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Abstract
Problems in chemical engineering, like most real-world optimization 
problems, typically, have several conflicting performance criteria or ob-
jectives and they often are computationally demanding, which sets spe-
cial requirements on the optimization methods used. In this chapter, 
we point out some shortcomings of some widely used basic methods of 
multi-objective optimization. As an alternative, we suggest using inter-
active approaches where the role of a decision maker or a designer is 
emphasized. Interactive multi-objective optimization has been shown to 
suit well for chemical process design problems because it takes the pref-
erences of the decision maker into account in an iterative manner that 
enables a focused search for the best Pareto optimal solution, that is, 
the best compromise between the conflicting objectives. For this reason, 
only those solutions that are of interest to the decision maker need to 
be generated making this kind of an approach computationally efficient. 
Besides, the decision maker does not have to compare many solutions at 
a time which makes interactive approaches more usable from the cogni-
tive point of view. Furthermore, during the interactive solution process 
the decision maker can learn about the interrelationships among the 
objectives. In addition to describing the general philosophy of interac-
tive approaches, we discuss the possibilities of interactive multi-objective 
optimization in chemical process design and give some examples of in-
teractive methods to illustrate the ideas. Finally, we demonstrate the 
usefulness of interactive approaches in chemical process design by sum-
marizing some reported studies related to, for example, paper making 
and sugar industries. Let us emphasize that the approaches described 
are appropriate for problems with more than two objective functions.

Keywords: Multiple criteria decision making (MCDM), interactive



methods, scalarization, chemical engineering, Pareto optimality

6.1. Introduction

Problems involving multiple conflicting criteria or objectives are generally

known as multiple criteria decision making (MCDM) problems. In such

problems, instead of a well-defined single optimal solution, there are many

compromise solutions, so-called Pareto optimal solutions, that are mathe-

matically incomparable. In the MCDM literature, solving a multi-objective

optimization problem is usually understood as helping a human decision

maker (DM) in considering the multiple objectives simultaneously and in

finding a Pareto optimal solution that pleases him/her the most. In other

words, the solution process needs some involvement of the DM and the final

solution is determined by his/her preferences.

Examples of surveys of methods available for multi-objective optimiza-

tion are Chankong and Haimes (1983); Hwang and Masud (1979); Marler

and Arora (2004); Miettinen (1999); Sawaragi et al. (1985); Steuer (1986);

Vincke (1992). The methods can be classified in different ways. In Hwang

and Masud (1979); Miettinen (1999) they are divided into four classes ac-

cording to the role of the DM in the solution process. If there is no DM and

his/her preference information available, we can use so-called no-preference

methods which find some neutral compromise solution without any addi-

tional preference information. In a priori methods, the DM first gives pref-

erence information and then the method looks for a Pareto optimal solution

satisfying the hopes as well as possible. This is a straightforward approach

but the difficulty is that the DM may have too optimistic or pessimistic

hopes and then the solution generated may be far from them and, thus,

disappointing.

In a posteriori methods, a representative set of Pareto optimal solu-

tions is generated and then the DM must select the most preferred one. In

this way, the DM gets an overview of the problem but it may be difficult

for the DM to analyze a large amount of information. A natural visual-

ization on a plane is possible only for problems involving two objectives.

Furthermore, generating the set of Pareto optimal solutions may be com-

putationally expensive. Evolutionary multi-objective optimization (EMO)

algorithms belong to this class but it may happen that the solutions gen-

erated are not really Pareto optimal but only nondominated in the current

population. The fourth class is that of interactive methods. Many inter-

active methods exist but they should become more widely known among



people solving real applications. In interactive approaches, a solution pat-

tern is formed and then repeated and the DM can specify and adjust one’s

preference information between each iteration.

In this chapter, we introduce scalarization based approaches and, in par-

ticular, interactive methods as alternatives to EMO approaches. Our aim

here is to widen the awareness of the readers of the existence of interac-

tive methods and the advantages and usefulness of using them. Sometimes

multi-objective and bi-objective optimization are regarded as synonyms

but this kind of thinking is very limiting. Our approaches are capable

of handling genuine multi-objective optimization with more than two ob-

jectives. Besides discussing drawbacks of some widely used methods (like

the weighting method) that sometimes are regarded as the only nonevolu-

tionary multi-objective optimization methods available, we introduce some

interactive methods and the NIMBUS method (Miettinen, 1999; Miettinen

and Mäkelä, 2006), in particular. In addition, we summarize encouraging

experiences of solving some chemical engineering problems with the interac-

tive NIMBUS method. The motivation here is that it is important to get to

know that a variety of methods and approaches exists. In this way, people

solving different problems are able to use the most appropriate approaches.

In this respect, scalarization based and interactive methods complement

evolutionary approaches. More information about bringing the MCDM

and EMO fields closer is available in Branke et al. (2008).

This chapter is organized as follows. In Section 6.2, main concepts

and the idea of scalarization based methods are introduced. In addition,

some basic multi-objective optimization methods and their shortcomings

are presented and comparative aspects between scalarization based and

evolutionary approaches are discussed. Section 6.3 concentrates on interac-

tive multi-objective optimization and some methods. Advantages of using

interactive approaches in chemical process design are discussed in Section

6.4 and some applications related to sugar and papermaking industries as

well as wastewater treatment planning are summarized in Section 6.5. Fi-

nally, concluding remarks are given in Section 6.6.



6.2. Concepts, Basic Methods and Some Shortcomings

6.2.1. Concepts

Let us consider multi-objective optimization problems of the form

minimize {f1(x), . . . , fk(x)}
subject to x ∈ S, (6.1)

where we have k (≥ 2) conflicting objective functions fi : S → R that we

want to minimize simultaneously. In addition, we have decision (variable)

or design vectors x = (x1, . . . , xn)T belonging to the nonempty feasible

region S ⊂ Rn defined by equality, inequality and/or box constraints. In

multi-objective optimization, we typically are interested in objective vectors

consisting of objective (function) values f(x) = (f1(x), . . . , fk(x))T and the

image of the feasible region is called a feasible objective region Z = f(S).

(Note that if some function fi should be maximized, it is equivalent to

minimize −fi. Thus, without losing any generality, we consider problems

of the form (6.1).)

For multi-objective optimization, theoretical background has been laid,

e.g., in Edgeworth (1881); Koopmans (1951); Kuhn and Tucker (1951);

Pareto (1896, 1906). Typically, there is no unique optimal solution but

a set of mathematically incomparable solutions can be identified. An ob-

jective vector can be regarded as optimal if none of its components (i.e.,

objective values) can be improved without deterioration to at least one of

the other objectives. To be more specific, a decision vector x′ ∈ S and the

corresponding objective vector f(x′) are called Pareto optimal if there does

not exist another x ∈ S such that fi(x) ≤ fi(x
′) for all i = 1, . . . , k and

fj(x) < fj(x
′) for at least one index j. In the MCDM literature, widely

used synonyms of Pareto optimal solutions are nondominated, efficient,

noninferior or Edgeworth-Pareto optimal solutions.

As mentioned in the introduction, we here assume that a DM is able to

participate in the solution process. (S)he is expected to know the problem

domain and be able to specify preference information related to the objec-

tives and/or different solutions. We assume that less is preferred to more in

each objective for him/her. (In other words, all the objective functions are

to be minimized.) If the problem is correctly formulated, the final solution

of a rational DM is always Pareto optimal. Thus, we can restrict our con-

sideration to Pareto optimal solutions. For this reason, it is important that

the multi-objective optimization method used is able to find any Pareto op-

timal solution and produce only Pareto optimal solutions. However, weakly



Pareto optimal solutions are sometimes used because they may be easier

to generate than Pareto optimal ones. A decision vector x′ ∈ S (and the

corresponding objective vector) is weakly Pareto optimal if there does not

exist another x ∈ S such that fi(x) < fi(x
′) for all i = 1, . . . , k. Note that

Pareto optimality implies weak Pareto optimality but not vice versa.

