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Summary  
 
The term ‘sex roles’ encapsulates male-female differences in: mate searching; competitive 
traits that increase mating/fertilization opportunities; choosiness about mates; and parental 
care. Theoretical models suggest that biased sex ratios drive the evolution of sex roles. To 
model sex role evolution it is essential to note that in most sexually reproducing species 
(haplodiploid insects are an exception), each offspring has one father and one mother. 
Consequently, the total number of offspring produced by each sex is identical, so the mean 
number of offspring produced by individuals of each sex depends on the sex ratio (‘Fisher 
condition’). Similarly, the total number of heterosexual matings is identical for each sex. On 
average, neither sex can mate or breed more often when the sex ratio is even. But equally 
common in which sex ratio? The Fisher condition only applies to some reproductive 
measures (e.g. lifetime offspring production or matings) for certain sex ratios (e.g. 
operational or adult sex ratio; OSR, ASR). Here we review recent models that clarify whether 
a biased OSR, ASR or sex ratio at maturation (MSR) have a causal or correlational 
relationship with the evolution of sex differences in parental care and competitive traits – two 
key components of sex roles. We suggest that it is more fruitful to understand the combined 
effect of the MSR and mortality rates while caring and competing than that of the ASR itself. 
In short, we argue that the ASR does not have a causal role in the evolution of parental care.  
We point out, however, that the ASR can be a cue for adaptive phenotypic plasticity in how 
each sex invests in parental care. 
  
“Women are not going to be equal outside the home until men are equal in it”   
 
- Gloria Steinem (neatly, albeit inadvertently, summarizes how parental care affects the OSR) 
 
1. Introduction 
 
Biologists and anthropologists are fascinated by male-female differences in ornamentation or 
aggressiveness, the propensity to search for mates, the willingness to mate, and parenting (in 
combination often called ‘sex roles’; reviews: Fairbairn et al. 2007; Fairbairn 2013). Sex 
roles are partly due to stronger sexual selection on one sex, usually males (reviews: Jones 
2009; Kuijper et al 2012). Given the existence of trade-offs, greater investment into sexually 
selected traits reduces the resources that are allocated to naturally selected traits, such as 
parental care or immune system defence. In turn, changes in the allocation of resources, 
interactions between traits that affect the costs/benefits of different activities (e.g. an 
ornamental trait might reduce the efficiency of parental care), and variation in subsequent 
mate availability due to sex-specific rates of mortality and/or time spent in other activities 
generates sex-specific natural selection on life history traits (see Box 1 in Schärer et al. 
2012). In short, both sexual and natural selection drive sex role divergence. But why does 
production of either eggs or sperm (anisogamy) lead to the consistent directional trends in 
sexual divergence seen in so many taxa (reviews: Trivers 1972; Parker 2014; Lehtonen et al. 
2016)? Why do females tend to care, and males to compete (Queller 1997)? 
 
Standard sex allocation theory dictates that sex ratios at birth are usually close to even (Fisher 
1930; West 2009; Kahn et al. 2015). Afterwards, however, sex ratios can become biased due 
to sex-specific factors. Various post-birth sex ratio biases are regularly invoked to explain sex 
roles (Székely et al. 2014) (see Table 1). Traditionally, theoreticians have argued that the 
operational sex ratio (OSR) in the mating pool plays the central role because of stronger 
sexual selection on the more common sex due to greater competition for mates (Trivers 1972; 



Emlen & Oring 1977; review: Clutton-Brock, this volume), although the actual relationship is 
less straightforward than once assumed (Klug et al. 2010; Kokko et al. 2012; Henshaw et al. 
2015; but see Krakauer et al. 2011). More recently, others have noted that the adult sex ratio 
(ASR) is influential, not just because it affects the OSR, but because it determines the 
reproductive rate (offspring production per time unit) and reproductive value (i.e. expected 
lifetime offspring production) of each sex, which then affects key life history decisions, such 
as whether to extend parental care or seek out another mate (Queller 1997; Székely et al. 
2000; Kokko & Jennions 2008). Other researchers suggest, however, that the sex ratio at 
maturation (MSR) is more relevant (Fromhage & Jennions 2016). Initial emphasis on the 
ASR, MSR or OSR when explaining sex roles depends on whether the focus is on: (a) a 
biased MSR or ASR generating selection that drives sex differences in parental investment; 
these then increase sexual selection on the sex that returns to the mating pool sooner due to a 
biased OSR; or (b) a biased OSR selecting for investment into more competitive traits in the 
more common sex, which favours less parental care due to trade-offs between caring and 
competing. Given that parental care and sexually selected traits both evolve and affect each 
other, a model for the origin of divergence in one trait can be initiated by a small sex 
difference in the other trait. In general it has proved conceptually fruitful to treat parental care 
as the lynchpin to explain other components of sex roles. This is mainly because care affects 
mate availability, and mate availability alter both the costs of being choosy (i.e. of rejecting a 
potential mate) (e.g. Kokko et al. 2015), and the value of sexually selected traits that elevate 
mating rates (see §5). We therefore mainly take that approach in this review.     
 
The existence of sex roles has prompted four main types of mathematical models of sex role 
evolution to explain why one sex is more likely to: (1) search for mates (e.g. Hammerstein & 
Parker 1987; Kokko & Wong 2007; Fromhage et al. 2016) (2) be choosy and reject 
prospective mates (e.g. Johnstone et al. 1996; Servedio & Lande 2006; Härdling et al. 2008; 
Courtiol et al. 2016; Puurtinen & Fromhage 2017) (3) invest in competitive traits to improve 
mating opportunities (e.g. Clutton-Brock & Parker 1992; Kokko et al. 2012; Lehtonen et al. 
2016) (for a review of models for traits that elevate fertilization success see Parker & Pizzari 
2010; Parker 2014); (4) care for offspring (e.g. Queller 1997; Webb et al. 1999; Kokko & 
Jennions 2008; Kahn et al. 2013; McNamara & Wolf 2015; Fromhage & Jennions 2016). 
Biologists frequently emphasize that the trend in many taxa is for males to search for mates, 
and invest in weaponry and attractive ornaments; while females are choosier about mating 
and more likely to care for offspring. This constellation of sex differences is often used to 
designate species with ‘classical’ sex roles (see also Janicke et al. 2016). Taxa like fish, 
where male-only care is common (Mank et al. 2005), are then seen as anomalous (for healthy 
debate on the advantages and pitfalls of this approach see Gowaty & Hubbell 2009; Ah-King 
& Nylin 2010; Schärer et al. 2012; Kokko et al. 2013). 
 
