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Highlights

» Insecticide-induced effects can be transgenerdtjoinderited.

» Epigenetic modifications are heritable.

* Epigenetic modifications are responsive to insetgiinduced stress.

» Pesticide use may directly and indirectly drive ¢velution of insect pests in

agroecosystems via epigenetic processes.

Abstract

Although pesticides are a major selective forceriming the evolution of insect pests,
the evolutionary processes that give rise to inseet resistance remain poorly understood.
Insecticide resistance has been widely observetttease with frequent and intense insecticide
exposure, but can be lost following the relaxatbmsecticide use. One possible but rarely
explored explanation is that insecticide resistaneg be associated with epigenetic
modifications, which influence the patterning ohgeexpression without changing underlying
DNA sequence. Epigenetic modifications such as Dh&hylation, histone modifications, and
small RNAs have been observed to be heritabletim@ods, but their role in the context of
rapid evolution of insecticide resistance remaiarpounderstood. Here, we discuss evidence
supporting how: 1) insecticide-induced effects lbariransgenerationally inherited, 2) epigenetic
modifications are heritable, and 3) epigenetic rficakions are responsive to pesticide and
xenobiotic stress. Therefore, pesticides may dheesvolution of resistance via epigenetic
processes. Moreover, insect pests primed by pgstichay be more tolerant of other stress,
further enhancing their success in adapting toeamreystems. Resolving the role of epigenetic
modifications in the rapid evolution of insect Eekas the potential to lead to new approaches

for integrated pest management as well as impraveiederstanding of how anthropogenic
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36  stress may drive the evolution of insect pests.

Page 3 of 23



37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Transgenerational effects on pest evolution

Introduction

The pesticide treadmill describes how agricultimaéct pests evolve resistance in
response to frequently used pesticides, rendenem ineffective. Pesticides are pervasive in
agriculture, and are a major selective force dguime evolution of insect pests in
agroecosystems [1]. Although insecticide resistdraebeen documented in a wide range of
insect pests [2] and the genetic basis of majoe gesistance has been mapped in key pests for
select insecticides [3], the broader evolutionapcpsses that give rise to insecticide resistance
remain poorly understood [4,5]. Farmers and entogists have observed that insecticide
resistance increases with the frequency of expdsuparticular insecticides [6—8], but can be
lost following the relaxation of insecticide use-19]. The rapid gain and loss of resistance
appears to occur far more rapidly than expecteddapon mutation rates [12,13], suggesting
that insecticides themselves may increase theofataitation or cause physiological changes in
pest organisms [5]. One possible explanation thatideen relatively unexplored is that the
evolution of insecticide resistance results frongepetic modifications, which are heritable and
influence gene expression without changing the tiyidg DNA sequence.

The evolution of insecticide resistance has be@sidered an evolutionary paradox [5],
in that pest species which have experienced reppgaiaetic bottlenecks due to invasion and
selection remain able to adapt very rapidly, dedpiited genetic diversity. The same insect
pests have evolved resistance to insecticided of #le major classes [14], and are expected to
evolve resistance to future chemistries [15]. Br&egenetic bottlenecks also do not appear to
limit the likelihood that insecticide resistanceobses. For example, all Colorado potato beetle

(Leptinotarsa decemlineata Say) populations in Europe are descended fronmthaduction of a
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Transgenerational effects on pest evolution

single female, or single mtDNA haplotype [16]. Digsphis strong historic bottleneck,
decemlineata populations in Eurasia have evolved resistane@evie range of insecticides in
Europe, the Middle East, and East Asia [6,17,18r€ is a seeming inevitability of insecticide
resistance developing in pests, where new phenetygge following environmental stress at
rates that may not be explained by natural selectrmleed, Skinner et al. [19] argued how
epigenetic processes fit within a neo-Lamarckiamigwork, because environmental epigenetic
patterning can influence transgenerational trarsionsof phenotypic variation. By influencing
epigenetic modifications, xenobiotic and environtaéstressors can directly influence the
phenotypic responses of organisms to their envieasrim

