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ABSTRACT 
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Jyväskylä: University of Jyväskylä, 2018, 48 p. 
Computer Science, Thesis 
Supervisor: Hämäläinen, Timo and Kiviharju, Mikko 

The idea of this thesis is to find the most efficient way of generating new PGP 
fingerprints. This is done in order to try and create a fingerprint that is similar 
to a fingerprint of the target. Fingerprints from 2048-bit RSA keys are generated 
in four different ways to determine which one is the most time and space effi-
cient. Multi-prime RSA seems to be the fastest and most space efficient when 
the number of primes that make-up RSA is chosen carefully. 
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Tämän pro gradu-tutkielman tavoitteena on selvittää, että mikä tapa tuottaa 
PGP sormenjälkiä on tehokkain. Tämä tehdään siitä syystä, että halutaan löytää 
mahdollisimman tehokas tapa luoda samankaltainen sormenjälki kuin kohteen 
julkisen avaimen sormenjälki. Sormenjäljet lasketaan 2048-bittisistä RSA 
avaimesta neljällä eri tavalla, jotta selviäisi mikä niistä on aika- ja tallennustila-
tehokkain. RSA useammalla kuin kahdella alkuluvulla toteutettuna näyttää 
olevan nopein ja vievän vähiten tallennustilaa olettaen, että alkulukujen määrä 
valitaan tarkoin. 
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1 INTRODUCTION 

“PGP is the closest you’re likely to get to military-grade encryption” (Schneier 1996) 
 
Bruce Schneier compared PGP to military-grade encryption back in 1996, 

which it basically was according to the US government who in the early 90’s 
classified PGP and other encryption products using over 512-bit keys as non-
exportable weapons (Schneier, 1996). Even nowadays PGP is a popular method 
for encryption especially relating to emails and it gained even more popularity 
with the Edward Snowden case in 2013. 

 
The object of this thesis is to examine the PGP system and its vulnerability 

to man-in-the-middle attacks using keys generated from fingerprints. Quite of-
ten ownership of a key is verified by receiving the fingerprint by using another 
media and then comparing the fingerprint to the fingerprint generated from the 
key. Now the idea in this thesis is to intercept the first communication of the 
actual public key, calculate its fingerprint and generate another (impersonation) 
key, which has a similar if not identical fingerprint to pass the verification 
phase in some later use of the impersonation key. 

 
This thesis will start by explaining the fundamentals of public-key encryp-

tion such as trust models and key management. The inner workings of PGP will 
be discussed including different types of algorithms used and the security side 
of the protocol. The chapter on theory is concluded by a section on practical 
implementations of PGP. 

 
The third chapter will contain the practical implementations of the said at-

tack and detailed explanation of the different attempts that will be examined. 
The fourth chapter includes the results of the experiments outlined in chapter 3. 
The fifth chapter will contain discussion of the results and the conclusions of 
the thesis. 
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1.1 Research Problem 

The research question is: what is the effect of forged fingerprints on securi-
ty of PGP architecture? This leads up to the following sub-question: what is the 
most efficient way to create a public key that has the required fingerprint?  

 
This problem will be tackled using constructive research approach. 
Constructive research approach includes selecting a relevant problem, studying 
the field of study in question, designing one or more solution to the problem 
and testing these solutions (Lehtiranta, Junnonen, Kärnä & Pekuri, 2015). This 
approach was chosen to compare the different ways of calculating a new public 
key and its fingerprint and to determine which is the most efficient one. 
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2 THEORY 

In this chapter we will discuss various aspects related to public key cryp-
tography and PGP in more detail. Firstly we need to explain what public key 
cryptography is. Public key cryptography uses more than one non-identical 
keys. Usually there are two keys: a public key and private key. Public key is 
publicly available to everyone and entities who want to send a message to a 
person use this key to encrypt this message. Once the person who owns the pri-
vate key receives this message, they can use the private key to decrypt it.  

 
In this chapter we will start off with discussing trust models of public key 

systems. Then we will discuss and explore the PGP architecture in more detail, 
including how it works, what algorithms are used and evaluation of its security 
and usability. Third subchapter of this chapter is dedicated to key management. 
The chapter will close with a subchapter on the software implementations of 
PGP. 

2.1 Trust Models for Public Key Systems 

Oxford English Dictionary defines trust as a “firm belief in the reliability, 
truth, or ability of someone or something.”(Oxford University, 2016) Trust is 
important in public key systems, but not as trust on the strength of the encryp-
tion system. The trust in this case is trust on whether a public key actually be-
longs to the entity claiming ownership. In this chapter three types of trust mod-
els will be discussed: direct trust, hierarchical trust and web of trust. (Network 
Associates, 1999) 

2.1.1 Direct trust 

Direct trust is the simplest of the trust models. In this trust model the user 
trusts all the public key person relationships, for example, due to the fact that 
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they have personally got the key from them. A diagram of this type of trust 
shown below in Figure 1. All the cryptosystems use this kind of trust in some 
format. (Network Associates, 1999) 

 

 
FIGURE 1 Direct trust (Network Associates, 1999) 

 

2.1.2 Hierarchical trust 

A hierarchical trust model consists of three types of roles: root certificate 
authority, certificate authority and user (Vacca, 2004). Root certificate authority, 
verifies the certificate authorities before they issue a certificate to the requestor. 
Certificate Authority (CA) is an authority that issues and verifies digital 
certificates (Rouse, 2007). Users are the entities that use this system to be able to 
trust that the public keys belong to the entity specified in these certificates. 
Figure 2 shows the layout of this type of trust model. 

 

 
FIGURE 2 Hierarchical Trust Model (Network Associates, 1999) 
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To trust a person’s certificate one can trace the route back to the trusted 

root CA (Network Associates, 1999). This expands the network of trusted 
personnel as there may not be a possibility to establish direct trust with 
everyone. These certificates generally include the owner’s public key, the name 
of the owner and an expiration date. The CA is a so-called trusted third party, 
meaning that both of the communicating parties trust it and that it has verified 
the link between the public key and the owner. 
 

2.1.3 Web of Trust 

This is the trust model used in PGP. This model is a combination of direct 
and hierarchical trust models, but there is no central authority giving 
certificates. A user can establish trust on keys by getting them directly from 
another user or establish the trust by using the signatures the key has gained. 
When a user trusts a certificate they can sign it with their own signature and if 
someone trusts them then they should in theory be able to trust the certificate 
the user has signed (Chadwick, Young & Cicovic, 1997; Feisthammel, 1998). 
However, in practice there is an issue that it is hard to apply pressure to users 
to only sign keys that they trust, where as in a hierarchical model the CA would 
quickly loose reputation as a trustworthy authority if they didn’t verify the keys 
properly. 

 

2.2 PGP Architecture 

PGP (Pretty Good Privacy) was created by Phil Zimmermann in 1991 
(Lucas, 2006). He combined some of the common encryption methods at the 
time to create a tool usable by anyone with a computer. During the time of 
PGP’s release the US government considered encryption to be a threat to na-
tional security and it was not allowed to export encryption software without a 
permit from the state (Lucas, 2006). Zimmermann put PGP together with its 
source code online for anyone to download. This caused the law enforcement of 
the US to launch an investigation on Zimmermann on the basis of violat-
ing federal arms-export laws (Sussman, 1995). The investigation lasted three 
years, but in the end it was dropped and no charges were filed against Zim-
mermann. 
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2.2.1 How PGP works? 

To send an email using PGP one has to create a public and a private key. 
An example of these is shown below: 

 

 
FIGURE 3 PGP Public key block created using GnuPG 
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FIGURE 4 PGP Private Key created using GnuPG 

 

Now that the keys are generated using the algorithms explained later in 
this chapter a message can be written and encrypted. PGP first compresses the 
plaintext (Network Associates, 1999). This is done to save time and disk space. 
Technically this will also strengthen security since plain text attacks are more 
difficult if the text that is being encrypted is compressed and thus has less pat-
terns. However, this affects only ciphertext-only attacks and most modern 
schemes are already designed against more advanced attacks. Like in many en-
cryption systems a session key is generated after this and this is used to encrypt 
the message. This session key is then encrypted with the public key of the re-
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ceiver (Network Associates, 1999). This key is send to the recipient alongside 
the encrypted message. Decryption is the reverse of this operation.  