Here we first describe how theoretical models of sex role evolution are built (see §2), and 
why the correct use of the Fisher Condition is essential (see §3). We then describe specific 
models that ask how various sex ratios affect the evolution of parental care (see §4) and, 
because of the resultant differences in the availability of each sex in the mating pool (OSR), 
how this affects the evolution of sexual competitiveness (see §5). (For recent models of the 
two other key components of sex roles, namely, mate choice and mate searching see Courtiol 
et al. 2016 and Fromhage et al. 2016 respectively). When reviewing models of parental care 
we pay special attention to the role of the ASR because models differ in whether or not they 
predict that this ratio will directly affect sex roles (see §6). In addition, recent phylogenetic 
comparative analyses in shorebirds show that the ASR is correlated with breeding system 
evolution (Liker et al. 2013), divorce rates (Liker et al. 2014), and sex differences in parental 



care (Liker et al. 2015); and studies of humans link the ASR to mating competition, dispersal 
patterns, and parental care (e.g. Schacht & Borgerhoff Mulder 2015; Schacht et al. 2016; 
Kramer et al. this volume; Schacht & Smith, this volume; Uggla & Mace, this volume). 
Finally, we ask what data we need to test sex role models (see §7). 
 
2. Modelling sex role evolution 
 
Most models assume a time-based trade-off between caring and competing. This is readily 
seen in the continuous breeding, ‘time in/out’ models pioneered by Clutton-Brock & Parker 
(1992). To begin, an individual is in the mating pool seeking mates (‘time in’). As soon as it 
mates it leaves the mating pool to produce offspring, replenish gametes and care for offspring 
(‘time out’, T or 𝑇𝑇�  for females and males respectively) (note: the sperm-like tilde ~ 
designates a male variable here and elsewhere) (Fig. 1). Due to this strict temporal trade-off 
an individual cannot simultaneously acquire mates and care for offspring. Of course, in many 
fish, frogs, birds and mammals (including humans) a male can obtain a new mate while 
caring for offspring. So too can females if they use stored sperm to fertilise their next clutch 
or litter. There is, however, variation in the extent to which species violate the trade-off 
assumption. For example, in many fish, territorial males guard nests that contain fertilised 
eggs (i.e. males care for offspring). Guarding males readily acquire new mates because 
females are willing, and even prefer, to spawn in nests already containing another female’s 
eggs (e.g. Lindström et al. 2006). In contrast, in socially monogamous birds that feed 
nestlings, a caring parent has less time available to acquire a new mate than does an unpaired 
bird. As a further complication, ‘time out’ after mating might depend on whether a mating is 
with a male’s social partner or an extra-pair female: males rarely care for their offspring from 
extra-pair matings. ‘Time in/out’ models represent one end of the biological continuum 
between a perfect trade-off and no trade-off between caring and competing. In all cases, 
however, the models assume that the duration of care (T or 𝑇𝑇�) determines offspring survival. 
Survival is a positive function of either the sum (additive) or the product (synergistic) of the 
time spent caring by each parent. The benefit to each parent is, however, weighted by its 
mean relatedness to the offspring it cares for, which depends on how many males (𝑛𝑛�) and 
females (n) participate per mating event and therefore share parentage. 
 
A crucial life history trait that affects the outcome of sex role models is the risk of dying 
while caring during ‘time out’ (µO and 𝜇𝜇�𝑂𝑂), or while competing during ‘time in’ (µI and  𝜇𝜇�𝐼𝐼). 
This can result in very biased ASRs, and these biases are often associated with predictions of 
differences in the amount of care each sex will provide when a population reaches 
evolutionary equilibrium. One reason populations can differ in their ASR is because they also 
vary in their MSR. Modelers can therefore manipulate the MSR to generate a specified level 
of bias in the ASR. Even with a 1:1 MSR, however, a biased ASR can still arise due to sex-
specific adult mortality. For example, the sexes may have different mortality rates when 
performing the same activity (e.g. 𝜇𝜇𝑂𝑂 ≠ 𝜇𝜇�𝑂𝑂). This possibility is of little interest when 
attempting to explain from first principles why anisogamy leads to greater female care. Far 
more intriguing is a situation where the sexes differ in how much time they spend caring 
(because of, say, lower benefits to caring when 𝑛𝑛�  ≠ n, so that one parent is less closely 
related to a set of offspring) and, even without sex-specific mortality rates, mortality rates 
differ when caring and competing (i.e. 𝜇𝜇�𝑂𝑂 = µO ≠ µI =  𝜇𝜇�𝐼𝐼). This will bias the ASR towards the 
sex that spends more time engaged in the less risky activity. The main point we wish to 
emphasize is that the same ASR can be generated in different ways. If the ASR is correlated 
with the sex roles seen at evolutionary equilibrium in a model, it is tempting to attribute a 
causal role to the ASR.  For this to be a productive line of reasoning the route by which a 



biased ASR emerges should not matter. If it does matter then, perhaps, the factors that affect 
the ASR (i.e. the MSR and/or mortality rates that we have just described) should themselves 
be treated as the cause of the sex roles. As an aside, it is worth noting that when individuals 
enter a permanent post-reproductive phase (i.e. menopause), they should be excluded from 
empirical measures of the ASR. If not, empiricists will misrepresent the selective pressures 
faced by reproductively active individuals arising from competition for mates.  
 
