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Glossary

3G Third Generation wireless mobile telecommunications
6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks
API Application Program Interface
ASCII American Standard Code for Information Interchange
BA Business Analytics
BI Business Intelligence
Bluetooth Commercial Wireless technology
CBOR Concise Binary Object Representation
CoAP Constrained Application Protocol
CPU Central Processing Unit
CR Carriage Return
CSV Comma Separated Values
DB Database
DDD Data-Driven-Decision making
FMI Finnish Meteorolocigal Institute
GPRS General Packet Radio Service
GPS Global Positioning System
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IEEE Institute of Electrical and Electronics Engineers
IANA Internet Assigned Numbers Authority
IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
IO Input/Output
IoT Internet of Things
ISO International Organisation for Standardisation
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JSON JavaScript Object Notation
JSON-LD JSON Linked Data
LF Linefeed
LoRaWAN MAC for WAN
M2M Machine-to-communications
MAC Media Access Protocol
MQTT Message Queue Telemetry Transport
NoSQL non SQL / Not only SQL database
OGC Open Geospatial Consortium
OWL Web Ontology Language
POC Proof of Concept
Pub/Sub Publish-Subscribe paradigm
QoS Quality of Service
RAM Random Access Memory
RDF Resource Description Framework
REST Representational state transfer
SDRAM Synchronous Dynamic Random-Access Memory
SAS Semantic Annotation Service
SGS Semantic Gateway as Service
SemSOS Semantic Sensor Observation Service
SoC System on a Chip
SPARQL SPARQL Protocol And RDF Query Language
SQL Structured Query Language
SSH Secure Shell
SSL Secure Sockets Layer
SSN Semantic Sensor Network
SWE OGC Sensor Web Enablement
TCP Transmission Control Protocol
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UART Universal Asynchronous Receiver-Transmitter
UDP User Datagram Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
UTF Unicode Transformation Format
W3C World Wide Web Consortium
WAN Wide-Area Network
Wi-Fi IEEE 802.11 Wireless Local Area network technology
WLAN Wireless Local Area Network
WWW World Wide Web
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol
ZigBee IEEE 802.15.4 Personal Area Network technology
Z-Wave IEEE 802.15.4 Personal Area Network technology
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1 Introduction

The amount of available data has long surpassed our ability to analyse all of it [13].
This is largely due to the fact, that computing is becoming more and more ubiqui-
tous. The increasing growth of the Internet, mobile devices and IoT-systems offers
great resources for gathering data [5] [14]. Atzori et. al. [5] define the Internet
of Things (IoT) as a broad paradigm, where object or "things" implement the com-
putational resources required to communicate over the Internet with each other.
This changes world, since the resources available on the Internet, are pervasively
available in various domains: homes, workplaces, factories and on many portable
devices.

Examples of IoT-systems could be a heart rate watch or a smart thermostat for
controlling indoor temperature. Both of them require access to the Internet to be able
to communicate to end services that are located on the remote backend. To achieve
this, both of them need a network connection, proper use of messaging protocols
and the data in messages needs to be semantically appropriately formatted.

Alongside with this, the possibilities to enrich organisations own data with third
party data has also increased dramatically [66]. At the time of writing one of the
popular third party data collections, the Programmable Web [64], offered over sev-
enteen thousand APIs to gather data from.

The combination of all of this is often referred as the Big Data [54]. Big Data is
somewhat a vague expression, but is often used to describe the sheer Volume and
the Velocity of the data [13]. But since the Big Data is coming in from so many
sources, also the Variety of the data is an essential challenge to overcome [13]. This
Variety can be seen as a challenge on many levels, starting from network layer pro-
tocols and ending all the way to the semantic and data collaboration layers. Desai
et. al. [18] refer these challenges as the interoperability challenge.

Desai et. al. [18] observe the interoperability challenge of the IoT systems on
three layers: the network layer, the messaging protocols and the data annotation
layer. Each of these layers present an unique interoperability challenge. This Mas-
ter’s thesis focuses on the interoperability challenges among the messaging proto-
cols and the different data annotation possibilities.
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The first interoperability challenge, as Desai et. al. [18] state, is on the net-
work layer. They claim, that this means the lack of interoperability among various
network protocols like very low power radio protocols such as the ZigBee or the
Bluetooth, but also traditional networking protocols like the Ethernet, Wi-Fi or the
TCP/IP. As the TCP/IP tutorial by Network Working Group states [37], the purpose
of TCP/IP protocol is to transport a data packet from source host to the destination
source successfully. This principle can be generalised to all network layer protocols,
and as Desai et. al. [18] state, the purpose of a network layer is to connect things.

But previously mentioned connections can be used in various ways. Different
messaging protocols, such as CoAP, MQTT, XMPP and others, create the messaging
protocol interoperability challenge, as stated by Desai et. al. [18]. They also claim,
that each of these messaging protocols have unique architecture for the actual mes-
saging, thus making some more suitable for some specific tasks. Diaz et. al. [19]
add to this, that still one of the most wide spread messaging protocols is the HTTP
[36]. This is an interoperability problem, since these messaging protocols do not
interoperate without integration or translation [18].

After successfully connecting to a data-source on the network layer, and after us-
ing shared message protocol, the third interoperability challenge to solve is the data
annotation [18]. Various schemas, formats and standards exist on how to present
the data. XML, JSON, HTML and others, are some of the popular data formats, but
these are just ways to annotate the data. Semantics, a shared understanding of what
the data means, are an essentiality when creating added value from data [18]. There
are various possibilities to use ontologies or standards, out of which Desai et. al.
[18] mention the OGC Sensor Web Enablement (SWE) [60], Semantic Sensor Net-
work (SSN) [86] and the Semantic Sensor Observation Service (SemSOS) [38]. As
Desai et. al. [18] state, these technologies solve the semantic interoperability within
that specific domain, but lack interoperability among other ontologies.

Despite these interoperability challenges, the business value of the Big Data has
been broadly acknowledged [14] [65]. Data is becoming increasingly important.
Data can even be seen as a design material, when creating new solutions [68]. This
design method, where data is the actual driving force behind the system, allows us
to enter the Data-Driven domain. The actual Data-Driven solutions vary from a few
lines of program code, all the way to transforming the service offerings of organisa-
tions through service design [32]. Despite the various natures of the outcome, the
unifying property is the driving factor of the data [54].
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1.1 Research problem

The research question for this Master’s thesis was derived from a real-world cus-
tomer situation. A customer wanted to study what benefits a predictive software
could enable for their business. The customer was a people transport company,
which operated under the Finnish taxi regulations. The demand for transport varies
a lot, and those companies that can predict future transport needs most accurately,
are also often most profitable. It is unwise to have either too many or too few vehi-
cles actively on duty. To make smarter decisions that are based on data-analysis, the
transport company wanted to have a dashboard software, that would present the
future transport demands of the Tampere downtown region in simple map view.

The transport company had recognized three significant events which affect the
future demand. These were the occurrence of previous transports, the weather and
time. For example, on sunny summer Saturday evenings there are high peaks of
demand, especially in those areas, where many previous transports had been made.

To be able to make predictions about future demand variations, these pre-mentioned
data sources needed to be accessed. The transport company had all information con-
sidering their previous transport actions stored locally in their relational database.
The weather information was accessible through the Finnish Meteorological Insti-
tute using an HTTP-REST-API. A GPS-system for logging locations of transport ve-
hicles shared messages using the MQTT-protocol. Finally, there was also need for
accessing the map data for enabling software to present districts or grid-overlay to
the map. These grids or regions were then used as a calculation unit when predict-
ing the future demand.

Previous data sources are not an exhaustive list of all possible events that affect
the demands, but they offer a sufficient amount of data so that a proof-of-concept
(POC) could be built. This presented the research question of this Thesis. When
combining data from multiple heterogeneous data sources, many different interop-
erability challenges must be solved. This also became apparent to the development
team. Combining data from heterogeneous data sources, there are many interoper-
ability challenges that need to be solved.

To make a more analytic presentation of these interoperability challenges, the re-
search question of this Masters Thesis follows the interoperability model presented
by Desai et. al. [18], where interoperability challenges are presented on four layers:

• Network layer
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• Message protocol layer

• Data format layer

• Semantic layer

When developing the solution for the customer, the network layer challenges
were not an issue. Despite this, these network interoperability challenges are ex-
plored in more detail in the following theoretical sections, since they are commonly
present in many IoT-solutions.
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2 The Interoperability challenge

Interoperability is a comprehensive paradigm, that can be seen on many levels and
in different domains. One definition of interoperability was given by IEEE in [31],
where they argue that interoperability is the ability for systems to exchange infor-
mation so that the information is also useful after the exchange. Thus, interoper-
ability does not mean that all systems and components involved in the information
exchange need to be fully standardised. As history has shown, this is, and proba-
bly will be, a somewhat unlikely scenario. But despite the lack of shared standards,
systems do need to collaborate. As Palfrey et. al. [62] state, interoperability, and
sameness are two different things. As an example from the human world, people
can interoperate even if they don’t have a shared language. To interoperate, they
just need an interpreter.

Figure 2.1: Example of two non-interoperable vertical IoT-silos by Desai et. al. [18]
(Data annotation divided into data format and semantic interoperability).
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Desai et. al. [18] explore the interoperability challenges of the IoT-domain, and
present it on three layers: the network layer, the messaging protocol layer, and the
data annotation layer. Each of these layers presents a unique interoperability chal-
lenge. The data annotation layer can be divided into two layers, the data format,
and the semantics.

Currently, the lack of interoperability has lead to many co-existing IoT-systems
which lack interoperability among one another. Desai et. al. [18] refer to them as ver-
tical IoT-silos. By this Desai et. al. mean, that many interoperability challenges are
solved within each system, but those solutions are not interoperable among other
IoT-silos. Zanella et. al. [88] state, that each of these technologies has different
strengths and weaknesses, and are thus suitable to different usages. They argue,
that different services like the smart lighting or structural sensor observing, require
different network layer technologies due to the energy and computational recourses
of the end-node.

In Figure 2.1 there are two vertical IoT-silos, which both use different technology
and data annotation stack. Both of them actually use the same kind of temperature
sensor to provide temperature readings from the city of Tampere. The following
example illustrates how this layered challenge is solved within each silo, but not
between them.

The interoperability challenge between vertical IoT-silos needs to be solved ei-
ther on the network layer or the messaging protocol layer. If neither of these layers
interoperates, the message exchange is impossible, despite possible total data for-
mat or semantic interoperability. But interoperability can be an issue also on data
format and semantic layers.

In following sections, we take a closer look at each of those layers. What common
technologies there are on that layer, what strengths and weaknesses those technolo-
gies have, and how to enable interoperability among those technologies?

2.1 Network layer interoperability

The first interoperability challenge, as Desai et. al. [18] state, is in the network layer.
They claim, that this means the lack of interoperability among various network pro-
tocols like the Wi-Fi [3], Bluetooth [73], ZigBee [4] or the LoRaWAN [2], but also
Internet networking protocols like the UDP [63] or the TCP [37], just to name few.
Each of these network protocols has unique strengths and weaknesses, and are de-
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signed to meet the connection requirements of very different scenarios. And they
do not interoperate with each other.