2.2.2 Algorithms 

There are multiple algorithms that can be used in PGP. The selection de-
pends on the software implementation that is being used.  
 
Asymmetric algorithms 
 

For public-key cryptography, GnuPG supports RSA (Rivest-Shamir-
Adleman), DSA (Digital Signature Algorithm) and ElGamal. The most common 
public-key cryptography algorithm by GnuPG users is 2048-bit RSA (The 
GnuPG Project, 2016). 

 
RSA(Rivest, Shamir & Adleman, 1983a) is an algorithm that works both 

for encryption and digital signatures (Schneier, 1996). The difficulty of breaking 
RSA encryption is based on factoring extremely large composite integers (The 
GnuPG Project, 2016). We show below conceptually, how to generate private 
and public keys: 

1. Take two large prime numbers p and q.  
2. Compute their product: n = pq. 
3. Compute φ (the Euler’s totient) of n: φ(n) = (p-1)(q-1). 
4. Choose a value for e, such that 1 < e < φ(n). And so that e and φ(n) 

are relatively prime. 
5. Compute a value for d, such that ed = 1 mod φ(n) 
6. The public key is n and e. 
7. The private key is d. (Ireland, 2016; Schneier, 1996) 

This is how the keys are generated as a textbook example. In real life there 
are usually standards such as PKCS #1 which impose additional requirements 
on the numbers chosen etc. to defend against certain types of attacks (RSA La-
boratories, 2012). 

To encrypt a message m one basically calculates the value of encrypted 
message c using the following: c = me mod n. Likewise to decrypt the message c 
to get the message m one does the following: m = cd mod n (Ireland, 2016). If m > 
n then the solution is to split the message into blocks smaller then n and then 
combine the individual encryptions and decryptions as appropriate. In real life 
there will be padding added to the message and the message may be split into 
blocks to give it some randomness and make it harder to decipher.  

The patent for RSA encryption mentions that creating the keys n and d is 
also possible with more than two primes (Rivest, Shamir & Adleman, 1983b). 
This approach was later titled as Multi-prime RSA. The advantage of using 
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more than two primes is primarily faster decryption using the Chinese Remain-
der Theorem and also faster key generation as generating and verifying smaller 
prime numbers take considerably less time. There is some research on how 
many primes can be used without affecting the security of the system, but that 
is not a huge concern in this project since we are trying to perform an attack on 
the system, but we do want to avoid using simple primes so that we have at 
least some secrecy. 

 
 ElGamal (ElGamal, 1985) can also be used both for encryption and digital 

signatures just like RSA, however the ElGamal signature algorithm is no longer 
supported by GnuPG (The GnuPG Project, 2016). The difficulty factor in this 
algorithm comes from calculating discrete logarithms in a finite field. (Schneier, 
1996) The algorithm to generate the public and private keys is shown below: 

1. Choose a prime number p. 
2. Choose two random numbers q and x which are less than p. 
3. Compute y=qx mod p. 
4. The public key is y, q and p. 
5. The private key is x. (Schneier, 1996) 

As with the RSA algorithm above, this is a text book example and if this 
was to be implemented in real life there would be additional requirements for p, 
q and x. To encrypt a message, the sender would choose a random integer k and 
compute r = qk mod p and t = ykM mod p. Here M is the numerical representa-
tion of the message being sent. Now k is discarded and r and t are send to the 
recipient. To decrypt the message: tr-x = M. 
 

DSA is a standardized algorithm that can only be used for digital signa-
tures. It is a variant of ElGamal and defined in the Digital Signature Standard 
(Digital signature standard (DSS), 2013) created by the US government. Both El-
Gamal and DSA use calculating discrete logarithms as its difficulty factor 
(Schneier, 1996). 

 
Symmetric algorithms 
 

The actual message in PGP is encrypted using a symmetric algorithm such 
as IDEA (International Data Encryption Algorithm; (Lai and Massey, 1991), Tri-
pleDES (Triple Data Encryption Algorithm) (National Institute of Standards 
and Technology, 1999), CAST-128 (Adams, 1997), Blowfish (Schneier, 1993)or 
AES (National Institute of Standards and Technology, 2001). 

 
IDEA is a symmetric-key block cipher (Schneier, 1996). It was designed by 

James Massey and Xuejia Lai (Lai & Massey, 1991). IDEA consists of three func-
tions: XOR, addition modulo 216 and multiplication modulo 216 +1. These func-
tions are mixed and applied to the blocks that the message is being split to 
(Schneier, 1996). 
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TripleDES is also a symmetric-key block cipher and it applies DES (Data 

Encryption Standard) three times to each data block, hence the name TripleDES. 
DES was developed by the US National Bureau of Standards based on work 
done by IBM (Schneier, 1996). DES uses 56-bit keys to encrypt and is no longer 
deemed secure on its own (Schneier, 1996). TripleDES uses three 56-bit keys K1, 
K2 and K3 to encrypt so that K1 encrypts, K2 decrypts and K3 encrypts. However, 
its more practical to use just two keys so that K1=K3. This is only slightly less 
secure then using three separate keys but still more secure than just using two 
instances of DES because of the meet-in-the-middle attack. The reverse opera-
tions are done to decrypt the message (Barker & Barker, 2011). 

 
CAST-128 has a maximum key-size of 128-bits and a 64-bit block size. It 

was designed by Carlisle Adams and Stafford Tavares (Schneier, 1996). It is a 
DES-like Feistel Network cryptosystem and it appears to be resistant to several 
cryptanalysis attacks (Adams, 1997).  

 
Blowfish is an algorithm designed by Bruce Schneier. It has a 64-bit block 

size and variable-length key size which improves the security compared to 
other encryption algorithms (Schneier, 1996) (Schneier, 1993).  

 
AES is a standard that uses an algorithm called Rijndael developed by 

Joan Daemen and Vincent Rijmen (NIST, 2001). A big difference to other 
symmetric algorithms mentioned here in that it has a block size of 128-bits. It 
has a maximum key-length of 256 bits (Erdelsky, 2002). 

 
Hash algorithms 

 
GPG supports multiple hash algorithms: MD5, SHA1, RIPEMD160 and 

some SHA-2 algorithms with varying hash lengths. Hash algorithm or function 
is a one-way hash function that takes an input of variable length (pre-image) 
and produces a fixed length output (hash) (Schneier, 1996). There are multiple 
uses for hashing algorithms with regard to PGP, such as signatures and finger-
prints. When a user signs a message with their private key, the software that 
implements PGP calculates a hash of the message and signs it with the user’s 
private key. Now the receiver, when receiving the message, can calculate the 
hash as well and then verify the signature with the sender’s public key. The use 
of hash functions in fingerprint creation is explained in more detail at the end of 
this section when the SHA1 hash algorithm is discussed. 

 
Attacks against the security of hash algorithms can be divided into three 

main categories: preimage-attack, second preimage-attack and collision-attack 
(Rogaway & Shrimpton 2004). Preimage-attack means that there is a given hash 
and the attacker attempts to find a message that has this same hash. Second 
preimage-attack means that there is a given a message and the attacler attempts 
to find another distinct message so that these messages share the same hash. 
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Collision-attack is a situation where the attacker attempts to find any two mes-
sages so that they share the same hash (Rogaway & Shrimpton, 2004). 
 

With regard to this thesis the most relevant hash algorithm is SHA1 since 
it is by default used in GPG for fingerprint creation. SHA1 is designed by NIST 
and NSA in 1995 (Schneier, 1996). The input is padded and split into 512-bit 
blocks to produce a 160-bit hash (Manuel, 2011). The fingerprint of a PGP key is 
calculated by taking a SHA1 hash of the public key packet. 

 

2.2.3 PGP Key Structure 

PGP public key, when exported out of a program like GPG, consists of 
multiple packets. There are two general types of keys that can be found here: 
primary keys and subkeys. Primary keys are mainly used for signing the sub-
keys which perform the encryption and decryption. Both the public and private 
keys have primary keys and subkeys. There is only one primary public key and 
private key. Each type of key can have multiple sub-keys but they must be tied 
to the primary key by being signed by the primary key. 

 
The PGP public key packets consist of a varied length header and a body. 

