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The reason behind the possibility of modeling impurities in
these terms is represented by the fact that each impurity can be
construed as quantum systems which exhibit two local energy
minima. For instance, as a charged impurity that can hop
between two defects in the crystal structure, or a dangling
bond with two possible conÞgurations.

More speciÞcally, these TLSs exist primarily due to the
disordered potential landscape of amorphous materials, e.g.,
in surface oxides of thin-Þlm circuit electrodes [38], in the
tunnel barrier of Josephson junctions [34], and at disordered
interfaces [40,41], coupling with the bosonic degrees of
freedom of the system, either through a purely electromagnetic
interaction (optical and circuit-QED setups) or a phononic one
in the context of nanomechanical systems [42].

II. MODEL

In this article we show under what conditions, considering
a nonlinear coupling between system and a bath of TLSs,
it is possible to derive a nonlinear QLE for the dynamics
of the degrees of freedom of the system, having in mind a
circuit-QED setup. In addition, we show how the nonlinear
QLEs derived here can represent an explanation to some of
the phenomena recently observed in the context of microwave
quantum optomechanics [22].

The starting point for our analysis is represented by a
bosonic system (S) coupled to an environment (E). The total
Hamiltonian of the bipartite system (S + E) is given by

H = HS + HE + HS−E , (1)

where HS = HS (c,c†) is the Hamiltonian of the isolated
system, exhibiting a generic dependence on the annihilation
(creation) operatorsc (c†) associated with the system, andHE
is the Hamiltonian for the bath.

We assume here that the environment Hamiltonian can be
decomposed into two terms,HB

E = ∑
k ωkb

†
kbk and H TLS

E ,
corresponding to a bath of free bosonic modes and to a
bath of TLSs, respectively (see Fig.1). The bosonic bath
describes, for instance, the modes of the electromagnetic Þeld
of the environment. In our analysis we assume that these

FIG. 1. Cartoon picture of the setup. The systemS is coupled to
an environmentE , which is constituted by a bosonic bathEB and a
bath of TLSsETLS. The coupling between the two baths and the system
is mediated by the HamiltoniansHS−B andHS−TLS, respectively.

modes, while being associated with the noise properties and
dissipation of the system, encompass also the external coherent
Þelds driving the system whose properties are encoded in the
state of the bath for the modesbk (see, e.g., [11]). Our choice
is equivalent to considering a coherent driving term for the
system Hamiltonian and a purely thermal bath.

In this scenario, we describe the coupling between these
modes and the degrees of freedom of the system by the
following Hamiltonian:

HS−B =
∑

k

gB
k (c†bk + cb

†
k). (2)

In addition, we model the bath of TLSs as a collection of
spins Jk. In this scenario we have thatH TLS

E = ∑
k �kJ

k
z .

This choice for the modeling of TLSs corresponds to the idea
that, for each�k multiple TLSs are present that collectively
couple with the systemS. While for �k � ωS, where ωS
corresponds to a characteristic frequency for the system,
the presence of impurities leads to a renormalization of the
linewidth associated with the linear response of the system
induced by the coupling given in Eq. (2) (see AppendixD);
for �k � nωS, nonlinear contributions appear. In our analysis,
also in light of the recent investigations concerning the
relevance of two-photon emission processes by TLSs [43,44]
when coupled to bosonic modes, we consider the case
n = 2, representing the lowest-order approximation beyond
linear coupling. This assumption appears to be compatible
with the usual experimental conditions encountered in the
context of circuit QED, where microwave cavities operate at
frequencies corresponding to few GHz [15,16,45] while the
energy separation of a TLS relevant for the physics of either of
these systems is of the order of 10 GHz [45,46]. In this case, it
is possible to write the system-TLS coupling Hamiltonian as

HS−TLS =
∑

k

gTLS
k (J k

+c2 + J k
−c†

2
). (3)