There are two ways in which sexual selection is incorporated into parental care models. Some 
models specify that only 1/𝑘𝑘�  of males and 1/k of females are ‘qualified’ to mate (i.e. male-
male mating competition is greater when 𝑘𝑘�  is larger) (e.g. Kokko & Jennions 2008). The use 
of 𝑘𝑘�  or k has the limitation that the level of sexual competition remains the same even when 
the duration of parental care evolves such that the operational sex ratio changes. In other 
models, individuals have a sexually selected trait that, depending on its level of expression 
relative to rivals, affects their mating rate and determines how long they spend in the mating 
pool (e.g. Fromhage & Jennions 2016). These sexually selected traits elevate mortality, but 
how this cost is exacted can vary. At one extreme, it affects all adult life history stages 
equally. This represents a trait that is continually present so that the risk of attracting a 
predator is always elevated (e.g. bright plumage): this is modelled as a uniform increase in 
mortality during ‘time in’ and ‘time out’ (e.g. Kokko et al. 2012). At the other extreme, a 
sexually selected trait might only be expressed when seeking a mate, such as an 
advertisement call that attracts predators. Between these extremes there is ‘carry over’ of 
mortality costs between life history stages (e.g. Fromhage et al. 2016).  
 
In Sections 4 and 5 we present specific ‘time in/out’ sex role models that focus on the 
relationships between sex differences and various sex ratios. Before doing so, it is worth 
noting that Lehtonen et al. (2016) recently proposed a concise model to explain the initial 
evolution of sex roles that is based purely on sex differences in the return from investment 
into traits that increase fertilization rates. Their model does not explicitly deal with ‘time 
in/out’. Their starting premise is that the sexes are identical, except in gamete size. Lehtonen 
et al. made a minimal assumption: the sexes initially invest identically into gamete 
production. If so, sperm vastly outnumber eggs due to their smaller size because there is a 1:1 
ASR. The ASR is even because the sexes are identical so there is initially no sex-biased 
mortality, and the primary sex ratio is even (West 2009). Given the high sperm to egg ratio 
all eggs will be fertilised. If true, females cannot gain from investing in traits that increase 
their fertilization rate: such investment will only lower egg production. In contrast, males will 
benefit from investing some proportion (r) of their reproductive investment into competitive 
traits that increase the per sperm likelihood of fertilizing an egg (e.g. weapons, ornaments, 
manipulating female sperm usage, and seeking out mates) if this compensates for producing 
fewer sperm. 
 
An obvious criticism of Lehtonen et al.’s model is that once males divert resources away 
from gamete production, the assumption that all eggs are fertilised fails. There is, however, 
still a sexual asymmetry in the fitness gained by increasing r even if females become sperm-
limited. The marginal returns per additional investment in gametes are lower for a male 
because his sperm compete more intensely with each other for eggs than do a female’s eggs 
for sperm. Due to local gamete competition, selection still favours greater male investment 
into traits that elevate the fertilization rate per gamete. Even if the ASR becomes heavily 
female-biased (e.g. because sexually selected traits elevate male mortality) this is unlikely to 
be so extreme that eggs will ever be more numerous than sperm for a given breeding event. 
 



3. Sex Ratios and the Fisher Condition 
 
Before we present specific sex role models, we need to explain the Fisher condition. In 
diploid, sexually reproducing species, each offspring has one father and one mother. 
Consequently, the total number of offspring produced or matings by each sex is identical and 
the mean contribution per male or per female depends on the relevant sex ratio (Table 1). 
This is the ‘Fisher condition’ which cannot be violated in an internally consistent model 
(review: Houston & McNamara 2005). Unfortunately, several influential models violated the 
Fisher condition or have drawn erroneous conclusions from it, including sex role models of 
parental care (e.g. Maynard Smith 1977, see Webb et al. 1999; Wade and Shuster 2002, see 
Fromhage et al. 2007) and mate searching (e.g. Kokko & Wong 2007; see Fromhage et al. 
2016).  
 
When applying the Fisher condition to link lifetime averages (or expectations) of success, the 
sex ratio must include all individuals over whose lives these averages are calculated (see 
Table 1). When applying the Fisher condition to link success rates per time unit, the sex ratio 
must include those individuals who are considered as potential recipients of success at any 
given time. A crucial measure of success is the expected lifetime number of offspring, 
because this is the measure of fitness in most models. Expected offspring production is 
closely related to the life history concept of reproductive value (RV), which determines 
optimal life history decisions. For example, when RV is high, individuals are less willing to 
engage in costly acts that increase their risk of mortality because they have more to gain by 
staying alive (Roff 2002). Whether males and females differ in their RV has major 
implications for the extent to which they engage in parental care: the more ‘valuable’ sex 
should value its life more highly compared to the life of a brood, hence it should be less 
willing to provide care at a risk to its own survival. 
 
The primary sex ratio (at conception), the secondary sex ratio (at birth) and the MSR all link 
each sex’s lifetime expectations of matings and offspring via the Fisher condition. It is 
tempting to add the ASR and the OSR to the list of ratios, but this would be a mistake. To see 
why, consider the example of a demographically stable population with a 1:1 MSR 
(regardless of the resultant ASR and OSR): in this population, a maturing individual of either 
sex must on average produce exactly two (maturing) offspring during its lifetime: one 
daughter and one son. If it produced a different number of daughters, the population would 
grow or shrink; and if it produced a different number of sons, the MSR would change. By 
contrast, the ASR is not a suitable predictor of lifetime success because it can become biased 
due to sex-specific adult mortality, which has counter-acting effects on lifespan and 
reproductive rate (the sex with higher survival and a longer lifespan must have a lower 
reproductive rate if the MSR is 1:1). In other words: the average lifetime success of each sex 
must match as long as there are equal numbers of lives to account for, even if one sex lives 
longer and the ASR is consequently biased. (Note: the Fisher condition does apply to the 
OSR, but only for the rate of mating or encountering mates while in the mating pool. 
Likewise, the Fisher condition applies to the ASR for mean mating or offspring production 
rate of adults per unit time alive).  
 
