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Abstract

Pihlajamaki, Antti

Density-functional tight-binding modeling of electromechanics of phosphorene
Master’s thesis

Department of Physics, University of Jyvéskyléd, 2018, [63] pages.

Single-layer black phosphorus or phosphorene is a two-dimensional material made
from a puckered honeycomb structure. It is a semiconductor with a tunable band
gap and both its mechanical and electronic properties are highly asymmetric because
of the puckering. Recently there has been numerous computational studies and some
experimental works trying to bring deeper understanding about this relatively new
2D material. In this study we simulate phosphorene using computationally low-cost
density functional tight-binding (DFTB) method to see how stretching, shearing
and bending affect its electronic properties. The band structure analysis shows that
there is a relation between shearing and bending. This discovery is a confirmation
for the relation between earlier theoretical predictions concerning bending and the

computational results about shearing.
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Abstrakti

Pihlajamaki, Antti

Fosforeenin eletromekaaniset ominaisuudet mallinnettuna tiheysfunktionaaliteoriaan
perustuvalla tiukan sidoksen mallilla

Maisterin tutkielma

Fysiikan laitos, Jyvéskylan yliopisto, 2018, [63] sivua.

Musta fosfori koostuu kaksiulotteisista kerroksista samaan tapaan kuin grafiitti.
Siksipé yksittaistd mustan fosforin kerrosta kutsutaan fosforeeniksi. Fosforeeni on
taipuneiden kuusikulmioiden muodostama verkkorakenne. Se muistuttaa hieman gra-
feenin rakennetta. Fosforeeni on tutkimuskohteena verrattain uusi kaksiuloitteinen
materiaali, vaikka musta fosfori onkin tunnettu jo pitkédan yhtena fosforin allotrooppi-
na. Kyseessa on puolijohde, jonka vytaukkoa voidaan muokata. Esimerkiksi elastiset
deformaatiot ja kerrosten lukumééara vaikuttavat vyoaukon kokoon ja suoruuteen
k-avaruudessa. Kaikki fosforeenin ominaisuudet ovat erittdin asymmetrisid johtuen
rakenteen aaltoilevuudesta.

Téassé tutkielmassa simuloimme fosforeenia kédyttden tiheysfunktionaaliteoriaan
perustuvaa tiukan sidoksen mallia (DFTB). Kyseessa on laskennallisesti kevyt mene-
telmad, joka pohjautuu tunnetusti tarkkaan tiheysfunktionaaliteoriaan. Muodostimme
fosforeenille parametrisoinnin menetelméaamme varten. Tamén jalkeen tarkastelimme
venymaén, leikkausmyotymaén ja taivutuksen vaikutusta fosforeenin elektroniraken-
teeseen. Vyorakenteiden analysointi osoitti, etta taivutusten ja leikkausmyotymien
valilla on yhteys. Aiemmissa tutkimuksissa on esitetty, ettd taivutusten matemaatti-
seen esitykseen sisédltyy leikkausmyotymiin liittyvia termeja. Leikkausmyotymien
on taas laskennallisesti havaittu vaikuttavan degeneroituneisiin energiavoihin. Me

havaitsimme taivutusten aiheuttavan samanlaisia muutoksia kyseisissa energiavoissa.

Avainsanat: Fosforeeni, DF'TB, vyorakenne, taivutus, leikkausmyttyma
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1 Introduction

Phosphorus is an abundant element in nature. Minerals, animal tissues and plants
all contain phosphorus in some form [1, pp.486]. Elemental phosphorus has several
allotropic forms. White phosphorus has a tetrahedral atomic structure and red
phophorus has chains formed by tetrahedrons, to mention some forms. Black
phophorus, on the other hand, is 2D-material. The atoms are arranged to puckered
layers with a honeycomb structure, as seen in the figure The armchair (ac)
direction is along y axis and the zigzag (zz) direction is along x axis.

Black phosphorus was fabricated first time in 1914 by P. W. Bridgman as a
byproduct of an experiment [2] but the real interest towards it has awaken quite
recently. Black phosphorus is a layered material like graphite. A single layer of
black phosphorus is often called phosphorene in a similar fashion as a single layer of
graphite is called graphene. The lattice is orthorhombic and the unit cell contains
four atoms. Although phosphorene might seem to have similarities with graphene,
they are significantly different. Unlike flat graphene, puckering makes phosphorene
and its properties highly anisotropic.

Graphene doesn’t have a band gap [3, 4] and this limits its possible applications.
Phosphorene on the other hand is a semiconductor with a direct band gap. Tran
et al. point out that the band gap is slightly indirect, but the difference is so small
that it can be considered to be direct and located in I' point [5]. In addition to
this the band gap is also tunable. There are several parameters that can tune it.
Tran et al. have studied computationally using ab initio methods how the amount
of layers affect to the band gap [5]. They reported that, depending on the method
the band gap can vary from 0.3 eV of the bulk to about 2.0 eV of the single layer
phosphorene. Experimentally it has been determined that the band gap of the single
layer phosphorene is 1.45 eV [6].

Not just the number of layers affect to electronic properties of the phosphorene
but also stretching, bending, shear and strain. Furthermore, all these deformations
are dependent on the direction because of the anisotropic structure. Usually these

properties are studied in ac- and zz-direction but the intermediate directions also
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Figure 1. The phosphorene sheet is constructed by puckered hexagons. The

red box shows the unit cell which contains four atoms. On the lower right there
is shown different bond lengths and angles. The armchair (ac) direction is along

y axis and the zigzag (zz) direction is along x axis.

provide interesting phenomena as seen in this study. There are numerous studies
about these deformations and their effects on the band structure of phosphorene.

They are referred to in section |3] while comparing corresponding values.

Black phosphorus is an interesting semiconductor, because its band gap can be
tuned. The size of the band gap determines the applications of the semiconducting
material. It is especially important for transistors, which are one of the possible
applications of black phosphorus. There have been several studies about black
phosphorus FETs. Li et al. report that the thickness of the black phosphorus
crystal (number of phosphorene layers) affect its conducting properties . Buscema
et al. have used thin layers of black phosphorus to create photoresponsive FETSs
. Xia, Wang and Jia studied extensively the properties of black phosphorus for
optoelectronics and electronics [9]. They realized that anisotropy is a significant

factor in this kind of applications.

In addition to the band gap, also other properties of black phosphorus seem to
be promising for its possible application. Andres Castellanos-Gomez points out well

that it “bridges the bap between graphene and transition metal dichalcogenides”
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[10]. He has collected figures presenting different properties important for electronics.
These are, for example, carrier mobility, current on/off ratio, and resistivity. In all
aspects black phosphorus is a compromise between these two types of materials.

Black phosphorus is a promising material but its few layer form has a property
that limits its possible applications. Even though black phosphorus is the most inert
phosphorus allotrope, its few-layer form reacts easily with air and moisture and forms
oxides [11]. P,O;, is the most important phosphorus oxide and it is hydrophilic |1
pp. 526-527]. Water causes the reaction

Oxygen defects and their effect on phosphorene has been studied by Ziletti et al.
[12]. In order to prevent these defects, phosphorene needs to be encapsulated to
prevent it from getting into a contact with air [13].

Here we studied phosphorene computationally. Phosphorene sheet was subjected
to different elastic deformations and the behavior of its electronic structure was
monitored. The computational method used in this study is density-functional
tight-binding (DFTB). It is not an ab initio method like its ‘‘big brother” full
density-functional theory (DFT) because it needs some pre-calculated or measured
information about the system. Information needs to be given in a suitable form so
that computational machinery can use it. This is why before the actual computations
we make so-called parametrization.