If we assume that|Jk| � 1, corresponding to the idea that
for each value of k multiple TLSs couple to the systemS, by
resorting to the Holstein-Primakoff (HP) realization of spin
operators in terms of bosonic modes, we can replace the spin
operators with bosonic ones. This mapping can be performed
in two different ways, corresponding to complementary exper-
imental conditions (see AppendixA). If it is assumed that the
TLSs mostly reside in their ground state, we have thatJ k

3 �
−jk, wherejk is the index of the representation associated
with the spinJk and the HP mapping readsJ k

3 → d
†
kdk − jk,

J k
− → dk, J k

+ → d
†
k. In this case, the coupling between the

system and the TLS bath can be approximated by

HS−HP− =
∑

k

gHP
k (d†

kc
2 + dkc

†2
), (4)

with gHP
k = √

2jkg
TLS
k . On the other hand, if the TLSs mainly

reside in their excited state (J k
3 � +jk) the mapping can be

written asJ k
3 → jk − d

†
kdk, J k

− → d
†
k, J k

+ → dk, leading to
the following approximation forHS−TLS:

HS−HP+ =
∑

k

gTLS
k (dkc

2 + d
†
kc

†2
). (5)
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These two different forms of the HP mapping correspond to
two different physical situations. In the former case, the TLSs
prevalently reside in their ground state, corresponding to the
idea that the impurities mainly reside in their ground state,
implying a low-temperature regime. In this case, the bosonic
excitations described by the operatorsdk represent (weak)
excitations around the ground state. On the other hand, the
latter case corresponds to the situation in which the highest
excited (metastable) state of the TLSs is weakly (de-)excited,
corresponding, for instance, to the case in which an external
drive induces excitations in the TLSs bath, leading to a possible
interpretation of the linewidth narrowing observed in circuit-
QED setups under strong driving conditions [35] in terms of
nonlinear QLEs associated with the saturation of the TLSs. In
this picture, the external drive effectively heats the impurities
to their excited state, inducing the population inversion for the
ensemble of TLSs and a consequent saturation, justifying the
HP+ transformation in terms of (weak) deexcitations of the
highest excited state.

As we show in AppendixB, it is possible to derive QLEs
for the system, provided that the environment Hamiltonian is
described by a set of bosonic operators coupled linearly to
the system degrees of freedom. It is important to note that the
requirement of linearity concerning the system-environment
Hamiltonian is limited to the bath degrees of freedom, meaning
that its most general form can be expressed as

HS−E =
∑

k

gk[F †(c,c†)ek + F (c,c†)e†k], (6)

whereek ande
†
k represent generic bosonic operators associated

with the environment degrees of freedom. The form the
system-environment coupling represents a sufÞcient condition
for the derivation of a nonlinear QLE, along with the
assumption that the modes of the bath are noninteracting. In
other terms, it is necessary to assume a linear dependence
of the coupling Hamiltonian on the environmental degrees of
freedom, since in order to derive the QLEs for the system,
the solution of the Heisenberg equation of motion for the
environment degrees of freedom has to assume a speciÞc form
in which the contribution of the system and the environment
operators can be represented as two separate additive terms
(see AppendixB).

III. EQUATIONS OF MOTION

It is clear that since the form ofHS−B andHS−HP± can be
expressed in the form given by Eq. (6), withF (c,c†) given byc,
c2, andc†

2
, and withek = bk andek = dk forS − B,S − HP−,

andS − HP+, respectively, we can write the dynamics of the
system in terms of a (nonlinear) QLE as

úc = −i[c,HS ] −
(

κ

2
+ κNc†c

)
c + √

κcin + 2
√

κNc†cTLS
in ,

(7a)

úc = −i[c,HS ] −
(

κ

2
− κNc†c

)
c + √

κcin + 2
√

κNc†cTLS
in

†
.

(7b)

Equations (7a) and (7b), obtained considering the system-
environment coupling given byHS−HP− andHS−HP+ , respec-
tively, are the main result of our analysis. The presence of
a TLS bath leads to the appearance of nonlinear dissipative
terms (±κNc†c c) and to purely imaginary parametric noise
terms (2

√
κNc†cTLS

in
(†)). We stress here that these terms are

the direct result of the modeling of the bath in terms of
two separate environments (HS−B andHS − HP±) and do not
represent anad hocmodiÞcation of the linear QLEs that can
be derived in the absence of coupling to TLSs. In particular,
while the nonlinear dissipation term possibly represents a
natural extension to the nonlinear regime of linear QLEs, the
parametric noise term is a nontrivial contribution associated
with the presence of the TLS bath.