The DM may find information about the ranges of feasible Pareto opti-

mal objective vectors useful. Lower bounds form a so-called ideal objective

vector z? ∈ Rk. Its components z?i are obtained by minimizing each ob-

jective function individually subject to the feasible region. Sometimes, for

computational reasons, we also need a strictly better utopian objective vec-

tor z?? defined as z??i = z?i − ε for i = 1, . . . , k, where ε is some small

positive scalar.

The upper bounds of the Pareto optimal set, that is, the components of

a nadir objective vector znad, are in practice difficult to obtain. It can be

estimated using a payoff table but the estimate may be unreliable (see, e.g.,

Miettinen (1999) and references therein). See Deb et al. (2010) for more

recent approaches of calculating the nadir objective vector.

Finding a final solution to problem (6.1) is called a solution process.

It usually involves the DM and an analyst. An analyst can be a human

being or a computer program. The analyst’s role is to support the DM

and generate information for the DM. Let us emphasize that the DM is not

assumed to know multi-objective optimization theory or methods but (s)he

is supposed to be an expert in the problem domain, that is, understand

the application considered and have insight into the problem. Based on

that, (s)he is supposed to be able to specify preference information related

to the objectives considered and different solutions. The DM can be, e.g.,

a designer . The task of a multi-objective optimization method is to help

the DM in finding the most preferred solution as the final one. The most

preferred solution is a Pareto optimal solution which is satisfactory for the

DM.

Multi-objective optimization problems can be solved by scalarizing the

problem, in other words, by forming a problem (or several problems) involv-

ing a single objective function (and possibly some additional constraints).

The formulation typically includes preference information obtained from

the DM. Because the scalarized problem has a real-valued objective func-

tion (possibly depending on some parameters originating, e.g., from prefer-

ence information), it can be solved using appropriate (local, global, mixed-

integer etc.) single objective optimizers and, thus, we can utilize the the-

oretical background and large amount of methods developed for single ob-



jective optimization. The real-valued objective function can be called a

scalarizing function. Such scalarizing approaches should be favored that

generate Pareto optimal solutions and can find any Pareto optimal solution

(as discussed earlier). Depending on whether a local or a global optimizer

is used we get either locally or globally Pareto optimal solutions (for non-

convex problems). Because locally Pareto optimal solutions are typically

unacceptable for DMs, it is important to use appropriate optimizers.

As said in the definition, to move from one Pareto optimal solution

to another Pareto optimal solution means trading off. More formally, a

trade-off is the ratio of change in objective function values involving the

increment of one objective function that occurs when the value of some

other objective function decreases. For details, see, e.g., Chankong and

Haimes (1983); Miettinen (1999).

The DM can specify preference information in many ways and the task

is to find a format that the DM finds most natural and intuitive. One

possibility is that the DM specifies aspiration levels z̄i (i = 1, . . . , k) that

are desirable or acceptable objective function values. The vector z̄ ∈ Rk

consisting of aspiration levels is called a reference point .

6.2.2. Some Basic Methods

When discussing methods, it is in order to begin with two widely used ones,

the weighting method and the ε-constraint method. They can be called

basic methods. In many applications one can actually see that they are

used without necessarily recognizing them as multi-objective optimization

methods or explicitly even saying that the problem considered is a multi-

objective optimization one. This means that when formulating and solving

the problem, the difference between modeling and optimization phases is

not always clear. One can say that these basic methods represent ideas

that first come to one’s mind when one wants to consider several objective

functions simultaneously. However, these methods have some shortcomings

that are not necessarily widely known and, for that reason, we want to

point them out. In this section, we also briefly discuss some characteristics

of EMO approaches when compared to scalarizing approaches. Proofs of

theorems related to optimality as well as further details about the methods

can be found in Miettinen (1999).



6.2.2.1. Weighting Method

The scalarized problem to be solved in the weighting method (Gass and

Saaty, 1955; Zadeh, 1963) is

minimize
k∑

i=1

wifi(x)

subject to x ∈ S,
(6.2)

where the weights are nonnegative, that is, wi ≥ 0 for all i = 1, . . . , k and,

typically,
∑k

i=1 wi = 1. The solution of (6.2) is weakly Pareto optimal and

Pareto optimal if wi > 0 for all i = 1, . . . , k or the solution is unique.

The weighting method can be used (as an a posteriori method) so that

different weights are set to generate different Pareto optimal solutions and

then the DM must select the most satisfactory one. Alternatively, the DM

can be asked to specify the weights reflecting his/her preferences (as an a

priori method).

It is important to point out that if the problem is nonconvex, the weight-

ing method does not work as it is expected to. However, surprisingly few

people applying it seem to realize this. To be more specific, any Pareto

optimal solution can be found by altering the weights only if the problem

is convex. Thus, it may happen that some Pareto optimal solutions of

nonconvex problems remain undiscovered no matter how the weights are

varied. This is a serious drawback because it is not always easy to check

the convexity in real applications, e.g., involving black box objective func-

tions. If the method is used for generating a representation of the Pareto

optimal set, the DM gets a very misleading impression because only some

parts of the Pareto optimal set are covered. Furthermore, as shown by Das

and Dennis (1997), an evenly distributed set of weights does not necessar-

ily produce an evenly distributed representation of the Pareto optimal set,

even if the problem is convex.

If the method is used as an a priori method, the DM is expected to

represent his/her preferences in the form of weights. However, in general,

the role of the weights may be greatly misleading and it is not at all clear

what the concept ’relative importance of an objective’ means (Podinovski,

1994; Roy and Mousseau, 1996). Besides, giving weights implies eliciting

global preferences which may be hard if not impossible. Furthermore, the

DM may get an unsatisfactory solution if some of the objective functions

correlate with each other (Steuer, 1986). This is also demonstrated in

Tanner (1991) with an example originally formulated by P. Korhonen. The

problem (involving three candidates and five objectives) is about choosing



a spouse. There, the weights representing the preferences of the DM result

with a spouse who is the worst in the objective that was given the biggest

weight, that is, the highest importance.

Overall, we can say that it is not necessarily easy for the DM (or the

analyst) to control a solution process with weights because weights behave

in an indirect way. It makes no sense to end up in a situation where one tries

to guess such weights that would produce a desirable solution. Because the

DM can not be properly supported in this, (s)he is likely to get frustrated.

Instead, it is then better to use real interactive methods (see Section 6.3)

where more intuitive preference information can be used.

6.2.2.2. ε-Constraint Method

If one of the objective functions is selected to be optimized and the others

are converted into constraints, we get the scalarization of the ε-constraint

method (Haimes et al., 1971; Chankong and Haimes, 1983):

minimize f`(x)

subject to fj(x) ≤ εj for all j = 1, . . . , k, j 6= `,

x ∈ S,
(6.3)

where ` ∈ {1, . . . , k} and εj are upper bounds for the objectives fj , j 6= `.

The solution of problem (6.3) is always weakly Pareto optimal and

Pareto optimal if it is unique. On the other hand, x∗ ∈ S is Pareto opti-

mal if and only if it solves (6.3) for every ` = 1, . . . , k, where εj = fj(x
∗)

for j = 1, . . . , k, j 6= `. Thus, ensuring Pareto optimality means either

solving k problems or obtaining a unique solution (which is not necessarily

easy to verify in practice). What is positive when compared to the weight-

ing method is that the ε-constraint method can find any Pareto optimal

solution even for nonconvex problems.