To form an interoperating network, the first requirement for all participants is the
access to the shared media. The shared media might be the same radio frequency
(within range) or physical connectivity through wires. As a possible solution, Desai
et. al. [18] propose the shared use of standards for data transmission. But by using
the same standards in different ways, interoperability cannot be guaranteed.

Figure 2.2: On the left: Interoperability is achieved by using the same radio technol-
ogy. On the right: Interoperability is achieved by using proper Multi-radio Gateway.

Although the IEEE 802.15.4 is a standard, it can be implemented in various, pos-
sibly non-interoperable ways. Out of this Mainetti et. al. [52] give a detailed ex-
ample, since they argue that the IEEE 802.15.4 only defines the MAC and physical
layer of the network. They also state that ZigBee builds the network and applica-
tion layers upon those presented in the IEEE 802.15.4. Thus the use of standard will
not necessarily solve the radio network interoperability since there might be various
non-interoperable implementations of it.

Thus, as Desai et. al. [18] state, the network layer interoperability is initially
a hardware problem. All participants need interoperable processing units (radio
module, modem, etc.) for data transmission processing. Naturally, the interoper-
ability can also be achieved by using the pre-mentioned shared use of standards,
which in many cases might be the use of commercial products.

Figure 2.3 illustrates how interoperability can be achieved on the Network layer.
By enabling interoperability among the IoT-silos on the Network layer, rest of the
development process can be done more efficiently, since the developers can choose
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the messaging layer, data format, and semantic technologies.

Figure 2.3: An example of network layer interoperability among vertical IoT-silos
using the multi-radio gateway by Desai et. al. [18].

2.1.1 Wireless network protocols

According to Tse et. al. [80] and also Schwartz [70], wireless networking is essen-
tially about making compromises among three properties:

1. The higher the used radio frequency is, the faster the data transmission can be.
(Modulation possibilities)

2. The higher the used radio frequency is, the shorter the range of communica-
tion will be. (Propagation, Fading)

3. The more efficient the use of radio channels is, more recourses are required.
(Access mechanisms, Modulation)

Wi-Fi [3] and Bluetooth [73] are both commercial standard brands development
based on the IEEE 802.11 standard family [34]. The Wi-Fi and the Bluetooth are both
essentially Wireless Local Area Networks (WLAN). The Wi-Fi and the Bluetooth
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have many different products, out of which many (not all) operate on the 2.4 GHz
frequency. Thus, they commonly offer connectivity among wireless devices within
the local area (roughly tens of meters). Some Wi-Fi products are widespread since
today practically all laptop owners also have Wi-Fi routers connecting laptops and
other portable devices to the Internet/Ethernet. Wi-Fi is very suitable for fast data
transmissions but requires a lot of energy and processing power. Bluetooth is on
the other hand more suitable for constrained devices, but cannot match the speed of
Wi-Fi.

The ZigBee [4] and the Z-Wave [74] are commercial standards based on the IEEE
802.15.4 [87] low-rate wireless personal area network standard. Both of them also
have several products with different characteristics, but many of those operate on
lower frequencies (most commonly under 1GHz, though the 2.4GHz is also used).
This allows the ZigBee and the Z-Wave to have longer physical distances between
devices, but at the same time, it restricts the speed of data transmissions. Both of
the products claim to be very energy efficient, and at the same time, the throughput
speed is only a fraction of what Wi-Fi can offer. Thus making them very suitable for
the constrained nature of IoT-devices.

Whereas all pre-mentioned wireless technologies require a gateway or a router
to form and operate the network, the LoRaWAN [2] takes another approach by in-
troducing cellular-like connectivity to IoT-devices. By using low radio frequencies,
the LoRaWAN claims to have broader communication range than cellular (GPRS,
3G) networks. The LoRaWAN is also very energy efficient. Thus it offers good IoT-
connectivity. But as with other wireless technologies, the LoRaWAN is not compati-
ble with different standards. Therefore there is a need for interoperability measures.
The LoRaWAN [2] is designed to serve data to/from IoT-nodes by using TCP/IP-
operating Network servers. Thus the first layer where different wireless technolo-
gies could achieve interoperability is the standard Internet protocol TCP/IP.

2.1.2 Internet Protocol (IP) and TCP, UDP

As the TCP/IP tutorial by Network Working Group states [37], the purpose of
TCP/IP protocol is to transport a data packet from source host to the destination
source successfully. This principle can be generalized to cover all of the network
layer protocols, and as Desai et. al. [18] state, the purpose of the network layer
is to connect things. It is common for third-party data providers to serve their
data through publicly available APIs on the Internet [64]. Organisations may also
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have their own databases accessible through servers or various cloud-based sys-
tems. This means the use of the TCP/IP stack upon the link layer of the Internet.
As the acronym TCP (Transmission Control Protocol) suggests, TCP offers a reli-
able transmission (using, e.g., the three-way handshake) between network entities,
making it very common on the Internet.

But there are other possibilities to share data on the Internet. The UDP (User
Datagram Protocol) is a network protocol, which according to its specifications [63],
is designed to minimise the protocol activity when sending messages on the Inter-
net. The UDP specifications also state [63], that message delivery cannot be guar-
anteed in UDP, since the protocol itself doesn’t include any handshakes, to ensure
connection establishment (though a checksum could be used to discover faulty re-
ceived packages).

But UDP does have its benefits. Zhang et. al. [89] compare the network perfor-
mance of voice transmission data among globally distributed entities. They claim
[89], that UDP out-performs TCP stack on delay and jitter, even if the more through-
put optimised TCP NODELAY was used. Zhang et. al. [89] also measured the
packet loss rate. This means the portion of sent data packets, which never actually
reach the receiver. Whereas each packet in TCP is securely confirmed to reach the
receiver (acknowledgments), the UDP does not have any builtin checkups whether
the data packets get lost or not. In their measurements, Zhang et. al. [89] discov-
ered, that on the maximum data loss rate on UDP was 3%. On voice transmission
this might be acceptable and depending on decoding techniques, the human per-
ception might not even detect any changes in the sound quality. But if transmitting
a file or an operating system online, the 3% missing from the source code would be
disastrous.

2.2 Messaging protocol interoperability

Different messaging protocols, such as CoAP, MQTT, and others, create the messag-
ing protocol interoperability challenge, as stated by Desai et. al. [18]. They also
claim that each of these messaging protocols has unique architecture for the actual
messaging, thus making some more suitable for some specific tasks. Diaz et. al. [19]
add to this, that still one of the widest spread messaging protocols is the HTTP [36].
This is an interoperability problem since these messaging protocols do not interop-
erate without integration or translation [18].
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Figure 2.4: An example of (1. proxy-solution) and (2. multi-protocol server solu-
tion).

The message protocol layer can be useful for creating interoperability [18]. Out of
this Desai et. al. [18] mention that the resource-constrained nature of the IoT-nodes
does not limit the gateways. Thus they mention, that various heterogeneous IoT-
gateways can interoperate using a multi-message protocol proxy. This data traffic
would happen over the Internet. Therefore network protocol challenges like the
TCP/IP or UDP/IP could also be handled.

2.2.1 HTTP

The HTTP (Hypertext Transfer Protocol) [36] is the basic building block of the World
Wide Web as we know it. It is widely used in Internet browsers and servers. Fielding
et. al. [22] state, that HTTP is a stateless protocol where a client sends a request to
a server and waits for a response. This response can be a web-page or a file, but
nothing happens without the request. This stateless design method creates many
advantages since no party in the request process needs to remember or keep track
of the others states.

There are also many workarounds for seemingly keeping up a state [36], like
the sessions, which are accomplished by shared cookies, an included information of
who made the request and what was its last request numbered. Thus both parties
can act upon the information they receive with a cookie. This is the reason why the
online-shop can remember what the customer has selected to the shopping cart.
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Figure 2.5: An example of message protocol layer interoperability among vertical
IoT-silos using the multi-protocol server by Desai et. al. [18].

Figure 2.6: An example of HTTP request-response communication.
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There are numerous request methods mentioned by Fielding et. al. [23]: GET,
HEAD, POST, PUT, DELETE, CONNECT, OPTIONS and TRACE. Each request is
pointed to a specific URI (Uniform Resource Identifiers) [22], which are in the Internet-
domain the URL (Uniform Resource Location) addresses, a.k.a. the web addresses.
Response to any request depends solely on the behavior of the receiving system.

Fielding et. al. [23] state, that both the request and the response always have
the header fields, which represent the metadata of the HTTP-protocol transaction,
like the timestamp of when the message was created, or what charsets are accepted.
The header fields may also contain data about who made the request, or in which
language the response is hoped to be received.

Every HTTP-protocol message has the header fields, but most messages also
have what Fielding et. al. [23] refer as the payload or the body of the message.
Initially, the payload was defined by Borenstein et. al. [9] into several media types
like text, image or video. This payload agnosticism allows the HTTP to be used
on sharing almost any possible datasets. A payload can be attached either to the
response message, but can also be added to the request message itself (like POST).

As a simplified example, one enters a www-address (http://cinetcampus.fi/studies/)
onto the address-field of an internet browser. The browser converts this to an HTTP-
GET request with proper header fields, and by using the TCP/IP networking tech-
nologies sends the GET-request to the server. After when the server has processed
the request, the client’s browser receives a response message, that also has a payload
- the text-file, that is annotated to be in HTML-format (this is the Web-page).

But when doing the same procedure to a different URL (http://data.fmi.fi/...), the
response message has a payload of weather forecast to the Tampere region in an
XML data format. This possibility to different usage has made the HTTP a common
messaging protocol. But not all of the data traffic use it. This is especially true in
the IoT-domain, where resource-constrained devices need to communicate over the
Internet.

2.2.2 CoAP

The CoAP (Constrained Application Protocol) [39] is an HTTP-like standardized
protocol, but with a much higher efficiency of data transfer. This is due to the
smaller header sizes, and the fact that CoAP uses UDP on the transport layer. This
cuts down many messages familiar in the TCP caused by the connection establish-
ment, ending and the checking whether the data packet was received or not. Desai
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et. al. state [18], that the CoAP is primarily designed to be used in IoT-solutions and
the sensor networks domains, due to its minimum need of resources.

The CoAP and HTTP have many similarities like they both use the requests and
responses. But unlike in HTTP, the headers are in CoAP are in binary format. This
optimises the payload usage of messages. In CoAP this is fundamentally impor-
tant since it uses the UDP, every message needs to fit into single UDP datagram,
whereas in TCP the fragmentation of oversized messages is a built-in feature. The
use of UDP does create some issues since UDP doesn’t have the same integrated ac-
knowledgment system for confirming received messages like in the TCP. But Shelby
et. al. [72] states, which the CoAP has a feature, that allows messages to be set
confirmable, creating almost the same trustworthiness for message transport as in
TCP.

Figure 2.7: An example of CoAP-request and response. Note the similarities with
the HTTP.

The CoAP offers a more limited selection of request methods, since according to
Shelby et. al. [72] it only allows the use of GET, POST, PUT and DELETE methods.
They also claim that the CoAP allows easy integration with previously mentioned
HTTP. This is because they both share the REST-model (Representational state trans-
fer). The documentation of the CoAP even claims [39], that using cross-protocol
proxies, it is possible to send an HTTP-GET request and get a CoAP-originated re-
sponse without even knowing about the transformation. Zanella et. al. [88] also
offer this possibility as a part of an interoperability proposition to a heterogeneous
Smart City architecture.

