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Tasséa tutkielmassa tarkastellaan valittujen variaatiolaskennan ongelmien ja néi-
den duaaliongelmien valisia suhteita. Tutkielmassa esitetaan aiheen yleinen teoria
ja annetaan esimerkkeja sovelluksista.

Tutkielman ensimmaisessa osassa maaritellaan konveksin analyysin keskeiset ka-
sitteet konveksi joukko, konveksi funktio ja konjugaattifunktio, seka tarkastellaan
konveksin funktion jatkuvuutta ja subdifferentioituvuutta reaaliarvoisessa normi-
avaruudessa.

Tutkielman toisessa osassa maaritelladn heikon konvergenssin kasite ja LP-avaruu-
det. Avaruuden LP(Q) refleksiivisyys todistetaan tapauksessa 1 < p < co. Toisen
osan paatteeksi todistetaan, etta refleksiivisen Banach-avaruuden rajoitetulla jonolla
on heikosti suppeneva osajono.

Kolmannessa osassa maaritellaan primaali- ja duaaliongelma ja tarkastellaan néi-
den valisia suhteita. Tutkielmassa keskitytadn primaaliongelmiin, joiden objekti-
funktio on refleksiivisessi Banach-avaruudessa maéritelty reaaliarvoinen, konveksi ja
alhaalta puolijatkuva funktio. Tutkielmassa osoitetaan, ettd primaaliongelmalla on
ratkaisu tapauksissa, joissa funktion laht6joukko on rajoitettu tai funktio on koersii-
vinen. Ratkaisu on yksikéasitteinen, mikali objektifunktio on aidosti konveksi. Duaa-
liongelman ratkaisun olemassaolo naytetaan tapauksessa, jossa primaaliongelma on
stabiili ja silla on vahintaan yksi tunnettu ratkaisu. Edellisessa tilanteessa primaali-
ja duaaliongelman &aariarvot ovat samat. Lopuksi osoitetaan, ettd mikéli primaali-
ja duaaliongelmalla on ratkaisu ja ongelmien aariarvot ovat samat, linkittyvat on-
gelmien ratkaisupisteet toisiinsa erityisella suhteella.

Neljénnessi osassa madritelliin Sobolev-avaruudet ja osoitetaan, ettd WHr(Q),
missd 1 < p < oo ja k € N, on refleksiivinen Banach-avaruus. Todistuksissa
hyodynnetaan tutkielman toisessa osassa saatuja tuloksia.

Tutkielman viimeisessa osassa tarkastellaan kolmea variaatiolaskennan ongelmaa:
epalineaarinen Dirichlet’n ongelma, Stokesin ongelma ja Mossolovin ongelma. Jokai-
sen ongelman osalta muodostetaan primaaliongelma, primaaliongelmalle konstruoi-
daan duaaliongelma, osoitetaan primaali- ja duaaliongelmien ratkaisujen olemassa-
olo ja aariarvojen yhtasuuruus seka naytetdan millaisen muodon ratkaisupisteiden
valinen suhde lopulta saa. Lisaksi osoitetaan, ettd epélineaarisen Dirichletin on-
gelman primaaliongelman aariarvopiste on alkuperaisen ongelman heikko ratkaisu.
Stokesin ongelman tapauksessa naytetaan, etta primaaliongelman ja duaaliongelman
ratkaisuista muodostettu pari on alkuperaisen ongelman ratkaisu.
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1. INTRODUCTION

In this thesis, we study relations of given variational problems and their corre-
sponding dual problem. The main purpose is to present the general theory and to
give examples.

In section 2 we introduce some basic concepts of convex analysis. The first part
of the section deals with convex sets. In the second part of the section we introduce
convex functions. A function F : V — R, where V is a real vector space, is convex
if for every u,v € V', we have

FOu+(1—=XMNv) <AF(u)+ (1 =XN)F(v) forall A €]0,1].
We define the conjugate function of F, F’* : V* — R, as follows
Fr(u) = sup { {u, ") = Flu)},
ue

In the beginning of section 3 we give the definition of weak convergence. Later
in the section we introduce L? spaces and in Theorem we show that LP(Q) is
reflexive when Q € R" and 1 < p < oo. In Theorem we show that a bounded
sequence of a reflexive Banach space has a weakly converging subsequence. The
proof is given in the case of LP({2), 1 < p < 0.

In section 4 we consider the primal problem

() inf F(u),
where F': A — R is a proper convex lower semi-continuous function and A a non-
empty closed convex subset of reflexive Banach space V. In Theorem we show
that if A is bounded or F' is coercive over A, then & has at least one solution.
Moreover, the solution is unique if F' is strictly convex in A. Given a normed space
Y and a function ® : V x Y — R such that ®(u,0) = F(u), we have for every p € Y’
a perturbed problem

(#,)  inf @(u.p)

Let ®* : V* x Y* — R be the conjugate function of ®. Finally, we have the dual
problem of &

(27)  sup {=®(0,p")}.

p*ey*
In Theorem we show that if &2 is stable and has a solution, then &2* has at least
one solution and
—o0 < inf & = sup & < o¢.
In Theorem [4.12| we show that &2 is stable if ® is convex, inf & is finite and there

exists ug € V such that p — ®(ug, p) is finite and continuous at 0 € Y. In Theorem
4.13| we show that the solutions of & and &7* are linked by the extremality relation

®(u,0) + ¢*(0,p") = 0.

In section 5 we introduce Sobolev spaces and show that W*?(Q), where 1 < p <
oo, k € N and 2 C R” is a bounded smooth domain, is a reflexive Banach space.
In section 6 we give examples of applications of duality. Our first example is the
non-linear Dirichlet Problem
(1) { —div(|VuP=?Vu) = f, in @

u=>0 on 0,



where 1 < p < oo, f € LYQ2) and ¢ = p/(p — 1). In Lemma we show that
u e WyP(Q) is a weak solution to equation (1)) if it is a minimizer of the functional

/|Vu |pdx—/f

In Theorem [6.3 we show that the problem
(2) inf  I(u)

ueW,y P (Q)

has a unique solution. The dual problem of & is of the form

(") sup [— —/ |r*(z)|? dm]
r eLq(Q

div r*=

In Theorem [6.6] we show that Z7* possess a unique solution and
max &* = min .

Our second example is the Stokes problem: Given f € L*(Q)", we consider the
following system

—Au+Vp=f in
(2) divu =0, in €
u =0, on 0f),

where u = (uy,...,u,) : Q@ > R"and p: Q — R. Let W = {v € H}(Q)", div v =0}.
Then W is a Hilbert space with the inner product
((u,v)) = Z (Djuj, Div;) = /Duj x)D;vj(x) dx.
1<i,j<n 1<4,5<n

In Lemma we show that u € W is a weak solution of equation , if it is a
minimizer of the functional
- | 1@

1) = 51l s o — [ZZHDUJHQ

=1 j=1

In Theorem we show that the primal problem
() inf I(u)
possesses a unique solution. The dual problem of & is
* 1 *
(27 s { =S |-
p*eL?(Q)
where v(p*) € HL(Q)" satisfies
(v(p"),w)) = (f,w) + (p*,div w), for all w € Hy(Q)™.

In Theorem [6.10| we show that if &* is proper, then it has a solution. In Theorem
6.12| we show that problem possesses a solution (@, p*), where @ is a solution of
the primal problem & and p* is a solution of the dual problem £7*. Moreover

inf & = sup &*.



Our last example is Mossolov’s problem

() uegl&f(ﬂ){§ | et e s [ [wue) o= [ st dx},

where o and 3 are positive constants and f € L?(Q) is given. In Theorem we
show that & has a unique solution. The dual problem of & is

1

(7% sup — —|If = div p*|[}-1 () ¢-
p* EL2(Q)TL 20{ H (Q)
[p*(x)|<B a.e.

In Theorem [6.16] we show that £2* has at least one solution and

min & = max &*.
2. CONVEX ANALYSIS
In this section we introduce some basic concepts of convex analysis.
2.1. Convex sets. Let V be a real vector space.
Definition 2.1. A set A C V is said to be convex if for every two points v and v in
A the line segment [u,v] is contained in A, that is,
[u,v] = {du+ (1-ANv:Ae[0,1]} C A, forall u,ve A.
The whole space V' and the empty set () are convex.

Definition 2.2. Let A C V and uq,...,u, € A. The sum
AMug + -+ A\,  where Aq, ..., A\, > 0 and Z)‘i =1,
i=1

is said to be a convexr combination of uy, ..., u,.

Proposition 2.3. Let A C V be a convex set. Then A contains all of the convex
combinations of its elements.

Proof. If ui,us € A and A\;, Ay > 0 such that A\; + Ay = 1, then by the definition of
convexity

)\1U1 + )\QUZ € A.
Let m € N, m > 2. We make an induction hypothesis that all the convex combina-
tions of less than m elements of A are contained in A. Let

= Muy + -+ AUy, such that \q,...,\,, >0 and Z)‘i =1,
i=1
be a convex combination of wuq,...,u,, € A. Suppose that A\; = 1. Then we have
A =---=MX,=0and u=mwu; €A. Thus we may assume that 0 < A\; < 1. Let
Ai

v=Aug+ -+ N\ Uy, where \; = :
1—-X\

Then X, > 0 for i = 2,...,m and
N4+ A, =1

Thus v is a convex combination of m — 1 elements of A. Hence v € A. Since
u=(1—A)v+ A\uy, it follows that u € A. O



Proposition 2.4. The intersection of an arbitrary collection of convex sets is con-
ver.

Proof. Let {A,}, a € I, where I is the index set, be an arbitrary collection of convex
sets. Let u and v be two elements of the intersection

A:ﬂAa.

acl

For all a € I the line segment [u,v] belongs to A, and therefore it belongs to the
intersection A. O

Proposition 2.5. Let V and W be two real vector spaces, A CV a convex set and
L a linear mapping from V into W. Then L(A) is convex in W.

Proof. Fix A € [0,1] and let x and y be two elements of L(A). There exists u and v
in A such that x = Lu and y = Lv. Then by the linearity of L

A+ (1 =Ny =AL(u) + (1 — AN)L(v) = L(Au) + L((1 = Nv)
= L(Au+ (1 = Mv).

Since A is convex, Au + (1 — A)v belongs to A for all A € [0,1]. Therefore L(Au +
(1 — A)v) is an element of L(A). This implies that L(A) is convex. O

2.2. Convex functions.

Definition 2.6. The epigraph of a function F': V — R is the set
epi F' = {(u,a) € VxR : F(u) <a}.
The epigraph is the set of points of V' x R which lie above the graph of F'. The
projection of epi F' to V is the set
dom F:={ueV:F(u) <+oo}.
We say that it is the effective domain of F'.

Definition 2.7. Let A be a convex subset of V and F : A — R a function. F is
said to be conver if for every v and v in A

(3) FOu+ (1 —=XNv) <AF(u)+ (1 =XN)F(v) forall A €|0,1],
whenever the right-hand side is defined. Inequality (3) must therefore be valid unless
F(u) = —F(v) = too. F is said to be strictly convez if it is convex and for every

u,v €A u#v
FOu+ (1—=XMNv) < AF(u) 4+ (1 =XN)F(v) forall A €(0,1),
whenever the right-hand side is defined.

_ Let AcCV and F: A — R be a function. We can associate with F' the function
F on V by setting

= . | F(u) ifueA;

F(u)—{ +oo ifu ¢ A.

F is convex if and only if A is a convex set and F is a convex function. This way
we only need to concern functions defined on the whole space V.

Definition 2.8. We say that a convex function F' : V — R is proper, if there is
u € V such that F'(u) is finite and F' nowhere takes the value —oo.



Definition 2.9. A function F : V — R is said to be concave if —F is convex.
Proposition 2.10. Let F : V — R be a convex function. Then the sublevel sets
E,:={u: F(u) <a}
are convex for all a € R.
Proof. Fix a € R and A € [0,1]. Let u,v € E,. If F(u) = —F(v) = £o0, then
FAu+(1—-Xv) < oo,
meaning A\u + (1 — X\)v € E,. Else, we have
FAu+ (1 = M) < AF(u)+ (1 =N F(v)

<Ada+(1—-XNa
= a)
which shows that Au + (1 — A)v € E,. Thus E, is convex. O

Definition 2.11. A function F': R — R is non-decreasing if F(a) < F(b) for every
a,b e R, a <b. F is increasing if F(a) < F(b) for every a,b € R, a < b.

Proposition 2.12. Let F : V — R be a convex function and G : R — R a
non-decreasing convez function. Then the composition Go F : V — R is a convex
function. If F' s strictly convex and G is an increasing convex function, then the
composition is strictly convez.

Proof. Let u,v € V and X € [0,1]. Then
G(F(Au+ (1 —=X)v)) < GAF(u)+ (1 = AN F(v))
SAG(F(u) + (1= NG(F(v))

and hence Go F' is convex. If F is strictly convex and G is increasing, then for u # v
we have that

FAu+ (1 —=XMNv) < AF(u)+ (1 =N F(v)

and that
G(F(Au+ (1 —=XAv)) < GAF(u)+ (1 =X)F(v)) forall A € (0,1).
Hence the composition G o F' is a strictly convex function. 0

Proposition 2.13. Let A C R be an open interval and F : A — R a twice
continuously differentiable function. If F" is non-negative in A, then F is convex.
If F" is positive in A, then F' is strictly convex.