In practice, it is not always easy to set the upper bounds so that problem

(6.3) has feasible solutions. It may also be difficult to select which of the

objective functions should be the one to be optimized. These choices may

affect the solutions obtained. For using the ε-constraint method as an a

posteriori method, systematic ways of perturbing the upper bounds are

suggested in Chankong and Haimes (1983). On the other hand, when used

in an a priori way, the drawback is that if there is a promising solution

really close to the bound specified but on the infeasible side, it will never

be found because single objective optimizers must obey the constraints

specified. However, the DM may want to study solutions corresponding



to different bounds. If this is the case, it is again recommended to use

interactive methods.

6.2.2.3. Evolutionary Multi-Objective Optimization

Since most of this book is devoted to evolutionary methods for multi-

objective optimization, we here only wish to discuss some differences be-

tween EMO approaches and scalarization based approaches. As mentioned

before, EMO approaches are a posteriori type of methods and they try to

generate an approximation of the Pareto optimal set. In bi-objective opti-

mization problems, it is easy to plot the objective vectors produced on a

plane and ask the DM to select the most preferred one. While looking at the

visualization, the DM sees an overview of the trade-offs in the problem and

most likely can choose the final solution. However, if the problem has more

than two objectives, there is no natural way of visualization for objective

vectors but one has to settle for projections or use other additional tools

which are not necessarily very intuitive. This means that it is problematic

to represent the many different solutions for the DM to compare. Another

question is how to support him/her in selecting one of many solutions in a

reasoned way. Furthermore, generating a good representation of a Pareto

optimal set in a higher-dimensional feasible objective region necessitates

high population sizes which implies high computational costs. If function

evaluations are costly, the calculation takes a lot of effort. Besides, there

may be many areas in the Pareto optimal set that the DM is not interested

in. In such cases, we waste computational resources in finding solutions

that are not needed at all.

On the other hand, it is not sensible, e.g., to restrict consideration to

two objectives only, for the purpose of intuitive visualization. It is better to

consider the problem as a whole and use as many objectives as needed in-

stead of artificial simplifications. Furthermore, as mentioned earlier, EMO

approaches do not necessarily guarantee that they generate Pareto optimal

solutions. Because of the above-mentioned aspects, EMO approaches may

not always be the best methods for solving multi-objective optimization

problems and that is why we introduce scalarization based and interactive

methods, in particular, to be considered as alternative approaches. When

using them, the DM can concentrate on interesting solutions only and com-

putational effort is not wasted. Furthermore, the DM can decide how many

solutions (s)he wants to compare at a time.

The strength of evolutionary approaches is their wide applicability to,



e.g., nondifferentiable and nonconvex problems. We wish to emphasize that

this positive feature can be combined with scalarization based approaches

by using evolutionary algorithms (i.e., not EMO but single objective opti-

mizers) for solving the scalarized problem.

6.3. Interactive Multi-objective Optimization

As said in the introduction, in interactive multi-objective optimization

methods, a solution pattern is formed and repeated and the DM specifies

preference information progressively during the solution process. In other

words, the solution process is iterative and the phases of preference elicita-

tion and solution generation alternate. In brief, the main steps of a general

interactive method are the following: (1) initialization (e.g., calculate ideal

and nadir objective vectors and show them to the DM), (2) generate a

Pareto optimal starting point (by solving some method-specific problem or

use a neutral compromise solution or a solution given by the DM), (3) ask

for preference information from the DM (e.g., aspiration levels or number

of new solutions to be generated), (4) generate new Pareto optimal solu-

tion(s) according to the preferences and show it/them and possibly some

other information about the problem to the DM, (5) ask the DM to select

the best solution so far of the previously generated solutions and denote it

as the new starting solution and (6) stop, if the DM wants to. Otherwise,

go to step (3).

The most important stopping criterion is the satisfaction of the DM in

some solution. (Some interactive methods use also algorithmic stopping

criteria but we do not go into such details here.) In each iteration, some

information about the problem or solutions available is given to the DM

and then (s)he is supposed to answer some questions or to give some other

kind of information. New solutions are generated based on the information

specified. In this way, the DM directs the solution process towards such

Pareto optimal solutions that (s)he is interested in and only such solutions

are generated.

The advantage of interactive methods is that the DM can specify and

correct his/her preferences and selections during the solution process. Be-

cause of the iterative nature, the DM does not need to have any global

preference structure and (s)he can learn during the solution process. This

is a very important strength of interactive methods. Actually, finding the

final solution is not always the only task but it is also noteworthy that the

DM gets to know the problem, its possibilities and limitations.



We can say that interactive methods overcome weaknesses of a pri-

ori and a posteriori methods: the DM does not need a global preference

structure and only interesting Pareto optimal solutions need to be consid-

ered. The latter means both savings in computational cost, which in many

computationally complicated real problems is a significant advantage, and

avoids setting cognitive overload on the DM, which the comparison of many

solutions typically implies.

Many interactive methods exist and none of them is superior to all the

others but some methods may suit different DMs and problems better than

the others. Methods differ from each other by both the style of interaction

and technical realization: e.g., what kind of information is given to the DM,

the form of preference information specified by the DM and what kind of

a scalarizing function is used or, more generally, which inner process is

used to generate Pareto optimal solutions (Miettinen, 1999). It is always

important that the DM finds the method worthwhile and is able to use it

properly, in other words, the DM must find preferences easy and intuitive

to provide in the style selected. In many cases, we can identify two phases

in the solution process: a learning phase when the DM wants to learn about

the problem and what kind of solutions are feasible and a decision phase

when the most preferred solution is found in the region identified in the

first phase. If so desired, the two phases can be used iteratively, as well.

Descriptions of interactive methods are given, e.g., in Buchanan (1986);

Chankong and Haimes (1983); Hwang and Masud (1979); Miettinen (1999);

Sawaragi et al. (1985); Steuer (1986); Stewart (1992); Vanderpooten and

Vincke (1989) and methods with applications to large-scale systems and

industry are presented in Haimes et al. (1990); Statnikov (1999); Tabucanon

(1988). Special attention to describing methods for nonlinear problems is

paid in Miettinen (1999). Here we only describe a few interactive methods.

We concentrate on methods where the DM specifies preferences in the form

of reference points or classification.

6.3.1. Reference Point Approaches

In reference point based methods, the DM first specifies a reference point

z̄ ∈ Rk consisting of desirable aspiration levels for each objective and then

this reference point is projected onto the Pareto optimal set. That is, a

Pareto optimal solution closest to the reference point is found. The dis-

tance can be measured in different ways. Specifying a reference points is

an intuitive way for the DM to direct the search of the most preferred solu-



tion. It is straightforward to compare the point specified and the solution

obtained without artificial concepts. Examples of methods of this type are

the reference point method and the ’light beam search’.

The reference point method is based on using a so-called achievement

(scalarizing) function (Wierzbicki, 1982). The achievement function mea-

sures the distance between the reference point and Pareto optimal solutions

and produces a new Pareto optimal solution closest to the reference point.

The beauty here is that Pareto optimal solutions are generated no matter

how the reference point is specified, that is, they can be attainable or not.

We have an example of an achievement function in the problem

minimize max
i=1,...,k

[
wi(fi(x)− z̄i)

]
+ ρ

k∑
i=1

wifi(x)

subject to x ∈ S,
(6.4)

where wi (i = 1, . . . , k) are fixed scaling coefficients, e.g., wi = 1/(znad
i −z??i )

and ρ > 0 is a relatively small scalar. The solution of problem (6.4) is Pareto

optimal and, as said, different Pareto optimal solutions can be generated

by setting a different reference point (Miettinen, 1999).

In the reference point method, the DM specifies a reference point and

the corresponding solution of (6.4) is shown to him/her. In addition, the

DM is shown k other solutions obtained by slightly shifting the reference

point in each coordinate direction. Thus, the DM can compare k+1 Pareto

optimal solutions close to the reference point. Then the DM can set a

new reference point (i.e., adjust the reference point according to his/her

preferences) and the solution process continues as long as the DM wants

to. When the Pareto optimal solutions are generated, the DM learns more

about the possibilities and limitations of the problem and, therefore, can

use more appropriate reference points.