We belabor the appropriate use of the Fisher condition because one of us (MDJ), has 
implicitly linked the OSR to fitness (i.e. lifetime offspring production) when trying to explain 
in seminars why the null model of Kokko & Jennions (2008) led to egalitarian parental care 
by the sexes (an incorrect result; see §4). This misapplication of the Fisher condition always 
went unnoticed. The more general point is that explanations as to why the sexes differ in how 



much they, say, care or invest in being sexually competitive often invoke the Fisher 
condition. If the wrong ratio is used, the explanation – no matter how appealing – is flawed.  
 
4. Models for the evolution of sex differences in parental care  

Kokko & Jennions (2008) produced a continuous breeding, ‘time in/out’ model to investigate 
the evolution of sex roles for parental care: that is, T and 𝑇𝑇�  could evolve under selection (It is 
implicit that they evolve due to a change in the time spent caring rather than in the time taken 
to replenish gametes or other resources needed to breed). In each scenario modelled, they 
fixed the parameters for: sex-specific mortality rates, the mean number of males and females 
per breeding event; variation in sexual selection on each sex (k and 𝑘𝑘�), and the MSR. They 
assumed that parental care had an additive effect on offspring survival. In the null model, 
where the only initial difference between the sexes was the duration of care, they reported 
stabilizing selection so that the equilibrium state was equal care by both sexes. Unfortunately, 
this finding was incorrect because the cost-benefit calculations did not equate to maximizing 
fitness (Fromhage & Jennions 2016). Nonetheless, it was an intriguing result that had to be 
explained at the time, but how (see §6)? In an extension of the null model, Kokko & Jennions 
(2008) then showed that female-only care is more likely when males are less related to the 
brood (𝑛𝑛� > n, which is biologically likely given sperm greatly outnumber eggs). Lower 
relatedness reduces the benefit of care as the increase in offspring survival has to be 
discounted by relatedness. They also showed that female-only care is more likely when there 
is stronger sexual selection on males [𝑘𝑘�  > k; for why this is likely see the description of 
Lehtonen et al (2016) in §2]. These findings, while tainted by concerns about how fitness was 
calculated, agreed with elegant, earlier arguments of Queller (1997) as to why females care 
more than males.  

Fromhage & Jennions (2016) recently revised Kokko & Jennions (2008)’s models, finding 
that a key result of the original null model did not hold up: there was, in fact, no stabilizing 
selection on sex roles for parental care. Instead, selection merely stabilized the total duration 
of care provided, regardless of the relative contribution of each sex. This result can be 
visualized as a line of equilibria (Fig 2a), on which each point corresponds to a combination 
of sex-specific care durations that add up to the appropriate total duration. We defer our 
explanation as to why this occurs to §6. To investigate the effect of changes in other 
parameters, Fromhage & Jennions (2016) then examined a model where the benefits of care 
are synergistic (i.e. offspring survival is a function of T*𝑇𝑇�). In this case, the model resulted in 
an equilibrium with equal care by both sexes (Fig 2b). This confirmed Queller’s prediction 
that female-only care is more likely when males are less related to the brood (𝑛𝑛� > n), and 
when there is stronger sexual selection on males (𝑘𝑘�  > k). If fewer males than females 
‘qualify’ to mate, qualified males (which includes all caring males) have a higher 
reproductive value (i.e. expected future fitness gain) due to their rarity, in the same way as an 
MSR bias increases the reproductive value of the rarer sex (Fisher condition). [Note: In our 
model the reproductive value of surviving males is not higher when the ASR is female-biased 
due to male mortality, because past survival does not imply future survival (i.e. survival rates 
are a constant), and reproductive value reflects the expected future, not the past. In the real 
world, however, in some species adult mortality rates change with age so that reproductive 
value varies over time (e.g. due to a period of high mortality as a young adult or due to 
senescence). To account for age-dependent mortality would, however, require a less 
generalizable model with age-dependent parental decisions. We do not believe this would 
change the main message of the model though]. 



Fromhage & Jennions (2016) next produced a ‘two-trait’ sex role model for the evolution of 
both the time spent caring (T, 𝑇𝑇�) and investment in a sexually selected trait (x,𝑥𝑥�) that causes 
the bearer to mate more rapidly upon entering the mating pool. The cost of the sexual trait 
was uniformly higher mortality when competing or caring. The result was clear: evolution of 
a sexually selected trait promotes care by only one sex. If sex A cares even slightly more than 
sex B (e.g. because 𝑛𝑛� ≠ n) there is a relative greater fitness benefit to B of decreasing the time 
spent waiting to mate because they are more common in the OSR (Kokko et al. 2012; see §5 
below). B therefore invests in the sexual trait. This, however, increases their mortality while 
caring. Natural selection therefore favors less care by B (as there is no concomitant fitness 
gain of trait x when caring). This selects for a compensatory increase in care by A, so B is 
under even stronger sexual selection. Positive feedback ensues until B alone cares. Females 
are likely to initially care slightly more than males (e.g. because 𝑛𝑛� > n) so positive feedback 
will select for still greater care by females than males. McNamara & Wolf (2015) have 
similarly shown that coevolution of care effort and care ability promotes sex role divergence. 

In sum, these initial models provide us with a basic understanding of when males will care 
more than females in different species (or different populations if they evolve independently). 
We can then ask whether the ASR affects which sex cares more, and why. More specifically, 
does it matter whether the ASR varies due to changes in the MSR, or mortality during ‘time 
in’ or ‘time out’? The answers are provided in §6. 