Proof. Since F” is non-negative, F’ is non-decreasing on A. For z,y € A, © < y and
A € [0, 1], we denote z = Az + (1 — A)y. By the Fundamental Theorem of Calculus,
we have that

F(2) - Flz) = / CF) dt < F(2)(x — ),
and that

Thus



and

F(z) < =AF'(2)(y — z) + F(y).
Multiplying both sides of the first inequality by A, those of the second one by (1 —\)
and combining the two resulting inequalities together, we have

F(z)=AF(z2)+ (1 = MNF(2) < AF(x)+ (1 = N F(y),

which gives us that F is convex. If F” is positive, then F” is increasing on A. Let
r,y€ Az <y, A€ (0,1) and z = Ax + (1 — \)y. We then have

F(z) — F(z) = /Z F'(t) dt < F'(2)(z — x),

y
Fly)— F(z) = / F(t) dt > F'(2)(y — 2).
By repeating the same argument as in the proof of convexity, we obtain that
F(z) < AF(x)+ (1= X\)F(y),
which shows that F' is strictly convex. U

From now on , we assume that V' is a real normed vector space with a norm ||-||y.
We say that a sequence (u;) in V' converges to u € V, that is,

u; —u inV if ||u; —ully =0 as  j— oo.

Definition 2.14. A function F : V — R is said to be lower semi-continuous on V
if for all w € V and all sequences (u;) in V' converging to u, we have

(4) lim F(u;) > F(u).

U;—U
A continuous function is lower semi-continuous.

Proposition 2.15. Function F : V — R is lower semi-continuous if and only if the
sublevel set

(5) E,={ueV:F(u) <a}
is closed for all a € R.

Proof. Suppose F' is lower semi-continuous. Fix a € R. Let (u;) be a sequence in
E, converging to u € V. Then

Flu) < lm F(u;) < o,
j—00
from which follow that u € E, and that F, is closed.

Suppose that E, is closed for all @ € R. Fix u € V and let (u;) be a sequence in
V' converging to u. Now we have two cases: F'(u) = oo and F'(u) < co. For the first
case F'(u) = oo, we claim that for every a € R, there exists N, € N such that

F(uj) >a forall j > N,.
We argue by contradiction. Suppose that the claim does not hold. Then there is a
subsequence (u;, ) of (u;) and there is b € R such that

F(uj,) <b, forall j, € N.

This means that u;, € Ej, for all j, € N. Since E}, is closed and the subsequence (u;, )
converges to u in V', we have u € Ej. This means that F'(u) < b. This contradicts



to our assumption that F'(u) = co. Thus in this case F' is lower semi-continuous at
u.
For the second case F(u) < co. We argue by contradiction. We assume that

m = h_mF(uJ) < F(u) = M.

Jj—oo
Now for every € > 0, there is a subsequence (u;,) C (u;) such that
F(uj,) <m+e.

This means that u;, € E,,.. for all k € N. Let ¢ = (M — m)/2. Now u;, — u, as
Jr — 00. Since Ej, is closed for all a € R, we have u € Ep,(y—m)/2 and

M —m

< M.

F(u) <m+

This is a contradiction. Hence we have

lim F(u;) > M.

Jj—o0
This implies that F'is lower semi-continuous at . O

Proposition 2.16. A function F : V. — R is convex if and only if its epigraph
ept F' 15 conver.

Proof. Suppose F'is convex. Let (u,a),(v,b) € epi F. Then F(u) < a < oo and
F(v) <b< co. By the convexity of F, for all A € [0, 1], we have
(6) FOu+ (1 —=MNv) < AF(u)+ (1 =NFw)<Xa+ (1—MN\)b
from which follows that
(Mu+ (1 =M, Aa+ (1 = A)b) = A(u,a) + (1 — A)(v,b) € epi F.

Therefore epi F' is convex.

Assume then that epi F' is convex. The projection of epi F' to V is dom F,
which is convex since epi F' is convex and convexity is preserved by linear mappings.
We first show that F' is convex in dom F. Indeed, for u,v € dom F, we have
(u,F(u)) € epi F' and (’U,F(U)) € epi F. Since epi F is convex, then for any
A € [0, 1], we have

AMu, F(w)) + (1 = M) (v, F(v)) = (Au+ (1 = XN)v,AF(u) + (1 — \)F(v)) € epi F,
which means that
F(Au+ (1= Xv) <AF(u) 4+ (1= M) F(v).

This shows that F' is convex in dom F'. Since dom F' is convex and F = 400 in
V' \ dom F'; we know that F is convex in V. This finishes the proof. O

Proposition 2.17. A function F : V — R is lower semi-continuous if and only if
its epigraph epi F' is closed.

Proof. Define a function ¢ : V xR — R by setting p(u, a) = F(u)—a. We claim that
function F' is lower semi-continuous on V' if and only if ¢ is lower semi-continuous
on V xR. Indeed, let ((u;,a;)) be a sequence in V x R converging to (u,a) € V xR.
This means that

llu; —ully =0 and |a; —al| =0 asj— oo.



Assume first that F is lower semi-continuous. Then
o(u,0) = F(u) —a < lim F(u;) — a

Jj—o0
= lim (F(u)) - a;) = lm p(u;,a,),
j—00 j—00
which shows that ¢ is lower semi-continuous. Conversely, we assume that ¢ is lower
semi-continuous. By our assumption
F(u) —a=¢(u,a) < lim p(uj,a;) = lim (F(uj) - aj).
Jj—00 Jj—o0
Therefore
F(u) < lim (F(uj)—aj) +a = lim F(u;),

j—o0 Jj—oo

which shows that F' is lower semi-continuous. This proves the claim.
We notice that

0 H((~00,0]) = {(u,a) €V xR : p(u,a) <0} =epi F
and that
¢ '((—o0,7]) is the translation of epi F by vector (0,7) € V x R.

Since the translate of a closed set is closed, the sublevel sets ¢~ !((—o0,7]) of ¢ are
closed if and only if ¢™'((—00,0]) = epi F is closed. Recall that Proposition [2.15]
says that ¢ : V x R — R is lower semi-continuous if and only if the sublevel set
¢ H((—00,7]) is closed for all » € R. Thus F : V — R is lower semi-continuous if
and only if epi F' is closed. O

Proposition 2.18.

i) Let {F;}, i € I, be any family of convex functions in V. Let F(x) = sup;c; Fi(x).
Then F' s convexz.

ii) Let {F;}, i € I, be any family of lower semi-continuous functions in V. Let
F(x) = sup,¢; Fi(x). Then F is lower semi-continuous.

Proof. i) Proposition states that a function is convex if and only if its epigraph
is convex. Therefore for every i € I, epi F; is convex. By Proposition [2.4] we have
that the intersection of an arbitrary collection of convex sets is convex. We notice
that
epi ' = ﬂ epi F;.
iel

Hence epi F' is convex. Then F'is convex, by Proposition . ii) Proposition m
states that a function is lower semi-continuous if and only if its epigraph is closed.
For every i € I, epi F; is closed. Since the intersection of an arbitrary collection
of closed sets is closed, epi F'is closed. Therefore, by Proposition [2.17, F' is lower
semi-continuous. O

2.3. Continuity of convex functions.

Lemma 2.19. Let F:V — R be a convex function. If there exists a neighborhood
W of u €V such that

Fv) <M <oo forallveW,

then F' is continuous at .



Proof. By translation we may assume that u = 0 and F(u) = 0. Since W is a
neighborhood of 0, there exists a real number r > 0 such that B(0,7) C W. Let
e € (0,1). If v € B(0,er), we have

F(v) = F((1 — )0+ gg) < (1—€)F(0) + eF(v/e) < eM.

Writing
€ - 1

+
1+¢ ¢ 1+¢

v,

we also have .
€
F(— +
I+e (=v/e) I+e

0= F(0) < F(v),

from which follows that
F(v) > —eF(—v/e) > —eM.
Thus |F(v)| < eM for every v € B(0,er). Therefore F' is continuous at 0. O

Proposition 2.20. Let F : V — R be a convex function. The following statements
are equivalent to each other:

(i) There exists a non-empty open set U on which F is not everywhere equal to
—o0 and
F(u)<a<oo forallueU.

(i) F is proper and continuous in the interior of its effective domain.

Proof. Suppose (ii) is true. Since F is proper, int(dom F') # () and F nowhere takes
the value —oo. Let u € int(dom F'). Since F' is continuous in int(dom F), there
exists a neighborhood U of u and M < oo such that F(v) < M for all v € U. Thus
(ii) implies (i).

Suppose then that (i) is true. Then U C int(dom F'). By assumption, there exists
u € U such that F(u) > —oco. From Lemma , we have that I is continuous at
u and hence bounded in a neighborhood of .

We claim that F'(v) > —oo for all v € int(dom F). Indeed, suppose that there is
v € int(dom F') such that F'(v) = —oo. Then by the convexity of F

FAu+(1—=MNv) <AF(u)+ (1 =N F(v)=—o00 forall A e (0,1)

and in particular, F(w) = —oo for all w in the open line segment (u,v). This
contradicts the fact that v has a neighborhood in which F'is finite. Hence F' is
proper.

Fix uy € int(dom F). Then there is p > 1 such that u; = u + p(ug — u) €
int(dom F'). Now define h : V' — V by setting

-1 1
h(v):p v+ —uy, vev.
p p
Then we have h(u) = up and h(U) is open set. It is easy to see that h is invertible.
For w € h(U)

—1 1

w = 'O—h’l(w) + —uy
P

and hence by the convexity of F'

IN

P ) + AP
F(w) < p F(h ())+pF( 1)

10



Therefore F' is bounded from above in the neighborhood A(U) of uy. By Lemma
2.19, F' is continuous at ug. This shows that F' is continuous in int(dom F'). The
proof is finished. O

2.4. Conjugate function. The vector space V* of bounded linear functionals over
V' is said to be the (topological) dual of V' and its elements are denoted by u*.
Notation (u,u*) denotes the value of u* € V* at u that is, (u,u*) = u*(u).

The continuous affine functions over V' are of the type v — I(v) + «, where [ is a
continuous linear functional over V and o € R.

We denote the set of functions F : V — R which are pointwise supremum of a
family of continuous affine functions by I'(V'). In addition, we denote

Lo(V)={f €T(V):3uy €V such that — oo < f(ug) < oo}.
THEOREM 2.21. The following statements are equivalent to each other:

(i) FeT'(V) B
(ii) F is a convex lower semi-continuous function from V to R. If F takes value
—o0 then F'= —o0.

For the proof of Theorem [2.21], we need the second geometric form of Hahn-Banach
Theorem. For the proof we refer to [6, p. 58].

THEOREM 2.22 (Hahn-Banach, second geometric form). Let V' be a real normed
space. Let A C 'V be a non-empty conver and compact set and B C V be a non-
empty convex closed set such that AN B = (). Then there exists a closed affine

hyperplane S which strictly separates A and B, that is, if [(u) = « is the equation
of 7, we have

l(u) <a forallue A and [l(v) >« forallv e B.

Proof of Theorem [2.21. We first claim that continuous affine functions over V are
convex and lower semi-continuous. Indeed, if G is a continuous affine function over
V', then G(u) = l(u) + «, where [ is a continuous linear functional over V' and a € R.
For u,v € V and X € [0, 1], we have

GAu+ (1 —=XNv) =1Au+ (1 = A)v) +a = Al(u) + o] + (1 = N)[i(v) + ]
= AG(u) + (1 = N)G(v),

which shows that G is convex. Since G is continuous, it is lower semi-continuous.
This proves the claim.

By Proposition [2.16] and Proposition the epigraph of continuous affine func-
tion is closed and convex set. If F: V — R is a pointwise supremum of non-empty
family of continuous affine functions, then by Proposition [2.18| epi F' is convex and
closed. From Propositions and we have that F' is convex and lower semi-
continuous. Moreover, the pointwise supremum of an empty family is —oo and if
the family under consideration is non-empty, F' cannot take the value —oo. Thus
(ii) follows from (i).

Conversely, suppose that F : V — R is a convex lower semi-continuous function
and that F'(u) > —oo for all u € V. We show that F' € ['(V). If F' = oo, then it is
the pointwise supremum of all continuous affine functions in V.

If F' # oo, then for w € V' we fix a number a such that a < F(u). We know epi F
is a closed convex set that does not contain the point (@, a). By Theorem , we
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can strictly separate epi F' and the point (@, a) by a closed affine hyperplane J# of
V x R. 2 is of the form

H ={(u,a) € VxR :l(u)+ aa =S},
where [ is a continuous linear functional over V and «, f € R. We have
l(a)+aa<pf and l(u)+aa>p, forall (u,a) € epi F.
Suppose F(u) < co. Then (u, F(u)) € epi F. Thus
(7) [(u) + aF(u) > 8 > l(u) + aa,

from which follows that a(F (w) — EL) > (0. Hence ao > 0. From the inequality ,
we obtain

(8) a<_Liw < ra).