Because of the intuitive character of reference points, it is advisable to

use the achievement scalarizing function even when it is not possible to use

an interactive approach. This means that the DM expresses his/her hopes

in the form of a reference point and the solution of (6.4) is then shown to

him/her. In this way, a reference point based approach can be used as an

a priori method. It is also possible to use reservation levels representing

objective values that should be achieved (besides aspiration levels). For

further details, see Wierzbicki et al. (2000).

Another reference point based method is the ’light beam search’

(Jaszkiewicz and Slowinski, 1999). It uses a similar achievement function as

the reference point method but combined with tools of multiattribute de-



cision analysis (designed for comparing a discrete set of solutions). Besides

a reference point, the DM must supply thresholds for objective functions

describing indifference and preference in objective values. This informa-

tion is used to derive outranking relations between solutions. As a result,

incomparable or indifferent solutions are not displayed to the DM.

6.3.2. Classification-Based Methods

As discussed, moving from one Pareto optimal solution to another implies

trading off. In other words, to move to another Pareto optimal solution

where some objective function gets a better value, some other objective

function must be allowed to get worse. This is the starting point of

classification-based methods where the DM studies a Pareto optimal so-

lution and says what kind of changes in the objective function values would

lead to a more preferred solution. Larichev (1992) has shown that for DMs

classification is a cognitively valid way of expressing preference information.

Classification is an intuitive way for the DM to direct the solution pro-

cess because no artificial concepts are used. Objective function values are

as such meaningful and understandable for the DM. The DM can express

hopes about improved solutions and directly see and compare how well the

hopes could be realized.

To be more specific, when classifying objective functions the DM in-

dicates which function values should improve, which ones are acceptable

and which are allowed to get worse. In addition, amounts of improvement

or impairments are asked from the DM. There exist several classification-

based interactive multi-objective optimization methods. They use different

numbers of classes and generate new solutions in different ways.

Let us point out that expressing preference information as a reference

point (Miettinen and Mäkelä, 2002; Miettinen et al., 2006) is closely related

to classification. However, when classification assumes that some objective

function must be allowed to get worse, a reference point can be set without

considering the current solution. Even though it is not possible to improve

all objective function values of a Pareto optimal solution simultaneously,

the DM can still express preferences without paying attention to this fact

and then see what kind of solutions are feasible. On the other hand, when

using classification, the DM is more in control and selects functions to be

improved and specifies amounts of impairment for the others.

Next, we briefly introduce the satisficing trade-off method and then

describe the NIMBUS method in some more detail. We pay more attention



to NIMBUS (and software implementing it) because we shall refer to it

later when discussing applications.

6.3.2.1. Satisficing Trade-Off Method

The satisficing trade-off method (STOM) (Nakayama and Sawaragi, 1984)

is based on the classification of objective functions at the current Pareto

optimal solution into the three classes described earlier. A reference point

can be formed based on this information.

For functions whose values the DM wants to improve, (s)he also has to

specify desirable aspiration levels. If some function has an acceptable value,

it is set as the corresponding aspiration level. Under some assumptions, it is

possible to calculate how much impairment should be allowed in the other

objective functions in order to attain the desired improvements. This is

called automatic trade-off (Nakayama, 1995). In this way, the DM has to

specify less information. Once all components of a reference point have

been set, one can solve a scalarized problem

minimize max
i=1,...,k

[
fi(x)−z??

i

z̄i−z??
i

]
+ ρ

k∑
i=1

fi(x)
z̄i−z??

i

subject to x ∈ S,

(6.5)

where ρ > 0 is a relatively small scalar. Then, the solution of (6.5) (which

is guaranteed to be Pareto optimal, see Miettinen (1999)) is shown to the

DM and (s)he can stop or classify the objective functions again. The DM

can easily learn about the problem by comparing the hopes expressed in

the classification and the Pareto optimal solution obtained.

If it is not possible to use automatic trade-off, classifying the objective

functions or setting a reference point are almost the same, as discussed

earlier. The only difference is that here the reference point is set such that

some objective functions must be allowed to get worse. STOM has been

applied to many engineering problems, e.g., in Nakayama (1995); Nakayama

and Furukawa (1985); Nakayama and Sawaragi (1984).

6.3.2.2. The NIMBUS Method

The NIMBUS method (Miettinen, 1999; Miettinen and Mäkelä, 1995, 1999,

2000, 2006) is an interactive method based on classification of the objective

functions into up to five classes. To be more specific, the DM is asked to



specify how the current Pareto optimal solution f(xh) should be improved

by classifying the objective functions into classes where the functions fi

- should be improved as much as possible (i ∈ Iimp),

- should be improved until a specified aspiration level z̄i (i ∈ Iasp),

- are satisfactory at the moment (i ∈ Isat),
- can impair till a specified bound εi (i ∈ Ibound) and

- can change freely (i ∈ Ifree).

A classification is feasible if at least one of the objective functions is al-

lowed to get worse. Then the original multi-objective optimization problem

is converted into a scalarized problem using the classification information

specified. The solution of the scalarized problem reflects how well the hopes

expressed in the classification could be achieved.

There exist several variants of NIMBUS (Miettinen, 1999; Miettinen and

Mäkelä, 1995, 1999, 2000, 2006). Here we concentrate on the synchronous

version (Miettinen and Mäkelä, 2006), where several scalarizing functions

can be used based on a classification once expressed. Because they take the

preference information into account in slightly different ways (Miettinen

and Mäkelä, 2002), the DM can learn more about different solutions satis-

fying his/her hopes and choose the one that best obeys his/her preferences.

An example of the scalarized problems used is

minimize max
i∈Iimp, j∈Iasp

[
fi(x)−z?

i

znad
i −z??

i

,
fj(x)−z̄j
znad
j −z??

j

]
+ ρ

k∑
i=1

fi(x)

znad
i −z??

i

subject to fi(x) ≤ fi(xh) for all i ∈ Iimp ∪ Iasp ∪ Isat,
fi(x) ≤ εi, for all i ∈ Ibound, x ∈ S,

(6.6)

where ρ > 0 is a relatively small scalar. The three other scalarized problems

used in the synchronous NIMBUS method and further details are given in

Miettinen and Mäkelä (2006).

Once the DM has classified the objective functions, (s)he can decide

how many Pareto optimal solutions (between one and four) based on this

information (s)he wants to see and compare. Then, as many scalarized

problems are formed and solved and the new solutions are shown to the

DM together with the current solution. If the DM has found the most pre-

ferred solution, the solution process stops. Otherwise, the DM can select

a solution as a starting point of a new classification or ask for a desired

number of intermediate (Pareto optimal) solutions between any two solu-

tions generated so far. The DM can also save any interesting solutions to a



database and return to them later. All the solutions considered are Pareto

optimal. For details of the algorithm, see Miettinen and Mäkelä (2006).

In the initialization phase of the NIMBUS method, the ranges in the

Pareto optimal set, that is, the ideal and the nadir objective vectors are

computed to give the DM some information about the problem. The start-

ing point of the solution process can be specified by the DM or it can be

a neutral compromise solution located approximately in the middle of the

Pareto optimal set. To get it, we set (znad +z??)/2 as a reference point and

solve (6.4).

In NIMBUS, the DM iteratively expresses his/her desires and learns

about the feasible solutions available for the problem considered. Unlike

some other methods based on classification, the success of the solution pro-

cess does not depend entirely on how well the DM manages in specifying

the classification and the appropriate parameter values. It is important

that the classification is not irreversible. Thus, the DM is free to go back

or explore intermediate points. (S)he can easily get to know the problem

and its possibilities by specifying, e.g., loose upper bounds and examin-

ing intermediate solutions. NIMBUS has been successfully applied, e.g., in

the fields of optimal control and optimal design (Hämäläinen et al., 2003;

Heikkola et al., 2006; Madetoja et al., 2006; Miettinen et al., 1998). Fur-

thermore, a version of NIMBUS has been developed for uncertain problems

involving scenarios (Miettinen et al., 2014).