Parametrization contains several system-specific parameters about the electronic
properties and repulsive interactions within the system. During the parametrization
process many often-used numerical values are stored. This way there is no need
to compute everything from the scratch making computations significantly less
demanding. In order to be sure that our parameters describe the system well we need
reference material for comparison. We used Verma et al. results [14] as a key reference.
This is a natural choice because our methods are somewhat similar. We used revised
periodic boundary conditions (RPBC) method for DFTB to model periodicity [15]
and they used objective molecular dynamics (OMD) |16]. Difference in our results
can mostly be accounted for by the differences between our computational methods
and parametrizations. The detailed process of the parametrization is described in a
section Bl

Parametrization reduces the amount of needed computational capacity. This is a
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significant merit of DF'TB. Heavy ab initio methods yield accurate results, but they
need much resources. Without access to these resources it is not possible to execute
this kind of computations. In the contrary, the computations of this study were run
on a desktop computer and there was no need for large computational capacity.

In this study the computations contain three parts: in-plane stretching, in-plane
shearing and bending. Stretching gives the starting point to see how DFTB models
electronic band structures and are the results reliable. Shear deformations show
interesting splitting in band structures. This ensures that we can obtain same kind
of a behavior as in full DFT study about shearing by Sa et al. |[17]. The bending was
not done only in ac- and zz-directions but also in intermediate directions which shows
well the relation between bending and shearing. In this study phosphorene sheet
is only slightly bent resulting into large radii of curvature. The used computation
package was Hotbit |18], [19] which is a free DFTB calculator package for Atomic
Simulation Environment (ASE) [20].
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2 Theoretical background

As in all atomistic simulations, the starting point lies in quantum many-body problem.
This problem cannot be solved explicitly, because the number of interactions is just
too large. Fortunately there are several different ways to simplify it. For example,
one can use different flavors of perturbation theory, Green’s functions or density-
functional theory. Density-functional theory (DFT) is one of the most popular
methods among material physics and quantum chemistry.

DFT was first presented in 1964 by Hohenberg and Kohn [21]. It is an ab initio
method, which makes it accurate. On the other hand, it is still computationally
demanding although lighter than Hartree-Fock methods. It cannot be used for large
systems. In these cases one needs to make further approximations. One method
is to introduce tight-binding approximation to DFT. The theory is called density-
functional tight-binding (DFTB). Tight-binding is related to linear combinations of
atomic orbitals (LCAQO), which is presented in detail by Slater and Koster in 1954
[22].

In order to reduce needed computational effort, DFTB uses some preset infor-
mation about the system such as energy levels of the energetically highest orbitals
and repulsive behavior between the atoms. This information is included in the
parametrization, which determines the accuracy of the method. The parameters
emerge from the energetics when the total energy of the system is divided to dif-
ferent terms. It’s usual to use information about simple systems, calculated with
DFT, helping to fit the parameters. It is also possible to use experimental data in
parametrization. [18]

In this section the theoretical basis of the density-functional tight-binding is
presented. First the original density-functional theory is considered. It forms a basis
for DF'TB. Then Kohn-Sham approach to quantum many-body problem is introduced.
This helps to handle the energies and divide them to three parts: repulsive energy
term, Coulombic energy term and band structure term. The suitable representation
is introduced for every energy term. While considering the band structure term, the

actual tight-binding or LCAO is included. Finally the Mulliken population analysis
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is introduced. After showing the machinery of the DF'TB the focus is changed to
periodicity. There the revised periodic boundary conditions (RPBC) approach is
adopted.

2.1 Starting from density-functional theory

The starting point for derivation is the many-body Hamiltonian. It consists of
four parts: kinetic energy of the electrons, external potential, electron-electron
interaction and nuclei-nuclei interaction (sometimes called ion-ion interaction) [23].
Sometimes the latter part is considered as a constant for the system. This way
it would just change the ground state of the energy, but now this is not a case.
Positions of the nuclei determine the total energy of the system. Mathematically

this is £ = E(Ry,R,,...). Hamiltonian in atomic units is

A 1 1 1 1 1
HZ—*EV?%—EVWT? + Y et D=
25 i A7) 235 7 — 75l 24 |Ri — Rjl

In order to construct the DFT formalism two theorems presented by Hohenberg

(1)

and Kohn are needed [21]. The first theorem states that the ground state particle
density determines external potential uniquely. This means that there is a clear one-
to-one relation between the particle density and the potential where the particles exist,
which leads to determination of the hamiltonian. If the hamiltonian is determined
by the density, then wavefunctions are also determined by the density. In the end
this states that the system can be fully presented by particle density. |23, pp.122]

The second theorem states that there is a functional for the energy E[n(7)], which
is determined by the external potential. Furthermore for every potential there exists
a density minimizing the energy functional. This density is the ground state particle
density ng.

The proof for the first one is straghtforward. It is presented in the original paper
of Hohenberg and Kohn and it proceeds with reductio ad absurdum [21]. The system
has two different states ¥; and Wy, which are the ground states of the corresponding

hamiltonian

By = (U H|0) < (Uo|Hi| D). (2)

Only difference between H; and Hj is the external potential. Therefore one can

write
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(Uo|Hy o) = (Vo Ha| o) + (Wo|Hy — Hy|Ws) (3)

— B + / A7 [Vagr 1 (F) = Vit 2 (7)] 0 (F) (4)

from which follows

Bi < By + [ d7Veaea(F) = Vewsa(P)] no(7), (5)

The same procedure can be executed starting with (¥ |H,|¥,). This yields the

same equation with indices interchanged,

By < Bi + [ d7[Veaea() = Veasa (7] mo(7). (6)

If the ground state densities are identical, then the summation of these two equations
would give F; + Fy < Ey + E1. This contradiction shows that for the different
potentials there have to be an unique ground state density describing the system.
The second theorem shows that potentials correspond to ground state wavefunc-
tions. The proof for this one too is simple. The energy functional for the system

is

Eln] = Tln] + Beln] + [ diVeu(Pn() + Bun. (7)

In the equation the kinetic energy and the electron-electron interaction energy

are universal for all systems. They can be included into Hohenberg-Kohn functional

Fukl[n] = Tn] + Ee[n]. (8)

This is substituted into the equation and it yields

Eln] = Fuxln] + [ dVeu@n(7) + Bun. (9)

Two potentials are different if v; # vy + C', where C' is a constant. Two different
potentials should yield different wavefunctions, which differ more than just by a
phase factor. Let’s assume that there are two potentials that fulfill the previous

inequality but they still yield the same wavefunction and electron density. This also
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states that Hamiltonian operators are otherwise the same but the potential terms

are not. Then the difference between two state energies are

HU — HU = (V; — W)U = (B, — E,)¥ = CV . (10)

The difference between two energies is always some other constant energy value.
This creates a contradiction between our starting assumption, which means that
two different potentials cannot yield same wavefunction. This proves that there
is one-to-one relation between a potential and a wavefunction. Now it has been
proved that the potential defines wavefunction which can be presented with electron

density.

