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Abstract— In this paper we propose a novel optimization 
algorithm for grid-based RF fingerprinting to improve 
user equipment (UE) positioning accuracy. For this 
purpose we have used Multi-objective Genetic Algorithm 
(MOGA) which enables autonomous calibration of grid-
cell layout (GCL) for better UE positioning as compared to 
that of the conventional fingerprinting approach. 
Performance evaluations were carried out using two 
different training data-sets consisting of Minimization of 
Drive Testing measurements obtained from a dynamic 
system simulation in a heterogeneous LTE small cell 
environment. The robustness of the proposed method has 
been tested analyzing positioning results from two 
different areas of interest. Optimization of GCL is 
performed in two ways: (1) array-wise calibration of the 
grid-cell units using non-overlapping GCL and (2) creating
an overlapping GCL to cover of whole simulation area 
with different rectangular grid-cell units. Simulation
results show that if sufficient amount of training data is 
available then the proposed method can improve 
positioning accuracy of 56.74% over the conventional grid-
based RF fingerprinting.   

Keywords- Grid-based RF fingerprinting; Minimization of Drive Tests; 
Multi-objective Genetic Algorithm; Kullback-Leibler Divergence. 

I. INTRODUCTION

Positioning in wireless networks is dependent on the mobility 
of users and the dynamic nature of both the environment and 
radio signals. Users expect the same level of performance 
whether they are indoors or outdoors in a rural or urban 
environment. So far no single positioning method, including 
GPS, works well in all environments [1]. Receivers in Global 
Navigation Satellite Systems (GNSS) such as GPS or 
GLONASS tend to output inaccurate location estimations 

while operating in urban regions, mostly due to the density of 
tall buildings, which often block a receiver's line of sight to 
the navigation satellites [2]. Among the non-standard 
positioning methods included in LTE Release 9, RF 
fingerprinting is the most cost-efficient solution for indoor 
WLAN positioning [3], [4], [5] as well as for outdoor mobile 
cellular positioning in densely built urban environments [6], 
[7]. RF fingerprinting, also known as database correlation 
method (DCM) finds a user’s position by mapping RF 
measurements obtained from the UE onto an RF map, where 
the map is typically based on detailed RF predictions or site 
surveying results.  
An ideal positioning system should be self-learning and 
environmentally adaptive, capable of building up information 
databases that store actual observations, and employ smart 
data analysis mechanisms [1]. In order to achieve such a goal, 
a functionality known as Minimization of Drive Tests (MDT) 
has been proposed in LTE Release 10 which reduces the huge 
cost and efforts associated with the conventional drive test 
measurement procedure. MDT provides a framework for 
gathering user reported location-aware radio measurements 
from commercial mobile phones that can be used for creating 
and maintaining RF fingerprint training databases [8], [9]. It 
allows operators to autonomously build and update large 
training database for RF fingerprinting from various locations 
of user experience along with available location information 
from UEs without extra hardware installation.    
In [10] and [11] grid-based RF fingerprinting has shown good 
positioning performance in rural, urban and heterogeneous 
small cell networks scenario using MDT simulated data. An 
overlapping grid-cell layout (GCL) based RF fingerprinting 
approach was proposed in [12] which further improves the 
positioning accuracy. The performance results of [11] indicate
that using a common GCL in different network scenarios does 
not provide the best positioning accuracy in both 68%-ile and 
95%-ile of positioning error (PE) estimation. It was also found 



from [12] that positioning performances varies of a GCL that 
is composed of same square grid-cell units when amount of 
training data is varied. From literature review we did not find 
an explicit method for optimizing GCL in grid-based RF 
Fingerprint positioning. In [13] GA was used to reduce the 
correlation space in RF fingerprinting location method to 
improve location accuracy and authors have claimed their 
method to be suitable for UE positioning in urban 
environments. Authors in [14] have proposed a location 
detection algorithm which employs cell-id positioning 
enhanced by triangulation. The process was accelerated 
through the application of a GA. 
In this paper, we propose a novel method based on MOGA to 
develop an autonomous grid-based RF fingerprinting by 
optimizing the GCL in order to achieve the best possible 
positioning accuracy despite changes in cellular network 
scenarios and amounts of training data. This would render the 
positioning system an adaptive one which can make necessary 
adjustments to the grid-cell size along with the structural and 
environmental changes of the surrounding for an optimal RF 
fingerprint positioning performance. 
The following section contains a brief description of the 
conventional RF fingerprinting using MDT measurements. In 
section III first a brief description of multi-objective GA is 
given, and then the MOGA optimized RF fingerprint 
positioning (GAFP) method is explained. Finally section 4
discusses the performance evaluation of GAFP in the light of 
extensive system simulations.  