®

Q
Q

Now suppose F(u) = oco. We have
l(u )+aF( ) > B> I(u) + aa,

u
from which follows that a( ) > 0 and furthermore o > 0. If o > 0, we
obtain (§ . If a =0, we have

f—1(u)>0 and p—I(u)<0, foralluedomF.

Earlier in the proof, we showed that it is possible to construct a continuous affine
function h : V' — R such that h(u) < F(u) for every u € dom(F'). For every ¢ > 0,
h(-) —i—c(ﬁ -1 ()) is a continuous affine function everywhere less than /' and therefore
it only remains to choose ¢ sufficiently large so that

h(a) +c(8 — () > a
Finally, we have proved that for every u € V and a € R such that a < F(u), there
exists continuous affine function m : V. — R such that

m(u) < F(u), forallueV and a<m(u)< F(a).

Thus F' is a pointwise supremum of family of continuous affine functions. O
Definition 2.23. Let F : V — R be a function. Define F* : V* — R as follows
F*(u*) = sup { (u,u") — F(u)}.

ueV

We say F* is the polar or conjugate function of F'.
Definition 2.24. Let F': V — R be a function. Define F** : V — R as follows
F*™(u) = sup {(u,u") — F*(u")}.

u*eVv*
We say F** is the bipolar of F.

Lemma 2.25. Let F : V — R be a function. Then F* € T(V*) and F** € T(V).

Proof. 1If dom F = (), then F* = —oco. If dom F # (), then F* is the pointwise
supremum of the family of continuous affine functions

(u,-)y — F(u) for u € dom F.
Hence F* € T'(V*).

12



Clearly F** < F. In fact, the bipolar of F'is the pointwise supremum of maxi-
mal continuous affine functions everywhere less than F'. Hence, F™** is the largest
minorant of F' in I'(V). O

2.5. Subdifferentiability.

Definition 2.26. Let F : V — R be a function and [ : V — R be a continuous
affine function everywhere less than F', that is, [(v) < F(v) for all v € V. We say
that [ is ezact at the point u € V if [(u) = F(u).

Definition 2.27. A function F : V — R is said to be subdifferentiable at the point
u € V, if there exists a continuous affine function [ : V — R exact at u. Let [ be of
the form

I(y=(-,u")y—a, a€R.
Then u* € V* is called a subgradient of F' at u. The set of subgradients at u is called
the subdifferential at u and is denoted OF (u).

Proposition 2.28. Let F: V — R be a function and w € V. If OF (u) # (), then
F(u) = F*(u). If F(u) = F**(u), then OF (u) = 0F**(u).

Proof. Let u* € OF(u). There exists a continuous affine function [ such that | < F
and [(u) = F(u). Necessarily, [(u) is finite and [ is of the form
I(v) = (v,u*) — ((u,u*) — F(u)), veV.

Since [ is everywhere less than F', we have by the definition of F™*

(u,u*y — F(u) > F*(u").
Again by the definition of the conjugate function,

(u,u*y — F(u) < F*(u").
Thus

(u,u*y — F(u) = F*(v*) and [(v) = (v,u*) — F*(u"), veV.
Therefore for all v € V
I(v) < F*(v) < F(v),
from which follows that F(u) = F**(u).
By the definition of bipolar, we have that a continuous affine function

v = (v,u") —«

is everywhere less than F' if and only if it is less than F**. Hence, if F(u) =
F**(u), we have that u* € 0F(u) if and only if v* € OF**(u). This proves the
Proposition. O]

Proposition 2.29. Let F: V — R be a function and F* the conjugate function of
F. Then u* € OF (u) if and only if

F(u) + F*(u*) = (u,u").
Proof. Suppose u* € OF (u). Then by the proof of Proposition we have that
F(u) = l(u) = {(u,u*) — F*(u").

Suppose then that F'(u) + F*(u*) = (u,u*). It follows that the continuous affine
function
(") + F(u) = (u, u’)

13



is everywhere less than F' and exact at u. Hence u* € 0F (u). O

Proposition 2.30. Let F : V — R be a conver function which is finite and
continuous at a point w € V.. Then OF (v) # 0 for all v € int(dom F).

For the proof of Proposition[2.30, we need the first geometric form of Hahn-Banach
Theorem. For the proof we refer to [6, p. 58].

THEOREM 2.31 (Hahn-Banach, first geometric form). Let V' be a real normed
space. Let A C V be a open non-empty convex set and B C V be a non-empty
convez set such that AN B = (). Then there exists a closed affine hyperplane S
which separates A and B, that is, if [(u) = « is the equation of F, we have

l(u) <a forallue A and 1(v) >« forallv € B.

Proof of Proposition[2.30. Since F is finite and continuous at u, it is bounded from
above in a neighborhood of w. By Proposition [2.20] we have that F' is finite and
continuous at each point of int(dom F'). Hence we only need to show that OF (u) # 0.

Since F' is convex, epi F' is a convex subset of V' x R. Since F' is continuous,
the interior of epi F' is non-empty. The point (u, F'(u)) belongs to the boundary of
epi F. By Theorem [2.31| we can separate it from the open non-empty convex set
int(epi F') by a closed affine hyperplane

H ={(v,a) e VxR: (v,u")+ aa =0}, u €V*'and o, €R.
We have
(9) (v,u*) + aa > for all (v,a) € epi F
and  (u,u”) + aF(u) = p.

We claim that o # 0. Indeed, if a = 0, then (v — u,u*) > 0 for all v € dom F.
Since dom F' is a neighborhood of u, there exists a real number r > 0 such that
B(u,r) C dom F. Let v € V such that ||v||y < 1. Then v £+ rv € B(u,r) and

(u+rv—u,u’)y >0 < ru'(v)>0
(u—rv—u,u’) >0 < —ru*(v)>0.

Therefore
u*(v) =0 forall ve B(0,1),

from which follows that u* = 0. This is impossible, since the linear form of the
equation of the hyperplane is non-zero. This proves the claim.

By assumption F' is finite and continuous at u. Hence there exists 0 < M < oo
such that F(u) < M. Then

a(M — F(u)) = (u,u*) + aM — (u,u*) — aF(u) > - =0.
Thus we have a > 0. Dividing @ by «, we obtain for all v € dom F
Bla— (v,u*/a) < F(v) and f/a— (u,u”/a) = F(u).
Combining these, we have
(v—u,—u"/a) + F(u) < F(v) forallvelV.

Now v — (v —wu, —u*/a) + F(u) is a continuous affine function everywhere less than
F and exact at a point u. Hence F is subdifferentiable at u and —u*/a € 0F (uv). O
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3. WEAK CONVERGENCE AND REFLEXIVE BANACH SPACES
3.1. Weak convergence.
Definition 3.1. A sequence (u;) in V' converges weakly to uw € V' if
o(uj) = p(u) asj—oo forall pe V™
In this case we write u; — v in V.
Proposition 3.2. Let (u;) be a sequence in V' converging strongly to uw € V, that is
llu; —ully =0 asj— oo.
Then u; = w in V.

Proof. Let ¢ € V*. Then there exists a positive real number M < oo such that

l|ol[v+ < M. Hence

elws) — ()] = 19(u; — @] < llgllv-us — ully < Mlla; = ully =0
as j — oQ. U
Definition 3.3. A normed vector space (V.|| - ||y) is said to be complete if every

Cauchy sequence (u;) in V' converges strongly to some u € V.
Definition 3.4. A complete normed vector space (V,||||y/) is called a Banach space.
Lemma 3.5 (Mazur’s Lemma). Let V' be Banach space and (u,) a sequence in V

converging weakly to w in V. Then for any n, there is N = N(n) € N and \; > 0,
k=mn,---,N with

N N
Z A =1,  such that v, = Z AU converges strongly to w in V.
k=n k=n

Proof. Refer to [9, p. 120]. O

Proposition 3.6. Let V be Banach space and A C'V a closed convex set. Then A
15 weakly closed.

Proof. Let (u;) be a sequence in A converging weakly to v € V. By Lemma
there exists a sequence of convex combinations {v,} of {u;} converging strongly to
u. By Proposition v, € A for all n. Since A is closed, it follows that u € A.
Thus A is weakly closed. O

Definition 3.7. A function F : V — R is said to be weakly lower semi-continuous
on V if for all u € V' and all sequences (u;) in V' converging weakly to u, we have
lim F(u;) > F(u).
1—00
The proof of the following Lemma is similar to that of Proposition [2.17]
Lemma 3.8. A function F : V — R is weakly lower semi-continuous if and only if
its epigraph epi F' is weakly closed.
Proposition 3.9. Let F : V — R be a convex and lower semi-continuous function.
Then F' is weakly lower semi-continuous.

Proof. By Propositions and function is convex and lower semi-continuous
if and only if its epigraph is closed and convex set. Since F' is convex and lower
semi-continuous, then by Proposition [3.6| epi F' is weakly closed. By Lemma |3.8| F’
is weakly lower semi-continuous. 0
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3.2. L? spaces. In this section we let {2 be a bounded domain in R™. We denote
the Lebesgue measure of a set A C R™ by m(A).

Definition 3.10. Let 1 < p < oo. The set LP(Q) consists of all measurable functions
f:Q — R such that |f|P is integrable, that is

/|f|p dx < oo.
Q

The set £2(€2) consists of all measurable functions f : Q@ — R such that
sup {tZO:m({xeA: |f(z)| > t}) >O} < 00.

Definition 3.11. Let 1 < p < oo and f,g € LP(Q2). Then
g~ f ifandonlyif g(x)= f(z) for almost every x € Q.
The equivalence class of an element f is denoted by
f]={g € L) : g~ f}.
Definition 3.12. Let 1 < p < co. We set
1/(9) = {If): f € L)},

Definition 3.13. Let 1 < p < oo and f : © — R be a measurable function. Denote

It = ([ 1 o)™

[[fllooc =sup {t >0:m({z € A:|f(z)| >t} >0)}.

Proposition 3.14 (Young’s inequality). Let p be a real number such that 1 < p <
o0o. Then for non-negative numbers a and b, we have
a? b
ab < — + —,
p q

and

where q = ]%.

Proof. 1f either a = 0 or b = 0, the inequality is trivial. We may therefore assume
that a,b > 0. We notice that the function f(¢) = logt is a concave function in
(0,00). Thus

p q

log (a_ + b—) > llogap + llogbq,

p q p q

from which it follows that
p

bq
log(ab) < log (% + =),
p q

that is,
PP
ab < — + —.
q
O
Definition 3.15. Let 1 < p, ¢ < oo such that
1 1
-+-=1
p q

We say that p and ¢ are conjugate exponents.
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Proposition 3.16 (Holder’s inequality). Let p and q be conjugate exponents such
that 1 < p,q < oo. Then

| tuol dz < el el
for allu e LP(Q) and v € L1(Q).
Proof. Suppose first that p = 1 and ¢ = co. Then

[ tuol do < el [ ful do = foll s
Q Q

Suppose 1 < p < oo and 1 < ¢ < oco. If ||ul|, = 0, then u(x) = 0 for almost every

z € £). In this case
/ |uv| de =0
Q

and the inequality is trivial. We may therefore assume that ||u||,, ||v||; > 0. Denote
for z € Q

L@l )
[l [lvllq
Then by Young’s inequality
p@le@)] _, _a bY@ | @)
[ullpllv]lg g pllulp gl

for every x € ). Integrating over {2, we obtain that

_ _ 1 _ 1 B
||u||p1\|v||q1/ o] d < —||ur|pp/ P da:+—||v||qq/ jo]? de
Q P Q q Q
1 1
_ — —'— —_ = 1,
P q

which gives us

/ o] d < [Jullyllo]l,.
Q
]

Proposition 3.17 (Minkowski’s inequality). Let 1 < p < oo be a real number and
u,v € LP(Q). Then
[+ v[lp < lullp + [[v]]p.

Proof. The case p = 1 follows from the triangle inequality. Let 1 < p < co. Then
|[u+vl[h = / |u + P de < 2”/ [ul? + [vf? da = 2P||ul[) + 27|[v| [} < oo,
Q Q

from which follows that u + v € LP(€2). We have for almost every = € Q
[u(z)+o(@) P = Ju(z)+o(@)]|u(z)+o(@) P < ue)|ul@)+o(@) P o (@) [u(z) o) P~
and hence by Holder’s inequality

sl < [ (bt 0P+ olla-+ o) de
Q

» (r—1)/p » (r—1)/p
< Hlullp (ot ol?) " el (ot o)

= [lullpllw+ol[;~" + [[ol]|lu + ][5~
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This proves the proposition. 0

Remark 3.1. For 1 < p < oo, we have ||u+vl|, = ||u||, + ||[v||, if and only if u = v
for some A € R.

Proposition 3.18. Let 1 < p < oo. Then LP(R2) is a Banach space.