The strength of CoAP is in its ability to communicate entirely in binary format.
As already stated, header fields are in binary form, but also the payload of the mes-
sage can be in binary. CoAP is entirely payload agnostic. Thus it can be used with
JSON, XML or with binary encoded CBOR [10] making messages very small and
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efficient.
As a significant difference with HTTP, the CoAP has a feature that allows it to

subscribe for new content on a specific URI. Thangavel et. al. [78] state, that when-
ever new content is available on the subscribed URI, all subscribers are noted about
this. Then each subscriber makes a GET-request and receives the content. This ar-
chitecture is according to Thangavel et. al. [78] called observe/Publish-Subscribe.

2.2.3 MQTT

The MQTT (MQ Telemetry Transport) [76] also uses the TCP/IP-stack, but unlike
the direct end-to-end use of HTTP, MQTT uses a topic-based publish-subscribe mes-
saging pattern. Whereas CoAP had pub/sub-paradigm like features, the MQTT is
designed to provide Publish-Subscribe message delivery [76]. Thangavel et. al. [78]
state, that the MQTT is also intended to be suitable for devices with limited re-
sources. Ahlgren et. al. [1] state, that MQTT is very useful in the IoT domain due to
its small need of memory space and processing needs.

Figure 2.8: An example of MQTT publish-subscribe communication over the MQTT-
broker.

In the center of any MQTT message exchange is the message broker [76]. The
broker acts as a server for messages exchange. Each message is always published on
a topic. Thus MQTT can support one-to-many and many-to-one message exchange
[76]. A client can subscribe topics from the broker, and if the broker receives any
new messages to that specific topic, it transmits them to the topic subscriber.

Each topic has a specific name which is a UTF-8 encoded String [76]. Each topic
can be separated into several levels by using the forward slash "/". This design
principle allows the use of so-called wildcards. As an example from the MQTT doc-
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umentation an individual tennis player could have a topic: "sport/tennis/player1".
Subscribers would probably receive messages relating to that specific player1. Since
MQTT allows wildcards ("#"), subscribing a topic "sport/tennis/#", might return mes-
sages relating to all players within that system. This naturally depends on the design
of the topic structure but eases the one-to-many and many-to-one pub/sub usage.

Thangavel et. al. [78] state, that there are three QoS (Quality of Service) levels for
the reliability of message delivery in MQTT. This allows MQTT to suit various de-
signs, wherein some the simplicity of the system is the highest priority, and in some,
the reliability of message exchange is the critical design principal. Thus selecting
proper QoS-level can cut down unnecessary overhead of the system.

Security The MQTT can use the standard SSL encryption over the network, and
additional encryptions may be also applied to the application layer. Security is also
considered when clients register to topics since the broker can be set to expect a
proper password for allowing registration.

2.3 Data format interoperability

After successfully connecting to a data source on the network layer, and after using
shared message protocol, the third interoperability challenge to solve is the data
annotation [18]. From the viewpoint of interoperability, the essential problem is to
recognize and use the right structure. If this data is the organizations own, it is
likely, that the data format is known. And like Bianchini et. al. [8] state, third party
API-providers usually declare the used data format. Various schemas, formats, and
standards exist on how to present the data. XML, JSON, HTML, and others, are
some of the popular data formats, but these are just ways to annotate the data.

There are vast varieties on how data is represented, thus there also exist many
data formats. This thesis focuses on the common data formats used on the Internet
and in the Data-Driven domain. But as a curiosity, it is easy to see the need for
different data formats used by the worlds most massive scientific experiment, the
Large Hadron Collider, in CERN [12] and a single selfie in JPEG-format [15].

After successfully sharing a message (by using whatever network or message
layer protocols), the next interoperability challenge is to share the understanding of
the encoding, syntax, and after that the semantics of the message. As an analogy
from the human domain, imagine that you receive a letter. At the first glimpse you
see familiar letters, alphabet you recognize (Encoding interoperability), put in order
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Figure 2.9: An example of an weather application that relies upon third party data.
If data provider changes data format, the application developers need to fix the
interoperability problem.

so that you can see words and sentences (Data format interoperability). After this,
you can read the letter and understand its content (Semantic interoperability).

In the domain of IoT-system development, the data format interoperability is
not really an issue. When developing new systems, it would just be bad design, if
entities would communicate using non-interoperable data formats.

2.3.1 Encoding interoperability

Essentially all the data in the computer domain is just a composition of zeros and
ones. When letters or numbers are presented, they need some encoding. The Uni-
code standard [79], is a set of different encoding forms, out of which most famous
is the UTF-8. They are designed to global standards, which should replace the com-
mon ASCII [35] and other formats. In 2010 Google [33] did a study, where they
discovered, that the UTF-8 Unicode encoding was used in over half of the web’s
content, and its portion was massively increasing. But others still exist like ISO-
8859 family[44].

The used encoding is usually announced at some point of used protocol, like
the response message in HTTP, which has the Content type-field, where the syntax
and the encoding of the payload are announced. In JSON [46] a String is defined to
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consist of any number of Unicode encoded letters. In a XML-document [81], there is
(optional, but common) declaration set, that defines the used XML version and the
used character encoding.

The encoding interoperability is not a problem if the content is written in En-
glish since pretty much all standard encoding forms cover the English alphabet
thoroughly. But some issues may arise, if the material has essential special char-
acters or is written in, say, Finnish. This is because the ASCII doesn’t have the å, ä
or the ö letters, and replaces them with gibberish. This won’t affect the data format
interoperability but does possibly effect the semantic interoperability. A database
might store Finnish word "lopputyö" (thesis), but with the letter ö miscoded. When
querying for thesis workers from the database, this might be an issue. But as men-
tioned, if the declaration of the encoding matches the used one, there is hardly such
an issue.

2.3.2 XML

The XML [81] is commonly used data format. The IANA Media Type [29] for XML
is application/xml. According to the W3C’s XML-specifications, every XML docu-
ment is made out of Unicode characters. XML was designed to allow documents to
include metadata about the content, so that it’s both human and machine readable.

This is achieved by using markup, which has includes information about the
content of an element, which has the actual data of the document. In addition to
markup, which gives the document a specific structure, additional attributes can be
included in the markups.

In the following imaginary and extremely simplified example, the first line is
the declaration for the XML document. This declaration line also has an attribute
of encoding="UTF-8", which is optional, but often useful addition since it solves
previously mentioned encoding interoperability problem. XML 1.1 is by no means
UTF-8 restricted, but according to XML 1.1 specifications [81], UTF-8 is the only
encoding that needs to be interpreted by all XML processors.

<?xml version="1.1" encoding="UTF-8"?>

<observation date="2017-09-17">

<location>Tampere</location>

<weather>sunny</weather>

<weather>windy</weather>
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<temperature>21.3</temperature>

</observation>

The second line has an element called observation that also has an attribute of date,
which has a simple date as a value. This is one of the most useful features of XML
since the XML processor can look for only those observations (markup defines this),
that have the desired date (the attribute for that element). Within the observation
element, there are both the location and the weather elements. Thus, when receiving
the observation element, one also obtains all those elements, that it contains. This
versatile use for structure in the XML document is a highly useful feature.

2.3.3 JSON

JSON (JavaScript Object Notation) [46], is a light-weight data format very suitable
for to data interchange. The IANA Media Type [29] for JSON is application/json. Like
the XML the JSON is designed to be easily read and created by both humans and
machines. According to JSON specifications [46], JSON is completely programming
language agnostic, because it is essentially a text format. But it has many shared
properties with popular programming languages since two of JSON’s most common
basic constructions are the object (a key-value pair) and the array (ordered collection
or a list).

The following example has the same nesting structure as previously presented
XML. Firstly the example is an JSON-object, that has the keys observationDate and
observation. The observation is a JSON object, that is nesting an array of objects, out
of which the later (weather) contains an array as a value.

{

"observationDate": "2017-09-17",

"observation":

[

{"location": "Tampere"},

{"weather":

[

"sunny", "windy"

]

},

{"temperature": 21.3}
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]

}

When comparing with the XML, both of the examples offer the same functional-
ities. Content can be searched by the date, and the same values are stored in both.
In JSON an additional object of observation was needed to contain the data. But in
XML the list of weather properties had two elements that had the same markup due
to the lack of list or array functionality. This creates performance differences, but as
Maeda [51] states, the used programming language and the selected libraries are the
primary serialization performance effects. As Maeda [51] states, there is no single
best solution for serialization, since the performance always depends on context.

2.3.4 CSV

CSV (Comma-Separated Values) [71] is also a popular data format, which is an-
notated as text/csv by the IANA Media Types [29]. Shafranovich [71] claims, that
CSV existed, and was broadly used for data interchange among spreadsheet soft-
ware, long before it was officially documented in 2005. A CSV-document essentially
consists of lines which end with a combination of characters CR and LF in ASCII en-
coding. On every line, there exists a record that is a composition of values separated
by a comma.

Carriage Return = CR = 0x0D = \r

Linefeed = LF = 0x0A = \n

Comma = 0x2C = ,

In the following example, there is one possibility to present the same instance as
seen in the XML and the JSON Subsections. The first line is referred as the header
line [71], which is optional but in many cases useful since it is the only official
method for including metadata in the document. All lines, including the header
line, should have the same amount of values separated by a comma.

date,location,weather,temperature\r\n

2017-09-17,Tampere,sunny,21.3\r\n

2017-09-17,Tampere,windy,21.3

But as Repici [67] claim, the CSV has many drawbacks. These are mainly due
to the historical usage of CSV since it has originated from Windows Excel software,
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which originally operated on the Microsoft Windows operating system. Since there
are differences among operating systems on how to present the linebreak, there
might be issues converting CSV-documents from one system to another. Also the
fact, that software using a CSV-document might make different assumptions about
the used encoding, could create interoperability challenges. This is especially a chal-
lenge here in the Nordics, due to the need to use the UTF-8 encoding (see Subsection
2.3.1). Despite these problems, the CSV is a common format for data interchange
[71].

2.4 Semantic interoperability

If we follow the previously presented analog of a letter, after being able to read it, we
face the highest level of interoperability challenge, what does the text on the letter
mean? We can approach this dilemma with an example from the human domain.
Imagine that you want to know what are the circumstances in a newly built house,
and write an email asking for them. Later you get a response saying that the con-
ditions are 20,5. All the previously presented interoperability challenges are fully
solved (since you got the email and you were able to read it), but you gained very
little information, and by no means, your initial question was answered.

Murdock et. al. [57] claim, that the first enabler for solving the previous problem,
is shared metadata. Essentially metadata is data about the data. Figure 3.2 opens
this multilevel nature of metadata more deeply. Since the nested nature of metadata
allows multiple levels of metadata to be added to the actual data, there is no limit on
what can be described or not. Only limitations are practical, is it reasonable to stack
meanings so far, that everything is eventually described as an object or a thing?

According to Ushold et. al. [55], semantic interoperability essentially means the
exchange of information in a meaningful way. Murdock et. al. [57] adds upon that,
when they state, that semantic interoperability is achieved if two or more systems
share data, and more importantly, share the meaning of that specific data. Mur-
dock et. al. [57] also state, that semantic interoperability among IoT-systems would
provide much higher value. In a financial sense, this means higher profits.

Murdock et. al. [57] present the shared metadata as a three layered model:

• No metadata, Hardly reusable

• Locally defined metadata, Can create added value within that domain
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Figure 2.10: Meaningfulness of the data increases with more metadata, model by
Murdock et. al. [57].