Epigenetics is the field of study that examines leowironmental factors influence
heritable changes in gene expression. There asgad@pigenetic mechanisms that are heritable
and could underlie transgenerational effects c#atisides: DNA methylation [20], histone
modifications [21], and heritable noncoding RNA J22ere, we discuss evidence supporting
how 1) insecticide-induced effects can be transggiomally inherited, 2) epigenetic
modifications are heritable, and 3) epigenetic micakions are responsive to insecticide-induced
stress. We draw on other model systems from askvieody of literature, including genetics,
epigenetics, and toxicology to identify gaps in ooderstanding around the evolution of
insecticide resistance in insect pests. We closie avdiscussion of the implications of epigenetic

processes for insect fitness in intensively-managgdecosystems.

| nsecticide-induced hor metic effects can be heritable

Insecticides not only select for insecticide resise and point mutations at target sites,

but they can also affect physiological and lifetdig traits [23]. In particular, exposure to
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Transgenerational effects on pest evolution

sublethal dosages of insecticides can incur stieddead to increased phenotypic variation [24].
Stress responses can lead to hormesis, a well-kpbemomenon from toxicological literature,
where small dosages can stimulate biological fonstwhereas large dosages are detrimental or
lethal [24]. Hormetic responses include activatidstress response pathways in a variety of
taxa from microbes, plants, and animals. They atealated to any special class of compounds,
as hormetic effects have been reported for overddf€rent chemical classes [23]. Sublethal
exposure to insecticides can induce hormetic effaentl lead to variety of positive life history
effects, such as mating success [25], fecundit}, @& body size [27]. By positively
influencing traits associated with fithness, hormefifects may play an important role in pest
evolution.

There is evidence that individuals exposed to stuésonditions, either abiotic or biotic,
can prime gene expression in their offspring t@ble to better tolerate stress [28,29].
Insecticides have been shown to induce transgenmeahinsecticide induced hormetic effects,
but thus far the results have been difficult t@rptet. For examplélyzus persicae aphids
treated with sublethal levels of imidacloprid prodwffspring that survive longer when exposed
to food/water stress, but tolerance to insectisidess is unchanged [30]. Similarly, although
sublethal levels of precocene (an antagonist tedilezhormone) stimulate reproductionvh
persicae, the results are not passed on to subsequent gensrg81*]. Although chemical-
induced hormesis has been reported from many granghshese changes have also been
reported to be inherited [23] the genetic, epigenand toxicological basis of hormesis is still

poorly understood [5,32].

Epigenetic modification and transgener ational inheritance
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Transgenerational effects on pest evolution

Epigenetic modifications have been shown to beddda [20]. DNA methylation, the
addition of a methyl group to the 5 carbon positibeytosine a nucleotide (usually the cytosine
in CpG dinucleotides), is a well-documented mecsramf epigenetic inheritance that can
influence phenotypic variation (Table 1), and isrfd in most, if not all, orders of insects [32].
Methylation in insects is largely found within cadiregions, and is closely linked with gene
expression and alternative splicing - where a siggine can generate a diversity of gene
transcripts of differing length, based on whichexare translated [33]. Methylation can occur
at any location in the genome, but the effects MADmethylation vary based on its location in
the genome (Figure 1): A) changes in DNA methytatd the promoter region can influence
gene expression in downstream genomic regions B4hethylation suppresses gene
expression of transposable elements (TEs, whicinaf@le genetic elements responsible for the
majority of mutations in many genomes) and prevd@hmmobilization [35], and C) Gene body
methylation can increase gene expression [32],allsas an increase in the number of alternative
splice variants [36]. Changes in methylation paten arthropods can be associated with
changes in levels of resistance to insecticil¥dzus persicae, can gain insecticide resistance
through the duplication of esterase genes and qubaéoverexpression of esterases [37]. After
suspending insecticide exposure, extra copiestefasse genes can be methylated, leading to a
loss of resistance. It is possible that these apbplilations could quickly become resistant again
following demethylation of these amplified genes.