II. RF FINGERPRINTING USING MDT MEASUREMENTS

A.  Minimization of drive tests  
Conventional drive tests consume significant time and human 
efforts to obtain reliable data [8]. MDT is a feature introduced 
in 3GPP Release 10 that enables operators to utilize UE to 
collect radio measurements and associated location 
information, in order to assess network performance while 
reducing the large operation expenditure associated with 
traditional drive tests. Location information for MDT can be 
categorized into two different types: detailed location 
information and RF fingerprint. Detailed location information 
is typically obtained by GPS or Global Navigation Satellite 
System (GNSS) positioning method, but can also be obtained 
by other positioning methods supported by the UE and the 
network, e.g., Observed Time Difference of Arrival 
(OTDOA), Assisted -GNSS (Assisted-GPS) or Enhanced Cell 
ID (E-CID). Whereas in RF fingerprint type of MDT a profile 
of measured signal strength from neighboring cells is created. 
A major difference between conventional drive tests and MDT 
is that conventional drive tests use a controlled application 
with known traffic characteristics, whereas MDT uses 
ordinary user traffic with largely unknown characteristics [9].  
Thus operators are able to build a large RF fingerprint training 
database from UE’s in different network environments and up-
date it as needed. This urges for an autonomous RF 
fingerprinting method which makes necessary calibration to its 
GCL with the updated MDT training database. 

B. Grid-cell Based RF Fingerprinting 
In a conventional grid-cell layout (CGCL) based RF 
fingerprinting method using Kullback-Leibler Divergence 
(KLD) has two main phases [3], [10], [11]:  
Training Phase: First an offline processing and manipulation of 
MDT correlation database takes place. A layout of adjoining 
rectangular or square grid-cell units are formed over the whole 
geographical area of interest.  Each of these grid units gi is 
associated with a center point having coordinates ci={xi,yi} as 
shown in Fig.1. Then unit-wise creation of training signatures 
is performed by gathering MDT measurements having signal 
strength values, e.g., Reference Signal Received Power (RSRP) 
from same set of base-stations (BSs). Hence depending upon 
the size of a grid-cell unit I and the availability of MDT 
measurement samples within that grid, it  may contain multiple 
training signature Si,j={si,1, si,2, …, si,j}, where j is the total 
number of signatures. Each signature consists of multiple MDT 
measurements collected from that particular grid-cell unit 
having RSRP values from similar BS Ids along with detail 
location information of corresponding MDT measurement 
positions. For example the signature s1,1 as shown in Fig. 1 
consists of four MDT samples and can be expressed by: 

1,1 1,1 1,1

1,1

1,4 1,4 1,4

c ID rsrp
s

c ID rsrp
=                             (1) 

where, ci,j is a vector of x and y coordinates for an MDT 
measurement, IDi,j stands for the cell identities which is same 
for all the samples that form a signature and the vector rsrpi,j
contains RSRP values of corresponding MDT samples.   

  

Fig.1 illustrates a conventional grid-based RF fingerprinting 
method. Here the area of interest has been divided into four 
square grid-cells, all of which have the same arm length of 20 
meters and corresponding grid centers as depicted by c1, c2, c3
and c4. The training MDT samples are shown here by blue dots 
while the testing samples by red dots. It can be seen from this 
figure that no all the training samples which belong to a grid-
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Figure 1. 20-by-20 meter grid-cell layout of a conventional RF 
fingerprint positioning 



cell form training signatures, but only those which matches in 
BS ids.  

Testing Phase: During this phase testing signatures are formed 
from the MDT samples obtained from a particular UE. As we 
can see from the Fig.1 we have multiple training signatures and 
one testing signature depicted by u in this example. At first 
training signatures are collected which match with the testing 
signature BS IDs. Here if we assume that we have three such 
matched training signatures- s1,3, s2,2, and s3,2, then KLD is 
calculated between u and matched training signature RSRP 
values. Now if the KLD between u and s3,2 gives the minimum 
value then the center location of grid-cell 3, which is c3 is 
chosen to be the estimated position for the MDT samples of 
testing signature u. The closed form KLD equation is given by:    

                
         (2) 

where, uu, and ûi,t corresponds to the mean received signal 
strength values, while u and i,t represents the covariance 
matrices of the received signal strength values of the testing 
and training signatures respectively. Here, tr() denotes the 
trace of matrix, -1 denotes the inverse of covariance matrix 
and I is the identity matrix. It is a non-symmetric measure of 
the difference between testing and training signature 
probability distributions pu and pi,t. 

