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Abstract 7 

Dyadic musical performance provides an excellent framework to study interpersonal 8 

coordination because it involves multiple agents performing matched, rhythmic and/or 9 

interactive behaviors. In this chapter, we explore interpersonal coordination using 10 

Canonical Correlation Analysis as a coupling measure. To provide some context when 11 

interpreting the output of CCA, musicians performed using different expressive 12 

manners (deadpan, normal, exaggerated). Overall the results showed the normal 13 

performances were slightly more interpersonally coordinated than deadpan and 14 

exaggerated. 15 

 16 

Introduction 17 

Dyadic musical performance provides an excellent framework to study interpersonal 18 

coordination because it involves multiple agents performing matched, rhythmic and/or 19 

interactive behaviors (Keller, 2008; Himberg & Thompson, 2011). Such behaviors fall under 20 

the category of entrainment. As Tommi Himberg explains in chapter XX of this book, the 21 

criteria of an entrained process are flexibility (adapting one’s behavior to match the behavior 22 

of their performing partner), autonomy (a performance may continue even if one violinist 23 

makes a mistake or stops playing), and coupling (bi-directional communication leading to 24 

matched behavior). The advent of motion capture technology has brought with it a growing 25 

interest in developing measures that can identify entrained processes computationally.  In this 26 

chapter we present the results of a small methods-based study in which we explore how 27 

Canonical Correlation Analysis (CCA) can be used as a measure of interpersonal 28 

coordination within violinist dyads. Because CCA identifies linear relationships between sets 29 

of data, it is well suited to measure the extent to which musicians synchronize their behavior 30 

when performing. As this is a novel application of CCA, we will examine its results within 31 



 

the context of the Total Kinetic Energy (TKE) employed by the musicians during a 32 

performance. Like CCA, TKE is computed from motion capture data and provides a global 33 

indicator of performance behavior. 34 

 35 

Let’s begin with a small thought experiment that we hope will explain the rationale for using 36 

CCA. Suppose that you are attending a concert (it could be a classical ensemble, rock show, 37 

jazz quartet, anything). Walking out of the concert you are accosted by an intrepid young 38 

music researcher and asked to rate on a scale from 1 to 7 the amount of physical interpersonal 39 

coordination displayed between the performers. You give a response that from your 40 

perspective best sums up the performance. As a follow-up, the researcher wants to know how 41 

you arrived to your numerical response and asks you to dissect the coordination in terms of 42 

body parts. Were the musicians’ heads moving in synchrony? Were the bowing gestures 43 

coupled? Perhaps the musicians had similar swaying patterns? Did the musicians 44 

communicate tempo changes with specific gestures? Were the musicians tapping their feet to 45 

keep the beat? Because of the sheer number of events occurring simultaneously, you might 46 

feel hard-pressed to describe exactly which parts of the body were chiefly responsible for the 47 

perceived coordination. One explanation for this is that while you were not paying attention 48 

to individual parts of the body, your mind formed a gestalt of the performance and your 49 

rating of interpersonal coordination was based on the performance as a whole, not its 50 

constitutional elements. 51 

  52 

The aim of this thought experiment is to suggest that we are good at recognizing 53 

interpersonal coordination between musicians even though we are unable to keep track of 54 

every piece of information. With technologies such as optical motion capture, we are able to 55 

amass vast amounts of data and compare the movement trajectories of markers attached to 56 

two musicians in countless ways. We can for instance, create a correlation matrix that 57 

compares all markers in all combinations, and observe that Violinist 1’s left elbow velocity is 58 

highly synchronized with Violinist 2’s right knee velocity. However, just as it is more 59 

cognitively economical for humans to construct a gestalt that captures the performance as a 60 

whole, it is more efficient to compare higher-level movement features that summarize the 61 

violinists’ movements as a whole. The great advantage of a coupling measure such as CCA is 62 



 

that we are not comparing marker x with marker y, but comparing Violinist 1 to Violinist 2. 63 

Hence, we can compute the relationship between musicians as a whole with a single 64 

calculation. 65 

 66 

To explain how CCA works, it might be useful to begin with a related technique: Principal 67 

Components Analysis (PCA).  Consider an m×3n matrix of motion capture data whereby 3n 68 

represents the number of markers attached to a violinist in a three-dimensional coordinate 69 

system, and m is the number of observations (in the current case, this number would be the 70 

motion capture’s sampling rate (120) times the duration of the performance in seconds). 71 