Proof. We show that LP(2) is complete. Let (f;) be a Cauchy sequence in LP(£2).
We will show that there is f € LP(€2) such that

i = fllp =0 as j — oo
Since (f;) is a Cauchy sequence, there exists a subsequence (f;,) C (f;) such that

Hfjk+1 - fijp < 27}67
for every k € N. We define

me ~ fi(@)] and  g(x erj,m — fu(@)], lEN

For every [ € N the function g; is measurable and non-negative. Clearly, (g;) is an
increasing sequence and

g(z) = g(x) asl— oo for almost every x € .

By Minkowski’s inequality

! !
llgully < Z i = Fillp < ZQik <1,
k=1 k=1
for all [ € N. Using the monotone convergence theorem [4, p. 186], we have
/g( )P dx = Jim gi(z)?P < 1.
Q l=o0 Jq

Thus g € LP(Q). Therefore 0 < g(z) < oo for almost every x € €.
Since g(x) < oo for almost every = € Q, the series

S [Fi0) — £, )]

k=1
is absolutely convergent. Hence it is convergent for almost every x € 2. This means
that
-

sz(x) = fj1(x) + (f]k+1( ) - f]k( _> f]l + Z f]k+1 f]k( ))

1

|_|

b
Il

as [ — oo for almost every z € Q. Therefore (f;,) is a converging sequence for
almost every x € (2. Define

o) = { gfl () + > 72, (fij(a:) — fi (a:)), when the limit exists;

elsewhere.

Then f is measurable and f € LP().
Let € > 0. Since (f;) is Cauchy in LP(2) there exists N € N such that

Hfj — fillp <e, wheni,j > N.
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Let 7 > N. Finally, using Fatou’s Lemma [4, p. 243], we have

/ |f(z) = fi(x)]P do < llmlnf/ | [ (x) — fi(2)]P do < €P.
This implies that f; — f in LP(Q2) as j — oo. Thus LP(2) is complete. OJ

Remark 3.2. The following result can be obtained from the proof of Proposition
If f; = fin LP(2), 1 < p < oo, then there exists a subsequence (f;,) C (f;)
such that f;, (z) — f(x) for almost every z € Q.

The notation ' CC Q means that Q' C Q.

Definition 3.19. Let 1 < p < oo and u : £ — R be a measurable function. The
function w is said to be locally p-integrable if

we LP(Q) foral Q ccQ.
We write u € L{ ().

By a locally integrable function on  we refer to a function of class L{ (). The
convergence in L} (€) is understood as convergence in LP(€') for each ' CC €.

Remark 3.3. Let u € LP(Q2) and ' CC Q. From the monotonicity of the integral it
follows that

lu(z)P de < / lu(x)|P de < 0o, 1<p< 0.
o Q
Hence u € LT (Q).

Proposition 3.20. Let p and q be conjugate exponents such that 1 < p,q < oo. If
v e L), then

o(u) = / u(z)v(z) dx
Q
defines a bounded linear functional ¢ : LP(2) — R, and

lellzriy- = lollzo),
where LP(2)* is the dual space of LP(€2).

Proof. By Holder’s inequality, we have that

|o(u)] < /Q u(@)[|v(@)] de < lullr@l[0]] L)
which implies that ¢ is a bounded functional on LP(2) and

ol e < |v]|zage)

Next we prove the reverse inequality. We may assume that v £ 0. Let

q/p
u(e) = [sgn v(x)] (M) ,

[v]|Lace)

then u € LP(Q2) and

()] "
[l = /\sgn PRI RGN IRy
0 V][ za(e)
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Note that ¢/p = ¢ — 1 and that

o) = [ [sen v(o)] (M) 0(@) dv = — ol = Il zece

V]| La(e) HUHLQ(Q)

Then we arrive at

vllza@) = [e(u)| < ll@llzr@-lull, = ll@l]Lr@--
This proves the proposition. O
THEOREM 3.21. Let p and q be conjugate exponents such that 1 < p,q < o0.
Define a mapping J : L1(2) — LP(2)* as follows: for v € LI(Y), J(v) € LP(Q)* is
defined as

(J(v),u) = / u(z)v(z) de, Yu e LP(Q).
Q
Then J is an isometric isomorphism from L(§2) onto LP(S2)*.

Proof. Clearly, J is linear and by Proposition J is an isometric mapping from
L9(Q2) onto LP(Q2)*. Since J is isometric, it is necessarily injective. Therefore, in
order to show that J is isomorphism, we only need to show that J is surjective.
Let o7 denote the set of measurable subsets of . Suppose first that m(Q2) < oo
and let F': LP(2) — R be a bounded linear functional on LP(Q2). If A € 7, then

/|XA(x)|p dxg/ldxgm(9)<oo,
Q Q

which implies that x4 € LP(Q) for every A € 7. Therefore we may define a function
v:o/ — R by setting v(A) = F(xa). Let Ay, As, ... € & be disjoint sets such that

A:D&.
=1

Denoting
J
fx)=xalx) and fi(x) =) xalx), jEN,
i=1
we have that |f;| <1 for all j € N and

XA = XURL A= DX
i=1

Since f;(z) — f(x) for every x € Q, ||f;ll, = ||f|l, as 7 — oo by the dominated
convergence theorem. It then follows that

»—0 asj— oo.

J
(1()) HXA_ZXAi
i=1

From and the fact that F' is a bounded linear functional on LP(2), we have

oo

v(A) = Flxa) = F( 3o xa) = 2o Flxa) = > v(4),

i=1
which implies that v is a signed measure on o7. If m(A) =0, then v(A) = F(xa) =0
by the linearity of F. Thus v is absolutely continuous with respect to Lebesgue
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measure and by the Radon-Nikodym Theorem [4, p. 196] there exists a function
v € LY(Q) such that

v(A) = F(xa) = /Qv(:v)XA(a:) dr  for every A € &

First, let ¢ : @ — R be a simple function. There are constants cq,...,¢; and
measurable sets C', ..., C; such that

l
o(z) = Z cixe;(z)  forall x € Q.
i=1

Thus
!

=1

_ /Q v(as)izzl;ci)(ci(x) do = /Q o(2)(z) dz.

Second, let ¢ : 2 — [0,00) be a bounded measurable function. Then ¢ € LP(Q).
There are simple functions (¢;) such that

0<¢; <piy1 <¢ and lim ¢;(z) =¢(x) forevery z € Q.
71— 00

Since |¢; — P < |¢[P and |¢P € L'(Q), by the dominated convergence theorem

1/p
(/|¢—¢i|pdx) —0 asi— 0.
Q
For every ¢« € N it holds

|di(2)v(@)| < [9(2)v(@)| < |g]lc|v(@)] € LN(Q).
Thus by the dominated convergence theorem, and the continuity of F
(12) F(¢) = lim F(¢;) = lim / v(x)pi(z) de = / v(x)o(z) de.
11— 00 1—00 Q 9]

Third, let ¢ : Q@ — R be a bounded measurable function. Let ¢ : Q — [0, 00)
denote the positive part of ¢ and ¢~ : 2 — [0,00) the negative part of ¢. By
it follows that

P(0) = F(6" ~ ) = F(6") = F(o) = |

- / o(w) (6% (2) — ¢~ (2)) da = / v<z>¢<x> dx.

Next we will show that v € L(€2). Define functions b : Q — R, h = |[v|9 %y and
hj : 2 — R as follows

o(2)H () - / o(@)¢(z) d

Q

For every j > 0, h; is a bounded measurable function and hence

(13) | / o(w)hy(w) do| = |F(hy)] < [|Fllzsor

hj”p < Q.
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On the other hand, we have

and
qg—1

[ e
Qn{lhl<s}

/Qv(x)hj(x) dx
1/p a4 dgr) °
Illy = ([ s o) ;éNMﬁW“” )it da)

= (/ lv(x)]? dx)T, for every j > 0.
Qn{lhl<js}
Therefore, (13]) can be written as
1
([ @ de)” < |Fllowr, ¥i>0
Qn{lhl<js}

Since v € LY(Q), it follows that |v(z)| < oo for almost every z € Q. Thus [|v]|, <
HFHLP(Q)* and v € LQ(Q)
Define a functional F': LP(Q)) — R as follows

|
/N

F(u) = /Q v(@)u(z) d.

By Proposition m F e LP(Q)* and ||F||zo) = ||v]|ze(). In addition, we have
F(p) = F(p) for every ¢ € L>®(Q). Let u € LP(Q). For every j € N, define
u; : 0 = R by setting

g ifu(z) > j;
uj(r) = ¢ (@), if ju(z)] <j;
—j, ifu(x) < —j.
Then u; € L>(2) and u; — u in LP(§2) as j — oo. We have
Flu) = lim Fu;) = lim F(u;) = F(u),
since F' and F are continuous. Thus F(u) = F(u) for every u € LP(Q) and
F(u) = / v(x)u(x) dz, for every u € LP(Q).
Q
Suppose there are vy, vy € LI(€2) such that
F(u) = / vi(x)u(z) de and F(u) = / vo(z)u(x) dx, for every u € LP(Q).
Q Q
It follows that
/ (v1(z) — va(2))u(z) dv =0, for every u € LP(Q)
Q

and furthermore, v;(x) = wvy(x) for almost every x € Q. Thus the function v is
unique.

Suppose then that m(€2) = co. Let ¢ € N\ {0} and denote §2; = B(0,4) N Q. For
every i we have m();) < oo, 3 C Qs C -+ and

i=1
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Define functions F; : LP(€;) — R as Fj(u) = F(a), where
i(z) = { u(z), ifxeQ;

0, else.

Since v € LP(€);), it follows that @ € LP(€2) . Let u € LP(€;) such that ||u|zrq,) < 1.
Then

Fi(u) = F(a) < |[allp|[Fllr @) < [1Fl]r @)
Hence F; € LP(;)* and ||F;|| e, < ||F||r@)
Fix i € N\ {0}. There exists a unique v; € Lq(Qi) such that
Fi(u) = / vi(z)u(x) dx, for all u € LP(LY)
Q;
and ||F||zr)« = ||vil|Lea,). Let @ > j. By the uniqueness of v;, we have v;(z) =
vj(x) for all x € ; C ;. Thus there is v such that

v(z) = lim v;(x), for almost every x € (.
1— 00
By the monotone convergence theorem
[ @ do = lin [ fo@) dz = lim 1Bl < 1Pl
0

Hence v € L(Q) and ||v||g < ||F||wr()-- By the dominated convergence theorem
v, —vll, >0 as i — oo.

Let u € LP(Q2) and denote u; = uyq,. Again by the dominated convergence
theorem

llu; —ull, =0 as i— oc.

Finally

/Q fou()us () — v(z)u(z)]| dz
< / os(2)s(z) — vi(e)u()] + o )ulz) — v(z)ulz)| d

s/Q||vz-||q||uz-—u||p+||vz-—v||q||u\|p dz
-0 asi1—

and therefore

F(u) = lim F(u;) = lim Fj(w;) = lim [ v(z)u;(x) de = /Qv(x)u(x) dx.

1—00 1—00 1—00 0

The proof is complete. O

Remark 3.4. As a consequence of Theorem [3.21] a sequence (u;) in LP(Q2), 1 <p <
00, converges weakly to u € LP(Q) if

lim Quj(:c)v(a:) dx = /Qu(:c)v(af) dx for all v € LY(Q).

j—00
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3.3. Weak convergence in reflexive Banach space. Let V' be a normed space.
Define a mapping J : V' — V** as follows: for u € V| J(u) € V** is defined as

(J(u),u”) = (u,u*), for every u* € V*.

Space V' is said to be reflerive if the mapping J is an isometric isomorphism. The-
orem [3.21] states that LP((2), 1 < p < oo, is reflexive.

THEOREM 3.22. Let V be a reflexive Banach space and (u;) a bounded sequence
of V, that is, u; € V' for all j and there ezists a real number M > 0 such that

l|lujlly <M forall j € N.
Then there exists a subsequence (uj,) C (u;) that converges weakly in V.

Proof. We will only prove the theorem for the case V' = LP(Q2), where 1 < p < 0.
Let p € (1,00) and suppose (u;) is a bounded sequence of LP(Q2). We may assume
that

l|lujl|, <1 forall j € N.
Let U be the closure of the linear span of {u;,us,...}. Now, U is a closed linear

subspace of the reflexive space LP(2), from which follows that U is reflexive [7], p.
192]. The set

k
{u:u=3gqu, acQ keN}
i=1

is numerable and dense in U. Hence U is separable. From the reflexivity of U, it
follows that U = U** and thus U** is separable. Since U** is the dual of U*, we have
that U* is also separable [9, p. 126].

Let {®1, @2, ...} be a countable dense set in U*. Fix k € N. By the analytic form
of Hahn-Banach Theorem [9, p. 106] there exists 1, € LP(2)* such that

(u, pr) = (u, )  for every u € U.

Hence we may assume ¢ € LP(Q)* = L9(2), where ¢ is the conjugate exponent of
p. Define for every j, k € N

Lj(pr) = (uj, px) = /Quj(x)apk(x) dx.

By Hoélder’s inequality, we have
(14) L (en)l < lusllpllenlly < llenllg,  for every j,k € N.