The header generally consists of a one-octet packet tag and the rest of the head-
er is packet length. The one-octet packet tag starts with one as the left-most bit 
(bit 7) and the bits storing the packet tag are bits 5-2 with bits 1-0 storing the 
length-type. The meaning of the length-type bits are shown below: 

00 – Packet’s length is represented by one octet 
01 – Packet’s length is represented by two octets 
10 – Packet’s length is represented by four octets 
11 – Indeterminate length. 
 
Generally, the first packet is the Public-Key Packet and it consists of values 

related to the actual primary key. The packet tag is 6. These fields and their 
lengths are shown below for a version 4 packet: 

- Version number (one octet) 
- Creation timestamp (four octets) 
- Public-key algorithm (one octet) 
- Series of multiprecision integers(MPIs) that contain the key material. 

For RSA these fields are modulus n and exponent e. The fields are pre-
ceded by the bit-length of that field. 

The public-key packet is followed by a User ID Packet. The body of this 
packet consists of only one field in UTF-8 text that should have the user’s name 
and email address. These are stored following the RFC 2822 format where the 
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name is first followed by the email surrounded by less-than and greater-than 
signs (Shaw et al., 2007). 

 
The Signature Packet (tag 2) generally follows the aforementioned packets. 

This is a signature that certifies that the public key belongs to the user id men-
tioned in the user id packet (Shaw et al., 2007). A version 4 signature packet 
body consists of the following fields: 

- Version number (1 octet) 
- Signature type (1 octet) 
- Public-key algorithm (1 octet) 
- Hash algorithm (1 octet) 
- Length of all the hashed subpackets (2 octets) 
- Hashed subpackets (0 or more subpackets) 
- Length of all the unhashed subpackets (2 octets) 
- Unhashed subpackets (0 or more subpackets) 
- Left 16 bits of the signed hash value (2 octets) 
- One or more algorithm specific MPIs comprising the signature. For 

RSA this is the value of ݉ௗ mod n. 

The subpackets mentioned can consist of data containing signature crea-
tion time, key expiration time, preferred algorithms (compression, hash and 
symmetric), issuer of the signature etc. The format of these subpackets is similar 
to the format of the packets consisting of a header and a body. However in sub-
packets in the header the length comes first followed by the subpacket type. 

 
Public key, user id and signature packets are usually followed by the 

packets related to the subkey. The Public-Subkey packet (tag 14) consists of the 
same fields as the public key packet mentioned first in this section but it de-
notes a subkey. Each subkey is followed by a signature packet that certifies that 
the key belongs to the master key.  

 
There are also other packet types that can occur inside a public key but 

they are not included in the key with the default settings in GPG. These include 
packets such as user attribute packet and compressed data packet.  

 
The private key also consists of packets. The packets that are the same 

with the public key are “user id” and “signature” packets. New packets are also 
introduced, called the “Secret-Key” Packet (Packet tag 5) and “Secret-Subkey” 
Packet (Packet tag 7). These are very similar in structure so only the “Secret-Key” 
Packet will be explored in more detail. The secret-key packet contains all the 
information from the public-key packet as well as: 

- Secret-key encryption indicator (1 octet) 
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- Algorithm-specific fields. For RSA these would be: secret exponent d, 
prime values p and q and u, the inverse of p, mod q. All of these values 
are MPI. 

 

2.2.4 Security of PGP 

In 1994 Bruce Schneier called PGP the closest thing you are likely to get to 
military grade encryption (Schneier, 1996). The field of cryptography has 
changed massively since then but even Edward Snowden trusted the security of 
PGP in 2013 when communicating with reporters about papers he wanted to 
leak. The security side of PGP seems to be quite strong but there are some weaknesses 
as well which will be discussed in this chapter. 

 
PGP depends on several algorithms which have been cryptographically 

tested (Slegers, 2001). These algorithms are used to provide a secure channel of 
communication for the user. One of the most common algorithms used is RSA 
which, with long enough keys, is unbreakable with the current technology. 
However, in practice the some of the keying elements are often quite short in 
length and default values are used in parameters which weaken the security. 
Also the increased power of computation and new techniques being discovered 
make shorter keys easier to crack. PGP supports multiple algorithms and is 
built in such a way that new ones can be easily implemented in case weakness-
es are discovered in some of them. 

 
There is quite a bit of research done on Short-ID Collison Attacks related 

to PGP. Short-ID is the last 8 digits of a key’s fingerprint and there have been 
some cases where people have been able to get a key with same short-ID as the 
key they are trying to attack against (Heller, 2016). In this example the attacker 
was able to create a key-pair with a fingerprint that had the same last 8 hexa-
decimal characters as the fingerprint for Linus Torvalds. The attack is carried 
out by increasing the key’s public exponent and then hashing the key. The last 8 
hexadecimal characters of the hash are compared to the wanted hash and if 
there is no match the exponent is increased yet again until a match is found 
(Swanson, 2017). This attack was first demonstrated in 1996 by Raph Levien 
when he managed to create a PGP key that has the same Short-ID as the key of 
Phil Zimmerman, the creator of PGP (Levien, 1996). 

 
A chosen-ciphertext attack against PGP and GnuPG has also been success-

fully carried out (Jallad, Katz, Lee & Schneier, 2002). Although they had to 
make some alterations such as limiting the amount of compression. They used 
the recipient’s email application as an oracle query and were able to entirely 
decrypt a message that was not compressed before encryption.  
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Wilson and Ateniese tried to improve PGP by using the techniques used 
in Bitcoin and it’s blockchain (Wilson & Ateniese, 2015). In their article, they 
discuss several weaknesses and limitations with the trust system used in PGP. 
One of the main weaknesses is that the honor system is subjective and that the 
user can only completely trust the entities that have given the user their public 
key personally. According to them it’s really difficult to get a new key certified 
since there is no incentive for others to endorse keys. 

2.2.5 Advantages and Disadvantages of PGP 

Compared to not encrypting email then one of the major advantages of 
PGP is the fact that with the current technology if a person encrypts their email 
using this system and their private key is not compromised they can be almost 
certain that no one can read the email apart from their intended participant. 
Also, the fact that a user can personally choose which keys they trust and who 
do they trust enough to trust a key that they signed is an important advantage. 
PGP can also be used for signing an email so a user can be sure that the sender 
is who they say they are which is important in these days of anonymity in the 
internet. 
 

There are also some disadvantages of using PGP. These include issues 
such as compatibility (this is an issue relative to unencrypted communication), 
complexity and the fact that there are no known backdoors in the sense that if a 
user loses their private key there is no practical way to be able to read the mes-
sages encrypted using their public key. Both the receiver and the sender must 
have compatible versions of the software to be able to read the messages send 
by the other user. This isn’t a big problem in most circumstances but should be 
taken into account. Another problem related to “compatibility” is that if the us-
er has their private key stored in a local machine then reading PGP protected 
emails elsewhere or on their mobile device will not be possible. The private key 
could of course be copied to multiple devices but with each copy the security of 
the system weakens. 

 
PGP can seem quite complex to a new user. In 1999 Whitten and Tygar 

conducted a study on the usability of PGP 5.0 to new users with low previous 
experience in encryption. The results showed that PGP 5.0 is not suitable to 
make encryption easier to use for the public and users understanding of the 
underlying principles of public key cryptography is limited (Whitten & Tygar, 
1999). A study conducted by Bringham Young University (Ruoti, Andersen, 
Zappala & Seamons, 2015) found out that especially browser-based PGP secure 
email tool is also hard for new users to grasp. In the study, only one pair was 
able to successfully complete the tasks in the time allocated. Also, the trust sys-
tem is unique and might take some time getting used to. 

 



21 

 

The idea that there are no known backdoors in the latest version of PGP is 
important for an encryption system but if a user is to lose or permanently delete 
their private key then all the encrypted messages will stay encrypted and there 
is no option to recover a lost password. This is why it’s important to make a 
backup of the private key to a secure location. 

2.3 Key Management 

“Compromise of the system details should not inconvenience the correspondents” 
(Kerckhoffs, 1883) 

 
The quotation at the start was written originally in French by Dutch cryp-

tographer Auguste Kerckhoff in 1883, but still applies today. The security of the 
messaging channel should not suffer if the algorithm is known to a third party, 
thus keys are the most important part of an encryption algorithm. For example, 
a weak pair of keys can provide a weakness in otherwise strong encryption. 
“Key management is the hardest part of cryptography” (Schneier, 1996). Key 
management includes e.g. generation, exchange, verification, storage and re-
placement of keys. 