In addition, we observe here that, analogously to their
linear counterpart, Eqs. (7a) and (7b) are time local, i.e.,
the dynamics is Markovian. As detailed in AppendixB, this
property is related to the assumption that within the range of
frequencies of interest, the coupling strength between system
and environment is independent of the mode considered
(wide-band-limit approximation) [47].

If we further consider a pump probe representative of a
circuit-QED setup (e.g., a circuit optomechanical experiment),
we can assume that the dynamics given by Eq. (7) is linearized
around a strong coherent tone:

αp = αin exp[−iωpt ].

The frequencyωp is detuned by� = ωp − ωc from the cavity
resonant frequency. As a result of the linearization scheme,
we have that the amplitude of the cavity Þeld oscillating at
ωp is given by the solution of a nonlinear algebraic equation.
In Fig. 2 we have plotted the stationary value of the cavity
Þeld for the two choices of the HP mapping (HP±). As
expected, for small values of the driving Þeldαin, the stationary
solution corresponds to the solution in the absence of nonlinear
dissipation. However, for larger values ofαin the stationary
solution substantially deviates from the solution of the linear
system, with, for the parameters discussed here, a negligible
difference between HP± cases.

Furthermore, the (Þrst-order) dynamics of the ßuctuations
c = α + a around the stationary value induced by the pump
(in a frame rotating atωp) is given by

úa =
[
i� −

(
κ

2
+ 2κN |α|2

)]
a − κNα2a†

+√
κain + 2

√
κNα∗aTLS

in , (8a)

úa =
[
i� −

(
κ

2
− 2κN |α|2

)]
a + κNα2a†

+√
κain + 2

√
κNα∗aTLS

in
†
, (8b)

the HP− and HP+ case, respectively (see AppendixC). It
is possible to see that Eqs. (8a) and (8b) include a purely
imaginary parametric term on top of a nonlinear dissipation
term, implying linewidth broadening or narrowing, depending
on the state of the TLSs bath. Recently, in Ref. [22] a term of
the same form was introduced as anad hocparameter in order
to match the experimental results of a cavity optomechanical
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FIG. 2. Amplitude (a) and phase (b) for the stationary value (in
a frame rotating atωp, see text) of the cavity Þeldα in the presence
of a drivingαin. Parameters:κN = 1.5×10−4, � = 20 (all quantities
expressed in units ofκ).

experiment aimed at establishing squeezing below the SQL of
a nanomechanical resonator.

Our description, therefore provides a potential explanation
of such parametric effects in terms of nonlinear dissipation
phenomena associated with the nonlinear coupling to a bath
of TLSs. In order to characterize the effect induced by the
presence of the nonlinear coupling to TLSs, we evaluate the
ßuctuation spectrum of the cavity ÞeldSθ

ω = 1/2〈{Xθ
ω,Xθ

−ω}〉,
with Xθ

ω = 1/
√

2(a†
−ωeiθ + aωe−iθ ), assuming thermal ßuctu-

ations both for the bosonic and the TLS bath. As hinted by the
structure of Eqs. (8a) and (8b), the presence of a parametric
term induces squeezing, which can be experimentally observed
by homodyne detection of the output Þeld, in the cavity
spectrum for both cases, as seen in Fig.3, where the cavity ßuc-
tuation spectrum exhibits a clear dependence on the phaseθ .