Histone modifications include additions of acetyimethyl groups on the histone
proteins around which nuclear DNA is wrapped, whdah influence gene regulation and
expression [38]. The full effects of these moditficas are not well known, especially in

arthropods. However, it does appear that somertestoodifications are able to be transmitted
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129  transgenerationally [39]. Different noncoding RNACRNA) [22] can be inherited through either
130 the male or female gametes, though most curreaarels does not incorporate analysis of

131 heritable RNA. Certain types of small RNA can diracd maintain DNA methylation and

132 histone modification, and therefore affect chromatructure [40]. DNA methylation, histone
133  modifications, and ncRNAs form a constellationrdkracting effects that result in a phenotypic
134  response [41]. To fully understand how epigenetdifications influence transgenerational

135  phenotypic inheritance, it would be optimal to assall three mechanisms simultaneously

136 through concurrent small RNA-seq, bisulfate-tredd®tA-seq, and histone modification assays,
137 in as many tissues and individuals as possiblalligenultiple generations would be sequenced,
138  to determine if changes in epigenetics and geneesgjn differ consistently between

139  treatments. Because the cost of sequencing is &@r fimiting factor for these studies,

140  projected lower sequencing costs in the future lshenable these types of studies.

141

142  Epigenetic modifications areresponsive to xenobiotic stress

143 Exposure to insecticides and other xenobiotic campe can alter DNA methylation

144  status in arthropods, and these epigenetic charagegersist for at least several generations
145 [20,42,43]. Table 1 lists a number of examplestiass leading to epigenetic changes in

146  arthropods. Studies focusing on insects are femumber, so our scope is broadened to include
147  examples from aquatic ecotoxicology literature,ahhincludes a number of non-insect

148  arthropods. Oppold (2015) found that exposure adgqudoes to a fungicide leads to heritable
149  changes in methylation and decreases in sensitwvitypidacloprid, an insecticide. Methylated
150 cytosines also spontaneously deaminate, becomyngirties, at a higher rate than non-

151  methylated cytosines, which can lead to higher trartaates in methylated regions [44]. If
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genes that are associated with resistance are laetthywhich leads to increased expression and
increased mutation rate, then genes that are mpostjulated in response to insecticide resistance
may also be the most likely to experience spontasieeamination.

Both the role of histone modifications and small&Rin modifying epigenetic responses
to toxins are less understood than DNA methylaitioarthropods, though it has been shown that
methylation and histone modifications tend to bdomated in the genome [38]. Kishimoto et al.
[45*] showed that parental hormetic responses tdaiie stress can be epigenetically
transmitted to descendants via histone modificatidnwide range of environmental chemicals,
such as heavy metals, air pollutants, dioxins,embcrine disrupters, can alter histone
modifications [46], but it is unknown whether thetgnges are heritable. We have not found
any studies on arthropods examining if insecticchas induce transgenerational small RNAs
responses. Small RNAs have been found to interélsthdsstone modifications [47], so changes
in small RNAs may be implicated in the transgenenal inheritance of stress phenotypes as

well.

Implicationsfor transgenerational effects on insect fitnessin agr oecosystems

We hypothesize that pesticide use can directlyiagidectly drive the evolution of insect
pests in agroecosystems via epigenetic procesgps€R2). Pesticides may directly stimulate the
expression of advantageous phenotypes, which manderwritten by epigenetic modifications.
Continued insecticide use on populations developesgtance would thus operate as ‘natural
selection’ and selectively increase the frequeriggsect phenotypes that are adaptive to
pesticides. Indirectly, pesticide use may mainsdiassful environments that hormetically prime

insect pests to become more tolerant of stressfuditions. For instance, sublethal exposure to

Page 9 of 23



175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197
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insecticides can influence adult body size oflthdecemlineata [23], which may allow insect
pests to be better able to tolerate overwinteromgdions [48]. Insecticides can also increase
female fecundity [49] or propensity to mate [25hieh can increase population size.

The phenotypic traits of insect pests that alloamito thrive under insecticide exposure
may also facilitate global invasions. For examplejecemlineata is a globally-invasive pest that
is expanding its range northwards into the Arcticl€ [48]. Insecticide exposure appears to
stimulate the beetle to invest more in fat bodies laave a higher metabolic rate than control
beetles [50]. While the higher metabolic rate aardér fat bodies may enable beetles to better
detoxify chemicals, higher fat body reserves enabiall individuals to overwinter successfully
[51,52]. For example, sublethal applications oflgeethroid deltamethrin on resistdnt
decemlineata populations can have stimulatory effects rendeeixygpsed individuals larger
which is also inherited to the next generation dsitnom, unpublished data).