Collectively, the data set contains fingerings, bowings (i.e. movements involved in sound 72 

production) as well as head gestures and torso swaying (i.e. movements that enable sound-73 

producing movements). However, much of the data is co-varying (i.e. the head marker’s 74 

motion is anchored to that of the shoulder markers). PCA is a method that eliminates 75 

redundancy embedded within data by creating a new matrix of synthetic orthogonal variables 76 

(called the principal components). These variables are linear combinations of the original 77 

variables and ordered according to decreasing proportions of variation within the original 78 

data matrix (Toiviainen, Luck & Thompson, 2010). The majority of the variation is contained 79 

within the first few variables and the remaining variables can be discarded as noise. When 80 

applied to motion capture, PCA provides a higher-order movement feature, one that describes 81 

the violinist’s global dynamic motion rather than the individual markers’ motion. As already 82 

mentioned, the variables are orthogonal, meaning that they are non-overlapping and 83 

uncorrelated. For motion capture data, this means that each principal component will 84 

represent the movement occurring on a single axis. For example, if a violinist’s predominant 85 

movement pattern is side-to-side swaying, the first principal component will include loadings 86 

from any marker that has high variation on the mediolateral axis. The extent to which how 87 

many additional components should be retained depends on the complexity of the violinist’s 88 

movements.  89 

 90 

CCA is similar to PCA but takes into account two data matrices, and computes their shared 91 

variance. In our case, the matrices represent the movements of each violinist. As such, CCA 92 

produces two synthetic data sets. These synthetic variables (called the canonical components) 93 



 

reflect the variance that is shared with the other matrix. The canonical components are 94 

ordered according to decreasing amounts of shared variance; the first canonical components 95 

from each data set contain the highest amount of shared variance to maximize their 96 

correlation. Like PCA, only the first few canonical components should be interpreted as 97 

meaningful, and the remaining can be discarded as noise. In relation to the current study, 98 

CCA offers two primary advantages (Sherry & Henson, 2005). First, as a multivariate 99 

technique, it greatly diminishes the probability of committing Type I errors. Correlating 100 

everything with everything is likely to produce false positives—CCA decreases the chances 101 

of this happening because it is based on a single correlation. Second, CCA enables one to 102 

observe how multiple variables interact with each other. Human behavior is complex and 103 

governed by multiple causes and effects. While univariate methods test each variable in 104 

isolation (i.e. how marker x is related to marker y), CCA offers the potential to examine 105 

multivariate relationships (i.e. how Violinist 1 is related to Violinist 2). CCA has previously 106 

been used in studies using motion capture and music to investigate relationships between 107 

sound-tracing gestures and computationally extracted acoustical features (Caramiaux, 108 

Bevilacqua & Schnell, 2010; Nymoen et al, 2013). In contrast, we are using CCA to identify 109 

linear relationships between the gestures of performing musicians, and have not taken into 110 

account any acoustical features. 111 

 112 

In this chapter, we also take into account the coordination of the violinists’ affective states 113 

and how this might affect the results of the CCA. Research targeting the relationship between 114 

affective states and body movement has come of age in the past 20 years, particularly in 115 

studies on solo performance. Starting with Davidson’s seminal 1993 study, a popular design 116 

has been to instruct musicians to perform with varying expressive manners (Davidson, 1993; 117 

Palmer et al., 2009; Wanderley et al., 2005; Huang & Krumhansl, 2011; Thompson & Luck, 118 

2012)—manners might include: deadpan (i.e., without expression), projected (i.e., with 119 

normal levels of expression), and exaggerated (i.e., with exaggerated levels of expression). 120 

Davidson’s (1993) study focused on the perception of expressive manner revealed that less 121 

experienced observers were more likely to use the visual modality when rating level of 122 

musical expressivity. More recent perceptual studies have further investigated the crossmodal 123 

interactions of vision and sound that observers employ when making expressivity judgments 124 



 

(Vuoskoski et al., 2013). The ‘levels of expression paradigm’ has also been used in music 125 

production experiments in which the goal has been to analyze the kinematics of pianists 126 

whose movements have been motion captured. Thompson and Luck’s (2012) data showed 127 

that the head and shoulders had bigger differences between expressive manners, compared to 128 

the fingers and wrists. The authors argued that pianists might use the parts of the body not 129 

involved in sound production as a means of conveying expressivity, as these would have 130 

greater degrees of freedom than parts of the body directly involved in sound production. In 131 

recent years, an increased accessibility of sensor technologies, as well as an advancement 132 

towards studying music performance from the lens of embodied cognition (Leman, 2007), 133 

has prompted a number of studies on interpersonal coordination within musical dyads to use 134 

motion capture for data collection (Goebl & Palmer, 2009; Keller & Appel, 2010; also see 135 