IV. CONCLUSIONS

We have reported here how it is possible to deduce
nonlinear QLEs for the dynamics of an open quantum system
from a nonlinear system-environment coupling Hamiltonian.
Moreover, we have discussed how an effective nonlinear
system-environment coupling can emerge in the presence
of impurities modeled as TLSs. Ultimately, we have shown
that the TLS-induced nonlinearities can represent a potential
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FIG. 3. Noise spectrum for the cavity Þeld in the presence of
an external driveαin = 700, for (a) HP− and (b) HP+ for 〈a†

inain〉 =
〈aTLS

in
†
aTLS

in 〉 = 1 (all other parameters as in Fig.2).

explanation for the imaginary parametric terms reported in
Ref. [22].
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APPENDIX A: HOLSTEIN-PRIMAKOFF
TRANSFORMATION

We discuss here the Holstein-Primakoff realization allow-
ing us to replace the spin operatorsJz, J± obeying the usual
SU(2) commutation relations[

J k
z ,J k

±
] = ±J k

±, [J k
+,J k

−] = 2J k
z , (A1)

with bosonic operatorsdk, d
†
k, for which

[dk,d
†
k] = 1. (A2)

As discussed in the main text, in order to map the spin
operators obeying Eq. (A1) with the bosonic operatorsdk, d

†
k,

we have two possibilities, depending on the physical situation
we want to describe. If we assume thatJ k

z � −jk, this choice
is indicated in the main text as HP−, we can consider the
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following transformation:

J k
z = önk − jk, J k

+ = d
†
k

√
2jk − önk, J k

− =
√

2jk − önk dk,

(A3)

whereönk = d
†
kdk. The operatorsJ k

z , J k
± can be shown to fulÞll

the SU(2) commutation relations[
J k

z ,J k
+
] = [ önk,d

†
k]

√
2jk − önk = J k

+,[
J k

z ,J k
−
] =

√
2jk − önk[ önk,dk] = −J k

−, (A4a)

[J k
+,J k

−] = d
†
k(

√
2jk − önk)2dk −

√
2jk − önk önk

√
2jk − önk

= önk
(
2jk−önk + 1

)−2jk+önk−önk(2jk−önk)=2J k
z .

(A4b)

In the limit jk → ∞, we have that

J k
+√
2jk

= d
†
k

√
2jk − önk

2jk
= d

†
k

(
1 − önk

4jk
+ · · ·

)
� d

†
k,

J k
−√
2jk

� dk,
J k

z

jk
= önk

jk
− 1 � −1. (A5)

Therefore the bosonic excitations described bydk and d
†
k

correspond to (small) excitations around theJ k
z = −jk state.

Conversely, we can write

J k
z = jk − önk, J k

− = d
†
k

√
2jk − önk, J k

+ =
√

2jk − önk dk,

(A6)

so that whenjk → ∞,

J k
+√
2jk

� dk,
J k

−√
2jk

� d
†
k,

J k
z

jk
= 1 − önk

jk
� 1, (A7)

which correspond to the description of small ßuctuations
around theJ k

z = j state, indicated as HP+ in main text.

APPENDIX B: QLE FOR F(c,c†)

We discuss here the form of the QLEs generated by a
model for which, following the notation introduced in Eq. (1)
of the main text,HS is left unspeciÞed. The environment is
given by a set of noninteracting bosonic modes described by
HE = ∑

k ωke
†
kek, whereek (e†k) are the annihilation (creation)

operators associated with mode k and the system-environment
coupling is given by the following Hamiltonian:

HS−E =
∑

k

gk[F (c,c†)e†k + F †(c,c†)ek], (B1)

where F (c,c†) is a generic function of the creation and
annihilation operators of the system. SinceHS−E is a linear
operator with respect to the degrees of freedom of the bath
ande

(†)
k commutes withHS , we can follow the same strategy

employed for the derivation of the linear QLEs [11] and write
the equations of motion (EOM) for the bath Þeld operators in
the Heisenberg picture as

úek(t) = −iωkek(t) − igkF (c,c†). (B2)

Similarly, the EOM for the system can be written as

úc(t) = i[HS ,c(t)] + i
∑

k

gk([F,c]e†k + [F †,c]ek). (B3)

Equation (B2) can be solved in terms of an initial conditiont0,
yielding

ek(t)=e−iωk(t−t0)ek(t0) − igk

∫ t

t0

e−iωk(t−t ′)F [c(t ′),c†(t ′)] dt ′.

