stable. �

THEOREM 6.16. Problem P in (33) has P∗ in (36) as its dual problem. P
possesses a unique solution ū, P∗ has at least one solution p̄∗ and

min P = max P∗.

We have the following extremality relations:

(37) α(∇ū,∇w) = (u∗, w) + (f, w) for every w ∈ H1
0 (Ω)

and

(38) β|∇ū(x)| = −p̄∗(x) · ∇ū(x) for almost every x ∈ Ω.

Proof. The existence of a unique solution of P was shown in Theorem 6.13. By
previous Lemma, P is stable and hence by Theorem 4.9, there exists a solution of
P∗ and

min P = max P∗.

By Theorem 4.13 the solutions satisfy the following extremality relations

(39) F (ū) + F ∗(Λ∗p̄∗) = 〈Λ∗p̄∗, ū〉

and

(40) G(Λū) +G∗(−p̄∗) = −〈p̄∗,Λū〉.

We can write

F ∗(u∗) = sup
u∈H1

0 (Ω)

{
〈u∗ + f, u〉 − α

2
||u||2H1(Ω)

}
=
α

2
||v(u∗)||2H1(Ω),

where v(u∗) satisfies (35). Denote v = v(−div p̄∗). Relation (39) yields

α

2
||ū||2H1(Ω) − (f, ū) +

α

2
||v||2H1(Ω) = 〈−div p̄∗, ū〉

⇔ α

2
||ū||2H1(Ω) − α(∇v,∇ū) +

α

2
||v||2H1(Ω) = 0

⇔ α(∇ū−∇v)2 = 0 for almost everywhere.

Since α > 0, we have ∇ū(x) = ∇v(x) for almost every x ∈ Ω. Thus ū satisfies (35)
with u∗ = −div p̄∗. We have showed (37).

Equation (40) can be written as∫
Ω

β|∇ū(x)|+ p̄∗(x) · ∇ū(x) dx = 0.
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Since |p̄|∗ ≤ β, the integral is non-negative. Thus we have

β|∇ū(x)| = −p̄∗(x) · ∇ū(x) for almost every x ∈ Ω.

�
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