Repp & Su, 2013). 136 

 137 

The Current Study 138 

Our aim for this chapter is to contribute to work on interpersonal coordination in dyadic 139 

performance by using canonical correlation analysis (CCA) for quantifying coupled 140 

movements in a musical performance. Below we report a small study in which three violinist 141 

dyads were motion-captured while performing a short piece. Our focus is on non-sound-142 

producing gestures (sometimes called ancillary gestures; Wanderley et al., 2005). Ancillary 143 

gestures are best represented through low-level kinematic features such as velocity. For a 144 

coupling measure like CCA, velocity is more appropriate than position for two main reasons. 145 

First, it eliminates the position factor. For instance, if one waves their hand at two different 146 

locations, the velocity data are similar while the position data are dissimilar. Second, velocity 147 

is mostly stationary (e.g. zero-centered), whereas position may not be. Nonstationarity in 148 

position data (e.g. a significant change of posture) may be the single determining factor in 149 

correlation, which may hide other, possibly important but more nuanced forms of coupling. 150 

Because CCA is novel in this context, we compare its results with Total Kinetic Energy, 151 

which has been used previously to summarize performance behavior (Toiviainen et al., 152 

2010).  As to the experimental design, we felt it would be useful to examine how the results 153 

of canonical correlation analysis might vary under different performance conditions. Because 154 

our previous work has shown that musicians alter their movement patterns when requested to 155 



 

perform in different levels of expression (Thompson & Luck, 2012), and in different tempi 156 

(Thompson et al., 2015), we hypothesized that interpersonal coordination would also be 157 

different according to instructed expressive intention and tempo, and that these differences 158 

would be reflected in the results of canonical correlation analysis.  159 

 160 

Method 161 

Participants 162 

Three violin dyads participated in this study (6 musicians total; 4 females; age: M = 24.1, SD 163 

= 1.7). The violinists were recruited from student populations at the University of Jyväskylä 164 

and JAMK University of Applied Sciences. Musicians had received on average 15.8 (SD = 165 

2.3) years of instrumental training on the violin. Although the violinists knew each other, 166 

none had spent any significant amounts of time performing together before to the experiment. 167 

 168 

Procedure 169 

The dyads performed a short piece arranged for two violins: De Kleinste, composed by J. 170 

Beltjens (16 bars, 6/8 time signature). Each dyad performed the piece nine times in a 3×3 task 171 

design: three expressive manners (deadpan, normal, exaggerated) performed using three 172 

tempi (60-BPM, 90-BPM, free tempo). Our data set thus consists of 27 performances (Mduration  = 173 

33.1 sec, SDduration = 4.6 sec).  174 

 175 

The tempo was given using a two-measure metronome count-in. Despite instructing a tempo, 176 

the dyads gravitated to their own tempo, abandoning the instructed tempo within a few bars. 177 

To explore the deviation from the instructed tempo, we estimated the actual tempo for each 178 

performance. Due to timing dynamics, the tempi also fluctuated within the performances; to 179 

calculate a performance’s average tempo, we divided the performance’s duration in seconds 180 

by the number of eighth note values in the score.  We then converted this time in seconds per 181 

meter to BPM. Generally, the dyads performed faster than the instructed tempo (actual 60-182 

BPM: M = 76.56 BPM, SD = 5.66; actual 90-BPM: M = 94.78 BPM, SD = 12.35). For the 183 

Free Tempo condition, the average tempo was 77.1 BPM (SD = 7.16). Because the Free 184 

Tempo was so close to the actual tempo for 60-BPM, we estimate that the overall preferred 185 

performing tempo was about 76 or 77 BPM (the tempo marking on the score for De Kleinste. 186 



 

50 BPM for each dotted quarter note). Initial analysis exploration indicated that tempo did 187 

not interact in any meaningful way with the expressive manners. Therefore, we eliminated 188 

tempo as a factor and all of the results presented below represent data that is averaged by the 189 

expressive manner. 190 

 191 

Audio Recordings 192 

Audio of the experimental trials was recorded using two AKG C417 L wireless microphones. 193 