(B4)

By substituting Eq. (B4) and its Hermitian conjugate into
Eq. (B3) we obtain

úc(t) = i[HS ,c(t)] + i
∑

k

gk

{
[F,c]

[
eiωk(t−t0)e

†
k(t0) + igk

∫ t

t0

eiωk(t−t ′)F †(t ′) dt ′
]

+ [F †,c]
[
e−iωk(t−t0)ek(t0)−igk

∫ t

t0

e−iωk(t−t ′)F (t ′) dt ′
]}

. (B5)

Like for the purely linear case, we introduce the density of statesD = ∂k/∂ωk (supposing a continuum of states for the bath)
and assume that, in the relevant frequency regime,gk does not depend on the mode index k. If we deÞne

gk =
√

κ

2πD
, (B6)

whereκ is the mode-independent constant, we can write Eq. (B5) as

úc(t) = i[HS ,c(t)] + i
∑

k

√
κ

2πD

{
[F,c]

(
eiωk(t−t0)e

†
k(t0) + i

√
κ

2πD

∫ t

t0

eiωk(t−t ′)F †(t ′) dt ′
)

+ [F †,c]
(

e−iωk(t−t0)ek(t0) − i

√
κ

2πD

∫ t

t0

e−iωk(t−t ′)F (t ′) dt ′
)}

= i[HS ,c(t)] + √
κ

{
[F,c]

(
−c†in(t) −

√
κ

2
F †(t)

)
+ [F †,c]

(
−cin(t) +

√
κ

2
F (t)

)}
, (B7)
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where we have deÞnedcin(t) as

cin(t) = − i√
2πD

∑
k

e−iωk (t−t0)ek(t0). (B8)

The deÞnition introduced in Eq. (B6) corresponds to what in the context of electronic transport is deÞned as Òa wide-band-limit
approximationÓ and, allowing us to write the QLE given in Eq. (B7) in time-local form, can be considered equivalent to the
Markov approximation [47].

Let us focus on the case, discussed in the text, of two separate baths: a bosonic bath with operatorsbk and a bath of TLSs
with HP-transformed modesdk. We deÞne two functionsFb andFTLS of the system operators that couple to the bosonic and TLS
baths, respectively. The QLE (B7) then reads

úc(t) = i[HS ,c(t)] + √
κ

{
[Fb,c]

(
−c†in −

√
κ

2
F

†
b

)
+ [F †

b ,c]
(

−cin +
√

κ

2
Fb

)}

+√
κN

{
[FTLS,c]

(
−cTLS†

in −
√

κN

2
F

†
TLS

)
+ [F †

TLS,c]
(

−cTLS
in +

√
κN

2
FTLS

)}
. (B9)

Assuming a linear coupling between the system and the
bosonic bath and choosing the HP− mapping for the TLSs, one
obtainsFb = c andFTLS = c2. Substituting these into Eq. (B9)
gives

úc = i[HS ,c(t)] −
(

κ

2
+ κNc†c

)
c + √

κcin + 2
√

κNc†cTLS
in ,

(B10)

which corresponds to Eq. (7a) of the main text. On the contrary,
if the HP+ mapping is chosen, one obtains Eq. (7b) with
FTLS = c†2.

APPENDIX C: LINEARIZATION OF THE QUANTUM
LANGEVIN EQUATIONS

Here we outline the linearization strategy that allows us, in
the presence of a strong coherent toneαp = αine

−iωpt , to recast
Eqs. (7b) of the main text in terms of equations describing the
stationary state (in a frame rotating atωp) and the ßuctuations
around this stationary state, given by Eqs. (8a) and (8b) of the
main text.

Focusing on Eq. (7a),

úc = −i[c,HS ] −
(

κ

2
+ κNc†c

)
c + √

κcin + 2
√

κNc†cTLS
in .