To date, most of the research examining the rofgesficides or xenobiotics in epigenetic
change come from the field of aquatic toxicolog$*fg, where environmental exposure to
toxins can be highly variable and difficult to piedIn contrast, pesticide use in agroecosystems
is intentionally part of an active pest managensgatem, where insect responses to stresses can
cause positive feedbacks on subsequent manages@sibds. Agroecosystems are also highly
controlled systems, which allows for greater expental control for field and landscape level
studies. Along these lines, it would be importankhnow how epigenetic responses to the same
insecticides may vary among individuals, populaicand species. Such information would help
provide insight on whether epigenetic responsedeanroadly predictable across individuals
and species, and possibly, how pesticide resistaragebe better managed. A combination of

new genomic tools, epigenetic assays, and compuo#dly-intensive approaches may allow us to
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better understand to what extent epigenetic regsowghin insects help drive the pesticide

treadmill.
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Table 1. Examples of epigenetic alterations folloywexposure to anthropogenic and “natural”,
(non-anthropogenic) stress.

Species Treatment Phenotypic DNA Histone Transgenerational | Reference
Effects Methylation Modifications effect
Daphnia vinclozolin . reduced
bod N 20
magna (fungicide) ody size methylation /) [20]
. 5-azacytidine .
Daph . duction, duced
aphnia (demethylating TR requced n/a Y [20]
magna body size methylation
v agents)
2 changes in .
] , increased,
=] Myzus persicae imidacloprid gene decreased, or no
v | (Green Peach . . expression, ! n/a Y [31%]
9 A (insecticide) . . change based on
c | Aphid) including heat .
o . concentration
b shock protein
o
o sli:)esictus genistein decrease in cautious
S . p . (phytohormon | sensitivity to n/a Y [54]
c | (Asian Tiger . . decrease
] . e) imidacloprid
Mosquito)
Aedes' . . decrease in
albopictus vinclozolin . . .
. . . sensitivity to cautious increase n/a Y [54]
(Asian Tiger (fungicide) imidacloorid
Mosquito) P
increased
Hsp70
Art.emia s!:). heat stress production, changes i.n histones H3. and y [55]
(brine shrimp) heat tolerance, | methylation H4 acetylation
and resistance
vs. pathogens
. changes in
Daph . duced
i zinc gene reduced n/a Y [56*]
magna . methylation
expression
differential
methylation
g primarily in
a exonic regions,
g enriched for
e serine/threonine
© . amino acid
5 toxic
=} . . codons and genes
© | Daphnia cyanobacteriu .
< . . n/a related to protein | n/a N [57]
= | magna m Microcystis .
. synthesis,
aeruginosa
transport and
degradation, in
genes susceptible
to alternative
splicing in
response to
Microcystis stress
Plutella
. o Itered duced
xylostella(Diam | endoparasitoid Zx err:ssienne :r?etuhcelation n/a N [58]
ondback Moth) P ¥
19

Page 19 of 23



381

382

383

384

385

386

387

388

389

390

391

392

393

Transgenerational effects on pest evolution

Drosophila
melanogaster
(Fruit Fly)

Heat shock or
osmotic stress

n/a

n/a

heterochromati
n disruption

[59] ‘

Figure Legends.

Figure 1. Examples of how changes in methylatiatustof in different gene regions can effect

gene expression. Compared to the “normal” unmetibgleegion, A) has promoter methylation,

leading to decreased gene expression; B) exhilathylation in transposable element regions,

leading to those elements not being expressedCastows gene body methylation as found in

arthropods, leading to increased gene expressialdas an increased variety of splice variants

in those transcripts.

Figure 2. How exposure to a stressor may leadritabée epigenetic changes that could lead to

stress-resistant phenotype in an invasive agri@lltosect pests.
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