The microphones were positioned around each violinist’s right ear lobe and secured with 194 

adhesive tape. Note onsets were annotated from the recorded audio files in Reaper digital 195 

audio workstation manually using the marker utilities extension. Each take was exported as a 196 

plain text file with note onsets in samples. 197 

 198 

Motion Capture 199 

Optical motion capture data was generated using eight Qualisys Oqus cameras at 120 Hz. 200 

Twenty-six markers were placed on the joints of each musician, and five markers were placed 201 

on the violin (2 on the bow, and 3 on the violin itself). The data were labeled within 202 

Qualisys’ Track Manager software and analyzed in MATLAB using functions within the 203 

MoCap Toolbox (Burger & Toiviainen, 2013). CCA was carried out using MATLAB’s 204 

canoncorr function.  205 

 206 

Feature Computation 207 

Total Kinetic Energy 208 

For every performance we computed the instantaneous kinetic energy for each performer 209 

individually based on the method used by Toiviainen et al. (2010).  The total kinetic energy 210 

was estimated as the sum of the kinetic energy of both performers, which consists of the total 211 

amount of translational and rotational energy computed for each marker.  Specifically, we 212 

used the function mckinenergy from MoCap Toolbox (Burger & Toiviainen, 2013) to 213 

compute both the translational and rotational energy based on a body segment model 214 

proposed by Dempster (1959).  We then calculated the mean kinetic energy for each marker, 215 

and took the grand sum for both performers. Total kinetic energy (TKE) describes the amount 216 

of physical activity across both performers in one performance.  217 



 

 218 

Canonical Correlation Analysis: CanCon1 and CanCon2 219 

CCA was employed on each performance separately. Each performance produced two 220 

matrices (V1 and V2) representing the three-dimensional coordinates of 28 reflective markers 221 

attached to each violinist. Because we were interested in coupled ancillary movement (e.g. 222 

swaying), we first reduced the data to seven markers representing non-sound producing 223 

movement patterns of each violinist: head, left shoulder, right shoulder, neck, left hip, right 224 

hip and hip centroid. From the raw three-dimensional location data, we estimated the velocity 225 

of V1 and V2 using numerical differentiation. To this end, we applied finite difference 226 

followed by a second-order smoothing Butterworth filter with a 0.2 Hz cutoff frequency (see 227 

Burger & Toiviainen, 2013). As mentioned above, the markers attached to a musician 228 

generate data that are largely co-varying. Entering the velocity data from all seven markers 229 

into the CCA equates to including noise to the CCA, and results in an over-fitted model. For 230 

this reason, Principal Components Analysis (PCA) was applied to V1 and V2 to reduce the 231 

number of input variables. On average, we found the first two principal components retained 232 

85.5% of the total variance within the raw movement data (MPC1 = 72.6%, SDPC1 = 14.27%; MPC2 233 

= 13.26%, SDPC2 = 7%,). The transformed data, called the PC scores (original data expressed 234 

as values of the reduced set of variables), were entered in the CCA. We name these input 235 

variables PCs1 and PCs2.  236 

 237 

The outputs of CCA are the canonical loadings (A and B), which are the sets of coefficients 238 

that indicate the contributions of the variables from PCs1 and PCs2 to the new sets of 239 

variables, and the canonical scores (U and V), which are the new variables themselves. Like 240 

in PCA, the canonical scores are synthetic data sets in which the column variables are 241 

orthogonal to each other. Instead of being ordered according to variance within a single set of 242 

variables, the canonical scores are ordered according to the variance shared between PCs1 243 

and PCs2. Therefore the highest correlation exists between the respective first canonical 244 

components (CanCon1) as they contain as much of the shared variance as possible between 245 

PCs1 and PCs2. The second canonical components (CanCon2) in turn account for as much of 246 

the remaining shared variance as possible. The strength of the relationship between the 247 

canonical components is represented by the sample correlation between respective columns 248 