(C1)

In the presence of a strong coherent pumpαp = αine
−iωpt , we

seek a solution of the formc = α + a,

−iωpα + úa = −iωc(α + a) −
[
κ

2
+ κN (α∗ + a†)(α + a)

]

× (α + a) + √
κ(αin + ain)

+ 2
√

κN (α∗ + a†)aTLS
in , (C2)

where without loss of generality, we have assumed that
HS = ωcc

†c.
Neglecting the ßuctuation terms, we obtain the equation for

the steady-state solution

0 = i�α − κ

2
α − κNα|α|2 + √

καin, (C3)

where � = ωp − ωc. From Eq. (C2) the equation for the
ßuctuation around the steady-state solution value ofα given
above is thus expressed as

úa =
[
i� −

(
κ

2
+ 2κN |α|2

)]
a − κNα2a† + √

κain

+ 2
√

κNα∗aTLS
in . (C4)

With a similar procedure one can also show that Eq. (7b)
leads to Eq. (8b). Notice that the nonlinear dissipative terms
∓2κN |α|2a in Eqs. (8a) and (8b) lead to the broadening or nar-
rowing of the linewidth associated with the linearized response
of the cavity Þeld ßuctuations, respectively (see Fig.4).

APPENDIX D: FLUCTUATION SPECTRUM
OF THE NONLINEAR MODEL

Assuming that, in addition to the strong coherent tone, the
dynamics of the system is affected by thermal ßuctuations
of both the bosonic and the TLS baths degrees of freedom,

0 200 400 600 800 1000
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-0.5
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1
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FIG. 4. The total effective dissipation of the linearized models
Eq. (8a) (solid red) and Eq. (8b) (dashed green) that correspond to
the cases where the majority of the TLSs are in the ground state and
excited state, respectively. They are compared to the case of pure
linear dissipation (black dots). Here we assume the system to be a
simple cavity withHS = ωcc

†c. In units of κ, the parameters are
� = ωp − ωc = 20 andκN = 1.5×10−4.

063830-6



NONLINEAR QUANTUM LANGEVIN EQUATIONS FOR . . . PHYSICAL REVIEW A96, 063830 (2017)

-2 -1 0 1 2
0

2

4

6

-2 -1 0 1 2
0

20

40

60

FIG. 5. The cavity spectra related to the Holstein-Primakoff couplings (a) HP− and (b) HP+ for the largest uncertainty quadrature (θ = π/2
andθ = 0, respectively). In (a) the linewidth widens asαin becomes larger (larger values ofαin correspond to smaller values of the maximum
at ω = 0), whereas in (b) the linewidth becomes narrower (larger values ofαin correspond to larger values of the maximum atω = 0).
Here the thermal populations of the bosonic and TLS baths arenth = nTLS

th = 1, and in the units ofκ, the other parameters are� = 20 and
κN = 1.5×10−4.

we evaluate here the spectrum of these ßuctuations focusing
on the HP− case (an analogous derivation holds for the HP+
mapping). The ßuctuation spectrum

Sθ
ω = 1

2

〈{
Xθ

ω,Xθ
−ω

}〉
, (D1)

with Xθ
ω = 1/

√
2(a†

−ωeiθ + aωe−iθ ), can be obtained by
Fourier transforming the QLE given by Eq. (8a) and its
Hermitian conjugate[

−i(ω + �) + κ

2
+ 2κN |α|2

]
aω + κNα2a

†
−ω

= √
κain,ω + 2

√
κNα∗aTLS

in,ω , (D2a)

[
−i(ω − �) + κ

2
+ 2κN |α|2

]
a
†
−ω + κNα∗2aω

= √
κa

†
in,−ω + 2

√
κNαa

TLS†
in,−ω, (D2b)

with the usual convention for the Fourier transform, according

to whichat
FT�−→ aω anda

†
t

FT�−→ a
†
−ω.