2.3.1 Key Generation 

Key generation is vital in operating secure encryption systems. If the way 
the keys are generated is cryptographically weak then the whole system is 
compromised. Keyspace and its size are an important factor in key generation, 
since the larger the keyspace the harder it is to perform a brute-force attack 
against it given that each possible member of the keyspace is equally likely.  

 
If we take a 4-byte (32-bit) key consisting of only lowercase letters (a-z) 

then the possible number of combinations is 264 which is about 4.6 * 105. How-
ever, if all the 8-bit ASCII characters are used for a 4-byte key then the number 
of combinations is 2564 which is about 4.3 * 109. Just by increasing the size of the 
charset used for the key from 26 to 256 the size of the keyspace got 10,000 times 
larger. 

 
Randomization is one way of creating cryptographically good keys since if 

the source is truly random and the distribution is properly equalized then all 
the possible members of the keyspace are equally likely to be chosen as the key. 
However if the users have to remember a raw key then a long randomly gener-
ated key consisting of the entire ASCII key space is not practical.  

 
One solution to the human memory problem is using passphrases which 

are used to create a key using a technique called key-crunching (Schneier, 1996). 
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In this process (which is also used in PGP architecture) a one-way hash function 
is used to transform a string entered by the user to a pseudo-random key which 
is called key derivation. The passphrase has to be random enough so it cannot 
be found in existing corpuses since these are easy enough to attack. 

2.3.2 Key Exchange 

The process of key exchange in a symmetric encryption is a challenging 
task as the correspondents need to try and agree on a key without sending the 
key in plaintext over an insecure connection. One widely known key exchange 
protocol is the Diffie-Hellman key-exchange, which was first published in 1975 
(Diffie & Hellman, 1976). This key-exchange algorithm works by two people 
(let’s call them Alice and Bob) agreeing on two prime numbers g and p publicly. 
Now Alice picks a secret number a and calculates the value of A = ga mod p and 
sends A to Bob. Bob does the same thing with a secret number that he has cho-
sen called b and calculates the value of B = gb mod p and sends B to Alice. Now 
Alice can use the B she received from Bob to calculate the secret key by using Ba 
mod p and likewise Bob can use the A from Alice to calculate the same value by 
using Ab mod p. ElGamal encryption is based on the Diffie-Hellman key-
exchange algorithm and is one of the optional encryption algorithms that can be 
used in PGP. 

 
Diffie-Hellman key-exchange is useful for symmetric encryption with just 

one key as it allows two parties to decide on one key without having to send it 
over the web in clear text. However, public key cryptography offers more ver-
satile applications as well, since compared to symmetric cryptography the pub-
lic key doesn’t have to be hidden and can be published at any place where the 
other parties can see it. Quite common location to publish one’s key is a key 
server where other users can find an entity’s public key by their email or key id. 
The problem with key exchange in regard to public key cryptography is the no-
tion of trust and this will be discussed in more detail in section 2.3.3 when veri-
fication of keys is discussed. 

2.3.3 PGP Principles for Verifying Keys 

A fundamental question in public key cryptography is, how to verify that 
one entity’s key belongs to him/her and not to someone else who claims to be 
this person. There are several approaches to this from certificate authorities to 
web of trust. 

 
Certificate authorities are trusted third parties that issue digital certificates 

certifying that the key really belongs to the entity it is claimed to belong to. If 
one trusts the certificate authority, then they should be able to trust the certifi-
cates that are issue by the certificate authority.  
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A popular way in PGP architecture is to verify keys by asking for the fin-
gerprint or part of the fingerprint using some other communication channel and 
then comparing it to the one calculated from the public key that is publicly 
available. An example of this would be receiving the public key by email and 
getting the fingerprint as a text message. 

 
Trust models are discussed in more detail in the first chapter, but as op-

posed to certificate authorities there is no higher up entity that issues certifi-
cates but instead if a person trusts a key pair then they can sign it. These signa-
tures build up and the key pairs become more and more trustworthy. 

2.3.4 Storage of Keys 

Keys must be stored securely since even if the user has a 4096-bit key, it’s 
useless if the attacker can locate the private key. Keys can be stored in encrypt-
ed format so that the user has to enter a passphrase to be able to decrypt the key 
and use it to decrypt a message. Problems arise when a user has multiple devic-
es where they want to store the key in order to be able to use it.  

2.3.5 Replacement of Keys 

Keys should be replaced fairly frequently as no key should be used forev-
er however strong it is (Schneier, 1996). The longer the key is used, the more 
time attackers have to try breaking it and if they manage to break it the loss is 
higher since a lot of data was encrypted using this key. This is why a majority 
of the implementations of PGP include a parameter for key validation period, 
which is the amount of time before the key expires and a new one has to be cre-
ated. 

 
Once a key (or key-pair) is replaced, the old keys should be destroyed as 

old messages can still be decoded with these keys (Schneier, 1996). The keys 
should be destroyed carefully as even if they appear to be deleted on a comput-
er they might not have been overwritten so it might still be possible to carve 
them from the hard drive. 

 
Replacement of keys has to be announced clearly to everyone since once a 

user has destroyed their old keys there is no way to be able to open those mes-
sages. The new keys will have to be verified but it might be ideal to sign the 
new keys with the old key to prove that they really belong to the user. 
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2.4 Different Software Implementations of PGP 

2.4.1 GNU Privacy Guard (GnuPG) 

GnuPG is an open-source full OpenPGP implementation that “is a com-
mandline tool without any graphical stuff.” (The GnuPG Project, 2016) It’s gen-
erally run from the command prompt but can and has been implemented in 
other software such as email clients. There is a windows version of this software 
called Gpg4win. (The GnuPG Project, 2016). It supports all the major encryption 
algorithms discussed earlier in this chapter as well as the most common hash-
ing algorithms such as MD5 and SHA1. It is also available in many different 
languages. 

 
For a user to generate a key-pair in GnuPG one would enter the command: 

gpg ‐‐gen‐key. The user is then given a list of algorithms to use for creating 
the key, the length of the key and when the key should expire as shown in Fig-
ure 5. After the user has chosen the desired options details are asked about the 
owner of the key such as name and email address so the software can create a 
user ID. The user is then asked to enter a passphrase (this is used to give addi-
tional protection to the private key). 

 

 
FIGURE 5 GnuPG options while generating a key 

User can then view the keys added to their keyring including their own 
private keys or export their public key so they can send it to the people they 
want to be in correspondence with. The most important command related to 
this thesis is the one used to generate and display a fingerprint: gpg –
fingerprint [name] 

2.4.2 PGP Desktop 

PGP Desktop is a software suite released by Symantec. PGP Desktop is a 
commercial software and includes encryption of hard drives as well as email 
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encryption (Symantec, 2011). PGP Desktop consists of several different features 
such as PGP Messaging, PGP Keys and PGP Viewer (Symantec, 2011). 
 

PGP Messaging is a feature of the PGP Desktop that allows a user to en-
crypt and decrypt email messages in multiple email clients. It also works with 
some instant messaging clients. PGP Keys is a feature that lets a user control 
their own keys and the public keys of the people they are in contact with. PGP 
Viewer is used to decrypt, verify and display emails and other messages that 
did not come to the user in an email client supported by PGP Messaging (Sy-
mantec, 2011). 

 
PGP Desktop seems to be easy to use as the program will guide a user 

through the creating of a key pair, publishing it in a key directory and enabling 
PGP Messaging in their email client. For Key type the program supports either 
Diffie-Hellman/DSS or RSA algorithms and a key-size of 1024 to 4096 bits (Sy-
mantec, 2011). 

 
FIGURE 6 Key generation window of PGP Desktop 
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3 RESEARCH METHODOLOGY 

This chapter will contain details on how the actual research will be carried 
out. The tests will all be carried out against a key that is produced with the de-
fault settings on GnuPG. These settings at the time of writing include using 
RSA for both encryption and signing and having the key length as 2048 bits. In 
this chapter we will go over the practical aspects of creating a fingerprint from a 
PGP key, different primality testing algorithms and multi-prime RSA. We will 
then explore the different approaches in more detail and explore how data will 
be collected and analysed. In this chapter any mention of the word character 
refers to a hexadecimal character. 