 

of U and V. In CCA, the correlation values range from 0 to 1. A value closer to 1 implies that 249 

violinists coupled their movements, or were to some extent synchronized. 250 

 251 

It is critical to mention that when using CCA for timeseries movement data, we must take 252 

into account that the data are autocorrelated, and do not meet the assumption of serial 253 

independence between observations required for parametric tests. Specifically, the sample 254 

correlation between two variables containing autocorrelated observations has fewer degrees 255 

of freedom than two variables containing serially independent observations. In other words, 256 

in a timeseries, the number of observations that are free to vary is presumably less than N - 1, 257 

where N is the number of observations. To overcome this obstacle, we estimated the effective 258 

degrees of freedom based on the autocorrelation functions of U and V, using a formula that 259 

takes into account the autocorrelation coefficient appearing at the maximum lag (Pyper and 260 

Peterman, 1998; Alluri et al., 2012). Averaged for all 27 performances, we calculated the 261 

effective degrees of freedom for CanCom1 (MCC1 = 47.28, SDCC1 = 27.42) and CanCom2  (MCC2 = 262 

116.96, SDCC2 = 187.23), which were in turn used to compute the correlation p-values. For 263 

CanCon1, all performances were significant (p < .05), whereas for CanCom2, none of the 264 

performances were significant. 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 



 

 279 
FIGURE X: Summary (mean and standard deviation) of for A) Total Kinetic Energy (TKE), B) 280 
CanCom1 (r), C) CanCom2 (r). Panels D, E and F plot canonical scores over time. 281 
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Feature Comparison 284 

Total Kinetic Energy: Figure X, panel A shows the mean TKE for deadpan, normal and 285 

exaggerated performances, with error bars to represent standard deviation. The results show 286 

that different expressive manners are reflected in the total amount of movement, with greater 287 

amount of movement observed as expression level increases (deadpan: lowest, exaggerated: 288 

highest). These results can be viewed as a proof of concept for the expressive manners: 289 

Musicians altered their behavior when asked to perform with more expression. It should be 290 

noted that the musicians were never overtly instructed to change their movement patterns 291 

according to the expressive manner. Rather, the different behaviors are natural emergent 292 

consequences of the expressive manners. 293 

 294 

CanCom1 & CanCom2: Panels B and C show the mean sample correlations for deadpan, 295 

normal and exaggerated for CanCom1 and CanCom2 respectively.  Panel B shows that each 296 

expressive manner was performed with roughly similar amounts of coupled movements. 297 

However, normal performances are slightly more coupled than the other two. One 298 

interpretation is that normal performances did not require extra cognitive load on the part of 299 

the players. That is, they could perform without taking into consideration what it meant to 300 

play deadpan or exaggerated.  301 

 302 

Panels B and C also indicate information regarding movement complexity. It appears that the 303 

shared variance within deadpan and normal performances is essentially entirely explained by 304 

CanCom1. This could be interpreted by stating on average, interpersonal coupling in these 305 

performances was occurring on a single axis. In other words, the movement associated with 306 

coupling was not complex.  For the exaggerated performances, the gap is smaller between 307 

CanCom1 and CanCom2, meaning that the shared variation is distributed across the two 308 

canonical components. Taking into account that exaggerated performances possessed the 309 

most kinetic energy (panel A), we can make the assertion that the interpersonal coordination 310 

in the exaggerated performances was generally more complex, and occurring on multiple 311 

axes.  312 

 313 



 

Exploring the Canonical Loadings and Canonical Scores 314 

Now let us examine more closely the canonical loadings and canonical scores. For this 315 

section, we have singled out performances that best exemplify each expressive manner. We 316 

recommend the reader to watch the performances in this chapter’s accompanying video 317 

(found at https://www.youtube.com/watch?v=fvv2-he5lco&t=67s ). 318 

 319 

Given that we have performed canonical correlation analysis on the first two principal 320 

components of seven velocity features that were estimated from three-dimensional marker 321 

location data (gasp!), you may be asking the very sensible question: After so much 322 

processing, how do the canonical scores and loadings relate to the original motion capture 323 

data? To answer this question, let us first consider what information the loadings and scores 324 

provide. Since we are dealing with motion capture data, an intuitive way to think about the 325 

loadings and the scores is that the scores provide temporal information while the loadings 326 

provide spatial information. 327 

 328 

Canonical scores: The canonical scores represent temporal information because they are 329 

timeseries with the same amount of observations as the original location data. If we overlay 330 

the canonical scores from each violinist, we get an impression as to how the coupling evolves 331 

throughout the performance. In panels D, E and F, we have plotted the CanCom1 canonical 332 

scores from performances that best represent low and high gesture coupling. Panel D shows 333 

the canonical score from the deadpan performance with the lowest CanCom1 value (r = .23) 334 

out of the 27 performances (first lowest overall). Panel E shows the canonical score from the 335 

exaggerated performance with the lowest CanCom1 value (r = .44) out of the 27 336 

performances (sixth lowest overall). Panel F shows the normal performance with the highest 337 