From 1} we have that the sequence (Lj(gol)) is bounded in R. Hence there exists
a converging subsequence (L§-1)(<p1)) with a corresponding subsequence (ug-l)) C (uj).
Consequently, with we see that the sequence (Lgl)(g@)) is bounded in R and
therefore has a converging subsequence (L§2) (@2)) with a corresponding subsequence
(u§2)) C (u§1)). Continuing the process, we achieve for every m € N sequences (Lgm))
and (u§~m)), for which the limit
(m)

lim Lgm)(gok) = lim (u; ", ¢r)

j—00 Jj—00
exists for every k < m. Moreover, for diagonal sequences (ng )) and (ugj )), the limit

= lim (u$’), )
J—0

lim LY (¢p1)

j—o0 J
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exists for every element ¢, of the countable dense set {1, @2, ...}
Let ¢ € U* and € > 0. The set {®1,p2,...} is dense in U* and therefore there
exists a function ¢j, such that

e = ¢rllg < e
The sequence (Lg»j )(wk)) is a Cauchy sequence and hence there is an index J; such
that
L (pr) — LY (gi)| < whenever i,j > JL.

Now
L () — LV ()] < [LV () — L (1)
+ 1L (o) — L (o) + ILY (1) — LY ()]
< [le = @rllalle”ll, + & + [l = eillgl[u$ I,
< 3e, wheneveri,j5 > J..

It follows that the sequence (L§j )(90)) is a Cauchy sequence in R and hence the limit

(15) lim LY () = lim (u}”, )
Jj—o0 j—o0
exists for every o € U*.
Define for every j € N a function v; : U* — R by setting

i) = (U, )
and a function v : U* — R by

v(p) == lim v;(y).

j—o0

We claim that v € U**. Indeed, v; is a linear function for every j € N. Thus v is a
linear function. Since the limit exists for every ¢ € U*, we have

sup |vj(p)| < oo forall ¢ € U™,
J

By Banach-Steinhaus Theorem [7, p. 203]

sup |[v;]| < oo,
j
where || - || is the operator norm. This implies that v is bounded and the claim is
true.
Now, U is reflexive and hence there exists an element u € U such that

v(p) = p(u) for every p € U™.

It follows that
: () _ *
lim (u;”, p) = (u, )  for every ¢ € U™.

J—00

Define T : U — LP(QY), T'(u) = u. Let ¢ € LP(2)*. It follows that ¢ o T € U*. We
have

W9 ) = (W o T) — (u,4p 0 T) = (u, ¥)

U) <y in LP(§2) and the proof is done. O

as j — oo. Thus u;
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4. DUALITY IN CONVEX OPTIMIZATION

4.1. The primal problem and the dual problem. Let /' : V' — R be a function.
We consider the minimization problem

(2) inf F'(u).

ueV

This problem will be termed as the primal problem and we refer to it as &2. We
denote the infimum by inf & and any element u of V such that F'(u) = inf & will
be called a solution of &.

Definition 4.1. The problem &2 is said to be non-trivial if there exists ug € V' such
that F'(ug) < oo.

_ Suppose we are given a normed space Y with dual Y* and a function ® : V' xY —
R such that

O (u,0) = F(u).
For every p € Y
(Zp)  inf (u, p)

is said to be the perturbed problem of & with respect to the given perturbations.
Let ®* : V* x Y* — R be the conjugate function of ®. Then &* € I'(V* x Y*).
The problem

(27*)  sup {—2*(0,p")}

prey
is said to be the dual problem of &2 with respect to the given perturbations. The
supremum of Z7* is denoted by sup &* and any element p* of Y* such that —®*(0, p*) =
sup £ is termed a solution of &7*. The problem £7* is said to be non-trivial if there
exists p* € Y* such that —®*(0, p*) > —c0.

Definition 4.2. Let L : V — Y be a continuous linear operator. The function
L* :Y* — V* is said to be the transpose of L if

(v, L'y*) = (Lv,y*), for every v € V and y* € Y™.

Example 4.3. Let A : V — Y be a continuous linear mapping with transpose
A e L(Y*,V*). Let L:V — R be of the following form

L(u) = F(u) + G(Au),
where F': V — R and G : Y — R. Our primal problem & is of the form
11LI€1‘f/[F(u) + G(Au)].
We perturb our problem by defining the function ® in the following way:
O (u,p) = F(u) + G(Au — p).
For the conjugate function of ®, we have

O*(u*,p*) = sup [(u*, u) + (p*,p) — P(u,p)]

= supsup [(u*,u) + (p*,p) — F(u) — G(Au —p)].

ueV peY
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For a fixed u, we set ¢ = Au — p. Then
®*(0,p*) = supsup [(p*, Au—q) — F(u) — G(q)}

= supsup (A", u) — F(u) + (=" q) ~ Gla)]
=sup (47~ P o [(0'0) - )]
— 21615 [(A*p*, uy — F(u) + G*(—p*)}

where F* is the conjugate function of F' and G* is the conjugate function of G.
Finally, our dual problem of & with respect to given perturbations takes the form

sup [ — F*(A*p*) — G*(—p")].
preEY*

4.2. Relationship between the primal problem and its dual problem.

Proposition 4.4.
—o00 < sup Z* <inf & < o0.

Proof. Let p* € Y*. By definition
@*(0,p") = sup [(p,p*) — ®(u,p)]

ueV
peY

> (0,p") — @(u,0)
= —®(u,0)
for all uw € V. Therefore for all w € V' and p* € Y*
(0, p%) < B(u,0)
and in particular sup #* < inf Z. OJ
Remark 4.1. If &7 and &7* are non-trivial, then
—oo < sup Z* <inf ¥ < 0.

4.2.1. Primal Problem - Existence of Solution. In this section we let V' be a reflexive
Banach space, A C V a non-empty closed convex set and F' : A — R convex,
lower semi-continuous and proper function. Our primal problem is the minimization
problem

(16) (2) inf F'(u).

u€EA

Problem is identical with the problem
(77) inf F(u),

ueV

where
= | F(u) ifueA;
F(u)_{—i—oo ifu g A

THEOREM 4.5. The solutions of 1s a closed convex set contained in A and
possibly empty.
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Proof. We denote m = inf &. Apart from the trivial cases where m = 400 or
m = —o0, the set of solutions is the sublevel set

En={uecV:F(u)<m}

F is convex and lower semi-continuous. By Propositions and , we have that
E,, is convex and closed. ]

Definition 4.6. A function F': A — R is coercive over A if
lim F(u) =400 forue A.

lul| =00

THEOREM 4.7. Let V be a reflexive Banach space, A C 'V a non-empty closed
convex set and F': A — R a proper convex lower semi-continuous function.

(17) If the set A is bounded
or
(18) if F is coercive over A,

then the minimization problem has at least one solution. Moreover, the solution
18 unique if F is strictly convex in A.

Proof. Let (u;) be a minimizing sequence of problem , that is, u; € A for all
j € N and

]ll}rgo F(u;) = 52£F<U> = m.
Since F'is proper there exists uy € A such that F'(ug) < +o00. Therefore the problem
is non-trivial and m < +o0.

We claim that (u;) is a bounded sequence in V. Indeed, if A is bounded, there
exists a real number M > 0 such that ||u;||y < M for all j. Let F be coercive
over A and suppose that the sequence (u;) is unbounded. There is a subsequence
(uj,) C (u;) such that

[l |lv — 00, as jp — oo.
Since F is coercive
lim F(u;) = lim F(uj,) = +o0.

Jj—o0 Jr—00
This is a contradiction and therefore (u;) has to be bounded. This proves the claim.

V is a reflexive Banach space and (u;) is a bounded sequence in V. Hence by
Theorem there exists a subsequence (u;,) C (u;) in A, which converges weakly
to an element u € V. By Proposition A is weakly closed. Therefore u € A.

Since F' is convex lower semi-continuous on A, by Proposition [3.9 it is weakly
lower semi-continuous in A. We have
(19) F(u) < lm F(u;,)=m.

Jn—+00
This implies that u is a solution of . Moreover, F' is proper convex function and
therefore —oo < F'(u) < m.

Suppose F' is strictly convex in A. We prove that the solution is unique. If u; and
uy are two different solutions of the minimization problem , then by Theorem
ﬁ their convex combination %(ul + uz) is also a solution. It follows that
U + Ug 1 1

5 ) < §F(u1) +§F(u2) = m.

I

28



This is a contradiction. Thus the solution is unique. 0

4.3. Stability criterion. Consider the primal problem
() f F(u) = mf{®(u,0)}
and its dual problem with respect to given perturbations

(Z7) sup {=27(0,p7)}-

In addition, in the rest of the section we assume in general that

O eTy(V xY).
For p € Y set
(20) h(p) = inf &, = 11615 O (u, p).

Notice that h(0) = inf &2. We consider the conjugate function of h:
h*(p*) = sup[(p", p) — h(p)]

peY

= sup[(p", p) — inf ®(u, p)]
peY ueV

= 21615[<p*,p> + igg{—fb(u,p)}]

= sup sup[(p*, p) — ®(u,p)] = *(0,p").
peY ueV

Therefore

sup #* = sup {—®*(0,p")} = sup {—h"(p*)} = h™(0).

p*eY’* p*eY’*

Definition 4.8. Problem & is said to be stable if h(0) is finite and h is subdiffer-
entiable at 0.

The stability of problem Z7* is defined in the same manner, just replacing & by
Z* and h by h** in the definition. In general, a stable problem has the following
property: if we perturb our problem only a bit, then the solutions of the perturbed
problem should not differ too much from the original problem.

THEOREM 4.9. Let ® € I'o(V xY). If & is stable and has a solution, then &*
has at least one solution and

—o0 < inf & = sup " < oc.

Proof. Since 2 is stable, h(0) is finite and Oh(0) # (). By Proposition [2.28 we have
that A**(0) = h(0) € R, that is

—o0 < inf & = h(0) = h™(0) = sup £* < 0.

In addition, 9h**(0) = Oh(0) # 0. By Lemma below, &7* has at least one
solution. 0

Lemma 4.10. The set of solutions of P* is identical to Oh**(0).
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Proof. p* € Y* is a solution of &2* if and only if
—d*(0,p*) = sup {—P*(0,¢")}.

q*ey*

This can be written as

—h*(p*) = sup {—h"(¢")} = sup {(0,¢") — h*(¢")} = h™"(0).

qreEY* greEY*
By Proposition [2.29
h**(0) + h*(p*) =0 if and only if p* € OR™(0).
OJ

Lemma 4.11. Let ® be convex. Then the function h : Y — R defined as in (@)
1S conver.

Proof. Let p,q € Y and X € [0,1]. We need to show
h(Ap+ (1 = N)g) < Ah(p) + (1 = Nh(q),

whenever the right-hand side is defined. If h(p) = oo or h(q) = oo, the inequality is
obvious. We can therefore assume that h(p) < oo and h(q) < co. For every a > h(p)
and b > h(q) there exists u,v € V such that

It follows that
h(Ap+ (1= A)g) = mf S(w, Ap + (1 = A)g)
< P(Au+ (1 =XNv,Ap+ (1= XN)q)
< A(u,p) + (1 = N)P(v,q)
< Aa+ (1 —A)b.
The above inequality holds for all @ > h(p) and b > h(q). Hence we have
h(Ap + (1 = N)g) < Mr(p) + (1 = A)h(q).
This proves the Lemma. [

THEOREM 4.12 (A stability criterion). Let us assume that ® is convez, inf &
is finite and there exists ug € V' such that p — ®(ug, p) is finite and continuous at
0€Y. Then & is stable.

Proof. By assumption h(0) = inf & is finite. The function p — ®(ug, p) is convex
and continuous at 0 € Y. Therefore there exists a neighborhood U C Y of 0, on
which the function is bounded above, that is

O (up,p) <M < oo forall peU.
By Lemma h is convex. In addition, we have
h(p) = in‘f/q)(u,p) < P(ug,p) <M  forallpelU
ue

and hence by Lemma [2.19, h is continuous at 0. Proposition then implies that
h is subdifferentiable at 0. Thus &2 is stable. O
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4.4. Extremality relation.

THEOREM 4.13. If & and &* have solutions and

—o0 < inf & = sup #* < o0,
then all solutions u of & and p* of &* are linked by the extremality relation
(21) ®(u,0) + ®*(0,p*) = 0.

Conversely if u € V and p* € Y* satisfy the extremality relation , then u is a
solution of & and p* is a solution of &* and

—00 < inf & = sup £* < .
Proof. If u is a solution of & and p* is a solution of &* then by our assumption
®(u,0) = inf & =sup Z* = —0*(0,p").
Therefore
®(u,0) + ¢*(0,p") = 0.
Conversely, suppose that @ and p* satisfy . By Proposition
—®*(0,p") <sup Z* <inf ¥ < &(u,0), forallueV andp* e Y™
Since the pair (u,p*) satisfies (21)), we have
O(u,0) = 52‘5(13(% 0) = inf 2,
—®*(0,p") = sup {=®*(0,p")} = sup &~

and
—o0 < sup Z* =inf ¥ < 0.