2.2 Moving towards density-functional tight-binding

After creating the basis, Kohn-Sham DFT needs to be considered. The essence
of the Kohn-Sham approach to quantum many-body problem is to assume that
the ground state of the interacting system is identical to suitable non-interacting
system. Then so-called exchange-correlation term is introduced to DFT. This term
is used to handle many-body interactions so that they are separated from the simpler
non-interacting terms. |23 pp.135-136]

The derivation of DFTB follows reference [18]. The energy of the system can be

written as [1§]

E =T + Eext + Eee+ Enn7 (11)

which corresponds the Hamiltonian operator introduced in the equation . Here
the equation contains many interaction terms. In order to simplify the situation
and hide the electron-electron interactions, exchange-correlation energy FE,. is used.
It is represented as E,. =T — T, + E.. — Ey [18], where Ey is so-called Hartree
energy and Ty is the kinetic energy of the electron in non-interacting system. This is
a Kohn-Sham expression for the energy functional [23] as described earlier. E,. is
substituted to equation and
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According to Koskinen and Mékinen this can be written explicitly as

B 1 L n(r)
= Y Jufwd <—2v2+vm+2/ n

v’ — 7| dﬁ) Vo) + Egeln] + By, (13)
r—-r

where f, is the occupation of the state [18]. This occupation follows Pauli’s exclusion
principle. Every state can have maximum of two electrons with opposite spins.
This means that f, belongs to an interval [0,2]. It has to be noted that we are
not considering spin explicitly but the Pauli exclusion principle has to be followed,
because electrons are fermions.

Next initial density ng(7) is considered. It is not an actual ground state density
but it contains the atomic densities of free atoms. As one can guess it won’t minimize
the energy, because it is an artificial starting point. Adding small fluctuation dng(7)
to this density the real ground state density is obtained. Then E[n] is expanded

using this density information and then [18§]

Zfa (Wy| — *V2 + Vewt + Vir[no] + Vae[no]|Wa)

(5 E:cc TLO] 1 ’
ty //dd < snon’ |r—ﬁ|>5n5n

-5 / A7V [10]) (F)no(7) + Exelnio] + Enn — / AV [no] (Fno (7). (14)

In equation the first line is called the band structure energy Egs. The second
line contains charge fluctuation, Coulomb interaction and exchange correlation terms.
It’s denoted by E.,. The third one is repulsive energy because of nuclei-nuclei

interaction and its notation is E,., [18]. Separately

1
EBS = Zfa<\11a| - §v2 + ‘/ea:t + VH[”O] + Vmc[nO”\I]a> 5 (15)

(5 Exc TL()] ]. ’
— = - 1
coul //d rdr ( Snon’ |r 7 |> onon ( 6)

and

Frop =~ [ 6Valnol (()no(s) + Buclno] + B — [ dVaclnal(Pno() . (17)
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The repulsive energy term is the place where everything difficult to calculate
is hidden. This term is not calculated explicitly in DFTB, but it is treated with
parametrization. Simple pair interactions can be calculated relatively easily using for
example full DFT or some other sophisticated method. The acquired information is
then used to fit repulsive potential to describe the system. During the parametrization
an approximate solution for the repulsive term is created and it is adjusted according
to the high-level calculations about the simple systems. It is also possible to use for
example experimental data about system in order to describe repulsion properly. [18]

The first energy term to regard is the charge fluctuation term FE.,,;. In its current
form it is not useful. It needs some modification. The process follows the reference

[18]. The energy of an atom can be expressed using Ag extra electrons as [24, pp.
88-91]

OE 1(PEY\ , ,

1
= Ey — xyAq + iUAq? (18)

Here x and U are electronegativity and Hubbard U. They are defined as

IE + EA
x~ R (19)
and
U~ IE — EA. (20)

IE is ionization energy and EA is electron affinity. These two values are known for
different elements. This helps greatly the modification of E,..;.

Now the volume integral is divided into fractions for every atom [ in a system.
This makes it possible to handle the double integral in the E,,;. The integral is now

denoted as

/df:/vzzlj/w. (21)

Using this division the amount of extra electrons in atoms can be approximated. It

is calculated by integrating over the small electron density fluctuation introduced in
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equation . Follows that

Agr = /V on(P) (22)

and the atomic contributions to dn(7) are presented as

Here every dn;(7) is normalized [18]. The number of extra electrons is directly Agy
because the derivation is done in atomic units. This means that e = 1. Otherwise
Agq; would be the charge caused by extra electrons and thus it would have to be
divided by e.

Koskinen and Mékinen show in their article [18] a handy method to solve the
Coulombic energy term FE,,,; in parts using the relations derived above. The relation
of dn(7) is used to describe E,,,; as a sum of atom pairs I.J. There are two cases:
I=Jand I # J. In the case of I = J

(52 zc TLQ 1
= L. 24
/VI K/I < 5n5n |7” — 7”/|> 577’[5”[ ( )

Now the equations and ([24]) are compared. There is a clear similarity to the third
term of the equation . So it is possible to use Hubbard U as an approximation
for the integral in E,,,; when I = J. [18]

The next case to consider is the situation when I # J. Following the reference
[18], this inequality makes the exchange-correlation contributions to vanish. The

integral changes to

/ /
1AQIAQJ/ / 5_7}167?. (25)
2 Vi JV;

=7
Now a suitable description for dn;(7) is still not known. There is no straightforward
solution for the integral, but with suitable assumptions it is solvable. Assuming

dny(7) to have a Gaussian profile it is possible continue [25]. This yields

i} 1 .
(Snl(r) = W@ r2/(2 1) (26)

where

FWHM,
o = ——.
T R
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FWHM stands for full width half maximum. The equality in the equation is
substituted into equation . Then

/ // (5n15nf, o eI‘f(O[JR]J)
v

= = R 28
BT R Y1 (Ris), (28)

where

Cr 41n2 (29)
N FWHME + FWHM?3

The behavior of the v(R;;) is presented in the figure 1 of reference [18]. It
behaves much like the 1/R;; when R > FW HM. The authors also point out that
when R — 0 then v — C'-2/4/m |18]. This suggests that if I = J,

8In2 1
Yir(Rir =0) = \/Tm (30)

and furthermore gives the approximate relation to FWHM

8n2 1 1.329
T U I - U I
Every element has their own Hubbard U, which now determines the whole charge

transfer part. In the end these parts are included to the equation , which becomes

FWHM; = . (31)

1
Eeou = 3 > v1s(Riy)AqrAgy, (32)
7

where

Ur, I=J

erf(CrsRr1y)
elCultis) £ ],

Vs (Riy) = { (33)
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2.3 LCAO approach is adopted

As mentioned in earlier sections while using tight-binding approximation, electrons
can be thought to belong to certain nuclei. This means that their wavefunctions
can be presented as a linear combination of the wavefunctions centered on a single

nucleus. Mathematically this is described with a minimal local basis

= Z CZ¢M (7). (34)

This is just a linear combination of atomic orbitals (LCAO).

The atomic populations are calculated as [18]

=TRY GG (35)

pv

The overlap integral has a crucial role. If none of the orbitals belong to atom I, it
becomes approximately zero. On the other hand if they both belong to same atom
the integral is 6, (Kronecker delta) because of the orthonormality. If only © belongs

to atom [, the integral becomes

1

/drgb )b (7 /dqb P)ou(T) = S (36)

where S, is an overlap integral of two orbitals. Using this the charge or the amount

of electrons in the atom I can be calculated as [18]

Zfazz (ca*ca + CC)SW, (37)

pel v
where c.c. means complex conjugate. This is called Mulliken population analysis. It
is discussed in the section 2.4 with more detail.