3.1 Research Approach 

3.1.1 Fingerprint creation in PGP 

The fingerprint of a PGP key by the OpenPGP standard is computed by 
calculating the SHA1 hash of certain aspects of the public key(Callas et al., 2007). 
According to the OpenPGP Message Format the data that is used to calculate 
the fingerprint consists of: 

0x99 (1 octet) 
2 octets for packet length of the public key 
1 octet for version number 
4 octets for timestamp of key creation 
1 octet for algorithm 
Followed by algorithm-specific fields, which for RSA public keys are: mul-

tiprecision integer (MPI) of RSA public modulus n and MPI of RSA public en-
cryption exponent e (Shaw et al., 2007). These two fields have their length pre-
ceding them where both lengths are 2 octets in length. So with a 2048-bit n and 
a 17-bit e (usually 65,537) this adds up to approximately 272 bytes or 0x110 in 
hexadecimal notation. 
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The calculation of the fingerprint is fairly simple and the algorithm is 
demonstrated below. In a public key packet that is exported from gpg using gpg 
--output public_key.asc --export key_holder_id the necessary information for calcu-
lating the fingerprint is at the start of the file. 

 

 
 

3.1.2 Practical implementation 

 
Since the calculation of the fingerprint ends with calculating the SHA1 

hash, there is no known practical way to end the calculation prematurely if we 
can see that the fingerprint is not going to be what we would want it to be. Be-
cause of this we need an alternative to change the input to be hashed in the 
most efficient way possible.  

 
Since the generation of the fingerprint is dependent on the timestamp, we 

could change the three least-significant octets of it. That way the key doesn’t 
change as often but the fingerprint changes every time. Only the three least-
significant octets would be changed because this translated into days would 
allow for a derivation of about 195 days which would be a perfectly acceptable 
time for a key to exist before communication. Initially we planned on only edit-
ing the two least significant octets but this would only allow a time variation of 
18 hours. The recipient is unlikely to know the exact creation date of the key so 
considering the three least significant octets for 195 day variance seemed like a 
choice that wouldn’t raise any suspicion from the target (unlike a key that was 
created in the 1970s or in the future).  

 
Changing these three octets allows us to get 16,777,215 fingerprints for the 

same values of n and e which is equal to 224. The key creation process using gpg 
requires the user to interact with it, as it asks for details of the key and wants 
the user to perform other actions so it can get enough randomness to produce 
suitable prime numbers. Therefore if there is no match after these tries we gen-
erate a new n by multiplying two random prime numbers p and q. We could 
have chosen the approach of incrementing the exponent like done in the past 
(Swanson 2017), but we chose not to since the value of the exponent is by de-
fault 65537 and any variation from this would raise questions from an experi-
enced user of PGP. Furthermore, if we wouldn’t want to increase the length of 
the key packet (again not to arise suspicion) then there would be a limit to the 
number of exponents possible and we would eventually still have to calculate 
new prime numbers. 

calculate_fingerprint (public_key_packet) 
  len = int(public_key_packet[1:3])  
  pub_key = public_key_packet[0:len+3] 
  return SHA1(pub_key) # length = 20 bytes 
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One thing to bear in mind is that the creation date of the key is shown to 

the user when it has been imported, so we do not want to make a key that has 
this creation time in the future. For this reason we would take the current time 
and calculate 224 seconds back from this. This way the key would be created in 
the past and it would be at most about half a year old. 

 
The idea is to have a script that takes an existing public key packet, leaves 

the first, fourth and fifth octet as they are, calculates a new value for n and e 
and calculates their length to be included in octets two and three. Then start 
changing octets at index 5 to 7 and see if there is a match in the fingerprint. If all 
possible 16,777,215 values have been tried for indexes 6 and 7 then we calculate 
a new value for n. 

 
Algorithm is as follows: 
 

 
Since the other packets mentioned in section 2.2.3 are not required for the 

fingerprint calculation these would not be created until a desired similarity is 
achieved between the target and the fingerprint of the attacker. 

3.1.3 Social Engineering 

Concerning SHA-1 there is only one known case of collision (Stevens et al., 
2017) and there are no known second-preimage-attacks, meaning that it is hard 
to find a partner for a random point that has the same hash (Rogaway & 
Shrimpton, 2004). That’s why we need to factor in social engineering in that 
when people verify a key they do not necessarily check every character of the 
hexadecimal representation. They might only check the first and last x charac-
ters. There are also examples of users not verifying the hash at all when con-
necting to an SSH server which shows a similar length hash as a PGP would 
(Gutmann, 2011).  
 

 
Now the ideal approach to take advantage of this would be to produce a 

script that allows the user to enter the number of characters they want to match 

calculate_fake_public_key(target_public_key)
  tfp = fingerprint(target_public_key) 
  start_time = current_time – 0x1000000 
  while(true): 
    new_key = RSA.genkey(2048) 
    new_public_key = new_key.n() + new_key.e() 
    for i in 0x000000 to 0Xffffff: 
      new_public_key[6:8] = i + start_time 
      if fp(new_public_key) == tfp: 
        return new_key 
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from the beginning, end or both and then it’s up to the computing power avail-
able to the user to compute enough fingerprints to find a match. A German 
hacker group called The Hacker’s Choice created a program which does this to 
an extent (Plasmoid, 2003). In the program the user enters a weight for each dig-
it of the hash and the program attempts to generate a similar hash based on 
those. It is based on the idea that, as mentioned previously, users tend to only 
compare only a sequence at the start and at the end of the fingerprint to verify it. 

 

3.1.4 Primality testing algorithms 

There are multiple algorithms to test primality of a number. In this project 
we will only focus on the probabilistic algorithms since deterministic primality 
testing algorithms are more computationally intensive (Menezes, Oorschot & 
Vanstone, 2001). In this section three algorithms will be discussed and their per-
formance analyzed in more detail. These tests are Fermat, Solovay–Strassen and 
Miller-Rabin. 

 
Fermat’s primality test is a probabilistic test that applied Fermat’s little 

theorem to find out whether a number is probably a prime or not. The algo-
rithm of this test is as follows (Menezes et al., 2001): 

In Fermat’s primality test the result “prime” may not be true if the value of 
t is small since not all the possible divisors will be tested for but with large 
enough t these false positives are rare. 

 
The Solovay-Strassen (Solovay & Strassen, 1977) primality test was made 

popular by being used in the early versions of RSA (Menezes et al., 2001). It fol-
lows the basic format of the Fermat’s primality test but makes some alterations 
for efficiency and accuracy. The algorithm is as follows (Menezes et al., 2001): 

 

Fermat(n,t): 
  INPUT: n an odd integer >=3 and t >= 1 
  for i from 1 to t: 
      a = random integer between 2 and n‐2 
      r = an‐1 mod n 
      if r != 1: return “composite” 
  return “prime” 

Solovay‐Strassen(n,t): 
  INPUT: n an odd integer >=3 and t >= 1 
  for i from 1 to t: 
      a = random integer between 2 and n‐2 
      r = a(n‐1)/2 mod n 
      if r != 1 and r != n‐1: return “composite” 
      s = (a/n) 
      if r != s (mod n): return “composite” 
  return “prime” 
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As with Fermat’s primality test the result prime may not always be a 
prime but the likelihood is higher than that of Fermat’s primality test. This test 
utilizes Euler’s criterion during the process. This criterion states that given an 
odd prime n then a(n-1)/2 = (a/n) (mod n) for all a which satisfy gcd(a,n)=1 
(Menezes et al., 2001). 
The Miller-Rabin test (Rabin, 1980) is the most used in practice of the three tests 
mentioned here. (Menezes et al., 2001). It differs from the previous tests by the 
equation it uses as the foundation for the test. The formula for this test is as fol-
lows (Menezes et al., 2001): 
 

 
When discussing the performance of these primality tests the most im-

portant factor is how many exponentiations are there especially with the varia-
ble n. This is important since n is a long integer and calculations of this type 
using that number will require a significant amount of computing power. 

 
Fermat’s primality test includes one exponent calculation that uses the 

variable n per iteration (an-1 mod n).  Solovay-Strassen requires at least one ex-
ponent calculation per iteration (ar mod n), although n is not the exponent here 
r is based on the value of n and is increased by one on every iteration. Miller-
Rabin on the other hand computes an operation requiring n at the start before 
the for-loop. During the for-loop n is used a few times for modulation but un-
like in the first two tests it is not used as an exponent. Miller-Rabin does use the 
value r which is based on the value n as an exponent but according to the algo-
rithm it is clearly smaller than n.  