As far as software is concerned, the interactive nature of the solution

process naturally sets its own requirements (Hakanen, 2006). First of all, a

good graphical user-interface (GUI) is needed in order to enable the inter-

action between the DM and the method. In addition, visualizations of the

solutions obtained must be available for the DM to compare and evaluate

the solutions generated (Miettinen, 2014). With interactive methods, more

than three objective functions can easily be considered, which sets more

requirements on the visualization when compared to, e.g., visualizing the

Pareto optimal set for bi-objective problems.

Currently, the NIMBUS method has two implementations: WWW-

NIMBUSR© and IND-NIMBUSR©. The WWW-NIMBUSR© system (Miet-

tinen and Mäkelä, 2000, 2006) has been operating via the Internet at

http://nimbus.it.jyu.fi since 1995 and can be used free of charge for

teaching and academic purposes. Only a browser is required for using

WWW-NIMBUSR© and, therefore, the user has always the latest version

available. All the computation is performed in the server computer at the

University of Jyväskylä.



As far as using WWW-NIMBUSR© is concerned, one can create an ac-

count of one’s own or visit the system as a guest. Once an account has

been created, it is possible to save problems and solutions in the system.

WWW-NIMBUSR© takes the user from one web page to another. The prob-

lem to be solved can be input by filling a web form (or as a subroutine).

The system first asks for the name and the dimensions of the problem. In

the second web page, the user can type in the formulas of each objective

and constraint function as well as ranges (and initial values) for variables.

Fig. 6.1. A screenshot of IND-NIMBUSR©. (This figure is available in color in the file
ind_nimbus.jpg in Chapter 6 on the CD.)

There are both local and global single-objective optimizers available for

solving the scalarized problems formed and the user can decide after each

classification which optimizer to use or use the default one. There are also

different visualizations available to aid the user in analyzing and comparing

different Pareto optimal solutions. The system has a tutorial that guides

the user through the different phases of the interactive solution process. In

addition, each web page has a separate help available.

IND-NIMBUSR© (Miettinen, 2006; Ojalehto et al., 2014) is a commercial

implementation of the NIMBUS method developed for solving industrial

multi-objective optimization problems (http://ind-nimbus.it.jyu.fi/).



IND-NIMBUSR© is available for Linux and MS-Windows operating systems.

A screenshot of IND-NIMBUSR© can be seen in Fig. 6.1. The bars on the left

represent the current values of objective functions and the DM can classify

the functions by clicking with a mouse or by specifying desired function

values. The window on the right shows Pareto optimal solutions generated

so far and interesting solutions can be saved in the lower right corner as

best candidates.

Problems formulated with various simulators or modeling tools can be

connected with IND-NIMBUSR© and different underlying single-objective

optimizers can be used depending on the properties of the problem consid-

ered. IND-NIMBUSR© has been connected, e.g., to GAMS (Ojalehto et al.,

2014) as well as BALASR© and APROSR© process simulators, developed at

the VTT Technical Research Center of Finland, see, e.g. Sindhya et al.

(2014). In addition to the single-objective optimizers available in WWW-

NIMBUSR©, e.g., the IPOPT optimizer (Wächter and Biegler, 2006) and

GAMS solvers (Ojalehto et al., 2014) have been used in IND-NIMBUSR©.

In what follows, we call the combination of IND-NIMBUSR© and some

modeling tool or a simulator by the name IND-NIMBUSR© process design

tool. In Section 6.5 we discuss how it has been applied in some chemical

process design problems.

6.3.3. Some Other Interactive Methods

A natural way of developing new methods is hybridizing ideas of different

existing ones. It is, e.g., fruitful to hybridize ideas of a posteriori and in-

teractive methods. In this way, the DM can both get a general overview of

the possibilities and limitations of the problem and direct the search to a

desired direction in order to find the most preferred solution. An example

of such a method is introduced in Miettinen et al. (2003), where NIMBUS

(see Subsection 6.3.2.2) is hybridized with the feasible goals method (Lotov

et al., 2004). The latter generates visual interactive displays of the feasible

objective vectors which helps the DM in understanding what kinds of so-

lutions are available. Then it is easier to make classifications for NIMBUS.

Another hybrid is described in Klamroth and Miettinen (2008), where

an adaptive approximation method (Klamroth et al., 2002) approximating

the Pareto optimal set is hybridized with reference point ideas. This means

that the approximation is made more accurate only in those parts of the

Pareto optimal set that the DM is interested in. Finally, let us mention one

more hybrid method where reference points and achievement scalarizing



functions are hybridized in EMO, see Thiele et al. (2009). On a general

level, the idea is the same as in the previous hybrid but here the achieve-

ment scalarizing function is incorporated in the fitness evaluation and the

interactive algorithm is different. Other ideas of handling preferences in

EMO are surveyed e.g. in Coello (2000).

The ideas of hybridizing a posteriori and interactive methods are uti-

lized e.g. in Eskelinen et al. (2010); Hartikainen et al. (2012); Ruiz et al.

(2015); Steponavice et al. (2014) in order to solve computationally expen-

sive problems without inducing long waiting times to the DM. Such meth-

ods are appropriate for solving simulation-based and other problems where

function evaluations are time-consuming. These hybrid methods utilize a

three-stage approach where first a representation of the Pareto optimal set

is generated with some a posteriori method and the decision maker is in-

volved only in the decision making phase. Finally, the Pareto optimality of

the solution selected is guaranteed in the last stage. In Hartikainen et al.

(2012) in a method called PAINT, a polyhedral approximation is created

for the Pareto optimal set and then a computationally inexpensive surro-

gate problem is formed to replace the original multi-objective optimization

problem. Then any interactive method, like NIMBUS can be applied. This

is demonstrated in Steponavice et al. (2014) with a case involving both

investment and running costs of a paper mill. One can also employ agents

in order to decrease the waiting times imposed on the DM as proposed

in Ojalehto et al. (2015). There, both PAINT and NIMBUS are employed

with agents and a two-stage separation problem is considered. Furthermore,

another hybrid approach called Pareto Navigator is proposed in Eskelinen

et al. (2010) where real-time navigation is enabled in the approximated

Pareto optimal set.

The interactive method E-NAUTILUS proposed in Ruiz et al. (2015)

belongs to the so-called NAUTILUS family, where the solution philosophy

differs from typical methods. Sometimes DMs may anchor in the neighbour-

hood of the starting solution of the interactive method or they may not be

able to move from the current Pareto optimal solution because they are not

willing to give up in any objective function values. These are examples of

cases when the most preferred solution may not be found. To avoid this,

NAUTILUS methods start from the nadir objective vector, approach grad-

ually the Pareto optimal set and, thus, enable the DM to move towards the

Pareto optimal set without having to trade-off. Besides the current iteration

point, at each iteration, the DM is given information about the distance to

the Pareto optimal set as well as ranges of different objective functions that



can be obtained without sacrifice. Besides the basic NAUTILUS method

(Miettinen et al., 2010) and a variant where the DM can direct the solu-

tion process with directions of simultaneous improvement (Miettinen et al.,

2015), E-NAUTILUS (Ruiz et al., 2015) offers different alternatives to the

DM to consider at each iteration. The NAUTILUS framework (Miettinen

and Ruiz, 2016) contains all these three variants as special cases.

It is worth noting that one does not have to employ the same inter-

active method in the whole solution process but one can apply a general

formulation which accommodates several interactive methods. This means

that the DM can change the type of preference information specified and,

thus, change the method used, during the solution process. More details

of global formulations are given, e.g., in Luque et al. (2011); Ruiz et al.