The energy equation had originally three parts, which needed new represen-
tations. First the repulsive energy was handled with a new repulsive potential,
which is determined during the parametrization process. The Coulombic energy
is essentially determined by Hubbard U. The band structure energy FEpg in equation
is now constructed using the LCAO in equation (34). Then it is written as

Eps = Zfaz ¢M|HO|¢V ZfaZC*CaHO (38)
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Interestingly the actual tight-binding approximation or LCAO is seen only in band
structure energies. In the end all the parts of the total energy in the equation ((14])

are expressed in a suitable manner for DF'TB. The new energy equation is

1
E = fod ccH,), + §Z’VJJ(RIJ)AQIAQJ + Y VE(R), (39)
a ny 1J 1<J
where
(Ripy={ " = (40)
Yro\irg) =
erf(CryR1 )
LI R ST 5

2.3.1 Two-center approximation

While using tight-binding or LCAO approximation, there are some difficulties. There
are difficult three-center integrals concerning overlapping orbitals which makes
calculation extremely difficult [22]. Fortunately there are suitable approximations
to make calculations much easier. One is to neglect three-center integrals and to
concentrate on two-center ones [22]. Computational methods make it possible to
calculate these relatively easily. Overlap integrals are calculated in simple cases and
tabulated during the parametrization process. This way computing becomes less
demanding and therefore calculations can be done with small technical resources.

Overlap integrals contain s, p and sometimes d orbitals. Every possible o-, 7-
and J-bonding case has to be tabulated. These are called Slater-Koster integrals
and there are in total ten of them: ddo, ddw, ddd, pdo, pdr, ppo, ppr, sdo, spo and
sso |18]. Now in the case of phosphorus s, p and d orbitals all are included. Even
though d orbitals are now unoccupied, they play a key role for many properties of
phosphorene.

Koskinen and Mékinen present a clear example about the integration of overlap
integrals using Slater-Koster transformations [18]. There are ten Slater-Koster
integrals and 81 transformations in total. In the original paper of Slater and Koster

they have presented transformations or matrix elements for different geometries [22].
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2.3.2 Adding confinement to form pseudoatoms

Real orbitals of the free atoms are too diffuse to be used as such in tight-binding
approximation [1§]. They need to be constrained to a certain volume with a
confinement potential V,,,s. This potential is simply added to the Hamiltonian for

every atom. The potential is spherically symmetric and it is presented generally as

V::onf(r) = ZU%T%- (41)
1=0

There are no odd terms included because of two requirements. The potential has
to be symmetric in all directions and smooth when r = 0. Koskinen and Mékinen
choose to use only vor? term [18]. This is reasonable because the first term is just
a constant and higher order terms usually have only small influence. With this

reasoning confinement potential is written as

Vensr) = (2 (12)

To
Here the parameter 7y was introduced. This type of a quadratic choice has also been
used by Porezag et al. for all types of atoms [26]. On the other hand the confinement
potential is not restricted to only quadratic terms but it can also have other shapes
[27].

2.4 Mulliken populations

The equation (37]), in which the charge of atom I is calculated, is the so-called
Mulliken population analysis. This method was first introduced by R. S. Mulliken in
1955 [28]. In this section this analysis method is considered more thoroughly than in
the previous sections. Istvan Mayer has presented this method well in his book in
reference [29] so this description mostly follows it, even if some proofs are omitted.

The electron density is a starting point for the derivation. The density operator

can be written as

N
p =Y 0F ~ 7). (43)

i=1
Here 6 is Dirac’s delta function, which means that one electron is highly localized

to a single point in the space. Summing all these density peaks together the total

electron density operator is acquired. The actual electron density is the expectation
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value of this operator. While calculating this, the wavefunction is divided to position

and spin parts as follows

o) = WO = Sy - )l (o)

= Llep (44)

The spin part (o) of the wavefunction is position-independent so they are not
affected by (7" — 7). They are supposed to be orthonormal. The sum essentially
needs only the position-dependent part of the wavefunction.

Now the electron density p is divided to different spin parts. Even though in
equation the spin parts disappear, they contribute to the density. It can be
thought that originally the wavefunction W contains orbitals a; and b;, which have

opposite spin contributions. This can be written as

V=3 [ai(for) + bi(fo)] = 3 [ai(@y(or) + bi(P)y(o-)],  (45)

where o, and o_ represent opposite spins. Orthonormality is of course preserved.
Using this idea Mayer continues to divide p(#) in two parts with opposite spins [29,
pp.228]. This yields

Na

ma=ZWW+§MW? (46)

j=1
Next the LCAO is used, which means that a;(7) and b;(7) are replaced with same
type of an expansion as in equation (34 . When this is done,

Nag M . ny m ) m )
= 2> a (" Z%m*+ZZWﬁ®Z%mﬂ (47)
j=1lv=1 j=1lv=1 u=1

This is not a clear way to write the equation . In order to tidy it up Mayer [29,

pp-229] uses the elements of so called P-matrices. He defines them as

ny
b= ZaiaiT. (48)
i=1

In this case bold font means that the variable is a matrix. Using these matrix

elements, equation becomes
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m

p() = > (B + Pu)xo (M) (7)

H,r=1

= 3 D, (49)

Hv=1

where D, is the element of the “‘spinless density matrix” [29, pp.229]:

D = P* + P (50)

Using the matrix it is possible to calculate the total number of electrons N.
This is done by multiplying it with the overlap matrix S and then tracing it |29}
pp-230]. Matrix S contains the same Slater-Koster integrals that were introduced in

two-center approximation. The number of electrons becomes

N = Tr(DS) = Z(DS)W = Z Duvsuv- (51)
B pop=1

It is usually interesting to know the population of the certain orbital type. In

that case “Mulliken’s gross orbital population’ g, is needed. Here p corresponds an
orbital and [29, pp.230]

G = DS)uu = Y DuwSup. (52)

v=1
If all orbitals u, that belong to a certain atom A, are summed, the gross atomic

population is

Qa = un = Z(DS)NM = ZiDWSW' (53)

HEA HEA pneAv=1
This is the total population of the atom A. In this study the gross orbital population
q, for the single atom was used. This was especially important while bending the
phosphorene sheet, because this kind of an analysis makes it possible to observe how

the populations change in inner and outer parts of the sheet.
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2.5 Revised Periodic Boundary Conditions (RPBC)

In this study the periodicity has a central role. In general many structures that are
studied in solid state physics are periodic. This way computations are much easier,
because it is enough to simulate a single unit cell with suitable boundary conditions.
As described in the introduction, the unit cell of the phosphorene contains four atoms
and it is periodic in in-plane directions. The method to handle periodicity of the
structure was RPBC |15]. This approach is used by Hotbit calculator. Basically the
theory is a new form of Bloch’s theorem. It represents symmetries as operators.

Usually Bloch’s theorem is written as [30, pp. 163-164]

Ui =T) = e F (). (54)

This means that in an initial unit cell lies a point 7 and a translation T is added
to it. Translation moves the point in the periodic direction. This causes the
original wavefunction to be multiplied with additional phase factor. In the end the
wavefunction is the same as in position 7 but its phase is changing due the periodicity
From now on the derivation follows the references |15] and [31]. Next Kit et

al. introduce another way to represent this transformation [15]. Translation can
be denoted with operator 77 = 7 + T, and corresponding inverse transformation
77 = P4+ 1., = 7 — T,. Then they use action D(7") to describe the Bloch’s

theorem as [15]

D(r") 5 (F) = Yo (r7"7) = e 1 (7). (55)

In order to proceed into actual revised Bloch’s theorem authors point out that

the electrons within a potential should be invariant in a general symmetry operation

7 = S"7. In other words the potential is symmetric (invariant in symmetry operation)
as [15] 31]

D(SMV(7) = V(S™"F) = V(7). (56)

The revised Bloch’s theorem works with any symmetries not just with translations.
Next they use a set of commuting symmetry operations S by notation S =

STrS5? ... . If symmetry operation is used for wavefunction, one gets

D(S™an(F) = Van(STTF) = €7, (7). (57)
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They generalized k by using [15,131]. The vector 7 is just a collection of integers
that tell the number of corresponding symmetry operations S;"*. Symmetry operations
D(S™) commute with each other and with Hamiltonian [15]. Because of the symmetry,
if the operation is done several times, at some point it returns to its original state.