5. The evolution of competitive sexual traits 
 
It was long argued that a biased OSR favours greater investment in sexual traits by the more 
common sex (Trivers 1972; Emlen & Oring 1977). If true, sex role divergence in 
competitiveness is readily explained by the propensity for males to care less than females. If 
males return to the mating pool sooner, this creates a male-biased OSR. The problem with 
this argument is that it conflates the intensity of competition for mates with the response. 
Evidence that the argument is incomplete comes from a very simple model in Jennions et al. 
(2012): the selection differential on a sexually selected trait was unchanged as the OSR 
shifted from 2:1 to 1:2. To clarify the circumstances that favour a sexually selected trait, 
Kokko et al. (2012) built a ‘time in/out’ model in which ‘time out’ for each sex was fixed. 
They calculated the minimum increase in mating rate needed for selection to favour a 
sexually selected trait that uniformly increases mortality. The lower the requisite increase in 
mating rate for a given reduction in lifespan, the higher the ‘scope for competitive 
investment’. They showed that, the greater the proportion of an individual’s life that is spent 
in the mating pool, the larger the scope for competitive investment. In general, the major 
determinants of time spent in the mating pool are the relative ‘time out’ of each sex, and the 
ASR (which depends on both the MSR and adult mortality). Individuals of the sex with the 
longer ‘time out’ are rarer in the OSR, mate more quickly, and spend less of their life in the 
mating pool. They therefore gain proportionately less by mating faster, so only small 
mortality costs are tolerable. Reassuringly, this implies that the OSR (insofar as it reflects 
differences in ‘time out’) does predict which sex will invest more into competitive traits. But 
there is a subtle caveat. If one sex has a very short ‘time out’ then the scope for competitive 
investment for this sex remains high, irrespective of the OSR. 

6. How do sex ratios explain the outcome of sex role models for parental care? 

How do the ASR, MSR and activity-specific mortality affect the evolution of parental care? 
Kokko & Jennions (2008) reported that male care is higher when the ASR is male-biased, 



regardless of whether this is due to a male-biased MSR, or to a sex difference in adult 
mortality. This generated the intriguing claim that higher mortality of adults when caring will 
result in the evolution of increased male care if it leads to a male-biased ASR (i.e. because 
females were initially providing more care), even though this means that males then evolve to 
spend more time engaged in a risky activity. Kokko & Jennions (2008) concluded that the 
ASR has a causal role in the evolution of sex roles for parental care. This appeared to confirm 
earlier work in which the ASR was modelled as an input parameter, while leaving its source 
of variation unspecified (Yamamura & Tsuji 1993; Houston & McNamara 2002).   

More recently, Fromhage & Jennions (2016) have queried this view because the route by 
which the ASR becomes biased seems to matter. Specifically, they showed that males 
provide more care than females if the ASR is male-biased because of (i) a male-biased MSR, 
or (ii) because of uniformly lower male than female adult mortality (𝜇𝜇�𝑂𝑂 = 𝜇𝜇�𝐼𝐼 < 𝜇𝜇𝑂𝑂 = 𝜇𝜇𝐼𝐼). 
However, the proportion of care provided by males does not change if the male-biased ASR 
arises solely (i.e. the MSR is 1:1) because of lower male mortality while competing, which 
can be (iii) sex-specific (𝜇𝜇�𝐼𝐼 < 𝜇𝜇�𝑂𝑂 = 𝜇𝜇𝐼𝐼 = 𝜇𝜇𝑂𝑂) (Fig 3), or (iv) non-sex-specific (𝜇𝜇�𝐼𝐼 = 𝜇𝜇𝐼𝐼 <
𝜇𝜇�𝑂𝑂 = 𝜇𝜇𝑂𝑂) when males initially care less (i.e. when 𝑛𝑛� > n). (While the above arguments are 
phrased in terms mortality differences that create a male-biased ASR, they apply in an 
analogous fashion to differences that create a female-biased ASR.)  

We suggest that, generalizing from the insights gleaned from the models of Koko & Jennions 
(2008) and Fromhage & Jennions (2016), the ASR is not a causal factor driving obligate (i.e. 
non-context-dependent) sex differences in parental care behaviour. We explore scenarios (i-
iv) above to understand how care evolved, and note that we do not need to invoke any effect 
of the ASR itself. In scenario (i) when the MSR is male-biased, the Fisher condition implies 
that, on average, males at maturity have a lower lifetime reproductive output, hence lower 
reproductive value (RV), than females. RV determines the ‘cost of caring’ for each sex (i.e. 
how much fitness they stand to lose if they die while caring, which depends on 𝜇𝜇�𝑂𝑂 or 𝜇𝜇𝑂𝑂). 
The MSR therefore predicts the proportion of care provided by each sex. If the MSR is male-
biased, males have a lower RV and pay a lower cost to care. One line of reasoning as to why 
the ASR does not have a causal role in the model is to understand that adult mortality that 
changes the ASR does not affect the relative RV of each sex. For example, in scenario (iii) 
when males have lower mortality than females in the mating pool (𝜇𝜇�𝐼𝐼 < 𝜇𝜇𝐼𝐼) the resultant 
male-bias in the ASR decreases the mating rate of the surviving males. This, however, is 
perfectly offset by their longer lifespan so that male RV (relative to female RV) stays the 
same (Fig 3c) (which always follows from the Fisher condition). The same logic applies in 
scenario (iv) when the sexes have the same mortality rate in the mating pool (𝜇𝜇�𝐼𝐼 = 𝜇𝜇𝐼𝐼) but 
initially differ in the time spent caring: despite a change in the ASR, the proportion of care 
given by males remains the same. Finally, in scenario (ii), disentangling the underlying 
mortalities shows that the positive relationship between the ASR and male care was driven 
entirely by 𝜇𝜇�𝑂𝑂 (i.e. the cost of caring) (Fig. 3b), and not at all by 𝜇𝜇�𝐼𝐼 (whose counteracting 
effects on lifespan versus reproductive rate cancel out; Fig. 3c). Using this insight, we can 
even construct a scenario in which the relationship between the ASR and the proportion of 
male care is reversed: males care less as the ASR becomes more male-biased (Fig 3d). Here, 
a change in 𝜇𝜇�𝐼𝐼 changes the ASR without affecting care, while a weak counteracting change in 
𝜇𝜇�𝑂𝑂 drives the pattern of care. It is worth noting that the underlying model assumes no 
senescence, so all individuals in the mating pool are indistinguishable from (and have the 
same reproductive value as) newly matured individuals.  