• Metadata based on shared vocabularies, Very reusable, could add great value

Building on the principle of the previous model, Murdock et. al. [57] state that
taxonomies, ontologies, and different standard families are representations of ex-
tended shared vocabularies. As a side note, representing valuable data in a reusable
way does not necessarily mean allowing the free use of it. The owners of data still
decide who to share the data to. But if it is business wise to share that data (and
maybe receive some money in exchange), sharing it in defined ontology or standard
would enable more potential customers to use it.

There are various possibilities to use ontologies or standards, out of which Desai
et. al. [18] mention the OGC Sensor Web Enablement (SWE) [60], Semantic Sensor
Network (SSN) [86] and the Semantic Sensor Observation Service (SemSOS) [38]. As
Desai et. al. [18] state, these technologies solve the semantic interoperability within
that specific domain, a vertical silo as they state, but lack interoperability among
other ontologies. But creating interoperability among well described (ontologically)
datasets is far more easy, than harmonizing dataset without any metadata what so
ever. Standardised metadata representations can also be used as a basis for Machine-
to-Machine (M2M) communication.

Murdock et. al. [57] claim, that despite the existence of various semantical tech-
nologies, ontologies, and standards, the semantical interoperability challenge is yet
to be solved. They also state that awareness of these techniques is the first step on
the way to entirely semantically interoperable world.
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2.4.1 Semantic Sensor Network - SSN

The Semantic Sensor Network ontology [86], or SSN in short, is an ontology de-
veloped by the W3C. The SSN is designed to be able to describe different sensors
and the observations made by those sensors. Also, any observation related con-
cepts, such as the metadata about the IoT-devices themselves can be included, thus
enabling device discovery and even M2M-communication.

Georgakopoulos et. al. [30] observe the SSN ontology, and claim it to consist of
ten abstractions, aka. modules. Each of those modules contributes to the overall
data representation from different perspectives. Out of these perspectives Geor-
gakopoulos et. al. [30] mention, the following:

• IoT sensor: is a view of what and how the sensor senses

• observation: is the data that the sensor produces

• system: offers a description of the system, to which the IoT sensor belongs to

• feature: is a description of what data property is being censored in the obser-
vation

• deployment: is a view to the systems deployment and lifetime expectancy

• measuring capability: provides the range for observations, but might also be the
operating or the survival rates of the sensor

• conditions: can offer data about the condition where the sensor is, and when
linked with data from the measuring capability, the possible measuring dis-
tortion could be taken care of

In the SSN ontology, there are modules, which consist of classes which can have
properties [86]. These modules and classes together make the SSN ontology func-
tionality, and the properties offer metadata of them. For example, SensingDevice
has a class Sensor, which implements Sensing, Property, SensorInput, and Measure-
mentCapability classes. Some of these have subclasses, and properties like the Sens-
ing class has a Process, which is responsible for any input or output to the Sensor
itself. By using these components composition, the pre-mentioned views to the ac-
tual sensing are possible.

To enable the M2M-connectivity, the SSN is decoded in OWL (Web Ontology
Language) [85]. The OWL and the OWL2 [82] are publicly defined languages for

23



defining ontologies. More especially they commonly use the W3C XML standard
(see Subsection 2.3.2) or the RDF (Resource Description Framework) [83] to form
documents of the semantics, that the ontology represents. Using the RDF allows
the use of the SPARQL [84] query language. The SPARQL is essentially an SQL-
like query language for RDF documents [84]. Thus the SSN [86] is essentially a set
of documents, which is agnostic about the possible lower layers of interoperability
beneath it.

The following example illustrates our previous example of temperature data pre-
sented in SSN. This example is heavily influenced by a very informative blog post
by Marcus Stocker [77], about how to present observation data in SSN using RDF-
triples. Firstly, the sensor and its related sensing properties are defined. What is it
and what it measures:

TemperatureSensor rdfs:subClassOf ssn:SensingDevice

TMP36 rdfs:subClassOf TemperatureSensor

tampereTemperature rdf:type TMP36

tampereTemperature ssn:observes temperature

temperature rdf:type ssn:Property

airTemperature rdf:type ssn:FeatureOfInterest

airTemperature ssn:hasProperty temperature

Each Observation is unique (temp1), and is linked to the metadata that describes
its domain. Also, the timestamp for the observation is created, and connected to the
Observation.

temp1 rdf:type ssn:Observation

temp1 ssn:observedBy tampereTemperature

temp1 ssn:observedProperty temperature

temp1 ssn:featureOfInterest airTemperature

temp1 ssn:observationResult senso1

senso1 rdf:type ssn:SensorOutput

senso1 ssn:hasValue value1

value1 rdf:type ssn:ObservationValue

value1 dul:hasRegionDataValue "21.3"^^xsd:double

temp1 ssn:observationResultTime time1

time1 rdf:type dul:TimeInterval
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time1 dul:hasRegionDataValue "2017-09-17"^^xsd:date

This technology stack is the core enabler for M2M-interoperability. SSN ontology
describes the phenomena and the IoT-domain surrounding it. The SSN is decoded
in OWL, that can be transformed into RDF. RDF allows queries using the SPARQL,
so (assuming all previous interoperability challenges solved) end-to-end machines
can both communicate and be context aware of each others measuring domains.

2.4.2 OGC SensorThings API

The SSN is a popular choice for ontology, but The OGC SensorThings API [59] is
also one possible solution when dealing with data in the IoT or WSN domains. The
OGC SensorThings API provides an open framework for interoperable sensor data
over the Internet using conventional and popular Web technologies [59]. As a crit-
ical design principal for SensorThings API, the developers mention [59] that they
wanted to create a lightweight method for REST-like connectivity of IoT data and
applications.

Whereas the previously presented SSN was mainly a definition on how to cre-
ate a standardized set of ontology suited documents, the OGC SensorThings API is
also intended to support the communication architecture of the IoT-system. Accord-
ing to the OGC SensorThings API specification [61], the primary design purpose of
the OGC SensorThings API in to offer a standardized and easy-to-use functionality
for unifying IoT-communications. The SensorThingsAPI builds upon broadly used
Web-technologies, as the pre-mentioned REST-model.

The standard is designed based on the REST-model, thus its a collection of re-
quests, which have a JSON-encoded payload. Note, that the standard itself isn’t
bound to any specific message protocol, and while REST is more naturally used in
HTTP and CoAP, the OGC SensorThings API also has an MQTT-extension [61]. The
request type itself also affects the operations (POST, GET, PATCH and DELETE).
Each entity defined by the standard has a unique URI [61]. Each IoT-node or a re-
lating concept also has a unique identifier [61], which is created by the back-end
server. The OGC SensorThings API itself is entirely technology agnostic. Thus the
programming language or database can be selected by the developers.

To initialize a simple system, the first thing is to send the following standard
defined [59] POST-message to the server. This creates the Thing, Sensor, Location,
Datastream and the ObservedProperty, which are all linked relevantly to each other.
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{

"name": "Temperature Measuring System",

"description": "Sensor system for monitoring temperature",

"properties": {

"Deployment Condition": "Locating in an open and windy spot."

},

"Locations": [{

"name": "The city of Tampere",

"description": "This is the center at the city of Tampere",

"encodingType": "application/vnd.geo+json",

"location": {

"type": "Point",

"coordinates": [61.495396, 23.775267]

}

}],

"Datastreams": [{

"name": "Tampere temperature",

"description": "Datastream of temperature in the city of Tampere",

"observationType":

"http://www.opengis.net/def/observationType/

OGC-OM/2.0/OM_Measurement",

"unitOfMeasurement": {

"name": "Degree Celsius",

"symbol": "degC",

"definition": "http://www.qudt.org/qudt/owl/1.0.0/

unit/Instances.html#DegreeCelsius"

},

"ObservedProperty": {

"name": "Area Temperature",

"description": "The degree or intensity of heat

present in the area",

"definition": "http://www.qudt.org/

qudt/owl/1.0.0/quantity/Instances.html#AreaTemperature"

},

"Sensor": {
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"name": "TMP36",

"description": "TMP36 temperature sensor",

"encodingType": "application/pdf",

"metadata": "https://www.adafruit.com/product/165"

}

}]

}

After successfully creating the Thing and the Datastream, the IoT-system can
start to send Observations to the specific Datastream. The Datastream is created by
the Back-end, so the "@iot.id" needs to be queried first. When the "@iot.id" is known,
the Observation can be formed as the following example states:

{

"phenomenonTime": "2017-09-17",

"resultTime" : "2017-09-17",

"result" : 21.3,

"Datastream":{"@iot.id":313}

}

As seen, the OGC SensorThingAPI [59] is alternative to the SSN, and they are
not interoperable unless an interpreter is used. On the other hand, they both are
machine-readable, so to create that interpreter would be possible. Nevertheless, this
is an interoperability challenge, that needs to be recognized.
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3 Previous interoperability solutions

As a recap from Chapter 2, the interoperability can be seen as a challenge on multi-
ple layers. This stack of layers is omnipresent on our daily lives, much of the time
without us even realizing it. There are various solutions about how to solve these
interoperability challenges. A comparison of interoperability solutions presented in
this thesis is presented in the Table 3.1. In the following sections, we take a closer
look, at how these solutions provide interoperability. Many of them solve the inter-
operability challenges on multiple layers.

Table 3.1: Comparison of previous solutions

Solution Network Message
protocol

Data for-
mat

Semantic

Zhu et. al. [90] - IoT-Gateway x
Jin et. al. [45] - WiZi-Cloud x
Kruger et. al. [48] - IoT-Gateway x x
Castellani et. al. [11] - Proxy x
Bandyopadhyay et. al. [6] - Proxy x
Belli et. al. [7] - Message Stream x x
Desai et. al. [18] - SGS x x x
Rozik et. al. [69] - Sense Egypt x

x = Interoparable

3.1 Network layer interoperability solutions

Desai et. al. [18] state, that the interoperability challenge among the vertical IoT-
silos is a challenge created by the various compositions of hardware and software.
Solving the interoperability challenge among radio-technologies requires the use
of proper hardware and software. In the following subsections, there are previous
solutions, where Network layer interoperability challenge is solved.
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3.1.1 IoT Gateway - Bridging radio network to the Internet

Zhu et. al. [90] state, that IoT Gateway can provide interoperability between sen-
sor networks and the Internet. They argue that for an IoT-gateway there are the
following three system requirements:

1. Data Forwarding: The core functionality of an IoT-gateway is to receive and
forward data from both the Internet and the sensor network. This means for-
warding data seamlessly from one network to other.

2. Protocol Conversion: Zhu et. al. [90] claim, that the Internet’s network traffic is
done mainly using the TCP/IP protocol while the IEEE 802.15.4 based ZigBee
is popular radio protocol for sensor networks. The IoT-Gateway is responsible
for transferring correct data packets from radio operating sensor network to
the correct Internet entity, and vice versa.

3. Management and Control: Zhu et. al. [90] state, that the gateway should offer
management and possibly also control of the sensor nodes.