This is represented as

D(SMy = D(sMigMz ) =1 (58)

and as before with @ now M = (M{Mj}...). On the other hand now M; =0 or M;.
Here M; is the number, which leads the operations back to the original system.

Following the original derivation next the unitarity of the symmetry operation is

needed. In the reference [32, pp. 16-17] Rose points out that unitary operator can

be represented uniquely using exponent of the Hermitian operator. This yields

D(S™) = e~ (59)

which is essentially a constant. These leads to consider an eigenvalue problem

D(ST)[) = e *T|g) = Cilt)). (60)
Here Cj is a constant. It is convenient to operate equation from the left with

(K|, which leads to k-representation

(K| D(ST)W) = (kle™ ™ |g) = e ™ Tp(r) = Catp(). (61)
Next the eigenvalue equation is operated from left with (7|. The aim is to

form position representation of ¢ same way as its k representation was formed. In

that case

(TID(ST|w) = (S~ Tlw) = e~ (F|v) (62)

and then in position presentation

D(ST)p(F) = $(S™F) = ™" (7). (63)
Next step in the original derivation [15] is to use the cyclic conditions from equation
(58). This leads to restrict the values of x which is seen as

eiliij —1= €i27rmj (64)
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and then

my1 Mo
=21 —, —, ...
p W<M1,M2, ) (65)

where m; = 0,1,2,... M;_;. In the end & is a good quantum number and revised
Bloch’s theorem is proved [15]. This representation of Bloch’s theorem makes it
possible to handle easily several different symmetries such as planes, tubes and
spheres just by using suitable operators. These geometries are implemented into the

Hotbit and all of them can be found in references |15] and [19].
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3 Parametrization for DFTB and the basic prop-

erties of phosphorene

The parametrization process has two main parameter types to determine. The first
type is electronic parameters and the second type is repulsive energy parameters
[33]. Some of these parameters are acquired directly from the computations. On the
other hand repulsive energy parameters are adjusted mostly by hand. Theory behind
the parameters is described in the theory part. Here the parameter determination
process and actual parameters are presented. The parameters are listed in table [I]

The first electronic parameters are acquired directly in the beginning of the
process. They are calculated by Hotbit according to its pre-set information about
different atoms. They are the energies of the highest occupied orbitals (3s and 3p),
Hubbard U and full width half maximum (FWHM) of the Gaussian profile of the
Coulombic interaction term. After these we added the energy of the 3d orbitals
which are unoccupied. This value was adjusted several times. Most importantly it
affects to the size of the band gap.

After determining the parameters to represent individual atoms, the task was
to define the orbital overlap into the Slater-Koster tables. Here the parameter r
was set. As explained in the theory part ry is used to create spacially restricted
pseudoatoms and it is usually kept about twice the size of the covalent bond length
(Teow) |18, 26]. Length of the covalent bond is acquired directly from the calculations
so only the multiplier is needed.

The third step is to find suitable repulsive potential between the atoms. First
some simple structures with constant bond length were scaled using full DF'T and the
repulsive forces were measured. This produced several data points where force was
presented as a function of bond length. The structures were dimer, white phosphorus
(tetrahedron), red phosphorus (chain of tetrahedrons), and black phosphorus. Next
task was a curve fitting to these data points. Giving them suitable weights the
position and the form of the curve was adjusted. The smoothness of the curve was

controlled with parameter s. The distance where the repulsion became zero was
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determined by r.,; parameter. The repulsive force curve was used to integrate the
repulsive energy curve. These are presented in the figure [2

In the figure [2| dimer has two different values to weight. The literature value for
the bond length was set to 1.895 A and the repulsion was calculated by Hotbit. The
result was weighted with wgime,. Another parameter for dimer was Waimer curve- 1t
weights the repulsion data points formed by stretching the bond. The repulsion in
stretching was calculated with DFT.

Finding the parameters was done by repeating the same steps several times. First
electronic parameters were set and then repulsive potential was formed. After this
the unit cell was optimized and some basic properties were calculated. They were
compared to the literature values. The properties were the dimensions of the unit
cell, bond lengths, Young’s moduli, shear moduli, Poisson ratios, bending moduli,
band gap and the overall band structure. After the comparison parameters were

adjusted and the process was repeated.

Table 1. Only ess, €3,, U and FWHM were acquired directly from the compu-
tations. Here s determines the smoothness of the repulsion curve. Weights of

different data points are w;. Bohr radius is 7gop,

Parameters Values
€35 —0.512163 eV
€3p —0.206132 eV
€34 0.262 eV
U 0.293863 Ha

FWHM 4.52019 7 gons
To 1.873 - Teon

Teut 2.58 A

S 5.9
Wimer 0.6
Wimer_curve 1.6
Ww p 0.7
WRpP 0.6
wWep 1.6
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Figure 2. Right side presents the repulsive forces. The datapoints are acquired
from scaling of the corresponding structures with constant bond lengths using
DFT. On the left there is a repulsive energy curve which is integrated from the

repulsive force curve.

Gaus et al. have also formed a DFTB parametrization for phosphorus [33].
Our electronic parameters are in agreement. It has to be noted that ez, differs
significantly, but this is not a concern. Gaus et al. have done parametrization for
phosphorus in general case, but ours is designed especially for phosphorene. Also our
other parameters have effects that overlap with the ones of €34. The parametrization
is always a compromise between different properties to model.

The parametrization is done so that it could be used to simulate phosphorene
as well as possible in both mechanical and electronic cases. On the other hand the
broadness causes some errors. The most significant one is the direct band gap. The
gap should be essentially direct in I" point but because of the parametrization the
peak in the I'-Y path is slightly higher than the peak in I'. In this study we focus

on the direct band gap in I". The other phenomena are observed qualitatively in
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comparison to this. The initial band structure can be seen in the figure [h).

The properties that were acquired from the final parametrization are listed in
the tables and [4] with reference results from other studies. These are the same
properties which were described earlier. We studied just a single layer of phosphorene,
so the z dimension of the unit cell is not relevant. DFTB cannot be used to determine
the z dimension of the unit if there are no interactions in that direction. Furthermore
the interaction between two planes are van der Waals interactions, which would

need a different parametrization [18].

In table [2| there are some reference values for the physical dimensions of the
phosphorene. There are some clear trends in the values. Our parametrization
yields results in the correct scale but they don’t fully agree with previous studies.
This happens, because we emphasized the elastic and electronic properties of the
phosphorene in the parametrization. Bond angle « is large and [ is small compared
to previous studies. Also bond lengths and unit cell dimensions differ as seen in
the table 2l If these dimensions would be perfect the problem is that some more

important elastic or electronic properties, such as the size of the band gap, would be

flawed.

The most suitable reference for the elastic properties is the paper written by
Verma et al. [14]. They used objective molecular dynamics (OMD) [16], which
is related to revised periodic boundary conditions (RPBC) [15] used in this study.
They have computed the bending moduli, Young moduli, shear moduli and Poisson
ratios in every direction in the plain of the phosphorene. Also some other results
about elastic properties were used as a reference. These are presented in the table
Results are in a good agreement. There are no such problems as with bond lengths
and angles. Interestingly shear moduli of this study differ little bit depending on the

direction but values computed by Verma et al. do not differ [14].