In our view, none of the above justifies the claim that the ASR has an independent causal 
effect on the proportion of male care. That said, the claim is defensible if we make a rather 
strong simplifying assumption (even by the yardstick of modelling!). Specifically, what about 
earlier models (Yamamura & Tsuji 1993; Houston & McNamara 2002) that appeared to show 
a general effect of the ASR on care decisions? Were they wrong? No, but their conclusions 
reflect a technical limitation of their mathematical framework: they are ‘rate-maximization 
models’, built on the strong assumption that individuals cannot influence their lifespan, so 
maximization of their rate of reproduction maximizes their fitness (following Maynard Smith 
1977 model 3; Grafen & Sibly 1978; Clutton-Brock & Parker 1992). Within this framework, 
selection for caring can be described in a simple way, analogous with intake-maximization in 
foraging theory (Charnov 1976): the optimal point at which to cease caring is when the 
marginal rate of return falls below the average rate of return (i.e., the reproductive rate) for 
this type of individual. This focus on reproductive rates imputes a pivotal role to the ASR via 
the Fisher condition, as (males alive)*(male reproductive rate) = (females alive)*(female 
reproductive rate). If males are y times more common than females in the ASR, their average 
reproductive rate (hence their required marginal value of caring) is lower by 1/y. Since this 
holds regardless of the source of ASR variation, the ASR appears to determine the evolution 
of sex roles (Yamamura & Tsuji 1993; Houston & McNamara 2002). This is not a general 
finding though as its validity rests on the restrictive assumption that mortality does not differ 
between activities, so that (as in scenarios i and ii) individuals cannot influence their lifespan. 
But this is often not the case: Whenever mortality differs between caring and competing, then 
care decisions affect lifespan (scenarios iii and iv), and selection favours individuals that 
maximize their lifetime offspring production or RV (Houston & McNamara 1999; see also 
Kokko & Monaghan 2001), and not necessarily their reproductive rate.  

What then is the role of the OSR in the evolution of sex roles of parental care? It is possible 
to read Kokko & Jennions (2008) as arguing that individuals of the more common sex in the 
OSR are selected to provide more care because they are ‘unprofitably’ waiting in the mating 
pool. This reading is tempting because of the need to explain the (erroneous) result of 
stabilizing selection for equal parental care in their null model (where the MSR, hence ASR, 
was 1:1). When the MSR and ASR are 1:1, then (all else equal) the OSR is biased towards 
sex A if sex B provides more care (i.e. longer ‘time out’). Sex A will then spend longer in 
‘time in’. However, this does not select for greater care by sex A because both sexes 
nevertheless have identical incentives to care or desert: both benefit equally from each extra 
offspring that survives in the current brood, and both face the same expectation of future 
reproduction after deserting. In rate-maximization terms (see above), both sexes have 
identical reproductive rates, hence require the same benefit of caring (in terms of additional 
surviving offspring per time unit) to make caring worthwhile. Because these arguments apply 
regardless of current care durations, Fromhage & Jennions’ (2016) corrected null model 
revealed a line of equilibrium for care: as long as the total amount of care is appropriate given 
its effect on offspring survival, it does not matter for selection which sex provides more care.  

7. Empirical tests of how sex ratios affect sex roles  
 
a) Adaptive plasticity and evolved responses 
 
Most empirical studies that test evolutionary sex role models look for phenotypically plastic 
responses to changes in the ASR or OSR (review: Weir et al. 2011). This is based on the 
problematic assumption that adaptive plasticity acts in the same direction as a trait will 
evolve under selection. Kahn et al. (2015) provide an instructive counter-example. They 



show that mothers should initially produce more sons than daughters if individual males are 
less costly because they die during the period of care and free up resources. However, when 
mothers have access to local cues that indicate their sons are more likely to die than their 
daughters (e.g. sons require more resources and the mother is on a low-quality territory) the 
adaptive response is to produce fewer sons. This is the opposite trend to that predicted by the 
evolutionary model.  
 
The appropriate way to test predictions from evolutionary sex role models is to show that 
traits evolve in the predicted fashion. We see two main approaches when it comes to the 
effect of sex ratios. First, establish experimental evolution lines in which the MSR is 
manipulated (e.g. Fritzsche et al. 2016). One should, however, bear in mind what other 
factors might then change. For example, a male-biased MSR is predicted to increase male 
care but, prior to any evolution of care duration, this MSR will create a more male-biased 
OSR. This OSR could elevate polyandry and reduce the benefit of male care due to lower 
relatedness to a set of offspring. Putting these concerns aside, a critical test would be to 
compare the evolution of care when the ASR is manipulated either by changing the MSR or 
male mortality in the mating pool: sex role models predict different outcomes (Fig 3).   
 
Second, use comparative analyses to test for the predicted causal relationship between the 
MSR and sex roles for parental care and, given coevolution, mating competitiveness. Note, 
however, that the ASR might still prove a better predictor, as it can become correlated with 
sex roles through more than one mechanism (Figs 3a, b). Which sex ratio predicts sex roles 
better should depend on the extent to which different mechanisms contribute to empirically 
observed ASR variation. If ASR variation reflects mostly MSR and time-in mortality, the 
MSR should be a better predictor; if it reflects mostly general mortality (not limited to time-
in), then the ASR should be a better predictor. So far, comparative analyses have only 
considered the ASR in this context (e.g. Liker et al. 2013, 2014). This is a reasonable first 
step, but it falls short of revealing the underlying evolutionary mechanism: there is more to 
be learned by relating sex roles directly to the causes of ASR variation. Given the challenges 
of estimating sex ratios (Ancona et al, this volume), researchers might seek out traits that are 
plausibly correlated with the MSR to see whether they predict sex roles for parental care (e.g. 
sex-biased juvenile dispersal biases the MSR because dispersal tends to elevate mortality). 
  
b) Population versus individual-level responses 
 
The use of appropriate baseline expectations is crucial to test how the ASR affects behaviour. 
Consider a study asking if the ASR affects the propensity of males to try to copulate. For 
simplicity, assume a population of 1000 individuals with an even ASR (males, m= females, 
f=0.5), where individuals encounter each other at random. Whenever a male encounters a 
female there is a 60% chance that he tries to copulate. For every 1000 encounters there are 
500 male-female encounters (proportion = f2+2fm+m2) and, of these, 300 involve a 
copulation attempt. The population level rate is 300 copulation attempts per 1000 individuals, 
while the rate per male is 0.60 (=300/500). If the ASR then shifts to 90% male, there are 180 
male-female encounters and 108 copulation attempts. The population rate now drops to 108 
attempts per 1000 individuals, and 0.12 attempts per male (=108/900). 
 