To demonstrate pre-mentioned, Zhu et. al. [90] built an IoT-Gateway using very
simple hardware. In their model, they used a very simple computer (ARM9 Sam-
sung S3C2440 processor with 400MHz CPU, 64M both of Flash and SDRAM). At the
time of writing this setup could be seen as very constrained both on memory and
on processing power. The gateway also included a GPRS-module, that was used
for communication with Internet entities. ZigBee radio-module (MSP430, CC2420)
was also included, and that was responsible for communications with the sensor
network entities. The mainboard and both the ZigBee-, and the GPRS-module was
connected by using a serial connection.

Zhu et. al. [90] also presents the workflow of the main program running in the
IoT-Gateway. The primary responsibility of the gateway is to listen to the serial
ports. If something is received through a serial port, this event creates an inter-
ruption, and gateways main program determines from which serial port the inter-
ruption was created. After deciding this, the program passes the message received
through the serial port to the proper software module. If the message is received
from the ZigBee-module, the Protocol conversion module is the next destination.
After that, the Messaging platform interaction module posts the message to the TCP
Server. If the message is received from the GPRS (or the Ethernet) port, the Com-
mand analysis module determines, what actions need to take place. Following this,
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Figure 3.1: The general architecture of the IoT-gateway by Zhu et. al. [90]

the command distribution software module forms proper headers for the ZigBee-
messages and sends them through the serial to the ZigBee-radio module.

3.1.2 Multi-radio IoT Gateway

Jin et. al. [45] present the WiZi-Cloud, which is a dual-radio access point to the Inter-
net. It has both a WiFi and a ZigBee radio, and software for handling the WiFi-packet
transfers, but also converting IP-packets to suit the ZigBee-network. As mentioned
in Section 2.1, network layer interoperability requires the use of proper hardware.
Jin et. al. [45] state, that their purpose was to offer very low power consumption
data link alternative to the WiFi link. In WiZi-Cloud, Jin et. al. [45] use two different
setups to enable both the use of WiFi and the ZigBee radios:

• The Linksys WRT54GL WiFi router with the TI CC2530 ZigBee SoC connected
by using the UART interface.

• The Planex Wireless USB router MZK-W04NU with the TI CC2530 ZigBee SoC
connected by using a USB-dongle.

These setups are essentially ZigBee-extended WiFi-home routers. But also cus-
tom software is needed to provide interoperability among these networking radios.
Out of that functionality of the WiZi-Cloud, Jin et. al. [45] present the following
system framework:
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Figure 3.2: The general framework for WiZi-Cloud by Jin et. al. [45]

Jin et. al. [45] state, that the WiZi-Cloud Service Module is responsible for pro-
cessing and forwarding the messages to the correct network interface (either the
Internet, ZigBee or the WiFi). The service module extends the IP-based routing of
the WiFi-network to also suit the ZigBee through the WiZi Bridge-component. The
IP-address of the message determines whether the message should be forwarded
towards the WiFi or the ZigBee radio-module. This naturally means that the Gate-
way needs to keep track of the nodes in the ZigBee-network and to transform data
traffic from and to WiZi Bridge according to the IP-routing used in WiFi. The WiZi
Bridge module is responsible for IP-packet fragmentation to suit the ZigBee frame,
which is smaller in size. The UART/IO module securely transmits/reads the proper
data packet from the UART, which is according to the Jin et. al. [45] a simple bit
stream. Finally, the ZigBee modem provides a data link, which is used to the radio-
transmission among ZigBee-nodes.

3.1.3 Multi-radio IoT-Gateway from off-the-shelf components

The multi-radio IoT-Gateway by Jin et. al. [45] provided seamless integration with
ZigBee and WiFi networks. It, however, required a lot of custom-made software
as described earlier. Kruger et. al. [48] state that rapid IoT-Gateway development
can be done using what they refer to as the off-the-shelf components. By this, they
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mean a set of both hardware and software, like the Raspberry Pi computer and open
source software like different Linux originated operating systems or network man-
agement software. The hardware consist of the Raspberry Pi (with Linux Kernel),
STM32W108CC ZigBee-module (with ContikiOS) and the TP-Link Wireless WiFi-
dongle.

Figure 3.3: The IoT-gateway by Kruger et. al. [48]

Kruger et. al. [48] also built an IoT-Gateway, that enabled interoperability among
WiFi and ZigBee radio-networks, and ensured their interoperability towards the
Internet. This is accomplished by using IP-connectivity on both the WiFi and on
the 6LoWPAN mesh networks. The gateway solution uses IPv6 addressing. This
creates problems since most of the Internet traffic is done using the IPv4 addressing.
Kruger et. al. [48] claim that IPv6 packets can be transported over the IPv4 network
by using tools like the 6to4 tunnels.

According to Kruger et. al. [48], there is also need for fragmenting larger data
packets used in IPv6 communication, to suit the smaller size of the 6LoWPAN. Be-
cause the Gateway operates on Linux, Kruger et. al. [48] propose a set of network
tools for network and gateway management. Also the fact, that gateway can always
be reached by using secure SSH-connection, eases management tasks. Kruger et.
al. [48] mention that the possibility to install, update and remove software from the
gateway on the fly provides confidence that the gateway can be managed even after
the install and setup process.
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3.2 Message protocol interoperability solutions

Message protocols like HTTP and CoAP have differences that create the interoper-
ability challenge between them. As stated earlier in Section 2.2 the interoperability
challenge among messaging protocols is primarily a software challenge. The fol-
lowing section presents some possibilities how to overcome this problem.

3.2.1 Using proxy for protocol conversion

The Multi-radio IoT-Gateway presented by Kruger et. al. [48] also had a feature,
that provided interoperability among message protocols. They used off-the-shelf
software components to host both a CoAP-proxy. As mentioned earlier (see Subsec-
tion 2.2.2), the CoAP is designed to be easily transformed between HTTP messages.
They both can use the REST-design model. Kruger et. al. [48] demonstrate this
CoAP-feature by presenting the CoAP-proxy. Kruger et. al. [48] state that the proxy
is written in Java, but they don’t describe it in more detail. But they do state, that
the CoAP-proxy has the following responsibilities:

• Translate RESTful HTTP commands to CoAP

• Translate CoAP from IPv4 network to suite CoAP in IPv6 network

Castellani et. al. [11] study the HTTP to CoAP mapping in more detail. They
state, that the intermediary between the two different protocol entities is called cross
protocol proxy (cross proxy in short). And as a response to the silo-like interoper-
ability challenge presented by Desai et. al. [18], Castellani et. al. [11] argue, that the
cross proxy is interoperability enabler.

The HTTP and the CoAP use their own unique Uniform Resource Identifier
(URI) plans (see Subsections 2.2.1 and 2.2.2 for more detail). Castellani et. al. [11]
present two possibilities to URI mapping techniques between protocols.

• Homogeneous Cross URI: The same resource is named equally in both URI’s.
The CoaP coap://server.net/weather/tampere and equally within the HTTP-domain
http://server.net/weather/tampere

• Another possibility would be to embed the CoAP-URI within the HTTP-resource:
http://server.net/coap/server.net/weather/tampere is interpreted by the HTTP server
into coap://server.net/weather/tampere
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Castellani et. al. [11] also argue, that the gateway providing the proxying in
IoT-domain is responsible for ensuring that constrained servers are not over-flood.
The unconstrained HTTP-based Internet entities cannot expect to interact with the
constrained CoAP-devices (battery powered, low processing power) as with other
unconstrained entities. Castellani et. al. [11] claim, that the cross proxy is thus
responsible for congestion control. They also state that cross proxy can be used to
handle the mapping between IPv4 and the IPv6 networks. This is not a necessity,
but they argue, that it is commonly needed since most of the HTTP-traffic is done as
IPv4.

Castellani et. al. [11] also observe two existing solutions for proxying. The
WebThings [47] is an open-source toolkit that consists of many application layer
software components. WebThings is not a complete solution but has many modules,
that can help to gain interoperability among heterogeneous message protocols. The
documentation of the WebThings [47] state that it is designed to be a proxy server
for connecting WSN-nodes to Internet using CoAP in REST-like communication.
But since CoAP is a message protocol, it can also be used solely on the Internet just
like Castellani et. al. [11].

As an another example Castellani et. al. [11] mention the Squid-project [75]. The
Squid is essentially an HTTP-proxy server, but Castellani et. al. [11] state, that it can
be expanded with an HTTP-CoAP-module to create a cross proxy. They also claim
that the easy to use and efficient caching support on the Squid is also a useful feature
in the cross proxy. The Squid can also handle the URI addressing needs of proxy
service, thus making it suitable for a cross proxy. These are only two examples of
available open-source software, but Castellani et. al. [11] argue that their existence
eases the development of interoperable, heterogeneous message protocols.

Bandyopadhyay et. al. [6] state, that the similarities of the HTTP and CoAP in
RESTful architecture eases their connectivity through proxying. They also observe
the possibility to use CoAP in pub/sub like GET-observe to gain interoperability
with popular MQTT pub/sub-protocol. They state that despite similarities between
CoAP-GET-observe and the MQTT there still is a need for Server to provide logic
between the two entities. Figure 3.4 demonstrates this functionality between MQTT
and CoAP device. Since the MQTT operates in broker-based fashion, the MQTT-
broker won’t understand the CoAP-GET-observe unless there is an additional soft-
ware component (Connection server in Figure 3.4) involved.
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Figure 3.4: An example by Bandyopadhyay et. al. [6], of interoperability among
MQTT and the CoAP Gateways using Server.

3.2.2 Multi-protocol proxy

As seen in Subsection 3.2.1, achieving interoperability among heterogeneous mes-
sage protocol can be achieved by proxying. Desai et. al. [18] present the Semantic
Gateway as Service (SGS), that would enable interoperability on message protocol,
data format and also on semantic layers. The SGS uses Multi-protocol proxy to solve
the Message Protocol interoperability challenge. More specifically the proxy offers
services in CoAP, MQTT and XMPP Message Protocols. Because these protocols can
carry payload presented in various Data Formats, the Proxy also solves the Data
Format interoperability by parsing all incoming messages into JSON or in RDF. In
Figure 3.5 there is a general architecture of the SGS components. Desai et. al. [18]
also present the SGS openly available as a node.js package at [17].

The components of multi-protocol proxy are presented in more detail in Figure
3.6. Desai et. al. [18] also state, that the proxy is not restricted to only CoAP, MQTT,
and XMPP, but also other message protocols could be used. All data sources are
connected by using message protocol specific Clients. When using the CoAP, the
client interacts with the CoAP Interface, which forwards the messages to the Mes-
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Figure 3.5: Semantic Gateway as Service Architecture by Desai et. al. [18]

sage Broker. In Figure 3.6 also MQTT-broker and XMPP-servers are connected to
the Message Broker. This design principle allows the simultaneous use of heteroge-
neous message protocols by multiple IoT-systems. For instance, the communication
to an MQTT-specific IoT-system appears to happen solely on MQTT.

The multi-protocol proxy translates messages between different message proto-
cols. To achieve this the Multiprotocol Proxy by Desai et. al. [18] uses three software
components.

• Message Store is responsible of storing all messages until they are successfully
sent to the higher level of IoT-services through the REST-interface on SGS.

• Topic Router is responsible for creating, maintaining and sharing knowledge
of all connected IoT-devices. Each device has its unique topic and id on the
Topic Router. This abstraction allows the harmonization among various mes-
sage protocols. By using whatever message protocol to communicate with the
Message Broker, all IoT-devices appear similarly on the Topic Router.