We computed that the direct band gap was 1.872 eV. Earlier it was mentioned
that the band gap of phosphorene is determined to be up to about 2.0 eV [5] so
the result is reasonable. It is worth mentioning that the band gap of single layer
phosphorene is always larger than the band gap of the bulk black phosphorus, which
is around 0.3 eV [5, 6| |34]. There are also numerous other studies where the band
gap has been determined computationally. Some of them are listed in the table [4]
Most of the DFT methods seem to underestimate the size of the band gap. They are

nearly always considerably smaller than experimental results. Despite this variation
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in different studies, the band gap yielded by DFTB seems to agree with reference
results in the table [l

Table 2. Here are listed the bond lengths, bond angles and the unit cell
dimensions from the different references and from this study. Comparing these
values it can be seen that the parametrization yields reasonable physical measures

for the phosphorene.

Method di [A] dy [A] ] Bl w[A] y[A]
DFTB (this study) 2.220 2236 93.903 101.309 3.374 4.236
DFT (PBE, PAW) [35] 222 226 959 1041 3298 4.627
DFT (GGA, PBE, DFT-D2)[36] ~ 2.22  2.25 9628  103.75 - -
TB [37] 2224 2244 9634  102.09 3.314 4.376
DFT [38| 224 228 96.00 10351 3.32 458

DFT (PBE, HSE06)]6] - - - ~ 335 4.62
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Table 3. Elastic properties of phosphorene have been studied in several papers.
Here Y is Young’s modulus, S shear modolus, ¢ Poisson’s ratio and K is a

bending modulus. Armchair direction is marked with ac and zigzag direction

with zz.
Method vy SN 0 Ka[-1071%]]
DFTB (this study)
ac 32.135 38.258 0.267 0.444
77, 108.131 37.583 0.898 1.662
OMD [14]
ac 33.3 31.2  0.31 0.524
77 79.1 31.2  0.73 1.311
DFT (PBE, PAW) [35]
ac 48.796 — — —
77 184.094 — — —
VFEM* [39]
ac 52.2 — — —
77 85.4 — — —
analytic [40]
ac — — — 0.76949
77 — — — 1.3781

*Valence Force Field Model
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Table 4. Here are several values for the band gap of the phosphorene. The
band gap vary depending on the used method. Especially many DFT studies

have acquired relatively small band gaps compared to the experimental results.

Method Band gap [eV]
DFTB (This study) 1.872
GoWo [5] 2.0
G1W, [ 1.4
DFT (PBE, HSE06) [6] 1.0
DFT (GGA, PBE, DFT-D2)[36| 0.88
DFT [38] 1.51
DFT (PBE, GGA) [41] 0.91
DFT [42] 1.0
experimental [6] 1.45
experimental (8] 1.24

experimental [43] 2.05
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4 Effects of elastic deformations to band struc-

ture

The main focus of the study was the electronic band structure of the phosphorene
and its behavior during stretching, shearing and bending. All of these were done
in both armchair and zigzag direction but bending was also done in other chiral
directions. The curvature radii in these computations are large. The bending is
much more modest than in nanotubes.

Electronic structure of phosphorene is sensitive to physical distortions which is
seen as changes in the band structure. Although one has to note the weaknesses
of the used DF'TB method. As mentioned earlier, due to the parametrization the
initial band gap is not direct as it should be. This is not a big concern because
we measured only the direct band gap along the I' point. With this kind of an
approximate method the relative changes in the band structure are more important
than the absolute ones.

Studying the band structure the orthorhombic lattice was used. The observed
path in the Brillouin zone was S-X-I'-Y-S. It is visualized in the figure 3] The
notations follow the paper of the Setyawan and Curtarolo [44]. In the figures, where
band structures are imaged, G corresponds to I'. The zero level of the band structure
plots is set around the Fermi level. In some cases computations did not yield exactly
the same Fermi level but values varied. In order to make plots easier to analyze the

zero energy level was set to be about 4.0 eV. This value was kept constant.

4.1 Stretching scales direct band gap

The band structures, that were computed during the stretching, are presented in the
figure [4 When phosphorene was stretched or compressed its band gap started to
change from direct to indirect and the size of the direct band gap changed. When
compression in armchair direction increased, the band gap moved away from direct
I'. HOMO state was on the peak close to Y point in I'-Y path and LUMO was still
on I' point. The change in HOMO state is so large that it can be verified even with
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Figure 3. The path for observing the band structure within the orthorhombic

Brillouin zone is similar to the one used in reference [44].

this parametrization. At the same time the actual band gap shrunk significantly as
did the measured direct band gap. The phenomena are visible with just —6.87%
strain. The same type of a phenomena was also observed by Peng, Wei and Copple
[41] but they report that strain, which causes these changes, is between —12% and
—8%. On the other hand, the actual stretching in ac-direction caused band gap to
grow nearly as greatly as it shrunk in compression. Stretching kept band gap direct
on the I' point.

In zz-direction stretching caused band gap to change into an indirect one. In this
case stretching in zz-direction made the lowest energy peak in the unoccupied states
to move from I' point towards the Y point. This happened when about 7% stretch
was applied. This is the same behavior as reported by Peng, Wei and Copple [41].
Compression in zz-direction causes LUMO state to get closer to the HOMO. The
band gap became smaller, but wether the transition from direct to indirect band gap
happens is not clear with our parametrization.

The behavior of the direct band gap at I' point of interest is visualized as a
function of strain in figure [f} While studying the direct gap the maximum strain
was +11%. Compression made the gap to shrink and stretching made it to grow in
both directions. That’s the only similarity. In armchair direction the gap behaves so
that data points form a convex curve but in zigzag case they form concave curve as
seen in figure 5] After about 6% stretching in zz-direction the gap began to shrink
instead of growing. This behavior has been observed also by Peng, Wei and Copple
for the real band gap [41] and by Qin et al. for the bulk phosphorus [34]. Later

when the mulliken populations are studied one realizes that this is caused by the
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changes in the orbital contributions of the LUMO state.
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Figure 4. Stretching and compression cause significant changes in the band
structure. In a) there is the initial band structure of the optimized structure, in
b) unit has been compressed 6.87 % in ac-direction, in c) it has been stretched
6.88 % in ac-direction. The rest are for the zz-direction: d) sheet is compressed
6.87 %, e) sheet is stretched 5.50 % and f) stretching is 6.88 %. In zz-direction it
is seen that between 5.50% and 6.88% stretching the band gap transforms into
indirect one. Density of states (DOS) is imaged for angular quantum numbers
[ =0, 1 and 2. Blue line is a total DOS.
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Figure 5. Stretching in ac- and zz-directions cause very different changes in
the direct band gap. When strain is close to zero, both has overall the same

trend about increase and decrease of the gap but the curving is not similar.

4.2 Shear causes band splitting

Shearing causes quite different changes into the band structure than stretching.
Unlike in a previous section changes are mostly on the S-X and Y-S paths. Sa et al.
have studied shearing of phosphorene in their paper [17]. They studied essentially
the same paths as we did. They just use M instead S in the notations. They used
DFT in the study so their results are much more reliable than ours. On the other
hand the results are very similar. This shows that tight-binding approximation is
capable to simulate phosphorene.