Using the population rate (300 vs 108) to test whether the ASR affects males is clearly 
inappropriate: it includes females and we are only interested in a male’s propensity. But using 
the rate of occurrence per male is also misleading. It suggests that males are less sexually 
eager: given a more male-biased ASR the rate fell from 0.60 to 0.12. However, a male’s 



propensity to try to copulate upon encountering a female stayed constant at 60%. Researchers 
have to consider carefully how changes in the ASR affect interactions between the sexes if 
their focus is on individual level responses, which is what is usually required to test 
evolutionary models. The point we make is not novel, but it is worth reiterating: some 
researchers still use the equivalent of collecting data from 1000 encounters (i.e. rates from a 
fixed sampling duration) to infer male behavioural propensities.  
 
8. Future Considerations 
 
We now have models that individually investigate each component of sex roles. These 
models usually fix the value of non-focal components to investigate how extrinsic factors 
(e.g. mortality rates of different activities) affect the evolution of the focal component. For 
example, Kokko et al. (2012) model the evolution of sexually competitive traits while 
holding constant the time each sex spends providing parental care. But external factors might 
change, often in predictable ways, if other sex role components evolved. For example, what if 
greater investment into competitive traits alters selection on parental care? Competitive traits 
might increase mortality while caring or reduce the efficiency of caring. If so, co-evolution of 
care and competitiveness could lead to a different outcome (e.g. Fromhage & Jennions 2016; 
See §4). It is prudent to remember this limitation when one interprets the results of single 
component models. Feedback can cause traits to coevolve. The caveat ‘all else being equal’ 
really matters. Empiricists crave sex role models that cover the evolution of all aspects of sex 
differences, but such models are generally analytically intractable. What then should we do? 
A pragmatic step is to produce models where pairs of components evolve. Some such models 
exist [e.g. care and choosiness (Alonzo 2012); or care effort and care ability (McNamara & 
Wolf 2015); or care and competing (Fromhage & Jennions 2016)] but more are needed so 
that we can better understand if, and how, selection for greater expression of one component 
facilitates or retards the evolution of other components.  
 
Empiricists are often disappointed when models exclude biological realities. There are some 
features missing from the current models that might concern empiricists, and should be born 
in mind when testing them. First, trade-offs for a trait between life history stages are often 
ignored. Specifically, a trait that elevates the mating rate could reduce the efficiency of 
parental care or vice versa. This could be a direct result of the expression of the trait at both 
life history stages (e.g. ornaments hinder feeding offspring), or due to allocation of limited 
resources (e.g. energetic courtship reduces the resources available to care effectively). 
Second, the sex ratios could directly alter the benefits of prolonged care. For example, the 
ASR or OSR might affect the risk of infanticide because there are more potential predators 
per offspring (Carmona Isunza 2016). Third, the sex ratio could directly affect the likelihood 
of mortality in the mating pool (e.g. more fights or elevation of courtship to out-signal rivals 
could increase the rate of mortality; i.e. OSR affects ‘time in’ mortality). Fourth, higher 
mortality rates could affect other model parameters. For example, even if mortality is not sex-
specific such that sex ratios stay the same, a uniformly higher mortality rate will lower 
population density. A reduced mate encounter rate decreases mate choice because the time 
cost of rejecting a potential mate is higher (Johnstone et al. 1996), and the cost of choosiness 
is related to the proportion of the lifetime that is spent searching or waiting to mate (Etienne 
et al. 2014, Courtiol et al. 2016). Less choosiness might then reduce the strength of sexual 
selection (e.g. more males ‘qualify’ to mate as 1/𝑘𝑘�  is larger) which, in turn, will affect the 
evolution of sex differences in parental care (see §4). Fifth, sex ratios could affect the 
likelihood of multiple mating. With a more male-biased OSR it seems likely that, unless 
females are fully in control of mating (Fromhage et al. 2008), polyandry will increase, which 



reduces the benefit of male care (see §4). More generally, current sex role models ignore the 
trade-off between allocation into traits that increase mating success versus those that elevate 
fertilization success (for a single-sex model see Parker et al. 2013; review: Evans & Garcia-
Gonzalez 2016). Finally, in many species there is a finite breeding season but the sex role 
models we have described all assume continuous breeding with overlapping generations and 
constant sex ratios. Models with breeding seasons that allow for more than one breeding 
attempt can predict more complex, time-dependent patterns of parental care, e.g. reflecting 
seasonal variation in mate availability (Webb et al. 1999; McNamara et al. 2000).  
 
In sum, so-called classical sex roles are commonplace in nature and it is likely that parental 
care models that predict greater parental care by females will show that this asymmetry 
promotes the co-evolution of stronger female choosiness, lower female competitiveness 
(Fromhage & Jennions 2016; two trait model) and less mate searching by females. However, 
it remains to be seen what additional factors explain the evolution of ‘role reversed’ species, 
or those with unusual sex-specific combinations of choosiness, competitiveness and care (e.g. 
Bro-Jorgensen 2007). Encouragingly though, comparative evidence that the ASR predicts 
breeding systems, at least in shorebirds (Liker et al. 2013), suggests that attention to factors 
that affect the ASR or MSR are a profitable way forward for both empiricists and modelers. 
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Figure 1. Schematic representation of the life-cycle envisaged in many models of mating 
system evolution. Upon mating individuals enter a ‘time-out’ period where they care for the 
resultant offspring and/or replenish their resources for the next breeding attempt. This applies 
to both sexes, whose mating rates are linked by the OSR via the Fisher condition (Table 1).  
 