• Message Broker is responsible for proxying different message protocols so that
the content of messages won’t be disrupted. It is also responsible for using
the Semantic Annotation Service, whenever the higher level of IoT-services
request a new message.
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Figure 3.6: The multiprotocol proxy of SGS by Desai et. al. [18].

Desai et. al. [18] present an example of how the multi-protocol proxy operates. In
Figure 3.7 there are different logical steps, which show the workflow of the message
translation.

1. Message Proxy has subscribed all topics and thus receives all new messages
sent by MQTT-publishers.

2. Proxy ensures that the topic is registered and transmits it to the Topic Router.
If this topic is not known by the Topic Router, it creates it and gives it a distin-
guishing id.

3. Proxy forwards the message to the Message Store that stores it.

4. The Multi-protocol proxy waits for a request from higher level IoT-services.

5. Message Proxy receives a request from higher level IoT-services with an id
attached to the request.

6. Proxy determines what topic has this id by asking it from the Topic Router.

7. By including the id, the Proxy request the recent message from the Message
Store.
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8. Message Store returns the original message, which it has stored.

9. Message Proxy sends it to the Data Annotation Service, wherefrom it is sent
properly annotated to the requester.

Figure 3.7: The message translation of multiprotocol proxy by Desai et. al. [18].

To achieve Data Format and Semantic interoperability, the SGS also has addi-
tional software components. These components are presented in more detail at Sec-
tion 3.4.

3.2.3 Using message stream to enable interoperability

Belli et. al. [7] present an open-source architecture (see Figure 3.8) for what they
refer as Big Stream data flow system. It is capable of handling data flowing into the
system from multiple heterogeneous data sources using various message protocols.
Belli et. al. [7] argue, that there are many possible messaging protocols (see Section
2.2) which could be used by IoT-devices or systems. Thus they include in their ar-
chitecture an Acquisition module which consists of multiple connectors, all capable
of handling different protocols for the incoming data stream.

By interoperability, Belli et. al. [7] mean the ability to gather data from hetero-
geneous data sources into single Big Data system, not the capability of providing
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Figure 3.8: General architecture and simplified responsibilites of components in Big
Stream application architecture by Belli et. al. [7]

communication among vertical IoT-silos like presented by Desai et. al. [18]. Thus
the name, Big Stream. The data only streams into the system, but it does come from
various message protocol sources.

Belli et. al. [7] divide the responsibilities to different components. The acqui-
sition component is responsible for message protocol harmonization. This task is
achieved by using open source software components, each running on as a separate
process. For HTTP the NGINX [40], for CoAP the mjCoAP [56] and for MQTT-
messages the ActiveMQ [25] are used. Each of those separate software processes
listens to its data source, and simply forwards whatever content it receives to the
message protocol dedicated Exchange-module in the RabbitMQ (Advanced Mes-
sage Queuing Server).

The Exchange-module is merely a listener. It confirms that it has received the
message, and is then responsible for placing them into the proper RabbitMQ buffered
queue. RabbitMQ-queues store the messages until a separate Java-process called
Normalisation receives them. Thus, once the Acquisition node receives a confirma-
tion of the message sent, it shifts the responsibility to the Normalisation block.

The Normalisation nodes in Figure 3.9 are separate Java-processes, but they re-
ceive their input from the RabbitMQ-message system, so Belli et. al. [7] present
them within the RabbitMQ. All these different Java-Processes are maintained by the
Application Register, which is responsible for registering and maintaining the state
of the pre-mentioned Java-processes. The Application Register keeps track of what
processes are linked to each other. Thus the messaging between them can also be
maintained.
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Figure 3.9: Software components of Acquisition and Normalisation modules by Belli
et. al. [7]

After the Normalisation, the data flows through the Graph Frameworks entry
point, which is the Core Exchange Level 1 node. After this node, the rest of the
system assumes to receive messages which are also harmonized on the Data Format
layer. Belli et. al. [7] argue that the Core Exchange Level 1 node has the same
responsibilities as the Exchange node for each Message protocol, it just forwards the
messages to the proper composition of unique Java processes. Finally, the data flow
to the desired end-point. Out of these end-points, Belli et. al. mention possible Data
Streams of some other Big Data processes, a Data Warehousing system, and also
application layer processes. Message protocol interoperability is thus created by the
combination of the Acquisition and the Normalisation modules.

3.3 Data format interoperability

Desai et. al. [18] present the Data Format and the Semantic Interoperability lay-
ers coupled as one. As mentioned earlier in Subsections 3.3 and 3.4, data can be
represented in different Data Formats (XML, JSON, etc.) without it having any dec-
larations about the metadata. But when describing the Semantics of the data (on-
tologies, standards, etc.), there always needs to be a description also about the used
Data Format. Thus these two interoperability layers are linked together, especially
when presenting actual solutions.
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3.3.1 Message stream for data format interoperability

In the previous Section (see Subsection 3.2.3) Belli et. al. [7] present an example
how to solve the Message Protocol interoperability challenge. Their proposition also
takes a stance on how to address the challenge created by various Data Formats.

After acquiring the data into the system, Belli et. al. [7] present the Normali-
sation Java process, which is responsible for filtering out useless data. Out of this
Belli et. al. mention the possible headers or undesired meta-data. The Normalisa-
tion block is also responsible for annotating the data with additional information,
like adding a timestamp if needed. The normalization node can also be used to fil-
ter out some IoT-observations, that can be assumed to be corrupted (e.g., an Indoor
temperature reading of -200 Celcius).

Belli et. al. [7] argue, that the Normalisation node is responsible for providing the
data format interoperability. This is achieved by transforming all messages received
from RabbitMQ-queues to JSON-format. Whether received as an XML or a CSV
formatted data, the messages transported by the RabbitMQ-system are essentially
Strings. To gain data format interoperability custom parsing is required. By this
Belli et. al. [7] means that all messages are fragmented and finally encapsulated into
JSON-format. When the Core Exchange Level 1 node receives a new message, it
would be entirely agnostic about the original message protocol or the data format of
the data source, unless there would be additional information implemented about
these.

Thus the proposition by Belli et. al. [7] solves both the message protocol and
the data format interoperability, but does not offer any interoperable solution for
semantical knowledge exchange, but instead creates a semantical vertical silo of its
own.

3.3.2 IoT Data Stream platform

Rozik et. al. [69] explore current IoT-platforms like the Thing Speak [53] and the
Xively [50], and also propose their design Sense Egypt. These platforms offer great
IoT-connectivity and are also capable of storing data and provide different data anal-
ysis tools. With IoT-Platform they mean, a cloud-based software system, which
offers a set of well defined APIs, which can be used to upload data into the IoT-
platform. The purpose of the platform is thus to provide harmonization, visualiza-
tion, data storage, data analytics, alerts, commands and different custom messages
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to and from IoT-nodes [69]. By IoT-nodes Rozik et. al. [69] mean both actuators and
sensors.

Figure 3.10: The MQTT-broker in Sense Egypt IoT-platform design by Rozik et. al.
[69]

According to Rozik et. al. [69] the Thing Speak and the Xively cloud-based plat-
forms use the HTTP-protocol for message protocol connectivity. The Sense Egypt
uses the MQTT-protocol. Thus the MQTT Broker is responsible for all communica-
tions between the IoT-nodes and the Sense Egypt IoT-platform. In the Sense Egypt,
the HiveMQ [16] MQTT-broker is used. The broker communicates with the IoT-
nodes, and the Apache Kafka [27] message stream system within the cloud platform.
Figure 3.10 illustrates the pub/sub mechanism of the Sense Egypt.

Rozik et. al. [69] state, that the MQTT broker did not provide any buffering
mechanism for the messages. This is the reason why the Kafka Messaging System
[27] is used. The Apache Kafka is a message stream system that operates accord-
ing to the publish/subscribe paradigm. The Kafka is used to forward data received
from IoT-devices to the Apache Storm [28] analytics engine. Kafka is also used for
messaging between other software components of the Sense Egypt platform, and
also forwarding commands to the IoT-nodes through the HiveMQ broker. The visu-
alization component also receives its data through the HiveMQ broker.

The heterogeneity on data formats, and also somewhat the semantics, can be
solved by using the Apache Storm [69]. As Figure 3.11 illustrates, the data com-
ing from IoT-nodes through the Kafka, is first received within the Apache Storm
by Kafka consumer spout. Each data source is connected to specific spout, which
fetches the messages from the Kafka.
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Figure 3.11: General architecture and components of the Sense Egypt IoT-platform
according to Rozik et. al. [69]

Sense Egypt is entirely data format agnostic. Thus it is capable of harmonizing
different heterogeneous data formats. This is achieved in the Apache Storm and in
the Preprocessing bolt, which is responsible for harmonizing the IoT-data. The pre-
processing begins with the data cleaning phase, where faulty sensor readings are
removed, and missing values can be added. The final preprocessing task is to trans-
form data into optimal machine learning data form. The Sense Egypt expects UTF-8
encoded Strings as input from it’s MQTT Broker. To gain comparability among het-
erogeneous data formats, Sense Egypt uses the machine learning techniques of the
Apache Storm.

Apache Storm is Java-based software that has many data classification tech-
niques. All incoming data is dynamically transformed by the Preprocessing bolt
into Serialized objects [24], tuples as Storm refers them. These tuples are Java Ob-
jects within the Storm, but once exported from the Storm, they are transformed into
CSV or other data format. Thus the data format is interoperable once serialized
within Storm, but finding semantics and finding features out of data is the respon-
sibility of the following machine learning algorithms.

The Stream Analytics and Event Processing bolt use data analytics and machine
learning techniques to find features from IoT-data. By features Rozik et. al. [69]
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mean separate events that have a meaningful correlation with one another. Even
if there is no correlation found, the Stream Analytics and Event Processing bolt at-
tempts to classify data so that later discoveries can be made. In the design of the
Sense Egypt, no topology or standard is applied to the data, but the Stream Ana-
lytics and Event Processing bolt could also be used to do that. Nevertheless, this
component is where the platform attempts to gain semantic interoperability, find
meaning from raw data.

After the Stream Analytics and Event Processing bolt the flows to the Storage
Bolt, which is responsible for securely uploading data to the Apache Cassandra
database [26]. Also, the data is forwarded towards the user interface, by publish-
ing it on the dedicated UI message stream on the Apache Kafka. Also, the Stream
Analytics and Event Processing bolt can trigger different alerts, like send an SMS or
email if it finds features, which are preconfigured to do so.

3.4 Semantic interoperability

To enable Message Protocol, Data Format, and semantic interoperability, Desai et.
al. [18] present the Semantic Gateway as Service (SGS). The solution for message
protocol interoperability was introduced earlier in Subsection 5.3

To build upon Message Protocol interoperability, Desai et. al. [18] present the
Semantic Annotation Service (SAS) software component (Figure 3.12), that they ar-
gue solves the Semantic interoperability challenge. All messages coming in from the
Sensor nodes are first routed to the SAS-component.

The first software-component that receives incoming observations in the SAS is
the O&M, SensorML component. Desai et. al. [18] state, that this component is de-
signed to follow the standards for service description defined by the Open Geospa-
tial Consortium (OGC) in the Observation and Measurement (O&M) and the Sensor
Model Language (SensorML) specifications. These two provide the XML-schema
that unifies all received data from sensors into a standardised format.