(2012).

6.4. Interactive Approaches in Chemical Process Design

Multi-objective optimization has been applied to problems in chemical en-

gineering frequently during the last 30 years. Applications have been well

documented e.g. in Bhaskar et al. (2000); Sharma and Rangaiah (2013);

Rangaiah et al. (2015) as well as Chapter 2 of this book that survey them

for different periods of time. Recently, EMO methods have become popu-

lar in solving chemical engineering problems and they cover most of the

multi-objective optimization applications as shown in the surveys men-

tioned above. Typically, only two or three objectives have been considered

by using EMO methods. This is maybe due to the limitations of EMO

approaches discussed earlier. In addition to EMO methods, the Pareto op-

timal set has also been approximated by using either the weighting method

or the ε-constraint method. In other words, the simplest methods have

been used and sometimes the authors have not realized that they have

been using a multi-objective optimization method. As mentioned, regard-

less of their simplicity, these methods have serious drawbacks. As is the

case with EMO methods, usually only two or three objective functions have

been considered.

Interactive multi-objective optimization methods have considerable ad-

vantages over the methods mentioned above. However, they have been used

very rarely in chemical engineering. For example, interactive methods can

not be found in the survey of Marler and Arora (2004) and they are only

briefly mentioned in Bhaskar et al. (2000); Rangaiah et al. (2015). This

might be due to the lack of knowledge of interactive methods or the lack of



appropriate interactive multi-objective optimization software. The few ex-

amples of interactive multi-objective optimization in chemical engineering

include Grauer et al. (1984) and Umeda and Kuriyama (1980).

In what follows, we describe and summarize research on multi-objective

optimization in chemical engineering reported in Hakanen (2006) and Haka-

nen et al. (2005, 2006, 2007, 2008, 2011, 2013). These studies have focused

on offering chemical engineering an efficient and practical way of handling

all the necessary aspects of the problem, that is, to be able to simulta-

neously consider several conflicting objective functions that affect the be-

haviour of the problem considered. Therefore, they have been solved using

the interactive NIMBUS method.

6.5. Applications of Interactive Approaches

Interactive multi-objective optimization can successfully be applied in

chemical process design problems. For example, encouraging experiences

related to papermaking and sugar industries as well as wastewater treat-

ment have been obtained in Hakanen et al. (2005, 2006, 2007, 2008, 2011,

2013). Furthermore, other successful application areas have been heat ex-

changer network synthesis (Laukkanen et al., 2010, 2012; Ojalehto et al.,

2014), two-stage separation problem (Sindhya et al., 2014) and integrated

design and control in paper mill design (Steponavice et al., 2014). The

reported solutions of these industrial problems are based on utilizing the

NIMBUS method and IND-NIMBUSR© and involving DMs having expe-

rience and knowledge about the problems in question. In this section, we

shortly describe problems related to simulated moving bed processes, plant-

wide optimization of operational settings in wastewater treatment and a

heat recovery system design. The interactive solution process is described

in more detail for the first problem in order to give an idea of the interac-

tion between the method and the DM. Other problems are described on a

more general level with further references.

6.5.1. Simulated moving bed processes

Simulated moving bed (SMB) processes are related to the separation of

chemical products. Efficient purification techniques are crucial in chemical

process industries. Liquid chromatographic separation has been widely used

for products with an extremely high boiling point, or thermally unstable

products such as proteins. In liquid chromatographic processes, a small



amount of feed mixture is supplied to an end of a column which is packed

with adsorbent particles, and then pushed to the other end with desorbent

(water, organic solvent or mixture of these).
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Fig. 6.2. A schematic diagram of an SMB process.

An SMB process is a realization of a continuous and counter-current

operation of a liquid chromatographic separation process and it emerged

from the industry in the 1960’s (Ruthven and Ching, 1989). An SMB unit

consists of multiple columns which are packed with adsorbent particles.

The columns are connected to each other making a circulation loop, see

Fig. 6.2 (with eight columns). The feed mixture is inserted into the process

in the upper left corner, while desorbent input is in the lower right corner.

The two products, raffinate and extract, are collected in the upper right

corner and the lower left corner, respectively. Feed mixture and desorbent

are supplied between columns continuously. At the same time, the two

products are withdrawn from the loop also continuously. The two inlet

and two outlet streams are switched in the direction of the liquid flow at

a regular interval. Because of the four inlet/outlet streams, the SMB loop

has four liquid velocity zones as shown in Fig. 6.2.

The SMB model consists of partial differential equations (PDEs) for

the concentrations of chemical components, restrictions for the connections

between different columns and cyclic steady-state constraints (Kawajiri and

Biegler, 2006b). Previously, the SMB processes have been usually optimized

with respect to one objective only. Recently, multi-objective optimization



has been applied in periodic separation processes (Ko and Moon, 2002),

in gas separation and in SMB processes (Subramani et al., 2003). Ko and

Moon used a modified sum of weighted objective functions to obtain a

representation of the Pareto optimal set. Their approach is valid for two

objective functions only. On the other hand, Subramani et al. applied EMO

to a problem where they had two or three objective functions.

In order to accelerate the process optimization, Kawajiri and Biegler

(2006b) have developed an efficient full discretization approach combined

with a large-scale nonlinear programming method for the optimization of

SMBs. More recently, they have extended this approach to a superstructure

SMB formulation and used the ε-constraint method to solve the bi-objective

problem, where throughput and desorbent consumption were optimized

(Kawajiri and Biegler, 2006a).

We can say that interactive methods have not been used to optimize

SMB processes and, usually, only one or two objective functions have been

considered. The advantages of interactive multi-objective optimization in

SMB processes have been demonstrated in Hakanen et al. (2007, 2008) for

the separation of fructose and glucose (the values of the parameters in the

SMB model used come from Hashimoto et al. (1983); Kawajiri and Biegler

(2006b)). The problem formulation consists of four objective functions:

maximize throughput (T, [m/h]), minimize consumption of solvent in the

desorbent stream (D, [m/h]), maximize product purity (P, [%]), and maxi-

mize recovery of the valuable component in the product (R, [%]). In Haka-

nen et al. (2007), a standard formulation of the SMB model is used while a

superstructure formulation of SMBs is used in Hakanen et al. (2008). The

superstructure formulation is a more general way to represent SMBs and it

can produce novel SMB operating schemes (Kawajiri and Biegler, 2006a).

Fig. 6.3 shows the differences between standard and superstructure SMB

configurations. The standard configuration has only one fixed place for

each input and output stream whereas the superstructure SMB allows more

diverse configurations because the input and the output streams can be

placed in some of the alternative positions shown in Fig. 6.3.

For the PDE model of the SMB process, full discretization was used,

that is, both temporal and spatial variables were discretized leading to

a huge system of algebraic equations. The standard SMB optimization

problem has 33 997 decision variables and 33 992 equality constraints while

the superstructure SMB optimization problem has 34 102 decision variables

and 34 017 equality constraints. Note that there are many more degrees

of freedom in the superstructure formulation (altogether 85) than in the
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Fig. 6.3. A schematic diagram of the standard and the superstructure SMB processes.

standard SMB formulation (5 degrees of freedom).

The SMB process is a dynamic process operating on periodic cycles

which makes it a challenging optimization problem. The IPOPT optimizer

(Wächter and Biegler, 2006) was used within the IND-NIMBUSR© software

(as an underlying optimizer) to produce new Pareto optimal solutions. The

IPOPT optimizer was chosen because it has been developed for solving large

scale optimization problems.