  



 

 
 

Figure 2. Evolution of care durations of both sexes, assuming the sexes are identical in all 

respects other than care duration. (a) Care is additive, such that it makes no difference for the 

offspring how a given total care duration is divided between parents. This leads to a line of 

equilibria connecting all combinations that sum to the same total duration. (b) Care durations 

are synergistic, such that the same total care duration becomes more valuable if divided more 

evenly between parents. Arrows indicate evolutionary trajectories from arbitrary starting 

points, based on selection gradients. Black dots indicate stable end points. Dashed lines 

indicate equal caring by both sexes. Based on the model by Fromhage and Jennions 2016, 

with parameter values: k = n = M = r = 1; 𝜇𝜇O = 𝜇𝜇I = 𝜇𝜇�O = 𝜇𝜇�I = 0.01; 𝛼𝛼 = 0.1; γ = 0 (in a); 

𝛾𝛾 = 0.1 (in b). 

 
 
  



 
 
Figure 3. The proportion of male care (of the total care provided by both sexes) as a function 
of the ASR (males per female), when (a) the ASR is manipulated by changing the maturation 
sex ratio MSR or (yielding identical results) when the ASR is manipulated by simultaneously 
changing male mortality in both states (𝜇𝜇�𝐼𝐼 = 𝜇𝜇�𝑂𝑂); or (b) when the ASR is manipulated by 
changing male mortality only during time-out (𝜇𝜇�𝑂𝑂); (c) when the ASR is manipulated by 
changing male mortality only during time-in (𝜇𝜇�𝐼𝐼); or (d) when the ASR is manipulated mostly 
by changing male mortality during time-in (𝜇𝜇�𝐼𝐼 ranges from 0.08 on the left to 0.0025 on the 
right side of the graph) while male mortality during time-out varies in the opposite direction 
(𝜇𝜇�𝑂𝑂 ranges from 0.00025 on the left to 0.008 on the right side of the graph). Based on the 
model by Fromhage and Jennions 2016, with parameter values: solid line: 𝑘𝑘� = 1, 𝑛𝑛� = 1; 
dashed: 𝑘𝑘� = 1, 𝑛𝑛� = 1.2; dotted: 𝑘𝑘� = 1.2, 𝑛𝑛� = 1.2. Default parameter values: k = n = M = r = 
1; 𝜇𝜇O = 𝜇𝜇I = 𝜇𝜇�O = 𝜇𝜇�I = 0.01; 𝛼𝛼 = 𝛾𝛾 = 0.1.



Table 1. Implications of the Fisher condition, which formally states that when some average quantity xf , measured for a set of females, is 
logically linked to the corresponding male quantity xm due to heterosexual interactions, then r = xf/xm is the relevant male:female sex ratio. Each 
entry states whether the Fisher condition applies to the sex ratio for a given quantity. Notable evolutionary implications are given as footnotes. 
The MSR is the ratio of males to females in a cohort that reach maturation. The ASR is the ratio of adult males to females that are currently alive. 
The OSR is the ratio of males to females that are in the mating pool seeking mates. The ESR is the ratio of males to females that mate at least 
once. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 If sons and daughters are equally costly to produce (and there is no sex-specific population structure, such as local mate competition), parents 
should produce a 1:1 primary sex ratio.  
2 If offspring of one sex are costlier to produce, where the cost = [total investment in sex i]/[surviving offspring of sex i at the end of parental 
investment], parents should produce fewer offspring of this sex to equalise total investment in offspring of each sex (but see Kahn et al. 2015). 
3 Individuals of the rarer sex should provide less parental care as they have a higher mean reproductive value (at least at maturation). They should 
be less willing to risk their more valuable lives for a given set of offspring (Fromhage & Jennions 2016).  

Quantity Measured Sex Ratio  

 Primary At end of parental 
investment 

Maturation 
(MSR) 

Effective  
(ESR) 

Adult 
(ASR) 

Operational 
(OSR) 

Lifetime matings yes yes yes yes no no 

Lifetime offspring production yes1 yes2 yes3 yes4 no no 

Mate encounter rate (per time 
unit in the mating pool) 

no no no no no yes6,7 

Mating rate (per time unit in the 
mating pool) 

no no no no no yes8 

Mating rate (per time unit alive) no no no no yes no 

Reproductive rate (offspring per 
time unit alive) 

no no no no yes5 no 



4 A male-biased ESR is a precondition for the evolution of a male monogamy strategy (seen in some spiders, insects, crustaceans and fish), 
whereby males commit themselves (e.g. die) to mate with only a single female (Fromhage et al. 2005). 
5 In the special case where mortality does not differ between activities, reproductive rate is an appropriate fitness measure. The rarer sex should 
then provide less care, since a given fitness return from caring (i.e. rearing x extra offspring per time unit) is less profitable compared to a high 
reproductive rate (of the rare sex) versus a low reproductive rate (of the common sex). In the more general case where mortality can differ 
between caring and competing, the source of ASR bias determines its relationship with the proportion of care by each sex (Fig 3).  
6 The more common sex is predicted to be less choosy because it typically has a higher ‘relative searching time’ (proportion of lifetime spent in 
the mating pool), which increases the fitness costs of rejecting a proportion of mates (Etienne et al. 2014, Courtiol et al 2016). 
7 Individuals of the more common sex may be expected to face stronger sexual selection, such that a smaller proportion ‘qualify to mate’ 
(Lehtonen & Kokko 2012). 
8 Individuals of the more common sex are predicted to invest more in traits that elevate their mating rate, because they typically have greater 
‘scope for competitive investment’ (i.e. fitness increases more steeply with mating rate; Kokko et al. 2012).  
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