After this transformation, the Data Annotation component can annotate the data
to suit the SSN Ontology (see Subsection 2.4.1). Desai et. al. [18] also present the
possibility to use different more domain-specific ontologies if needed. After the
Data Annotation component, the data is sent back to the Proxy, which can send it
as forwards as JSON Linked Data (JSON-LD), which according to Desai et. al. [18]
suites the REST-model better. The following components use the REST-model to
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Figure 3.12: Semantic Annotation Service component by Desai et. al. [18]

serve this data to other services.
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4 Case: predictive transport demand solution

The interoperability research question of this thesis was derived from a real-world
software development process. The customer was a people transport company lo-
cated in the city of Tampere. The customer wanted to create software, which could
predict the people transport demand in the city of Tampere. If the software pre-
dicted the future demand for transport requests with reasonable accuracy, the cus-
tomer would be able to optimise the use of their transport fleet. This would save
money due to the more efficient use of labor. When there would be little demand,
fewer drivers were waiting for customers. And during the high peaks of demand,
there would be sufficient amount of vehicles on duty.

To be able to predict the future transport demand, the development team first
needed to gain insight into how the human transport business works. In discussions
with the customers, it became evident that multiple data sources were required.
There were tens of possible events, that may affect the transport demand. Some
most prominent events chosen for the POC (Proof of Concept) like the weather,
which increases the demand on some occasions, like when its raining or when it’s
freezing cold. One event could also be derived from previous transport actions, if
there is a lot of transport actions ending to a specific location, there obviously might
be more future transport requests from there.

Since there was no certainty about how events changed the demand, few initial
data sources were selected in collaboration with the customer. These few would act
as a basis for a fully functional proof of concept software. More data sources were
planned to be added later if the initial POC was approved by the customer.

The software would be a web application, that would be accessible only by the
customer’s staff. While the application offers a prediction of the demand, the deci-
sions on how to deploy the vehicle fleet are still made by the customer. The appli-
cation has a map view of the city of Tampere (this is the core business area of the
customer). The map view is divided into a grid, where each block within the grid
acts as an indicator for changes on future demand.

The future demand is calculated for each block. This grid division is not fixed but
can be changed, if the customer wants to change the size or the number of blocks.
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As initial design proposition, each block is either transparent, colored using green
if there is increase on demand and colored using red if there is less then average of
demand.

Also each of the vehicles actively on-duty are displayed on the map, so that
the customers transport controller can redirect vehicles to most profitable locations.
Vehicles currently carrying a passenger are colored red, and vehicles which are free
are colored green. The Figure 4.1 illustrates this design.

Figure 4.1: An example of the core functionalities for the application. Background
map from Avoindata.fi [20].

4.1 Requirements and objectives

To be able to provide such functionalities for the predictive Dashboard, the design
team crafted the following list of initial key-requirements. The initial objective was
to build a system, that would integrate several heterogeneous data sources. Data
from these sources were gathered into the system and processed using data analy-
sis techniques. The prediction of possible changes in transport demand would be
created by the data analysis. To enable data analysis, the following requirements
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needed to be met:

• The system needs to be able to receive data from several heterogeneous mes-
sage protocols.

• Data in XML, JSON data formats needs to be handled by the system. Also the
system needs to be able to query a database.

• The system needs to easily adjust to any possible changes in the message
protocol layer. If the data provider changes message protocol or changes at-
tributes of the data source (etc. the URL for HTTP-GET-request), the system
needs to be able to be resilient to these changes.

• The data acquisition should be decoupled from rest of the system so, that any
possible errors or changes in data sources won’t affect rest of the system. If
a data source stops providing data, only the data should be missing, and the
rest of the system would continue to operate normally.

4.2 The interoperability challenge of the data sources

The selected data sources were very heterogeneous on many levels. The initial four
data sources did have one shared property; they all used the TCP/IP on the network
layer, meaning that in this case there is really no network layer interoperability chal-
lenge. There were differences in the message protocols, data formats, and semantic
representations. These interoperability challenges are presented in the Figure 4.2.

• Transport log is a customer database where all transport actions and orders
are stored. It is essentially a relational database, that can be accessed remotely
using a remote database connection. This data source was chosen since the
customer had confidence that previous transport actions affect future ones. If
lots of people are transported into say a football game, lots of people will order
transport when the game ends.

• Weather Information is served by the Finnish Meteorological Institute (FMI).
This data source was selected due to the customer’s assumptions, that there
is a correlation between weather phenomena and the number of transport re-
quests. In cold or rainy weather, people attend to take more taxi rides.
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Figure 4.2: Interoperability of the datasources and possible additional data process-
ing

• The map of transport districts is representative of the voting districts in the city
of Tampere. This was chosen as the initial data source for providing coordinate
information for rendering the grid and the blocks to the map. As mentioned
earlier in the requirements, this data source should be easily changed later.

• Vehicle location stream was a GPS-logging system that the customer already
had in use. In the stream, each vehicle transmitted its coordinates frequently,
so that their current locations could be viewed from a map. This data source
was selected because it was important to point each vehicle to the most promi-
nent locations in near real time. Essentially this means moving vehicles away
from lower demand blocks to those with higher demand.

4.2.1 Network layer challenges

Due to the fact, that all data sources used the TCP/IP-stack, there really was no net-
work layer challenges. The vehicle location stream system was also out of reach of
the developing team, and they provided the GPS-location data by using the MQTT
that run over the TCP/IP stack. But there naturally could appear the possibility, that
some data source would change it’s network layer to UDP/IP.
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4.2.2 Message protocol challenges

One of the interoperability challenges was the heterogeneous message protocols.
The weather information and the coordinates for the transport district grid were
both served by well documented REST-APIs. The weather information was gath-
ered from the Finnish meteorological institute, by using their open data solutions
[41]. The FMI-API was used by simply making HTTP-GET queries with API-key
and different attributes narrowing the query included in the URL. To receive the
API-key, the developer needs to register on the FMI website. For daily weather
forecast in the city of Tampere, the following HTTP-GET request was made:

http://data.fmi.fi/fmi-apikey/secret-unique-key/wfs?

request=getFeature&storedquery_id=fmi::forecast::

hirlam::surface::point::simple&place=tampere&

The same kind of functionality was also used in the transport district map. For
the grid information, an open source solution was selected. The voting districts of
the city of Tampere were used to enable the grid division [20]. The avoindata.fi pro-
vided a REST-API, that was accessible only after registration and logging in to the
avoindata.fi web application. The information was shared by using specific HTTP-
GET requests.

The customer had a vehicle location service already in use. All vehicles had
multiple GPS-logging systems. One of these systems operated on message protocol
layer by using the MQTT. The developing team was able to subscribe all location
data from this MQTT-broker. Thus the system also needed to be able to use MQTT-
pub/sub paradigm.

The final data source was the transport logs of the customer. These logs consisted
of multiple relational database tables, into which all transport actions were logged in
real time. These transport actions stored information of who was the driver, where
the transport event began and where it ended. Also, timestamps and passenger
counts were included. To access this data, the relational database of the customer
was queried with database suitable remote connection. This connection could be
achieved in many ways, by using a SQL-querying program, or for example by using
custom written program codes.
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4.2.3 Data format challenges

The data received from the FMI-API was in XML 1.0 data format encoded in UTF-
8. The XML-file was a massive (10779 lines) collection of hourly predictions for the
following 36 hours.

The data received from the avoindata.fi was in JSON data format. The JSON-file
was a massive collection of coordinate arrays. Each of these arrays had all the corner
coordinates for representing the grid on a map. JSON was also the data format in the
vehicle location service. Each vehicle had a processing unit that posted continuous
location information stream in JSON data format to an unique MQTT-topic .

The transport logs were stored in a relational database. Thus when querying the
database, the data could be queried into whatever data format was selected. The
Figure 4.3 illustrates the rows and columns of the database.

Figure 4.3: The SQL-table of the transport log.

This meant that the system would have to cope with both the XML and JSON
data formats and to be able to query the relational database using a remote connec-
tion.

4.2.4 Semantical challenges

All four data sources had different content. Only the FMI (GML [58]) and avoin-
data.fi (GeoJSON [43]) used standards in their data representation. The transport
log system and the vehicle location system were both separately developed, and
no standards were applied to their data representation. This created a semantical
challenge.

The semantical challenge was the different representation of essentially the same
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data. As an example, location was represented as a street address in the relational
database, whereas the FMI.fi used a GML [58] defined coordinates.

The lack of standards doesn’t mean lack of information. Transport log database
and the GPS-vehicle location service present their data in a non-standardised way.
This semantical challenge needs to be handled.

4.3 Solving the interoperability challenge on different layers

To be able to meet the requirements presented in the Section 4.1, the system needed
to have at least the components shown in Figure 4.4.

Figure 4.4: The general components of the system.

On the left, the four data sources and their different message protocols and data
formats are presented. The first major component of the system needs to be able
to cope with these heterogeneous message protocols. In Figure 4.4 this is the Data
acquiring and harmonization component. Since the system only receives data, no
actions towards the data sources are presented. The Data storage and Data Analysis
component is responsible for storing data and providing the feature findings for the
Dashboard web application.

As seen in Chapter 3, there are various possibilities on how to achieve interop-
erability among heterogeneous data sources. Thus the responsibilities of the previ-
ously presented components can vary. In the following Subsections, different solu-
tions for providing interoperability among four selected data sources are presented.
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In further subsections, there are two different decompositions presented for the Data
acquiring and harmonization component.

4.3.1 Message protocol interoperability possibilites

In Chapter 3, there are essentially two variations presented about how to enable
message protocol interoperability: proxying or message stream. The four data sources
used the HTTP, MQTT and SQL-query engine protocols.

Using proxying (see Subsection 3.2.1 and 5.3) for handling message requests to-
wards the database and the MQTT-broker would achieve interoperability in the sys-
tem. By using a proxy, all request logic could operate on simply the HTTP. This
functionality is presented in Figure 4.5.

Figure 4.5: Connecting to data sources by using proxies.

Using proxying would simplify the request logic of the HTTP-request logic com-
ponent. The HTTP-request logic component simply makes a request either directly
to the data source or to the dedicated proxy. Thus the HTTP-request logic com-
ponent is responsible for drawing the data into the system. The component it-
self is capable of making HTTP-requests, but not making a SQL-query or MQTT-
subscription. For solving the message protocol interoperability challenge proxies
are used.
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When receiving a query, the SQL-query to HTTP Proxy transforms it into suit-
able SQL-query and retrieves the data from the database. After successfully execut-
ing the query, it forms and HTTP-respond and forwards the payload to the HTTP-
request logic component. As seen in 2.2.1 there are multiple variations on how to
perform these requests.

The MQTT to HTTP Proxy operates somewhat on the same logic, but instead of
SQL-queries, it buffers all messages received to a vehicle specific MQTT-topic and
responds to the HTTP-request logic component with them as the payload.

There would be a need to create proxies to support both the remote database
connection and the MQTT. But the proxy development would also offer a possibil-
ity to provide interoperability on the data format layer since all messages are trans-
formed from one message protocol to another. Proxies could for instance response
to HTTP-request only by XML or JSON. Proxying would still not entirely solve the
data format interoperability challenge since the XML, and the JSON would co-exist
even after proxies are in place.

Another possibility would be to use the message streaming (see Subsections
3.2.3 and 3.3.2). In this scenario, all data sources were connected by using a Con-
nector software component. Each component makes message protocol-specific re-
quests/subscriptions and forwards all messages to single message stream. This pos-
sibility is presented in Figure 4.6.