In what follows, we describe the interactive solution process for the

standard SMB process using the IND-NIMBUSR© process design tool. For

further details, see Hakanen et al. (2007). The aim here is to give

an understanding of the nature of an interactive solution process. The

DM involved was an expert in SMB processes. First, in the initial-

ization phase, the ranges in the Pareto optimal set were computed as

z? = (0.891, 0.369, 97.2, 90.0)T and znad = (0.400, 2.21, 90.0, 70.0)T . A neu-

tral compromise solution f(x1) = (0.569, 1.58, 92.5, 76.9)T was the starting

point for the interactive solution process. Remember that the objective

functions represented throughput (T), consumption of desorbent (D), pu-

rity (P) and recovery (R) and their values are here presented in objective

vectors in this order (T, D, P, R). Note that the second objective function

was minimized while the others were maximized. Note that here instead

of multiplying objective functions to be maximized by minus one, we have

both objective functions to be minimized and maximized and, thus, the

ideal objective vector represents the best and the nadir objective vector

the worst objective function values in the set of Pareto optimal solutions.

In f(x1), the DM wanted to improve purity and throughput while des-

orbent consumption and recovery were allowed to deteriorate till specified



levels. Therefore, the DM made the classification Iimp={P}, Iasp={T},
z̄T = 0.715, Ibound={D,R} with εD = 1.78 and εR = 74.5. The DM wanted

to get four new solutions and they were f(x2) = (0.569, 1.56, 93.3, 74.5)T ,

f(x3) = (0.553, 1.43, 94.8, 70.0)T , f(x4) = (0.412, 1.07, 97.0, 70.0)T and

f(x5) = (0.570, 1.52, 93.9, 72.4)T . All the new solutions had a better purity

than f(x1) but the bounds in the classification for D and R did not allow

throughput to improve as much as the DM would have liked. Among the

new solutions, he selected f(x3) as the basis of the next classification.

Next, he wanted to explore the trade-off between improving the recov-

ery and letting the desorbent consumption deteriorate (the purity and the

throughput were satisfactory at the moment). The classification Iasp={R},
z̄R = 0.796, Isat={P,T}, Ibound={D} with εD = 1.78 was made and

three different solutions were obtained: f(x6) = (0.497, 1.41, 93.9, 77.2)T ,

f(x7) = (0.481, 1.36, 94.2, 77.3)T and f(x8) = (0.515, 1.46, 93.5, 77.1)T . The

new solutions had a better recovery but it could only be achieved at the

expense of throughput and purity. The DM liked f(x7) best because of the

recovery and desorbent consumption. However, the purity was not so good.

In order to get a better understanding of the effects of the pu-

rity, the DM wanted to generate three intermediate solutions between

f(x4) with the best purity and f(x7). The new solutions obtained were

f(x9) = (0.426, 1.14, 96.3, 72.8)T , f(x10) = (0.443, 1.21, 95.6, 74.8)T and

f(x11) = (0.461, 1.29, 95.0, 76.2)T . The DM found f(x11) to be very well

balanced between all the objectives and selected it as the final, most pre-

ferred solution. The solution process was thus terminated. To summarize,

we can say that the DM could conveniently direct the solution process ac-

cording to his preferences and obtain a satisfactory solution without too

much cognitive burden. The information exchanged was intuitive and un-

derstandable for the DM. Let us point out that, altogether, only eleven

Pareto optimal solutions were generated and, thus, the computational cost

was rather low.

Considering an SMB design problem with four objective functions was

a novel approach because, previously, only two or three objective functions

had been considered. This enabled full utilization of the properties of the

SMB model without any unnecessary simplifications. In addition, the DM

obtained more thorough understanding of the interrelationships of different

objectives considered and, thus, learned more about the problem.

Even better solutions can be found by using the superstructure formu-

lation of an SMB process (when compared to the standard formulation).



Although producing Pareto optimal solutions is somewhat more time con-

suming for the superstructure formulation (because of more complicated

formulas used), the model can describe the problem better and the DM

could find a very satisfactory solution, as described in Hakanen et al. (2008).

6.5.2. Wastewater treatment plant design and operation

Next, we consider an application related to wastewater treatment. Wastew-

ater treatment faces nowadays several challenges that require consideration

involving multiple objectives. First of all, the operational requirements re-

lated to e.g. effluent limits of nitrogen and phosphorus are becoming more

and more strict. On the other hand, economical efficiency by minimiz-

ing the plant footprint as well as consumption of energy and chemicals is

emphasized in the modern environmentally aware world. Finally, opera-

tional reliability is always important since the biochemical processes used

in wastewater treatment are time consuming to re-start if something goes

wrong in the operation. A schematic diagram of a modern wastewater

treatment plant is shown in Fig. 6.4. It includes 1) pre-treatment of the

influent that removes grit and separates solids, 2) nitrogen removal by nitri-

fying activated sludge process, 3) sludge fermentation that produces carbon

source for denitrification, 4) anaerobic digestion of sludge producing biogas

for electricity and/or thermal energy, and 5) recycling of excess sludge and

reject from sludge treatment.

The application presented here deals with plant-wide optimization of

operational settings and the results have been reported in Hakanen et al.

(2013). The main trade-off here lies between the quality of the treated

effluent (minimize total amount of nitrogen, N , [gN/m3]) and the operat-

ing costs of the plant. To get a better idea of the operating costs, they

have been divided in four different parts: minimize need for aeration in

the activated sludge process (A, [kW ]), minimize consumption of addi-

tional carbon source for denitrification (C, [g/m3]), minimize amount of

excess sludge produced (E, [kgTS/d]), and maximize biogas production (B,

[m3/d]). Therefore, the optimization problem has altogether five objective

functions (N,A,C,E, and B). They depend on four decision variables: 1)

pumping raw sludge to fermentation, 2) removal of excess sludge, 3) dis-

solved oxygen set point in the last aerobic zone and 4) methanol dosage

to activated sludge process. In addition to the bound constraints for the

decision variables, there are inequality constraints for ammonium nitrogen

in the effluent, mixed liquor suspended solids in the aeration, and the total



Fig. 6.4. A schematic diagram of a modern wastewater treatment plant. (This figure

is available in color in the file wwtp_process_scheme_trimmed.jpg in Chapter 6 on the
CD.)

nitrogen removal rate.

The case study of plant-wide optimization of operational settings was a

collaboration with Pöyry Finland and it was solved using a tool where IND-

NIMBUSR© was connected to a commercial wastewater treatment simulator

GPS-X (www.hydromantis.com/GPS-X.html) which is used by Pöyry. The

simulation model was developed by Pöyry and calibrated based on data

from Finnish municipal wastewater treatment plants. One simulation run

by GPS-X was started with a steady-state simulation, after which a dy-

namic simulation of two days was computed. Altogether, obtaining new

objective and constraint function values took about 11 seconds.

The DM was an expert in wastewater treatment plant design and op-

eration. Before starting the interactive solution process, the DM had in

mind typical values for the objectives based on engineering judgement

(N = 18, A = 500, C = 20, E = 13000, B = 10000). During the interac-

tive solution process, altogether seven Pareto optimal solutions were com-

puted and the DM preferred most the solution N = 16.1, A = 425.2, C =

11.0, E = 14700, B = 9265. When compared to the typical values above,

the most preferred solution improved C by 45%, A by 15% and N by 11%.

On the other hand, E was increased by 13% and B was reduced by 7%.

Thus, as an overall result, the simulated plant can use less methanol for

additional carbon source and less aeration energy without compromising in



nitrogen removal or biogas production. We can say that the DM obtained

a better understanding of the operation of the plant while all the operat-

ing costs were not combined into a single cost measure. Furthermore, the

biggest improvement in practice was obtained by reducing methanol usage

almost by half. More details can be found in Hakanen et al. (2013).

6.5.3. Heat recovery system design

Finally, we discuss an example of designing a heat recovery system for the

process water system of a paper mill (see Fig. 6.5). The problem involving

four objective functions has been described and solved in Hakanen et al.