 
The Miller-Rabin is the most efficient of these algorithms at computing 

whether a number is a prime or not. The Miller-Rabin test also has an error rate 
that is smaller or equal to that of the other two tests. The upper bound for error 
probability for Solovay-Strassen is (1/2)t and for Miller-Rabin it is (1/4)t 
(Menezes et al., 2001). Therefore, the lower bound of the success rate as a per-
centage if t is 3 is 87.5% for Solovay-Strassen and 98.4% for Miller-Rabin. For 

Miller‐Rabin(n,t): 
  INPUT: n an odd integer >=3 and t >= 1 
  Compute n‐1 = 2sr so that r is odd. 

for i from 1 to t: 
      a = random integer between 2 and n‐2 
      y = ar mod n 
      if y != 1 and y =! n‐1: 
          j = 1 
            while j <= s‐1 and y != n‐1: 
            y = y2 mod n 
            if y = 1: return “composite” 
            j = j + 1 
          if y != n‐1: return “composite” 
  return “prime” 
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these reasons in this project Miller-Rabin will be used as the primality test of 
choice. 

3.1.5 Multi-prime RSA 

Using more than two primes to calculate the modulus n has a significant 
advantage over the traditional method in that the prime numbers generated can 
be much smaller. This allows for faster computation and it makes splitting the 
task of creating the primes for a key between cores easier. These primes do not 
need to be unique and there is not really any way of working these out from the 
value of n without solving the factorization problem.  

 
There is no theoretical limit to the number of primes that n can be com-

posed of, but the smaller they are then the factorization becomes easier. For this 
experiment we will consider the number of primes from 2 to 16. That means 
that if we take a 2048-bit value for n the maximum size is 1024-bit (the normal 
case where there are two primes p and q) and the minimum size is 128 bits 
(128*16=2048). 

 
Using this method we will have to take into account, in addition to the 

space required and speed of prime generation, the time it takes to multiply two 
numbers together. This will be important since this operation will be performed 
15 times in the case where n is a product of 16 primes. 

 
Another problem with the multi-prime RSA is that when two n-bit num-

bers are multiplied together the product is not necessary 2n bits long, but it 
could be smaller by one bit. This is not generally a problem when n is a product 
of only p and q since in this case the product could be at worst 2047-bit number. 
The problem arises when there are more primes and the possible product gets 
further away from the desired length. To solve this we would have to calculate 
the bit-length of the product of k-1 primes and then choose a large enough 
prime to get the result closer to the 2048-bit value. 

3.2 Data collection methods and techniques 

There are multiple approaches for targeted fingerprint generation that will 
be compared in this project. These approaches will be timed inside the script by 
using Python’s built-in functions for measuring time. The following approaches 
will be compared in creating a fingerprint from 2048-bit key: 

1. The primality of p is not tested at all until a suitable fingerprint is 
found. 
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2. The primality of p is tested each time a new modulus is required (be-
fore any fingerprints are calculated). 

3. A list of pre-generated primes is used, and p and q are chosen from 
them, each time a new modulus is required, and the fingerprints are 
calculated including moduli formed by each possible pair (pi, qk) from 
this set. 

4. Use more than two prime numbers to generate n. 

In each scenario we will first calculate 224 fingerprints by changing the 
timestamp and only after this we would generate a new value for the modulus 
n by one of the means mentioned above. Initial tests have shown that the time it 
takes to create 224 fingerprints from two new prime numbers takes approxi-
mately 56.4 seconds. Generation of a 1024-bit prime number takes on average 2 
seconds. These values were achieved by running the calculations 100 times and 
taking the average. The tests where run on a Xubuntu 16.04 running on a Virtu-
alBox with 8GB of base memory allocated for the machine.  

 
Let’s perform a few calculations to see what the potential outcome of this 

experiment would be. Let t( ௞ܲ) be the amount of time taken to create a k-bit 
prime number. Let t(P1024) = 2 seconds, the time needed to create a 1024-bit 
prime number. Let t(C) = 56.4 seconds, the time taken to create 224 fingerprints 
based on pre-calculated keys. N is the number of random numbers masquerad-
ing as primes created during the process of finding a fingerprint to meet the 
requirements. After initial testing the bit-size of the key packet that is being 
used to calculate the fingerprint from does not seem to have a significant effect 
on t(C).  

 
Now in approach 1 we would save the t( ଵܲ଴ଶସ) and each cycle would only 

take t(C) amount of time, however we would need to verify that the values cho-
sen were actually prime and if they weren’t then those calculations would be 
wasted. The calculation would only take ݐሺܥሻ ∗ ܰ amount of time. On average 
when we deal with numbers that are 1024-bits in size (approximately 309 digits 
in base 10) we find that according to the prime number theorem (Hoffman 1998) 
a number is prime with probability 1/(1024*ln(2)), or equivalently, about 1 in 
710  is a prime. If we ignore even numbers in the search, the probability of a 
false positive is then about 1-(1/355), and the expected amount of trials needed 
to get a true hit about 355/2 = 174,5 times longer than with pre-checked primes.  

Number of generated fingerprints: 2ଶସ ∗ ܰ 
Time taken to generate these fingerprints: ݐሺܥሻ ∗ ܰ 
N: Number of generated random numbers 
 
In approach 2 we test the primality first and then create the fingerprints 

and thus each cycle takes ݐሺ ଵܲ଴ଶସሻ ൅  ሻ amount of time. So the time takenܥሺݐ
would be ൫ݐሺ ଵܲ଴ଶସሻ ൅ ሻ൯ܥሺݐ ∗ ܰ where N is the number of prime numbers creat-
ed. Here the number of fingerprints created would be ܰ ∗ 2ଶସ. This could be 
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improved by storing the prime numbers and pairing the newly generated num-
ber with all the others in which case the performance would increase. 

Number of generated fingerprints: 2ଶସ ∗ ܰ 
Time taken to generate these fingerprints: ሺݐሺ ଵܲ଴ଶସሻ ൅ ሻሻܥሺݐ ∗ ܰ 
N: The number of prime numbers generated 
 
In approach 3 the cycle would only take t(C) amount of time as the prime 

numbers have been pre-generated but we would still need to take that time into 

account so the realistic time would be ݐሺ ଵܲ଴ଶସሻ ∗ ܰ ൅ ሻܥሺݐ ∗ ே
ሺேିଵሻ

ଶ
. Here the 

number of fingerprints created would be ൫ܰ ∗ ሺܰ െ 1ሻ൯ ∗ 2ଶଷ . This approach 
should work better when N is larger compared to approach 2.  

Number of generated fingerprints: ൫ܰ ∗ ሺܰ െ 1ሻ൯ ∗ 2ଶଷ 

Time taken to generate these fingerprints: ݐሺ ଵܲ଴ଶସሻ ∗ ܰ ൅ ሻܥሺݐ ∗ ே
ሺேିଵሻ

ଶ
 

N: The number of prime numbers generated 
 
In approach 4 the cycle would take ݐሺܥሻ amount of time just like in ap-

proach 3. However, calculating the pre-generated primes should take less time 
since the primes will be smaller, although we would need to compute more of 
them. The calculation would also depend on the number of prime numbers (k) 

used to calculate the value for n. The time taken would be ݐ ൬ܲభబమర
ೖ
൰ ∗ ܰ ൅ ܶሺܥሻ ∗

ே!

௞!ሺேି௞ሻ!
 and this would generate	 ே!

௞!ሺேି௞ሻ!
∗ 2ଶସ fingerprints. Now this seems to be 

the fastest of the approaches but working out a suitable size for k will be an in-
teresting problem to discuss. 

Number of generated fingerprints: ே!

௞!ሺேି௞ሻ!
∗ 2ଶସ 

Time taken to generate these fingerprints: ݐ ൬ܲభబమర
ೖ
൰ ∗ ܰ ൅ ܶሺܥሻ ∗ ே!

௞!ሺேି௞ሻ!
  

N: The number of prime numbers generated of size 1024/k 
K: The number of prime numbers needed to make modulus n as a product. 