Remark 4.2. The extremality relation can be written as
(I><ﬂ> 0) + (I)*(O’ﬁ*) = <ﬂ’ O> + <0>ﬁ*> = <(ﬂ, 0)7 (Oaﬁ*»
By Proposition this is the same as (0,p*) € 0®(u,0).
In summary, we have the following result.

THEOREM 4.14. Assume that V is a reflexive Banach space, ® € T'o(V x Y),
there exists ug € V such that p — ®(ug,p) is finite and continuous at 0 € Y and
that uw +— ®(u,0) is coercive over V. Under these conditions, & and &P* each have
at least one solution,

inf & = sup #*
and extremality relation 15 satisfied.

Proof. The existence of solution of & follows from Theorem [£.7, The stability
criterion implies that & is stable and therefore by Theorem |4.9 we have that Z7*
has at least one solution and

—00 < inf & = sup £* < .

The extremality relation follows from Theorem [4.13] 0
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5. SOBOLEV SPACES

Definition 5.1. Let 2 C R". We say that the boundary of €2, denoted by 0f2,
is €% if for each point uy € 9N there exists r > 0 and a function v : R*! — R,
v € C*(R™ 1) such that

QN B(ug,r) = {u € Blug,r) : up > y(ug,ug, -+ ,Up_1)}
Definition 5.2. We say that a domain  is of class €*, if its boundary 9 is €*.

In this section, we let Q C R™ be a bounded smooth domain, that is, Q is €* for
some k > 1.

5.1. Regularization. Let p be a non-negative smooth function on R™ vanishing
outside the unit ball and satisfying

/np(x) do = 1.

The function p is called a mollifier.

Definition 5.3. Let u € L .(Q) and h > 0. The regularization of u is the convolu-

tion
wne) =7 [ () ulo) d,

provided h < dist(z, 092).

Lemma 5.4. Let Q' CC Q and h < dist(Q,09Q). If u € L, (), then u, € C>().

Proof. Fix i € {1,...,n} and denote

Let u € Ll (Q) and x € Q. By the Fundamental Theorem of Calculus and Fubini’s
Theorem, we have

Dyt () = lim & up(x + k:ei) — up(x)

k—0+
= klgél+ k/ ph (v —y + ke;) — pu(x —y)] dy
~ lim -~ Dipn(z —

ki}%{rk / ion(T —y +te;) dt dy

= i on(x —y +te;) dy dt
Jim - // Dipn(x — y +te;) dy

=1
kgél+k/

Now if 0 <t < % dist(x,0€), then x + te; € ' and
B(x,h) U B(z + te;, h) C {x: dist(z, Q) < h} = Q".
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Therefore, with a small enough £
9(6) = 900)| < [ )| IDipn(s — y +-te5) = Dipn(a = )| dy
Q

= [ |u)||Dipn(x —y +te;) — Dipn(x —y)| dy
Q//

< [l {ID:Dion) Y1l d
S M|t|||U||L1(Q//)7

from which follows that
1 [F 1 [F
& [ oty de=go)| <5 [ o) - gt0) at
0 0
k

1
< MEHUHLl(Q”)/ it| dt — 0, ask—0".
0

In conclusion

Djup(z) = ¢(0) = // u(y)Dipn(x —y) dy = (u * Dipy)(z) forallie {1,..,n}.

Lemma 5.5. If u € C(Q), then up, — u uniformly on any domain Q' CC €.
Proof. We have

un(z) = b /| )
= Lg p(z)u(x — zh) dz.

Now if ' CC Q and h < 1dist(€, 99)

u(z) — un(2)] = |u(z) — /| Pyl = k) dz

/|z|g1 p(z)u(z) dz —/ p(2)u(z — zh) dz

|2[<1

IN

/| _ PEu) e =) 4=

< sup |u(z) — u(z — zh)|.
|2]<1

Since w is continuous over (2, it is uniformly continuous over any compact subset of
Q. In particular u is uniformly continuous over the set

Q"= {z e R" : dist(x, Q") < h}.
Fix € > 0, there exists a positive real number §, depending only on &, such that
sup |u(x) —u(x — zh)| <e forall z € Q" when h < ¢

|2|<1
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and hence

sup |u — up| < sup sup |u(x) —u(z — zh)| - 0 as h — 0.
o O Jzl<1

Definition 5.6. Let v : £2 — R be a function. Denote

spt(u) = {x € Q: u(z) # 0}.
We say that spt(u) is the support of wu.
Definition 5.7. We denote
Co(2) ={u € C(Q) : spt(u) C 2 and spt(u) is compact}
and
Coo () = C=(Q) N Co(Q).

Lemma 5.8. Let u € LP(Q)), 1 < p < oo, and € > 0. Then there exists a function
v e Co(R™) such that

[lu —vl], < e.

Proof. Let u € LP(Q2). We extend u to be a function of LP(R™) by setting u(x) =0
for every z € R™ \ Q. Let € > 0. Since simple functions are dense in LP(R™), there
exists a simple function w : R™ — R, constants ¢; € R\ {0} and sets C;, i € {1,...,1},
such that

!
lu—w||, <e and w(z)= Zcix(;i(x) for every z € R".
i=1

Since 2 is bounded, it follows that C; are bounded for every i € {1,...,1}. Therefore
for every ¢ there exists a compact set K; C C; such that

m(C;\ K;) < (ﬁ)p

Moreover, for every K; there exists a function p; € Co(R™), 0 < ¢; < 1, such that

€
L — Y, < —.
HXKz % Hp |Cl|2l
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Now

l l
HU—ZQ% p§||u—w||p+Hw—Zci<pi ,
— :

1= 1=

l
< €+Z\Cz‘\||><c¢ — illy

<e+ ) leil|lxe, = xxlly

o]

=1
l r 1/p
€

<e+ Ci Xo, () — xk, (z)]? do +—

;H_(Rn\ (2)  xx,(2)] ) ,CM]

; -
< || m(C\ )P+ —
_5+;|c|m( V)

l
3
i

where the second inequality follows from Minkowski’s inequality, Proposition
The function v := Zizl cipi is a continuous function defined on R™ and hence the
claim is true. 0

9
< i
et el a2l |cz|2l

=1

In the following theorem we don’t require the boundedness of (2.
Proposition 5.9. Let u € LY (), 1 < p < oco. Then uy, converges to u in LY (Q).

Proof. By Holder’s inequality, we have

up(x) = /||<1 p(2)u(z — zh) dz

- /| () (e ute ) a

Let € CC Q and h < § dist(€, 0Q). Then

. up(z)|" dx < /, </|<1p(z)|u(:c — zh)|P dz) dx
= /||<1 P(Z)( . |u(x — zh)|P dx) dz

< [ fu(@)l? dr,
Q//
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where " = {z € Q : dist(x, Q") < h}. This implies that
[un| oy < llullr@n.

Fix ¢ > 0. Now, by Lemma [5.8| there exists a function v € Cy(R™) such that

13
Ju —v|[Lrry < 3"

In addition, for a small enough A we have by Lemma [5.5
€

v = vp]| ey < 3

Therefore

[ — up||zry < |[u—vl|ze@y + |0 = vnllze@ry + |[vn — unl|Le @)

<& ¢
=3 + 3 + ||u — U||Lp(Q//)
2k e
=73 37 &,
for small enough h. Since this is true for all ' CC €, it follows that u; converges
to win L} _(§2). O

Remark 5.1. From the previous Proposition we also have the following result: if
u € LP(Q), then uy converges to u in LP().

5.2. Sobolev spaces. Let o be a multi-index, that is o = (aq, ..., o), a; € NU{0}.
We denote

lal = a1 +ag+ -+ ap.
For a function u : Q — R, define

Do olel
" o
We denote 9
Du(z) = axlu(m)
and

Vu(z) = (aixlu(x), ai@u(:c), e ,%u(az))

is the gradient of u at x.

Definition 5.10. Let u be a locally integrable function on €. Locally integrable
function v is called the o weak derivative of u if it satisfies

/ v dz = (—1)l° / uD%p dx for all p € C;°(Q).

Q Q

We write v = D%u.

Definition 5.11 (Sobolev space). Let p > 1, k be a non-negative integer and
WkP(Q) = {u € LP(Q) : D*u € LP(Q) for all |a| < k}.

The space W*?(Q) is called a Sobolev space and the formula

ey = [ullepo == Y 1Dl o)

| <k

defines a norm on W*»((Q).

36



Remark 5.2. Let
1/p
[l ) = (/ > Dl dx) :
2 |a|<k

Then |[ - [[yy1q 1s also a norm on WHkP(Q). Tt is easy to prove out that || - ||yr.r(q)

and || - ||§,Vk,p(9) are equivalent.

Proposition 5.12. Let 1 < p < oo and k be a non-negative integer. Then WFP(Q)
1s a Banach space.

Proof. We show that W*?(Q) is complete. Let € > 0 and (u;) be a Cauchy sequence
in WHP(Q). Fix a multi-index « such that |a| < k. Since (u;) is a Cauchy sequence
there exists an index J € N such that

|[1; — willwre) <€  whenever i,j > J.

We have
uj — willp < |Juj — willwro@) < e
and
[ D%uj — D[, < [|uj — wil[wery <

whenever 4, j > J. This means that (u;) and (D*u;) are Cauchy sequences in LP(Q).
Since LP(€2) is complete there exists functions u € LP(Q2) and u® € LP(Q2) such that

llu; —ull[, =0 and ||D%; —u®|[, =0 asj— oo.

Next we show that u € WHP(Q). Let p € C5°(Q2). Since u; € WHP(Q) for every
J, we have

/ujDo‘gp dr = (—1) / D%ujp du.
Q Q

By Holder’s inequality we obtain

=D de < [ ju; = ull D) do < luy =l 1Dl
and
/ﬂ (Du; — u)p di < / D%y — u®lg] de < |1D%u; — [l

where ¢ is the conjugate exponent of p. Hence

/ uD% dx = lim [ u;D%p dx = lim (—1) / Do dx = (—1)! / u“p dx,
Q Q Q

i— Jo j—roo
from which follows that D%u = u® and v € W*P(Q). Finally
|luj — ullwre@) =0 asj— oo
and the proof is complete. 0

Proposition 5.13. Let u € L}, (), a a multi-index and suppose that D*u exists.

loc

Then if h < dist(x,08), we have
D%uyp(z) = (Dau)h(m).
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Proof.

Dup(x) = h™" /Q Di‘p(m - y)U(y) dy
= (_1)@|h_”/QD;‘p<x ; y)u(y) dy
= "/Qp<x—;y>Dau(y) dy = (D°u), (x).

O

Definition 5.14. Let Q@ C R"™ and % be an open cover of 2. We say that a
countable collection of functions

pj € Cg°(R")
is a partition of unity subordinate to the covering % if

(1) for every compact set K C €2 the intersection spt(y;) N K is non-empty for
only a finite number of ¢;;

(2) 0 <¢; <1in Q for every j;

(3) for every ¢; there exists an open U € % such that spt(yp;) C U;

(4) >, i) =1 for every x € €.

Proposition 5.15. Let 1 < p < oo. Then C*(2) N WkP(Q) is dense in WFP(Q).
Proof. Let u € W*P(Q) and € > 0. Define for i = 1,2, ...

Up={xeQ:d(x,00)> %}

We notice that U; is bounded for every i ¢ N, Uy CcC Uy CC -+ CC €2 and

i=1

We set
Gi=Un\Ui1, U=0, teN
Now the collection {G;} is an open cover of 2 and hence there exists a partition of
unity .# subordinate to the covering {G;} [10, p. 53]. We denote
Fi={p € F: spt(p) C G spt(p) NU; # 0}.
Since U; CC € and % is a partition of unity, we have #.%; < oo. Moreover, the

sum
;1= Z v, €N,
pEF;

is finite. This implies that ¢; € C5°(Q), spt(p;) C G; and Y oo, @i(x) = 1 for every
x € .

Now spt(up;) C Uiy and up; € WEP(Q). If h < dist(U,q,05), we have by
Proposition

DI (ugy), = (D'*uy)),

and hence by Proposition [5.9

(upi)n — up;  and  DIl(ug;), — DIl(ug;) in LP(Q) as h — 0,
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that is,
|| (ups)n — upillwre@y —+ 0  as h —0.
Therefore, for every i € N, there exists h; < dist(£2;,9€;11) such that

€
[1(wi)n; = ugpillwro) < 55
Define
¥ = Z(UQOz)hl
i=1
It follows that ¢ € C*°(2) and finally,
o Ul
= Z [|wpi = (woidni|ypn
2 ¢
< - —
2y
=1
which completes the proof. O

Remark 5.3. Let 1 < p < oo and k € N. Define

H"P(Q) ={u € LP(Q) : there exists a sequence (¢;) in C*°(£2) such that
w; — uwin LP(Q?) and D%; — D% in LP(Q) for every a such that |a| < k}.

Then, by Proposition and the completeness of W*?(Q), it follows that H*?(Q2) =
WhP(Q).