Shearing was done in both ac- and zz-directions. The direction means that the
shear strain was applied along the corresponding axis. Maximum shear was 15%
in both cases. Both directions caused similarly the splitting of the bands in both
S-X and Y-S paths. Originally there has been a degeneracy within the bands but
shearing made them to split. This is seen in both occupied and unoccupied bands.
The splitting is clear already with a small shear. The band structures for ac are

presented in the figure [6] and for zz in figure [7]

Taking into account the inaccuracy of the directness of the band it is not possible
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to say for certain if shear changes the band gap from direct to indirect. The heights
of the highest peaks along I'-Y vary so little. Sa et al. report that the phophorene
should turn into indirect band gap semiconductor when shear strain is larger than 4%
[17]. Their band structure plots show that the lowest unoccupied band should change
from IT" to the half way of their M-Y path. Our band structures do not show this
kind of a phenomena. This is most likely caused by the used method. Unoccupied
states are difficult to handle with as approximate method as DFTB.

Since the behavior of the real band gap is not computed correctly with DFTB,
the direct band gap in [' was studied. It is clear that the direct gap decreases when
the shear is increased. In both ac- and zz-direction the behavior was smooth. This is

presented in a figure [§
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Figure 6. Figure a) is the initial band structure. In the rest shear is increased
in the ac-direction: b) 1.87 %, c¢) 7.50 % and d) 15.00 %. Shearing in ac-direction
causes splitting of the bands in the S-X and Y-S paths.
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Figure 7. Figure a) is the initial band structure. In the rest shear is increased
in the zz-direction: b) 1.87 %, c) 7.50 % and d) 15.00 %. Band splitting in the

S-X and Y-S paths is also observed with shearing in zz-direction.
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Figure 8. Shearing causes smooth changes on direct band gap. The direction

for shearing means that it is done along that axis of the phosphorene unit cell.

4.3 Bending causes similar changes in band structure as

shearing

Bending of phosphorene sheet is not done only in ac- and zz-directions but also in
intermediate directions. Now if the sheet is bended in zz-direction, it means that
the longitudinal axis, around which the sheet is bent, lies in ac-direction. In figure
[ this longitudinal axis is along y-axis. In the case of ac-bending this is vice versa.
Longitudinal axis is along the zz-direction corresponding to x-axis in figure [T}
Bending causes interesting changes in the electronic band structure of phosphorene.
Direct bending in both ac- and zz-directions causes splitting of the degenerate bands
in Y-S path as seen in figures [9] and [I0] The lines are clearly opening in the Y point.
This splitting increases while the bending increases. The phenomenon is clearer in
the zz-bending than in ac-bending. There are similarities to shear deformations. The
difference in the magnitude of the splitting is partly explained by the anisotropic
elastic porperties of phosphorene. There is also splitting directly at Y point which is
not observed in shearing. In zz-bending in figure [10] lines are also diverging along
greater distance between Y and S than only at Y point. This is also visible in

shearing.
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Figure 9. Bending in ac-direction causes band splitting in Y-S path. Splitting
is more modest compared to zz-bending in figure [I0] The radii of curvature in
the images are: a) 121 A, b) 94 A, ¢) 67 A and d) 40 A.
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Figure 10. Bending in zz-direction causes clear changes in the Y-S path. There
are similarities to shearing. Especially lines in negative energies are opening
similarly in Y-S path as in shearing in figures [6| and [7] The radii of curvature in
the images are: a) 97 A, b) 75 A, ¢) 54 A and d) 32 A.

Chiral bendings cause changes also in S-X path as seen in figure [II When
bending direction diverges from either ac- or zz-direction keeping curvature constant,
splitting happens in S-X path. Along the S-X there are splitting parts that are
also seen during shearing in figures [ and [7} There is a notable relation between
shear and bending. It has to be noted that all splitting phenomena are not identical
to shearing. Pure shear does not cause splitting directly in X and Y points. The
deformations caused by shear are also affected by the curvature, which naturally
are seen as different alterations in band structure. There cannot be exactly similar

effects in straight and curved sheets.
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Verma et al. [14] presented the stress-strain relation in a matrix form as

1 —vt e
€c Y. Yih  Gh o.h
— —Vc L R/
€ v v on| | oth |- (66)
€ct ne 1| \ogh

Gh Gh  Gh

Here Y;h is Young’s modulus, Gh shear modulus, v; Poisson ratio, o;h plain stress
and 7); is shear-strain coupling coefficient. Lower indices tell the direction. First ¢
determines the direction of the quantity and t is perpendicular to it. Authors list
that €., ¢; and €, describe layer extension along the direction ¢, layer compression in
perpendicular direction and shear deformation respectively. According to them h is
not required when in-plane elasticity is studied but it is necessary for out-of-plane
bending. They point out that in 0° and 90° angles, which means in their case zz-
and ac-directions, the shear-strain coupling coefficients vanish. This seems to be
reflected in the band structure in S-X path. Bending in zz- and ac-directions does
not cause any changes but splitting becomes visible immediately after diverging from
these direction. These band structures agree with the result of Verma et al..

The amount of applied bending in this study is relatively small compared to
the studies of phosphorene nanotubes [45-47]. Curvature is not enough to change
the band gap from direct to indirect as seen in these other studies. On the other
hand the size of the band gap is affected by the radius of curvature. Bending in
ac-direction makes band gap to shrink but zz-bending increases it. Same kind of a
behavior is observed also with chiral bending in figure [12]

Interestingly the direct band gap is proportional to 1/R?, where R, is a radius
of curvature. This was observed in every bending direction. Bending directly in
zz-direction increased the band bap and bending in ac-direction decreased it. All
the intermediate directions are between them. Close to the 40° chirality from the
zz-direction the gap stays close to a constant. Small deviation from direct ac-bending
doesn’t have large effect but even slight deviations from zz-direction cause notable
changes in the behavior of the gap. Data is presented in the figure [I12] The slopes of
the line fits are in the table Bl
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Figure 11. Bending in chiral directions causes band splitting along the S-X
path. In every image the radius of curvature is 35 A. The differences from the
ac-direction are: a) 15°, b) 30° and c¢) 40°. The differences from the zz-direction

are: d) 15°, e) 30° and f) 40°.
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Figure 12. Direct band gap is linearly proportional to 1/R% Fitted lines
visualize this relation. Bending direction affects significantly to how direct band

gap behaves during the bending.
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Table 5. Direct band is linearly proportional to 1/R? where R, is the radius
of curvature. Here are presented the slopes of the linear fits in figure (12|
Interestingly the slope is closest to zero slightly before 40°, counting from zz-

direction.

Direction  Slope (eV AQ)

0° (z2) 63.098
15° 52.100
30° 16.451
40° —1.826
50° —29.722
60° —37.372
75° —43.592
90° (ac) —43.945

Puckering makes phosphorene behave like it would have two layers. These layers
behave differently if they are on outer or inner surface of the bent phosphorene sheet.
On outer surface the layer stretches and on inner surface it is compressed. Between
them there is a plane, which preserves its original measures during the bending.
Ideally the plane is equally faraway from the both surfaces. The geometry of this
situation is presented in figure [13|

The different behavior of outer and inner surface of the phosphorene sheet can
explain the 1/R? in some extent. The plane between the layers stays the same, so
its length [ is the original length of the both layers. Now the relative changes for the

lengths of the outer and inner layers are

L —1 6O(R, +d —6R  d

I OR, R, (67)
and
lb — 1 OR. —d) —6R.  d
l N OR, R (68)

As we can see the relative changes are identical with opposite signs. Now the
curvature is small and R, is large. This leads the changes in /; and l5 to be small. In

the figure |5 it is seen that the direct band gap behaves linearly if the strain is small
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R.

Figure 13. Here is the schematic picture about the bending of phosphorene

sheet. Outer surface [; stretches and inner surface [l is compressed but [ stays

as a constant.

enough. Relative changes of the outer and inner surfaces are both proportional to
1/R.. This indicates that the strain is the same on both surfaces but with opposite
signs. Because the linear dependence between the direct band gap and small strain,
effects of inner and outer surfaces should cancel each other. In the end, if the direct
band gap would be proportional to 1/R., there would not be any changes in the
direct band gap. In other words the band gap has to be proportional to higher order
of the 1/R.. Now the square is the most significant term leading to 1/R? dependence.