3.3 Data Analysis 

The best way to compare the effectiveness of the four approaches is to see 
the time and space requirements needed to cover a so-called fingerprint space. 
For this experiment we will see five different sized fingerprint spaces repre-
sented as powers of 2: 32, 48, 64, 80 and 96. These were chosen as the probabil-
ity for finding a match for specific 32 bits or 8 characters in hexadecimal is 
2ିଷଶand thus if we calculate 2ଷଶfingerprints it is probable that there is a match. 
Eight characters is an important figure since the key-id is made up of the last 
eight characters of the fingerprint. The other values represent 12 (2ସ଼), 16 (2଺ସ), 
20 (2଼଴ሻ and 24 (2ଽ଺) characters of the fingerprint. These were chosen in incre-
ments of four since the fingerprint is usually displayed in sets of four characters. 
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Multi-prime RSA (Approach 4) seems to be the most promising according 

to the calculations. Since there are some variables that can be altered this will be 
studied in more detail. The number of primes that make up the modulus n is 
the main variable and the values from 3 to 16 will be considered.  
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4 FINDINGS 

Findings that required timing for computation were achieved by using a 
virtual machine running a Xubuntu 16.04 as an operating system with 8GB of 
working memory allocated. This setup was running on VirtualBox 5.2.4. This 
was done on a virtual machine to achieve comparability between the tests as the 
test results seemed to change between physical machine boot ups. This chapter 
contains the findings of the experiment in terms of number of prime numbers 
generated, space required, and time required in order to fill certain preset fin-
gerprint-spaces.  

4.1 Number of prime numbers to be generated 

Table 1 shows the number of prime numbers that need to be generated to 
fill up the desired fingerprint space. In approach 1 these are of-course just regu-
lar random numbers and the fact that on average only 1/700 (based on prime 
number theory) are only primes. The results for approaches 3 and 4 can be 
found on Table 2, which contains the results when modulus n is the product of 
a varying number of prime numbers. The row heading k is the number of prime 
numbers of the same size. 

Table 1: The number of random or prime numbers required to fill up the fingerprint space. 

Size of fingerprint space (2^) 

Approach  32  48 64 80 96 

1  44 672  2.93E+09 1.92E+14 1.26E+19 8.24E+23 

2  256  16 777 216 1.10E+12 7.21E+16 4.72E+21 

3  See line for k=2 on Table 2 

4  See lines for k=3‐16 on Table 2 
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Table 2: The number of prime numbers required to fill up the fingerprint space with multi-
prime RSA. 

Size of fingerprint space (2^) 

k  32  48 64 80 96 

2  24  5 794 1 482 911 3.8E+08 9.718E+10 

3  13  467 18 756 756 155 30 486 226 

4  11  144 2 268 36 265 580 222 

5  11  75 669 6 131 56 323 

6  11  51 307 1 934 12 266 

7  11  40 181 869 4 223 

8  12  34 124 486 1 931 

9  13  31 95 314 1 066 

10  13  29 78 225 671 

11  14  28 67 173 464 

12  15  27 59 140 345 

13  16  27 54 119 270 

14  17  27 51 104 221 

15  18  27 49 93 186 

16  19  28 47 85 162 

 

4.2 The space requirement 

Since approaches 1 and 2 do not need the values for n that they have cal-
culated after all the 2ଶସfingerprints have been calculated, they do not really 
need any significant storage. Therefore, Table 3 shows the storage requirement 
for approaches 3(when k=2) and 4 (when k>2). Table 3 contains the size re-
quired for storing the prime numbers in kilobytes comparing the value for k 
(number of prime numbers required for calculating modulus n) and the desired 
fingerprint space represented as a power of 2. 
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Table 3: Storage space required to achieve a certain fingerprint space in kilobytes. 

Size of fingerprint space (2^) 

k  32  48 64 80 96 

2  3.00  724.25 185 363 47 453 133 1.215E+10 

3  1.08  38.88 1 561.47 62 951.38 2 538 038 

4  0.69  9.00 141.75 2 266.56 36 263.88 

5  0.55  3.74 33.40 306.10 2 812.02 

6  0.46  2.12 12.78 80.50 510.58 

7  0.39  1.43 6.45 30.98 150.53 

8  0.38  1.06 3.88 15.19 60.34 

9  0.36  0.86 2.63 8.70 29.54 

10  0.32  0.72 1.94 5.60 16.71 

11  0.32  0.64 1.52 3.93 10.54 

12  0.31  0.56 1.22 2.91 7.16 

13  0.31  0.52 1.03 2.28 5.17 

14  0.30  0.48 0.91 1.85 3.94 

15  0.30  0.45 0.81 1.54 3.09 

16  0.30  0.44 0.73 1.33 2.53 

 

4.3 The time requirement 

The time required to generate fingerprints depends on many individual 
parts for which the results will be shown in this sub-section. For the time re-
quirement we do not take into account the time spend on parsing the target key 
and preparing the key for the attack. The times that change are the time re-
quired to generate the prime numbers and the time taken to calculate the re-
quired fingerprints and check if they match the criteria set by the attacker. 

4.3.1 Time requirement for generating enough prime numbers 

The time required to calculate enough prime numbers is an important dis-
tinction when it comes to calculating the overall time taken. Table 4 shows the 
time taken to create a prime number of a certain bit-size on the test machine. 
The results were achieved by running the generation script that uses Miller-
Rabin as a primality test for 100 times each and taking the mean value of these 
results. These values were chosen as they were the closest integer to 2048 being 
divided by numbers 2 to 16. 
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Table 4: Time taken to create a prime number of certain bit-size 

bit‐size  time (s) 

128  0.0036

137  0.0037

146  0.0040

158  0.0051

171  0.0072

186  0.0093

205  0.0109

228  0.0151

256  0.0183

293  0.0249

341  0.0584

410  0.0869

512  0.1993

683  0.4328

1024  1.9756

 

Table 5 shows the overall time taken to generate enough prime numbers 
to calculate enough fingerprints to fill up the required fingerprint space. This 
table was created by using the mean creation times from Table 4 and multiply-
ing these by the number of primes required which are shown in Table 2. Ap-
proach 1 doesn’t really need to generate prime numbers and only needs to veri-
fy the once it finds a match for so the time spent on this is negligible. For ap-
proach 2 the time requirement can be easily calculated by multiplying the num-
ber of primes required from table 1 with the time taken for creating a 1024-bit 
prime from Table 4. The time required to generate primes for approaches 3 (k=2) 
and 4 (k>2) are shown in Table 5. 
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Table 5: Time required generating enough prime numbers to fill the required fingerprint 
space in seconds. 

Size of fingerprint space (2^) 

k  32  48 64 80 96 

2  47.41  11 446.62 2 929 638 7.50E+08 1.92E+11 

3  5.63  202.13 8 118.28 327 291.40 13 195 549 

4  2.19  28.71 452.12 7 229.26 115 664.50 

5  0.96  6.52 58.13 532.70 4 893.70 

6  0.64  2.98 17.92 112.87 715.84 

7  0.27  0.99 4.50 21.61 105.02 

8  0.22  0.62 2.27 8.90 35.38 

9  0.20  0.47 1.43 4.73 16.07 

10  0.14  0.32 0.85 2.45 7.29 

11  0.13  0.26 0.62 1.61 4.33 

12  0.11  0.19 0.42 1.01 2.48 

13  0.08  0.14 0.28 0.61 1.38 

14  0.07  0.11 0.20 0.41 0.87 

15  0.07  0.10 0.18 0.35 0.69 

16  0.07  0.10 0.17 0.31 0.59 

4.3.2 Other time requirements 

As mentioned in chapter 3 the time taken to calculate 2ଶସfingerprints and 
check whether they match the specified requirement takes approximately 56.4 
seconds. This was found by calculating 2ଶସfingerprints 100 times and timing the 
runs and calculating the average. 

 
These are the main time costs. The other cost factors, such as parsing the 

target key and creating the attack key do not take as long and they only need to 
be done once at the start or end of the run. Even calculating the other values 
apart from e and n are not required on every run if we store the primes we used 
to calculate them after the fingerprint has been found. 

 
Table 6 shows the time requirement in days of each approach to achieve a 

certain fingerprint space. For each column the time taken to calculate enough 
hashes to fill the fingerprint space without the prime generation is calculated. 
This value is used for calculating the overall time for each approach . The time 
was originally calculated in seconds and then divided by 86400 to get it into 
days. For approach 1 this value is multiplied by 174.5 because of the prime 
number theorem. For Approaches 2 to 4 the value is calculated by adding the 
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time taken to create a prime multiplied by N from Table 1 to the time taken to 
calculate the hashes.  