(2005, 2006). We consider a virtual fine paper mill operating in a climate

typical to northern latitudes, where ambient temperature varies according

to the season.

Steam

Cooling

Heating

Effluent treatment

Dryer exhaust Effluent

Fresh water

PAPERMACHINE

Fig. 6.5. A simplified flowchart of the heat recovery for the process water system of a
paper mill.

The aim is to organize the heat management of the process water sys-

tem in the most efficient way. A special characteristic of this optimization

problem is to consider the effect of seasonal changes in the climate that

affect heat management. For example, fresh water taken into the process

is much colder in the winter than in the summer. In practice, fresh wa-



ter taken into the paper making process needs to be heated to the process

temperature 60 oC. The heat sources available are the effluent from the

process (at around 50 oC), which needs to be cooled down to around 37 oC

to be suitable for an effluent treatment process, and dryer exhaust, which is

moist air at the temperature 85 oC. In addition, steam can be used for the

final heating of process water and effluent temperature can be controlled

by external cooling or heating.

The design task is to determine the amount of heat recovered from the

heat sources of the process to the heat sinks, that is, to estimate the size of

heat exchangers and the amount of external energy needed for heating or

cooling of the effluent coming from the paper machine. Both summer and

winter scenarios are included in the model by combining two parallel process

models for summer and winter conditions that are solved simultaneously.

Ambient air/water temperatures are 20/20 oC and -5/2 oC for summer and

winter, respectively.

If the heat management was designed only according to winter condi-

tions, the sizing of the heat recovery system would be too large resulting in

large investment costs. On the other hand, if it was designed only for sum-

mer conditions, the energy consumption would be very high, because the

heat recovery system would then be too small-sized. The higher the degree

of heat recovery, the less external energy is required to satisfy the needs

of the process. On the other hand, the size of heat exchangers (and hence

investment costs) rises with an increased degree of heat recovery. Seasonal

changes add to the complexity of the problem, since a recovery system de-

signed for winter conditions can be oversized for summer conditions and

lead to a need for external cooling, for instance.

As mentioned, the main trade-off here is between running costs, that is

energy, and investment costs. Typically, this trade-off is handled with single

objective optimization by formulating an objective function that consists of

annualised energy and investment costs with estimated amortisation time

and interest rate for the capital. The cooling or heating of effluent before

treatment can be primarily either energy or investment cost. In case of

heating or cooling with water, the running costs will dominate. However,

in many cases, the use of water for cooling is not possible, and then a cooling

facility is needed, which in the design phase is mainly an investment cost.

Instead of trying to estimate all relevant aspects to get a single ob-

jective function, we can formulate four separate objective functions to be

minimized: steam needed for heating water for both summer and winter con-

ditions, estimation of area for heat exchangers (heat exchange from effluent



and dryer exhaust in winter conditions, which represents the maximum val-

ues for the exchangers), and the amount of cooling or heating needed for

the effluent. The first two objectives tell how much, on the average, we

need to provide steam for the system and give also an estimation of the

size of a steam distribution system needed. The third objective describes

the amount of heat exchange area needed. Once the area is known, we can

estimate investment costs more accurately from real vendor data rather

than using a general cost correlation. The fourth objective, the amount

of energy needed to regulate the temperature of the effluent, is really an

indication of the goodness of the design, since a value deviating from zero

indicates either an additional investment (i.e., a cooling tower) or need for,

e.g., steam. Finally, the three decision variables are the area of the effluent

heat exchanger and the approach temperatures of the dryer exhaust heat

exchangers for both summer and winter operations.

As said, traditionally, this type of a problem has been formulated as a

single objective optimization problem hiding the interrelationships between

the objectives. Then, monetary values have to be assigned a priori to en-

ergy and investments with a large degree of uncertainty in the correlations.

Our approach eliminates these uncertainties and leaves it to the DM to as-

sess the costs and their uncertainties a posteriori when the required energy

and material flows are much better defined. Having four objective functions

causes no troubles for an interactive method like NIMBUS and the problem

can conveniently be solved, new insight into the problem obtained and a

satisfactory solution found. For a detailed description of the interactive

solution process with NIMBUS, see Hakanen et al. (2005, 2006).

6.6. Conclusions

We have introduced some interactive methods for multi-objective optimiza-

tion problems and discussed their advantages. Interactive approaches allow

the DM to learn about the problem considered and the interrelationships in

it. In that way, (s)he gets deeper understanding of the phenomena in ques-

tion. Because the DM can direct the search for the most preferred solution,

only solutions that are interesting to him/her are generated which means

savings in computation time. For computationally demanding problems,

this may be a significant advantage. It is important that interactive meth-

ods can be applied to problems having more than two objective functions

and, thus, the true nature of the problem can be taken into account.

If the problem considered has only two objective functions, methods



generating a representation of the Pareto optimal set, like EMO approaches

can be applied because it is simple to visualize the solutions on a plane.

However, when the problem has more than two objectives, the visualization

is no longer trivial and interactive approaches offer a viable alternative to

solve the problem without artificial simplifications. Because interactive

methods rely heavily on the preference information specified by the DM,

it is important to select such a user-friendly method where the style of

specifying preferences is convenient for the DM. In addition, the specific

features of the problem to be solved must be taken into consideration.

We have shown with three applications how interactive multi-objective

optimization can be utilized in chemical process design and demonstrated

the benefits an interactive approach can offer. In all the cases, it was

possible to solve the problems in their true multi-objective character and

an efficient tool was created to support the DM (or designer or an operator)

in the decision making problem.

Besides describing the potential of interactive methods, we have also

discussed some properties of widely used methods because their shortcom-

ings do not seem to be generally known. However, it is important that when

selecting a method, the limitations set by the method are known. Other-

wise, the solutions obtained may not give a truthful impression about the

problem in question.
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Exercises

6.1 Consider a nonconvex multi-objective optimization problem ∗

minimize {f1(x), f2(x)}

subject to x ≥ 0, x ∈ R,

where

f1(x) =
√
x2 + 1,

f2(x) =

{
−x2 + 16 for 0 ≤ x ≤

√
15,

1 for x >
√

15.

(6.7)

The feasible objective region for the problem (6.7) is shown in Fig-

ure 6.6. Try to find four different Pareto optimal solutions for

problem (6.7) by using the weighting method. What do you ob-

serve and why?
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Fig. 6.6. Feasible objective region.
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6.2 Consider a multi-objective optimization problem

minimize {−x,−y}
subject to 2x+ 5y ≤ 40,

2x+ 3y ≤ 28,

x ≤ 11,

x, y ≥ 0.

Use the ε-constraint method to generate Pareto optimal solutions

for this problem. Try using different upper bounds and generate

four different Pareto optimal solutions.

6.3 WWW-NIMBUS is an implementation of the interactive NIM-

BUS method operating on the Internet (http://nimbus.it.jyu.

fi/). Study the tutorial of the WWW-NIMBUS system (http:

//nimbus.it.jyu.fi/N4/tutorial/index.html) and answer the

following questions.

a) What are the objective functions?

b) What is meant by classification?

c) What are the aspiration levels and upper bounds?

d) How can you generate new alternatives?

6.4 Input the problem described in the tutorial to the WWW-NIMBUS

system and generate some Pareto optimal solutions by using both

classification and generating of intermediate solutions. (Generate

at least 5-10 solutions.) Compare the different solutions obtained

by using the different visualizations available in WWW-NIMBUS.

Which visualization did you prefer?

6.5 Use WWW-NIMBUS and solve the nutrition problem (saved in

the system for guest users). Use both the symbolic and graphical

classification in WWW-NIMBUS. Which one do you prefer? Why?

For some classification, use both local and global (underlying) op-

timizer. Study the similarity of the results obtained and analyze

the reasons for the similarity.