Definition 5.16.
WP (Q) = {u € WFP(Q) : there exists a sequence (;) in C° N WHP(Q)

such that ¢; — u in W*P(Q)  as j — c0.}

The space (WgP(Q), || - ||rp) is a Banach space since it is a closed subspace of
(WE2(Q), [] - [[rpe)-

Proposition 5.17 (Poincaré inequality). Let 1 < p < oco. Then for all u € Wol’p(Q)
(22) ullp < Cl[Vullp,
where C' is a positive constant depending only on €2 and p.

Proof. Since Q is bounded, 2 C [-M, M]" for some M > 0. Let u € C§°(2) and
extend u to be zero outside 2. By the Fundamental Theorem of Calculus, we have

|—’/ Dyu(t, z') dt‘ / |Dyu(t, 2| dt,
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where 2’ = (z9, x3, ..., z,,). By Holder’s inequality, it follows that

u(z) P < (/_]::|D1u(t,x’)| dt)p < (/_Z1 dt)p_l(/_];mlu(t,:r’ﬂp dt)

M
— (2My / Dyu(t, )P dt.
M

Integrating over x; we obtain

M M M
/ |u(z)|P dxy < (2M)p_1/ / |Dyu(t, z")|P dt dy
-mJ-m

M
M

— (M / Dyu(t, )] dt.
M

Therefore

/Q'u(l‘)|p di:/]\;"'/zm(ﬂﬁﬂp day - - dz,

M M
< (QM)p/ / |Dyu(t, xg, ..., z,)|P dt deg - - - dx,
-M -M
— (2M)p/ |Dyu(x) P da
Q

< (2My / V(@) dz
Q
and hence
llull, < Cl|Vul|, for every u € C5°(£2).

Let then u € W, ?(Q). Now there exists a sequence (p;) in C5°(€2) such that p; — u
in W?(Q) as j — oo. Since

[[olly = llwllp| < v —wll,  for all v,w € L7(Q),

we have
leilly = lull, and  [[Vgjll, = [[Vull, asj— o0
and hence
lully = tim [lgly < € lim 93, = C [[Vul,

Remark 5.4. Let
ullwio@) = llullzr@ + [Vullr@).
Then||ul[y15(q) is equivalent to ||u[|w1sq). It follows from the previous proposition

that ||Vul|, and ||u||w1.r(q) are equivalent norms on Wy (Q).

Proposition 5.18. Let 1 < p < oo and k € N. Then W*?(Q) is reflexive.

Proof. Fix k and let
N=Nnk = ) 1

0<]al<k
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be the number of multi-indexes « satisfying 0 < |a| < k. For 1 < p < oo, denote
the product space
N
LP(Q)N = (LP(Q)> — [P(Q) % ... x LP(Q).

N

-~

N
The product norm of u = (uy, ..., uy) in LP()Y is given by
it lluilly, if 1 <p<oo;
U||p = = .
1 (N { max; <<y ||[til|oo, if p = 00.

From Theorem it follows that LP(€2) is reflexive when 1 < p < oo. Therefore
LP(Q)N is reflexive when 1 < p < oo. Since closed subspace of a reflexive space is
reflexive, it suffices to find an isomorphism between W*?(Q) and closed subspace of
LP(Q)N.

Denote by aq, as, ..., ay the multi-indexes satisfying 0 < |o;| < k. If 1 < p < o0,
the isomorphism is given by the mapping ® : W*P(Q) — LP(Q)V,

O(u) = (DYu, D*?u, ..., DN u).
This proves the claim. O

6. APPLICATIONS OF DUALITY

In this section we consider 2 C R™ to be a bounded smooth domain.

6.1. The non-linear Dirichlet problem. Let p and ¢ be conjugate exponents
such that 1 < p,q < oco. Given f € L4(Q2) we consider the following Dirichlet
problem

(23) { —diV(’Vu|p_2Vu) = f, in

u =0, on 0f).
Definition 6.1. We say that u € Wy(Q) is a weak solution of , if for any
p € C§°(R2), we have
[ vu@p V) Voo do = [ fa)ele) de
0 0

Lemma 6.2. Function u € Wy?(Q) is a weak solution to equation if and only
if it is a minimizer of the functional I : Wol’p(Q) —R

1
(24) Iw) = [ Vu@P do = [ fauto) do.

P Ja Q

that 1s
I(u)=inf I(v).

veEW, P ()

Proof. Suppose u € W,"*(Q) is a minimizer of I. Fix ¢ € C3°(Q) and define a
function A : R — R by setting

h(t) = I(u+ty).
Since v is a minimizer,

h(0) = I(u) < I(u+ty) =h(t) forallteR.
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This implies that A/(0) = 0. We have

(1) = [ [9(u(e) + @)V (u(o) +tp(a)) - Vo) da = [ flahpla) da

Therefore

0="hr'(0 /|Vu )P2Vu(z) - Vo(x da:—/f

which shows that u is a weak solution to equation (23)).
Suppose then that u is a weak solution to . Fix w € W,?(). By Young’s

inequality, we have

/Q|Vu(x)|p_2Vu(x) . V[u(a:) — w(x)] dx
—/ |Vu(x)|P de — /Q |Vu(z)[P?Vu(r) - Vw(x) do

- fewer- [

po L w()IP| dz
Vu(z)l” + 2V ()\] d

:p/ [rw P — V(s >\] dr.

Since u is a weak solution,

/ \Vu(z)P*Vu(z) - V[u(z) — w(z)] doe = / f(x)(u(z) —w(x)) dz.
Q Q

1
5/9[|w<>| V(e ]das—/f w(x)) dr <0,

We have

which is the same as

I(u) < I(w).
Thus « is a minimizer of 1. OJ
THEOREM 6.3. The problem

uGV%/?’i;(Q) 1)

has a unique solution.

Proof. By Prop081t10ns “ and |5

VVO1 P(Q) is a reflexive Banach space when

1 < p < oo. We will apply Theorem |ZL7| to prove the Theorem. We need to verify
that I is strictly convex, lower semi-continuous, coercive and proper over VVO1 P(Q).
First, we show that [ is strictly convex. Since u fQ fu dx is linear, it suffices

u / |Vul?
Q

to show that the mapping

is strictly convex. The function f(&) =

u— [ [Vul? is strictly convex.

|€]P defined on R™ is strictly convex. Thus
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Second, we claim that I is continuous. Fix v € W,?(Q) and let £ > 0. For every
v € WyP(Q) we have

- %)(/Q|Vu(x)‘p dx—/Q|Vv(x)|p d:c) +Lf(x)[v<x)—u(w)] dz

1
< [Ivully — 19l

11 (u) =

+ [[fllqllo = ullp.
There exists 0; > 0 such that

|zP — yP| < % for all z,y > 0 with |z — y| < d;.
Hence

(ol - 1ol

1 lallo = ully < == +I7| =,
E) q2||f||q

whenever

[Vull, = [[Voll,

<|IVu-Voll, <8 and [ju—vl, < =
2[| f1lq

Thus |1(u) — I(v)| < ¢ for all v € WyP(Q) such that

. g
lu = vllyarg) = llu—vllp + [[Vu = Vo[|, <6 := 2m1n{5hm}‘

This proves our claim. Since continuous functions are lower semi-continuous, [ is
lower semi-continuous.
Third, the coerciveness of I follows from the Poincaré inequality and Hoélder’s

inequality:
/ V() d — / F@)u(z) dz
Q Q

> el - ( i@ d:c)l/q( JAEC dx>1/p

Spllully = 1A llolfully = 00 as [[ul], = oco.

Finally, let v = 0. Then

/|Vu|pdx—/f ) dr =0 < o0,

from which follows that I is proper. Therefore, the strictly convex functional I :
I/VO1 P(Q)) — R satisfies all the assumptions of Theorem . We conclude by Theorem
[4.7 that I has a unique minimizer. This proves the Theorem. 0

We proceed by constructing a dual problem for our minimization problem

inf  I(u).
u€W, P (Q)

We do this as in Example [£.3] Set
V=W,?(Q), Y=ILPQ)" and A=V :W,"(Q) — LP(Q)".
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It then follows that
V= (WP(Q) = W), Y = (1)) = L)
and A* = — div: LY(Q)" — W H(Q).
Define F: V — R and G : Y — R by setting

ﬂwz—mwz—éﬂ@wwm
1 p
:]—)/Q|r(x)| dzx.

The primal problem takes the form
(25) (2) inf I(uw)= inf [F(u)+G(Au)].

u€WyP(Q) ueW, P (Q)

and

In order to construct the dual problem, we consider the conjugate function of F
and G. For the conjugate function of F', we have

F*(u') = sup{(u” ) = Fu)} = sup{(u”, )+ (£,0)}
= sup{(uu) + (f,u)}

ueV

= sup (u* + f,u)
ueV

:{0, if u* + f =0;

+ 00, otherwise.

For the conjugate function of G, we have

G*(r*) = sup{(r*,r) — G(r)} = sup{(r*,r) — —/ |r(x)|P dz}

reyY reY

:25{22/" . dx_-/p~ypm}
zﬁg{lk%@-ﬂﬂdz—%LJM@V@}.

By the Young’s inequality

[r@r@as [rer@es |

Thus
1
:-/h%@wm.
q.Ja

The dual problem of &7 is of the form

L) lr:cp x
5\7’ ()] +p|()|]d

(26) (7*) sup [—G*(—r*)] = sup ——/ |r*(2)|? dx |.
r;qu*(s_z}n rdELq

Lemma 6.4. G* is lower semi-continuous and strictly convex over LI(§2)™.
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Proof. The proof is analogous to the proof of strict convexity and lower semi-
continuity of the functional I in Theorem [6.3] We first claim that G* is continuous.
Indeed, fix r* € Y* and let ¢ > 0. For all s* € Y*

1/ 1/
- r*(x)|? doe — — s*(z)]? dx
qQ!()\ qQ\()I

1 * *
= [ llzacore ~ l*llzscor

G*(r") = G*(s7)| =

There exists 4 > 0 such that
|29 —y? < ge for all z,y > 0 with |x — y| <.
Hence

]' * *
I gy = N ageye

1
< —qe=¢
q

whenever
<" = 8%l < 0.

1 oy = 115" lzagaye

It follows that G* is continuous and in particular it is lower semi-continuous. Second,
we claim that G* is strictly convex. This follows from the fact that the function
& — |€]9 is strictly convex on R™. O

Lemma 6.5. & is stable.

Proof. Theorem states that &2 has a unique solution and from the proof of
Theorem we have that inf & is finite. By Theorem 2.21) F € To(V) and G €
Fo(Y). Thus ®(u,r) = F(u) + G(Au —r) € I'o(V x Y). In particular, ® is convex
over V' x Y. There exists ug € V such that F(up) < oo, G(Aug) < oo, G being
continuous at Aug. Hence Theorem [4.12] implies that &2 is stable. 0

THEOREM 6.6. Problem & in has P* in as its dual problem. &
possesses a unique solution u and Z* a unique solution ™. We have

max & = min &
and the following extremality relation
7i(z) = — |Va(2)|P2Da(z)  a.e. x € Q.

Proof. The existence of a unique solution to problem & was shown in Theorem
By Lemma [6.5 & is stable and by Theorem Z* has a solution and

—o0 < inf & = sup ¥* < 0.

Since G* is strictly convex, the solution of &2* is unique.
By Theorem [4.13] our unique solutions @ and 7* satisfy the extremality relation

(27) ®(u,0) + ¢*(0,7*) =0,
which can be written as
0= F(u) + G(Au) + F* (A7) + G*(—r7)
= [F(a) + F*(A*7") — (A*7", )] + [G(Aa) + G*(—T") — (=7, Aw)].
By the definition of conjugate function, we have
G(Au) + G*(—=7") — (—7", Au) > 0.
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Hence

(28) F(u) + F*(A*7") — (N7, u) =0
&S AN+ f=0 & divir=f

and

(29) G(Au) + G*(—7") + (7", Au) =0

& /]Vu )P dx+ — /! 1 dr = — /Qf*(a:)Vﬂ(x) dx

7™ (z)Vau(x ):—|Vu( )P+ q|7"( 2)|7T  for ae. x €Q

i

& — 7 (x) = \Vu(x)\p *Vi(z) forae x €.
[
6.2. The Stokes problem. Given f € L*(Q2)", we consider the following system

—Au+Vp=f inQ
(30) div u = 0, in Q;
u =0, on 051,

where u = (ug,...,u,) : @ = R" and p : Q@ — R. We use the notation HJ(Q2) =
W, 2(9) for

W = {v € Hy(Q)", divv=0}.
It follows that W is a Hilbert space with the norm

1/2
ul| g o n_</ Z \Du]’2da:>

1<i,5<n

and inner product

((u,v)) = Z (Djuj, Divj) = Z /Du] x)D;v;(z) de.