Each Connector component could is a separate software process. For example,
the HTTP Connector component could make timed requests to the Weather Data
REST-API. When the Connector receives the HTTP-respond, it publishes a new mes-
sage on the Message Stream with the payload from the request. This technique de-
centralizes the request process to each separate Connector component.

Since the message stream would have all the content of the four data sources, the
message protocol interoperability challenge would be solved. On the other hand,
this would need four different software components, each connecting to a different
data source.

Each Connector component has essentially three main functionalities:

• It connects to the data source using message protocol specific techniques.

• It parses the payload from the message/respond.

• It publishes a new message to the Message Stream component, with the pay-
load attached to it.
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Figure 4.6: Connecting to data sources by message stream.

The connecting and payload parsing is often data source specific, but the mes-
sage stream publishing is very reusable function among all Connector components.

4.3.2 Data format interoperability possibilities

As seen in Section 3.3, the data format interoperability is often solved by converting
heterogeneous data formats into a single one. This can be done within either at the
Data acquiring and harmonization or at the Data storage and Data Analysis soft-
ware component (see Figure 4.4). If all data is stored in the Data storage component
as it is received, every data analysis process needs to do data format conversion
among heterogeneous data formats. In previous solutions, the data format conver-
sion is done before the data is stored (see Subsections 3.3.1 and 3.3.2). This approach
is also used this thesis’s proposition.

Depending on which message protocol interoperability approach is used, the
data format can be unified in two ways:

• If using the proxying (Figure 4.5), the HTTP-request logic component is also
responsible for doing conversions into a single data format. There could be an
additional component that would be responsible for data format conversions.
Data format conversions always requests unique parsing attributes (e.g. get-
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ting the date of an event out from XML and place it into JSON). Since each data
source already has unique message protocols properties, it might be feasible
to also do all custom parsing in one place, in the Connector component. Since
the majority of the data sources already present their data in JSON, this is the
data format of choice. The Proxy components can also be used in data format
conversion when they receive the content from the original data source; they
do the conversion before responding to the HTTP-request.

• If using the message streaming (Figure 4.6), either all message protocol specific
Connector components do the conversion into JSON, or the Message Stream
component does the data format unifying before moving data to the Data stor-
age component. There are many open source solutions for building the Mes-
sage Stream. Rozik et. al. [69] use the Apache Kafka [27], which would suit
this solution as well.

4.3.3 Semantic interoperability possibilities

As seen in Section 3.4, there are various ways to include metadata alongside the
actual data. FMI offers a manual of all their ontologies used [42]. They mainly use
different geospatial data representations of OGC Geospatial data models. The use
of these ontologies provides an excellent reusability for all data received from FMI’s
REST-API.

The coordinate data from the Avoindata.fi [20] is presented in a GeoJSON data
format. This lightweight data description format includes some metadata in the
representation since users can rely on the fact that they receive a set of coordinates
represented in the ETRS-GK24 coordinate model. The GeoJSON [43] is essentially
an extended version JSON data format, which is intended for representing regions
of space. Thus it is very suitable and reusable for the map grid representation.

There are also various alternatives for applying ontologies to the transport infor-
mation stored in the customer’s database. Li et. al. [49] present the taxi operation
ontology, which can be used to represent the data from the customer’s transport
action database.

Also, the vehicle location data has various ontology alternatives, which would
suit its content. The coordinates are presented in the WGS84 standard, which is a
common standard in GPS-location systems [21]. There would be plenty of alter-
native coordinate models for the WGS84 like the ETRS-GK24 used previously for
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providing information to present map grid division.
Using such ontologies is highly useful, especially in a development phase, since

once the development team has parsed and suited the various data sources in well-
defined ontologies, they can be sure that the data is easily reusable and extensible.
This is also important if looking at things from developers point-of-view since if
there were changes on the development team during the actual development, the
team can be sure, that all used data is well documented for all new team members.

But there are challenges when attempting to use a unifying semantic description
model out of all data sources. One alternative would be to use a semantic gateway as
presented by Desai et. al. [18]. This would allow the use of various domain specific
ontologies or standards. The benefits of the semantic gateway model would be the
well documented output data, but the drawback would be building such system for
four data sources. The only drawbacks of such a system are practical, building such
a system requires money and time.

One alternative would be to attempt to apply some ontology to all data. The
OGC SensorThings API (see Subsection 2.4.2) offers an easy to use framework for
semantic and data format interoperability of IoT-data. Since the weather observa-
tions and the vehicle location data are essentially observations out of the real world,
data from these two data sources can be transformed into SensorThings API.

With a little ingenuity, even the data from the transport actions database can
be transformed into OGC SensorThings API. The unique value of eventID in the
database table (see Figure 4.3) is presented as a Thing according to the Sensor-
Things API. This allows multiple Datastreams to be added to that Thing. Each of
these Datastreams represents a column in the database. Each Datastream has only
one ObserverdProperty, which describes the content of the Datastream. These Ob-
servedProperties could be the driverID, carID, orderID, etc. of the database schema.
The Observation would then be the actual value placed on that specific row in the
database.

But to present the GeoJSON polygon data of the district map in OGC Sensor-
Things API would be a challenge. Since the polygons are essentially arrays of co-
ordinates, there is very little metadata included in them. One possibility would
be to see the polygon as a Thing and to add each corner coordinate as a Location.
Another but a more extensive possibility would be to use the same measures as in
representing the transport log data.

The purpose of the solution was to be able to detect features out of the data
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Figure 4.7: Simplified view of two values from the transport action database repre-
sented in OGC SensorThings API.

gathered from four heterogeneous data sources. To be able to do this, the Data
Analysis component needs to compare values which originate from different data
sources. This can be achieved (as seen in Subsections 3.3.1 and 3.3.2) even without
the interoperable semantical model.

In previous solutions by Rozik et. al. [69] and Belli et. al. [7] data format interop-
erability is achieved before data reaches software components responsible for data
analysis. Despite the harmonized data format, every data analysis query to the data
needs semantical knowledge of the data. As an example, if we assume that previous
transport action correlates to future ones, semantical knowledge of these attributes
needs to be handled manually by the developers.
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5 Evaluation of the proposed solutions

As seen in the previous chapter, there are various possibilities to solve the interop-
erability problem of the four heterogeneous data sources. In this chapter, an evalu-
ation of these propositions is presented.

5.1 Message protocol interoperability propositions

Both the proxying and message stream was proposed. When considering the system
as a whole, the message stream proposition would be more feasible to use. This is
mainly because setting up or developing an entirely new proxy for remote database,
and the MQTT-broker would require a lot of resources. Adding to this the request
logic in the HTTP-request component, there would be much work without a real
possibility to reuse components.

When considering the message stream proposition, each Connector component
has features, that can be reused in each of the four Connectors like the publishing
mechanism to the Message Stream. As a drawback, each of the data sources requires
a Connector component, which also needs data source specific setup measures. On
the other hand, this is needed even if using the proxying model: the same HTTP-
GET request won’t work to different data sources.

5.2 Data format interoperability propositions

If using the proxying solution, some of the data format interoperability can be achieved
already at the proxies. But some of the data conversion logic remains the respon-
sibility of the HTTP-request logic component (see Figure 4.5). It might be a bad
design model to do the same task in two different software components. Thus the
HTTP-request logic component would be more suitable for also providing the data
format interoperability.

Another possibility was to use the message streaming. Since the Connector mod-
ules need to connect to heterogeneous message protocols, it also needs to be able to
receive heterogeneous data formats. Thus it might be the most reasonable also to
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make the next data format harmonization phase and to publish all messages in uni-
fied data format to the message stream, in this case, the JSON.

5.3 Semantic interoperability propositions

Solving the semantical interoperability was challenging, since the four used data
sources, each using an ontology or standard from entirely different domains. This
cross-domain ontology challenge was solved by Desai et. al. [18]. They presented
the Semantic Gateway as Service, which was able to utilize multiple ontologies to
provide semantical interoperability. When also looking things from the perspective
of the original objectives, M2M enabling semantic interoperability is not needed.
To be able to do data analysis the data is a sufficient level of interoperability. Thus
building a system as presented in the Subsection would be somewhat unnecessary.

Another alternative would be an attempt to unify all these representations to a
single semantical model. For this, the use of OGC SensorThings API was proposed.
This would offer benefits when querying data from the database. But as seen when
describing the transport log data from customers database, there might be an excess
of data stored in the database. But when defining the transport logs data or the
transport districts data in OGC SensorThings API, a semantical interoperability will
not be achieved.
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6 Conclusion & Discussion

The scope of this Master’s thesis is vast. The main idea is to present the interoper-
ability challenge as a whole; none of the layers individually solve the interoperabil-
ity problem, but any one of the layers can ruin it. For example, imagine a message
received from IoT-device using the shared network and message protocol, but with
different data formats. Despite two previous interoperability layers being solved,
the lack of shared understanding of the used data format ruins the interoperability
as a whole. But as this thesis has shown, this interoperability mismatch could be
solved.

This complexity created challenges for writing this thesis since there were many
interoperability challenges, on many layers, which needed addressing while re-
maining on quite a high level of abstraction. Another approach would have been
to focus on some specific layer, like, e.g. to the network layer, but this would not
present the whole scope of interoperability problems. Despite these challenges,
since this thesis was inspired by a real-life development process, the interoperability
as a whole was selected as the scope of this thesis.

The layered model for interoperability presented by Desai et. al. [18] was used
to create a construction for this Thesis. This model was extended so that the data
annotation model was divided into the data format and the semantical interoper-
ability layers. Another approaches and constructions could have been selected, but
these four were selected, due to their suitability for both to the academic literature
domain, and also due to their easy adaptability for the actual software development
offerings.

The actual software development took place during summer 2017. Ambientia
Oy had a customer, which was interested in doing explorative research on the busi-
ness possibilities, which could be produced by a predictive software. The business
requirements mentioned in this thesis are thus derived from real-world business
planning processes. The author of this thesis was mainly responsible for the con-
versations with the customer, especially about what the software should do. The
development process was iterative. After discussions and planning with the cus-
tomer, a new proposition was made until the customer approved the general design
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for the Proof-of-Concept to be built.
Quite early on in this process, the interoperability challenges of heterogeneous

data sources was recognized as a challenge. After the initial design and requirement
engineering processes, the author of this thesis focused on exploring the common
knowledge base surrounding the interoperability challenge. Thus the actual soft-
ware solution, which was built from the requirements and design principals pre-
sented in this thesis, is unknown to the author.

The interoperability challenge was fascinating but a challenging subject to study.
This complexity of the research question created challenges for writing this Thesis.
There were many interoperability challenges, on many layers, which needed ad-
dressing while remaining on quite a high level of abstraction. Another approach
would have been to focus on some specific layer, like, e.g. to the network layer, but
this would not present the whole scope of interoperability problems. Despite these
challenges, since this Thesis was inspired by a real-life development process, the
interoperability as a whole was selected as its scope.

Nevertheless, the author of this thesis hopes to have contributed to the challeng-
ing task of solving the interoperability problems of data-driven solutions. Solving
interoperability would enable massive opportunities to software and IoT-solution
developers since the development efforts could be focused on the substance of the
solutions, rather than solving the complexities of heterogeneous data sources.
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