4.4 Mulliken population analysis

The phosphorene is considered as a two dimensional material. Still its puckered
structure makes it behave like it would have two different layers, inner and outer
one. Previously this explained the 1/R? dependence of the direct band gap. The
difference between outside and inside is also especially clear in mulliken populations
when the structure is bent.

Shear does not cause significant changes in mulliken population even if it was
15% at maximum. Stretching causes some interesting changes. As seen in the figure
14h), stretching in ac-directions illustrates how the p and d orbitals are related to
each other in both HOMO and LUMO states. While structure is compressed the p
orbital contribution decreases in HOMO state and d orbital contribution increases.
At the same time LUMO states behave the opposite way.

Phenomena in zz-stretching are not as smooth as in ac-stretching as seen in figure

14p). This is expected because phosphorene is more rigid in zz-direction than in
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Figure 14. Stretching causes changes in the mulliken populations. In a) image
stretching is done in ac-direction. In b) stretching is done in zz-direction. Changes

are especially clear in zz-stretching.

ac-direction. Minor compression seems to cause similar behavior as described earlier
in ac case. Actual stretching, on the other hand, transforms populations significantly
already with about 7% strain. The changes happen mainly in LUMO side. There s
orbital contribution increases sharply causing p orbitals to decrease. At the same
time d orbital contribution begins to decrease linearly. After the most radical peaks
s and d orbital contributions decrease and p increases. HOMO states experience only

small changes.

Next figure ) is compared with the band structure in figure ) where stretching
in zz-direction is about 5%. It is seen that there is a connection between mulliken
population and band structure. When populations change sharply in the LUMO side,
the band gap changes to indirect one. The lowest energy peak in the unoccupied
side shifts from I' towards Y. Now this can be explained with different orbital
contributions. At the same time its worth checking the density of states (DOS)
in figure de). Increasing the stretching increases the total DOS in LUMO side
by "shrinking its tail" within the band gap region. This agrees well with mulliken
populations. The sudden increase in s orbital populations and modest increase in
p-orbital populations, after its drop, seem to be greater in total than the decrease in

the d orbital populations.

Mulliken populations show that there is a connection between p and d orbitals.

The behavior is easier to understand when the mulliken populations are associated
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with wavefunction images in figures [I5] and [I6] These images are done by using
Visual Molecular Dynamics (VMD) [48]. The electron densities or wavefunctions
have been studied and imaged in several papers [17, 38, |42, |45] 49, 50|, which gives

a good material for comparison.

Figure 15. Here is the a) HOMO and b) LUMO orbitals of the phosphorene.

Images are for the initial unstrained structure.
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Figure 16. HOMO and LUMO states are shown for the stretched and com-
pressed structures. In a) HOMO and b) LUMO phosphorene is compressed 15 %
in ac-direction. In ¢) HOMO and d) LUMO phosphorene is stretched 15 %
in ac-direction. In ¢) HOMO and f) LUMO phosphorene is compressed 10 %
in zz-direction. In ¢) HOMO and d) LUMO phosphorene is stretched 10 % in

zz-direction.

When stretching is 10% in zz-direction the LUMO states change. Without
stretching the wavefunction was going along the bonded atoms in zz-direction but
now it is between the puckers. Same time the mulliken population of the d-orbitals
in LUMO has decreased greatly and p- and s-orbitals have more mulliken population.
As mentioned earlier, this is the point when the lowest peak in unoccupied side
shift from I' towards Y. Even though the starting band gap was not direct due the
parametrization it is clear that the gap becomes indirect. This kind of a transition

has been reported by Peng, Wei and Copple [41].

Bending of phosphorene causes one major change in the mulliken populations
as seen in figure [I7] It is the difference between outer and inner surface of the
layer. Changes in the p-orbitals of the HOMO state are the most apparent. When
curvature increases the HOMO p orbital population moves from outer atoms to inner
ones. The change in LUMO p orbitals’ mulliken populations is opposite. The most
likely reason for this is the change in the overlap of the orbitals. In inner surface

the overlap is much stronger than in the outside. Bending in ac-direction bring the
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puckers closer to each other in inner surface. This probably enables p orbitals to have
better orientation and overlap making them more favorable on inner surface. This
would increase their population in HOMO side. In zz-direction atoms are bonded
more tightly and overlap is initially greater than in ac-direction. In this case it is
logical that the corresponding changes in p orbital contributions are smaller than in
the case of ac-bending as seen in figure )

It has to be mentioned that bending in zz-direction affects not only to p orbitals
but also to d orbitals. This is different compared to bending in ac-direction where
mainly HOMO p orbitals are affected. In ac-direction orbitals have space to move,
but in zz-direction overlap between orbitals is a significant factor. In zz-direction the
alteration is seen in HOMO p, LUMO p and LUMO d. In LUMO states the outer
p and inner d orbitals have more contribution than their counterparts. HOMO p
orbitals were discussed earlier.

a) b)
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Figure 17. Mulliken populations for bending are presented as a function of
1/R., where R, is the radius of curvature. In a) bending is done in ac-direction
and in b) it is in zz-direction. Coloring indicates which side of the phosphorene
sheet is in question. Crosses indicate HOMO states and circles are for LUMO

states.
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5 Conclusions

Phosphorene or single-layer black phosphorus is a promising 2D material. Unlike
graphene it has a tunable band gap making it a semiconductor. There have been
numerous studies about its mechanical and electronic properties. Most of the research
has been computational, but experimental results are also revealing how phosphorene
could be exploited. One possible application seems to be FETs |7, [8] because of the
useful semiconducting properties. On the other instance it has been shown that it is
crucial to protect phosphorene from the oxygen and moisture. Despite its stability
phosphorene forms easily oxides changing the properties significantly [11, |12].

Although there are some difficulties concerning parametrization, DFTB is a valid
method to simulate phosphorene in elastic deformations. Absolute values might
vary but qualitative analysis in trends is working. This is already mentioned by
Koskinen and Mékinen [18] when representing DFTB and Hotbit. In the section
many computed properties were compared to literature values. This shows that
elastic properties agree especially well with earlier research even if there are some
differences in bond lengths, bond angles and lattice constants.

The behaviour of the band structure during bending showed remarkable relations
to shear. Along the S-X and Y-S paths the splitting of the bands was observed
during the bending. This is the main change in band structure caused by shear.
This study showed that the splitting in S-X is observed only with chiral bending
directions. Results agree with the matrix presentation of Verma et al. [14] which is
shown in equation . They stated that stress-strain coefficients vanish in ac- and
zz-directions but otherwise affect to the system. This is exactly what is observed in
S-X path while phosphorene is bent.

Sa et al. have reported that shear can change the band bap from direct to indirect
[17]. This is due to band splitting. They point out that one possible application for
this property is the shear strain protecting nanoelectronic switches. Bending causes
similar band splitting, but the phenomenon is not as strong as in a case of pure
shear. If phosphorene is subjected to bending in this kind of applications it is crucial

to know whether the direct-to-indirect transition could happen. Allec and Wong
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report that in certain sized phosphorene nanotubes band gap changes from direct to
inderect [45]. This emphasizes that the knowledge about the the relation between
bending and shear also concern the study of phosphorene nanotubes. Their design is
not as simple as it looks like, because shear affects also to nanotubes’ mechanical

and electronic properties.
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