1<i,j<n 1<4,5<n

If v € W, then problem m has a variational formulation:

Z/Du] x)Dv,(x )da:—/dlvv da:—/f
1<4,5<n
& ((u,v) = (fv)
Lemma 6.7. Function uw € W is a weak solution of equation (@), that s,

(31) ((u,v)) = (f,v) foralveW

if and only if it is a minimizer of the functional

I) = gl = (120 = [ZZHD%HQ] | 5@

=1 j5=1
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Proof. The proof is similar to that of Lemma [6.2l Suppose u is a minimizer of I.
Let v € W and define a function h: R — R as follows

h(t) = I(u+ tv).
By assumption
h(0) = I(u) < I(u+tv) = h(t) forallteR.
This implies that A’'(0) = 0. We have
ZZ/DUJ ) +tDvj(x))Dvj(x /f
i=1 j=1
Therefore
B / Dyt () Dy / e 0.
=1 j=1

which is the same as .
Suppose then that u satisﬁes . Fix w € W. We have

(0w —w ZZ/ [ Diaty ()2 + | Dilutg () — wy ()P — [ Dy () ] v

Therefore

n n

;Zl/ | Diuj(z |Diwj(x)|2:| dr — ((u,u —w))
:_‘ZZ/’D u;(x) — w;(@))* dz < 0.

=1 j=1

Since u satisfies , we have

((u,u—w /f —w(z)) d.

Therefore

ZZ/ |Diuj(z)|” — |Diw;(x df—/f —w(z)) dz <0,

i=1 j=1

which implies that

Thus v is a minimizer of [. O

> V=H;(Q)", Y =L*Q) and A= div : H}(Q)" — L*(Q).
It follows that

V= (Hy(Q)") = HHQ)", Y*=L*Q) and A" =-V:L*(Q) — H Q)"
Define F: V — R and G : Y — R by setting

1
Fu) = 5 llulldnay — (.0
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and
/0 iftp=20
Glp) = { + oo otherwise.

Our primal problem has the form

() ulélva I(u)= inf [F(u)+ G(Au)].

ueHH ()
THEOREM 6.8. The primal problem & possesses a unique solution.

Proof. The proof is similar to that of Theorem [6.3] By Propositions and
W C HLQ)" is a reflexive Banach space. Therefore, in order to apply Theorem
to prove the Theorem, we need to verify that I is strictly convex, lower semi-
continuous, coercive and proper over W.

The strict convexity follows from the fact that the function x — 2 is strictly
convex over R. This can be shown with Proposition [2.13] Since [ is continuous in
W, it is lower semi-continuous. We have

2

(fsw) < fllz2@nllull 2@ = Z [ fill2]]w] ]2

j=1

and hence

() = 5[l e — (£, )

1 n
> §|IUII?n(Q)n = Ul
j=1

1 n
> 5l @ = CY fillallulli@p = 00 as [[ullm@n = oo,
j=1
for some positive constant C'. This implies that I is coercive. Finally, let u = 0 =
(0,...,0). Then u € W and I(u) = 0 < oo meaning that I is proper. O

For the conjugate function of F', we have
F1(A"p") = sup{(A'p",v) — F(v) — G(Av)}
veE
= sup {0 div o) + (£,0) ~ gl — GAD)}
veHL(Q)"

Lemma 6.9. v(p*) € H}(Q)" is a mazimizer of

", div v) + (£,0) = 3ol e
if it satisfies
(32) (v(p*),w)) = (f,w) + (p*, divw),  for allw € Hy(Q)™.
Proof. Denote
1) = (0 div ) + (,0) — gllel oy
Fix p* € L*() and let u € H}(Q)™ such that it satisfies (32). Then
(u,u —w)) = (f,u—w)+ (p*,div(u —w)) for all w € Hy(Q)".
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Now
n n

1
(u,u—w)) < (f,u—w)+ (p*,div(u — w)) + = Z /|DZ w;)|? dx.
2 i=1 j=1 "%
In the proof of Lemma [6.7], we showed that
1 n n
(1B = B = (u—w) = 5357 [ 1Dt = wp?
i=1 j=1
Therefore
1 . 1
5 [l = el Breyn ]| < (fru = w) + (0", div(u = w)),

which can be written as
gy 1 . 1
(0", div w) + (F,0) = Il By < 0 div w) + (F0) = 3l
Thus I(w) < I(u) for every w € H}(Q)"™ and u is a maximizer. O

By the Lemma , the supremum is attained at a point v(p*) € W such that
v(p*) satisfies (32). Hence

* kX %k * : 1
F*(A'p*) = sup {(p*,div o)+ (f,v) — §\|v\|?p<mn — G(Av)}
veEH(Q)"

= {0, 00))) - %Hv(p*)y@p(mn}

= 2 10"
For the conjugate function of G' we have
G*(p") = sup{(p",p) = G(p)} = (p*,0) =0 = 0.
peY
The dual problem of &7 is

* 1 *
() sw { = S B )
prel?(Q)

THEOREM 6.10. If &7* is proper, then the dual problem &* possesses a solution.
Proof. Let (pf,) in L*(Q2) be an maximizing sequence of &*, that is,

1
——||U(pm)||H1 n— sup P*  as m — oo.

By Theorem problem &2 possesses a unique solution % and inf & < co. Since
sup Z* < inf & <
and &* is proper, we have that sup 2* is finite. Moreover, the sequence (v(pjin)) is
bounded in Hj(Q)".
We claim that the sequence (Vp},) is bounded in H1(Q)". Indeed, let ¥ €
Hi ()", Since v(p},) is bounded and satisfies (32) for every m € N, we have

|/me

dz| = |(£,4) = (v(},), )]

< a1 [ @n + @) @ |9 r@)n < M
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with some M < oo. Thus for every m € N the mapping
v [ (@) o = (95,0)

is a bounded linear functional on Hj(Q2)". In particular, (Vp},) is bounded in
H='(2)" by Banach-Steinhaus Theorem [7, p. 203]. Hence the claim is true.

Since €2 is a bounded smooth domain, by [8, p. 14] there is a constant C' > 0 only
depending on ) such that

pm 2 e < ClIVpn -1,
where

Q)R = {pe Q) /Qp(x) dr =0},

There is subsequence (p}, ) C (p,) and p* € L*(Q2)/R such that
ph, = p°  in L*(Q)/R as m; — oo.
Since Hg ()" is reflexive, its dual space H'(Q)™ is also reflexive. Now by Theorem
there is a subsequence of (py, ), still denoted by itself, such that
Vps, = Vp*  in H Q)" as m; — oo.

Now, F'is convex lower semi-continuous and by Proposition |3.9|it is weakly lower
semi-continuous. Thus
—F(A*p*) > —liminf F(A*p;,) = limsup —F(A*p;,) = sup &7,
m—o0 m—00

which implies that p* is a solution of &7*. O
THEOREM 6.11. &7* is proper.
Proof. We show that there is an element p* € L?*(€2) such that

(@)@ < o0,

where v(p*) € W satisfies (32). Indeed, v(p*) is a weak solution of the Stokes
equation

—Av = f—Vp*, in ()

div v =0, in Q;

v=20 on 0f).
For every f € L*(Q)" there exists v € H}(Q) and p* € L*(Q) such that is
satisfied. For the proof we refer to [8, p. 31]. Thus &?* is proper. O

THEOREM 6.12. Problem (@) possesses a solution (u,p*), where @ is a solution
of the primal problem &2 and p* is a solution of the dual problem £?*. Moreover

inf & = sup &*.

Proof. From Theorems and we have the existence of the pair (@, p*). By

Lemma [£.10] the set of solutions of 7* is identical to Oh**(0). Thus h** is subdif-

ferentiable at 0. Since A**(0) is also finite, by definition the problem Z* is stable.
We claim that h is lower semi-continuous at 0. Indeed,

h(0) = F(a) < . érll(fmn{F(u) +G(Au—p)} =h(p) for every p € L*(Q).

0
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Hence
h(0) < lim iglfh(p),
p—

meaning h is lower semi-continuous at 0. Therefore, at the point 0 h coincides with
its largest minorant of class I'(L?(2)), which is A**. Tt follows that

inf & = h(0) = h**(0) = sup &*.
By Theorem [4.13| we have the following extremality relation
F(u)+ F*(Ap") = 0.

This can be written as
1, 1 .
éHUHfrﬁ(Q)n — (f,u) + §||"U(p )H%{l(g)n =0
& (@, w) = (f,a) + 5 ((v(p*),v(p"))) =0

1 1 1 .
& —o(f.)+ 5 (f0(F) + (7 div o) =0,
Since div v(p*) = 0, we have

(f,0(p") —u) = 0.

It follows that @ = v(p*) almost everywhere. Thus u satisfies and the pair
(a,p*) is the solution of (30). O

Remark 6.1. The solution of £2* is not unique. However, the solution is unique
except for additive constants.

6.3. Mossolov’s problem. Consider the minimization problem

(33) uegléf(m{g /Q V(@) dr+ 8 /Q V()| do — /Q F@)u(z) dx},

where o and /3 are positive constants and f € L*(Q) is given. We set
V=H)Q), Y=L)" and A=V :H;(Q)— L*(Q)",
from which follows that
V= (Hy(Q) =H ' Q), Y*=L*Q)" and A" = —div : L*(Q)" — H '(Q).

Define F': V - Rand G : Y — R as follows:

o)
Fu) = Sl = (frw),  lullie = [[Vull,

and
Gr) = 5 [ In(o)] de
The primal problem
(2) inf [F(u)+ G(Au)]

ueH ()
is identical with (33)).

THEOREM 6.13. The primal problem &2 possesses a unique solution.
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Proof. By Propositions and [5.18, HJ () is a reflexive Banach space. It is easy
to verify that the function

u— F(u) + G(Vu)
is strictly convex, lower semi-continuous, coercive and proper over H}(Q). The result
follows from the Theorem .7 O

For the conjugate function of F', we have
Fr)= sup {(u'u) - F(u)}

ueHL ()
« Q2
= sup_ {(utu) + (fw) = Sl }
ueHL ()
« «
(34) = swp {(u+ fu) = Sl |
u€Hy(Q)

Lemma 6.14. The mazimum of is attained at the point uw € H(Q), which
satisfies

(35) a(Vu, Vw) = (u*,w) + (f,w)  for every w € Hy(52).

Proof. The proof is analogous to the proof of Lemma[6.9] Thus we omit the details.
OJ

It follows that

* () K * (07
Frw) = swp {w + fu) = Sl }
ueHL(Q)

= (7 + fou) — 5 + )

L, (u"+ f,u)
=+ fu)—— 1~
2
1 (u* + f,u)? 1 )
= = [+ fll-a):
20 ||ullFn g 20 @)
since

||| g1 = sup .
ueHL(Q) [ul| (@)
For the conjugate function of G

G*(p*)= sup {(p".p)—G(p)}

peL(Q)"

= sw {p) =0 | b)) dr}

peELZ(Q)"

= sup | /Qp*(@p(x)—ﬁlp(ﬂf)ldf}

peEL2(Q)"

|0, if |p*(x)| < B for almost every z € ;
~ | +oo, otherwise.

The dual problem of & can be written as
() sup [ — F*(A*p*) — G*(—p*)}.

p*eLQ (Q)n
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And further as

p*€L2(Q)n
[p*(z)|<B a.e.

Lemma 6.15. &2 is stable.

1 .
(36) sup {— %Hf —divp ||%{1(Q)}'

Proof. Theorem [6.13] states that & has a unique solution and inf &2 is finite. The
functions F' and G are convex and lower semi-continuous over V' and Y respectively
and hence by Theorem [2.21] ®(u, p) = F(u) + G(Au—p) € To(V xY). In particular,
® is convex over V' x Y. There exists ug € V' such that F(ug) < oo, G(Aug) < o0,
G being continuous at Aug. Thus by Theorem [.12] &2 is stable. O

THEOREM 6.16. Problem & in has &* in @ as its dual problem. &

possesses a unique solution u, P* has at least one solution p* and
min & = max Z*.

We have the following extremality relations:

(37) a(Va, Vw) = (u*,w) + (f,w)  for every w € Hy ()
and
(38) BIVu(x)| = —p*(z) - Va(z)  for almost every x € .

Proof. The existence of a unique solution of & was shown in Theorem By
previous Lemma, & is stable and hence by Theorem [4.9] there exists a solution of
Z* and

min & = max &£*.
By Theorem the solutions satisfy the following extremality relations

(39) F(a) + F*(A"p*) = (Ap*, w)
and
(40) G(Au) + G*(—p*) = —(p", Au).

We can write

Frw) = swp {u+ fu) = Sl = Sl e,
weHL(Q)

where v(u*) satisfies . Denote v = v(—div p*). Relation (39)) yields
a L« D
5““”%{1(9) —(f,u) + §||U||%{1(Q) = (—div p*, 1)
a .«
< 5““”%{1(9) —a(Vv, Va) + EHUH?{HQ) =0
& a(Vu—Vov)? =0 for almost everywhere.

Since a > 0, we have Viu(x) = Vu(z) for almost every x € Q. Thus u satisfies (3)
with v* = —div p*. We have showed .
Equation can be written as

/95|VU(£E)| + p*(z) - Vau(x) de = 0.
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Since |p|* < f3, the integral is non-negative. Thus we have

BIVu(x)| = —p*(x) - Vu(x) for almost every z € €.
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