 
Table 6: Time requirement (days) of each approach to achieve desired fingerprint space 
coverage. 

Size of fingerprint space (2^) 

 Approach  32  48 64 80 96 

1  29.16  1 911 088 1.25E+11 8.21E+15 5.38E+20 

2  0.17  11 335.42 7.43E+08 4.87E+13 3.19E+18 

3  0.17  10 951.93 7.18E+08 4.70E+13 3.08E+18 

4  0.17  10 951.80 7.18E+08 4.70E+13 3.08E+18 

4.3.3 Actual time taken 

Since Approach 1 takes almost a month to create a fingerprint space of 2ଶସin 
this section we will use the test machine and calculate a fingerprint with 8 char-
acters the same as the target using approaches 2, 3 and 4. The time taken will be 
measured. Table 7 shows these results in minutes and seconds. 

 
Table 7: Time taken on one attempt to get a match of at least 8 characters. 

Approach  time(mm:ss) 

2  221:22 

3  360:06 

4  189:58 
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5 DISCUSSION AND CONCLUSION 

The purpose of this thesis was to find the most efficient way for creating 
fingerprints in PGP architecture in order to try and find a partial collision be-
tween fingerprints. The research question also asks what the effect of this 
forged fingerprint approach on the security of PGP. This chapter analyses the 
findings from the previous chapter and tries to find answers to the questions 
proposed in the introduction chapter of this thesis. 
 

5.1  Discussion of the main findings 

5.1.1 Approach 1 

It is quite clearly shown in Table 1 that approach 1, which means taking a 
random number and checking its primality only after a suitable fingerprint has 
been found proves to be impractical. The prime number theorem suggests that 
numbers that are 1024-bit in length only are a prime number approximately in 1 
out of 700 cases, so on average this would have to be 174.5 times more efficient 
than the other approaches for this to be the most efficient choice.  

 
In terms of memory usage this approach is very efficient since the previ-

ous numbers are not stored, however the problems arrive with time efficiency 
as shown in Table 6. The calculated time taken to fill a fingerprint space of 
2ଷଶfingerprints would take approximately just over 29 days. This only increases 
at a much faster rate than the other approaches when the desired fingerprint 
space gets larger. 
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5.1.2 Approach 2 

Approach 2 seems like the naive choice to solve this problem by generat-
ing a new prime number once all the fingerprints have been calculated for the 
previous key pair by changing the time stamp. In the practical test it did not 
prove to be that inefficient mainly due to the fact that prime number generation 
only took about 2 seconds a round so especially with a smaller target (8 charac-
ters of fingerprint to match) it didn’t play a major role. 

 
The number of prime numbers starts off steadily with only 256 needed to 

create 2ଷଶfingerprints but it increases exponentially relative to the desired fin-
gerprint space This one like approach 1 does not need really any storage space 
for previously calculated primes. The time requirement is linear to the number 
of primes used as each prime of 1024-bits takes approximately 2 seconds to cre-
ate. Due to this the time requirement on Table 6 can be seen to be a lot lower 
than for approach 1. 

 

5.1.3 Approach 3 

Approach 3 is a modification of approach 2 in that the primes that were 
generated are not wasted but are stored for future use. The time savings in-
crease when the program has to be run for longer as the list of primes would 
grow and there would be more rounds when a new prime does not have to be 
created. Due to this the number of prime numbers needed to create a finger-
print space of 2ଷଶfingerprints is only a tenth of what was needed for approach 2.  

 
The time saving comes with a cost of requiring more storage space but for 

example for the before mentioned example the storage space required is only 3 
kilobytes. Of course, for larger fingerprint spaces this would increase quite rap-
idly with 2଼଴fingerprint-space target requiring about 45 gigabytes of storage 
space. 

 
This approach took the longest in the practical run of approaches 2-4 to 

create an 8-character match between keys. This was probably due to the ran-
dom number generation being unlucky at the time since the hash outcome is 
not predictable. The time taken was still relatively close to the prediction of 0.17 
days compared to the actual time taken of 0.25 days. 

 

5.1.4 Approach 4 

Approach 4 is the most interesting out of the options discussed in this the-
sis since there are the most variables in this approach. Approach 4 is based on 
the idea of Multi-Prime RSA in which there are more than two primes whose 
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product is the modulus n. The ideal number of primes that should be used is 
not a trivial question because, although there are increases in performance, both 
in speed and space, there is a problem with the complexity of dealing with 16 
different factors and calculating the signature and decryption key for them. 

 
If we put these “weaknesses” aside for a while and discuss them in the 

next subchapter, we can focus on the most ideal value for k. If we are trying to 
achieve a 2ଷଶ fingerprint space then the smallest number of primes needed 
would occur when k is between 4 and 7. If k gets any larger then more primes 
would be needed to make up enough combinations to satisfy the requirement. 
For the bigger fingerprint spaces the ideal number is 16 prime numbers. 

 
In regard to space to store the prime numbers the ideal candidate for 

smallest space is of course 16. Even in the 2ଷଶfingerprint space column the size 
is the smallest since the prime numbers are only 128-bits in size. Any k value 
more than 12 will require less than 10 kilobytes to store all the primes required 
to generate even 2ଽ଺	fingerprints. Timewise the same holds true as above. Any k 
value more than 12 will be able to produce all the required prime numbers in 
less than 3 seconds for all the tested fingerprint spaces.  

 
In table 6 the values seemed to be really close to approach 3 since the time 

spent on creating prime numbers is quite small compared to the time calculat-
ing the hashes. This method appears to be the fastest but only by minutes. In 
approach 4 numbers need to be generated less often than in approach 3 and 
they also take less time, but the time saved is quite marginal. In table 7 (the 
practical test) approach 4 was the fastest like it should be in real life as well, but 
this was only based on one run. 

5.2 Evaluation 

There were some major difficulties with working out how to produce keys 
that would satisfy GPG’s import function as it required the keys to be signed. 
We managed to figure out a solution for the regular two-prime RSA, but when 
it came to multi-prime RSA, quite a lot of time was spent on trying to figure it 
out and on the end this was given up as the tests could be carried out without it 
(this problem needed a solution only after a suitable value for n and timestamp 
had been found). 

 
Another big problem was getting a value for modulus n to be 2048 bits. 

This isn’t a huge problem when the two numbers that make up the modulus are 
1024 bits since the product is usually only one bit off, but when there are 16 
primes to make up the product things get more interesting as each new number 
could shift the product by one bit.  
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5.3 Conclusions 

To conclude, it seems that the most efficient way to produce fingerprints 
within our assumptions is using multi-prime RSA (approach 4). However since 
the time needed to create a prime was at its worst only 2 seconds and since one 
prime pair can be used to calculate almost 17 million fingerprints the actual ap-
proach for an 8-character match in the fingerprint seems not to matter too much. 
If we had stuck to the original plan of only modifying the two least significant 
bits of the timestamp then the speed of generating prime numbers would have 
been a lot faster. 

 
 
The effect of this on the security of PGP is hard to estimate. Short key-id 

clashes have been found in the past and the use of them to identify a key has 
been reduced. The work in this thesis could be used to create fingerprints which 
could fool someone to accept a forged key by a man-in-the-middle if they do 
not read the fingerprint carefully. Although with the testing machine used in 
the tests this would take hours to even produce a match with the first and last 
four characters to match. The attacker would have to know the target quite well 
and know how they usually validate a key in order to be able to utilize this 
method of attack successfully. 

5.4 Future work 

There are various areas of interest that rise from the research performed 
for this thesis. One of the major ones is the idea of multi-prime RSA. One area 
was shortly discussed in the evaluation section and is the idea of how to opti-
mally create keys that are of correct length when k is large. This should be stud-
ied since the product of two n-bit primes can be a bit shorter in bit-length then 
2n bits and when there are more than two (a.k.a. multi-prime) primes multi-
plied the product length can vary quite a lot. 

 
Another section of interest is calculating the decryption key for multi-

prime RSA. Quite a lot of the results only deal with three primes so calculating 
the resulting decryption key is trivial, but what if there are 16 primes? Also the 
method of using more than three primes for RSA seems to be unheard of and its 
effect on security should be examined. 
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