CanCom1 value (r = .87) and highest over all 27 performances. Comparing the three panels, 338 

we see that the deadpan performance scores are irregular and do not co-vary coupling in the 339 

normal performance (panel F) is regular with some deviations after the 25-second mark. 340 

Meanwhile, the  341 

 342 

Canonical loadings: Recall that the loadings indicate the various contributions of the input 343 

variables (PCs1 and PCs2) to the output variables (U and V). These contributions can be 344 



 

inspected visually through the use of animations. In our accompanying video, we have 345 

created animations that represent the loadings of CanCom1 and CanCom2 for each example 346 

performance. The animations were created by projecting the canonical loadings back to the 347 

kinematic (velocity) space by multiplying the PC loading matrix with the loading matrix of 348 

the two canonical components and adding the mean position back to the data. The animations 349 

should not be seen as being time-dependent; they demonstrate the extent to which the various 350 

markers contribute to the canonical components. The extent to which a marker is moving 351 

indicates its contribution to the canonical component. The animations also demonstrate how 352 

canonical components are orthogonal, and so the variability within a canonical component is 353 

largely restricted to a single axis. 354 

 355 

 356 

Conclusions 357 

At the beginning of this chapter, we mentioned that an entrained process should contain 358 

flexibility, autonomy and coupling. In truth, employing CCA the way we did does not allow 359 

us to identify entrained processes because we cannot account for flexibility and autonomy. 360 

While CCA provides a measure of linear coupling, it only gives a global measure, ignoring 361 

the time-dependent aspects of entrained processes. Our earlier studies on entrainment in 362 

dance performance within dyads (Himberg & Thompson, 2010; Himberg & Thompson, 363 

2011) found that expert/novice dyads remained synchronized not by appropriating a 364 

leader/follower dynamic, but through mutual adaptation in response to each other’s 365 

movements. This does not rule out that entrainment never occurred within our data set. On 366 

the contrary, looking at panels D and E, we can identify some epochs within the timeseries 367 

that appear more together than others. This variation within the canonical scores indicates 368 

that performers adapted their behaviors throughout the performance. Therefore, CCA might 369 

have the potential to identify entrained processes if for example, the scores were windowed 370 

and multiple comparisons were performed laterally on a single time series. Additionally, 371 

cross-correlation analysis could identify the direction of the interaction and reveal 372 

leader/follower relationships. Using these alterations to our method, we may be able to use 373 

CCA more effectively for identifying dynamic entrainment processes. 374 

 375 



 

There are significant drawbacks to CCA for motion capture data. As explained above, the 376 

serial correlation within the data requires the use of effective degrees of freedom for 377 

calculating p-values. The greater amount of serial correlation leads to a lower amount of 378 

degrees of freedom (the performance in panel F contains only 11 effective degrees of 379 

freedom for over 2000 observations).  Another drawback is that CCA can only identify linear 380 

relationships between two data sets; it is ineffective for detecting processes that are non-381 

linear. For detecting non-linear relationships, there exists a broad range of coupling 382 

techniques other than CCA. For example, mutual information is a technique that identifies the 383 

mutual dependence between two data sets. While mutual information would do a better job of 384 

finding non-linear relationships between sets, it is a bin-based approach that requires 385 

knowing how many bins to use before the calculation. As such, the result is greatly affected 386 

by input parameters. In this respect CCA is advantageous because it is parameter-free and 387 

simpler to compute. 388 

 389 

To summarize, we have examined Canonical Correlation Analysis as a means of quantifying 390 

coupled movement in performing dyads. To provide a context when interpreting the output of 391 

CCA, musicians performed using different expressive manners (deadpan, normal, 392 

exaggerated). We also calculated the total kinetic energy across the expressive manners, 393 

which provided evidence that musicians altered their behavior based on the performance 394 

instruction. Overall the results showed the normal performances were slightly more 395 

interpersonally coordinated than deadpan and exaggerated.  While we cannot claim that our 396 

exact results would be replicated (music performance is an idiosyncratic endeavor), we hope 397 

we have presented CCA in sufficient detail to inspire others interested in interpersonal 398 

coordination to explore this coupling measure. 399 

 400 

  401 
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