DeÞning

A = −i(ω + �) + κ

2
+ 2κN |α|2, (D3a)

B = κNα2, (D3b)

C = −i(ω − �) + κ

2
+ 2κN |α|2, (D3c)

the QLE for the system can be expressed as(
aω

a
†
−ω

)
= 1

AC − |B|2
(

C −B

−B∗ A

)

×
( √

κain,ω + 2
√

κNα∗aTLS
in,ω

√
κa

†
in,−ω + 2

√
κNαa

TLS†
in,−ω

)
, (D4)

and

aω = χd (ω)ain,ω + χx(ω)a†
in,−ω + χTLS

d (ω)aTLS
in,ω

+χTLS
x (ω)aTLS†

in,−ω, (D5a)

a
†
−ω = χ∗

x (−ω)ain,ω + χ∗
d (−ω)a†

in,−ω + χTLS∗
x (−ω)aTLS

in,ω

+χTLS∗
d (−ω)aTLS†

in,−ω, (D5b)

where

χd (ω) = √
κC(AC − |B|2)−1, (D6a)

χx(ω) = −√
κB(AC − |B|2)−1, (D6b)

χTLS
d (ω) = 2

√
κNα∗C(AC − |B|2)−1, (D6c)

χTLS
x (ω) = −2

√
κNαB(AC − |B|2)−1. (D6d)

If we assume that the thermal populations of the baths are
given by〈ain,ωa

†
in,ω′ 〉 = (nth + 1)δ(ω − ω′) and〈aTLS

in,ωa
TLS†
in,ω′ 〉 =

(nTLS
th + 1)δ(ω − ω′), the cavity spectrum can be written as

Sθ
ω = 1

4[(|χd (ω)|2 + |χx(−ω)|2)〈{ain,ω,a†
in,ω}〉 + (|χd (−ω)|2 + |χx(ω)|2)〈{a†

in,−ω,ain,−ω}〉]
+ 1

4[(χd (ω)χx(−ω)e−i2θ + χ∗
d (ω)χ∗

x (−ω)ei2θ )〈{ain,ω,a†
in,ω}〉

+ (χd (−ω)χx(ω)e−i2θ + χ∗
d (−ω)χ∗

x (ω)ei2θ )〈{a†
in,−ω,ain,−ω}〉]

+ 1
4

[(∣∣χTLS
d (ω)

∣∣2 + ∣∣χTLS
x (−ω)

∣∣2)〈{aTLS
in,ω ,aTLS†

in,ω

}〉
+ (∣∣χTLS

d (−ω)
∣∣2 + ∣∣χTLS

x (ω)
∣∣2)〈{aTLS†

in,−ω,aTLS
in,−ω

}〉]
+ 1

4

[(
χTLS

d (ω)χTLS
x (−ω)e−i2θ + χTLS∗

d (ω)χTLS∗
x (−ω)ei2θ

)〈{
aTLS

in,ω ,aTLS†
in,ω

}〉
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+ (
χTLS

d (−ω)χTLS
x (ω)e−i2θ + χTLS∗

d (−ω)χTLS∗
x (ω)ei2θ

)〈{
a

TLS†
in,−ω,aTLS

in,−ω

}〉]
= 1

2[|χd (ω)|2 + |χd (−ω)|2 + |χx(ω)|2 + |χx(−ω)|2

+ 2 cos(θ + φ)|χd (ω)χx(−ω) + χd (−ω)χx(ω)|](nth + 1
2

)
+ 1

2

[∣∣χTLS
d (ω)

∣∣2 + ∣∣χTLS
d (−ω)

∣∣2 + ∣∣χTLS
x (ω)

∣∣2 + ∣∣χTLS
x (−ω)

∣∣2
+ 2 cos(θ + φTLS)

∣∣χTLS
d (ω)χTLS

x (−ω) + χTLS
d (−ω)χTLS

x (ω)
∣∣](nTLS

th + 1
2

)
, (D7)

whereφ(TLS)=Arg[χ (TLS)
d (ω)χ (TLS)

x (−ω)+χ
(TLS)
d (−ω)χ (TLS)

x (ω)]. In Fig. 5(a)we have plotted the cavity spectrum for the HP−,
and the spectrum related to HP+ coupling derived from Eq. (8b) is presented in Fig.5(b).
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