III. GRID-CELL LAYOUT OPTIMIZATION USING GENETIC 
ALGORITHM 

A. Motivation 
From our previous work in this field it is clear that GCL 
optimization is necessary to make RF fingerprinting an 
adaptive positioning technique which would deliver its 
optimal performance in both 68%-ile and 95%-ile of PE 
despite changes in the BS positions, surrounding structures or 
amount of MDT training samples used [10],[11],[12]. Here 
our goal is to autonomously select a GCL which would deliver 
optimal positioning performance in both the 68%-ile and 95%-
ile value of PE. From simulation results we found that using 
square GCs between 20m-by-20m to 40m-by-40m, for 
different square Grid-cell layouts the 68 and 95 percentiles of 
positioning error tends to be conflicting - when 68%-ile value 
of PE decreases then 95%-ile value increases and vice-versa. 
Therefore we were motivated to use a popular Multi-Objective 
Evolutionary Algorithm (MOEA) know as  Multi-Objective 
GA (MOGA) to select the proper GCL for RF fingerprinting,
where the objective functions are 68th and 95th percentiles of 
positioning error. The reason for employing MOGA is that 
other stochastic search strategies (e.g., simulated annealing, 
ant colony optimization or particle swarm optimization) do not 
guarantee to find the true Pareto optimal set but, instead, aim 
to generate a good approximation of such set in a reasonable 
computational time. On the other hand, MOEAs are 
particularly well-suited to solve multi-objective problems 
because they operate over a set of potential solutions. This 
feature allows them to generate several elements of the Pareto 
optimal set in a single run. Furthermore, MOEAs are less 

susceptible to the shape or continuity of the Pareto front than 
traditional mathematical programming techniques, require 
little domain information and are relatively easy to implement 
and use.    

B. Genetic Algorithm Optimized RF Fingerprinting 
The term genetic algorithms refer to a subset of evolutionary 
algorithms that model biological processes to optimize highly 
complex cost functions. GA is capable of yielding a robust 
search by implicitly sampling hyper-plane partitions of a 
search space. A single hyper-plane, commonly referred to as 
schema, is the theoretical foundation on which the algorithm 
was developed as first introduced by John Holland in 1975 
[15]. Here a population represents a group of potential 
solution points and a generation represents an algorithmic 
iteration. A chromosome is comparable to a design point and a 
gene is comparable to a component of the design vector. 
Given a population of designs, three basic operations are 
applied: reproduction, crossover, and mutation. Reproduction 
involves selecting design vectors from the current generation 
to be used in the next generation and whether or not a design 
is selected depends on its fitness value. Fitness, which is 
determined by a fitness function, is an indication of how 
desirable a design is in terms of surviving into the next 
generation. The selection probability represents the chance for 
survival and is proportional to a design’s fitness value. Once a 
new generation of designs is determined, crossover is 
conducted as a means to introduce variations into the 
population of designs. Crossover is the process of combining 
or mixing two different designs. The next operation, which 
also is used to introduce variations into the population, is 
mutation. It is a random process that entails altering part of a 
design’s genetic string. In our simulations we have used the 
multi-objective GA function ‘gamultiobj’ of Matlab R2014a 
which uses a controlled elitist genetic algorithm, a variant of 
NSGA-II [16]. This controlled elitist GA favors individuals 
that can help increase the diversity of the population even if 
they have a lower fitness value. It is very important to 
maintain the diversity of population for convergence to an 
optimal Pareto front. This is done by controlling the elite 
members of the population as the algorithm progresses. Two 
options 'ParetoFraction' and 'DistanceFcn' are used to control 
the elitism. The Pareto fraction option limits the number of 
individuals on the Pareto front and the distance function helps 
to maintain diversity on a front by favoring individuals that 
are relatively far away on the front. Here a crowding distance 
for each member is calculated and it is used in the selection 
process in order to spread the solutions along the Pareto front. 
In the present work two approaches were followed to optimize 
the GCL using MOGA:  
(1) Non-overlapping GCL (NoGCL) approach: Here the 
length of a chromosome is twice the number obtained dividing 
the length of the area of interest by the lower bound. The first 
half genes of a chromosome are allocated as lengths of the 
grid-cell units (GCUs) sequentially in a row one after another 
from left to right. While the second half genes are for the 
heights of the corresponding grid-cell units. In this approach 
MOGA tries to select GCUs design which is replicated 
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column-wise to cover the whole area of interest. For the 
example shown in Fig. 2, the NoGCL approach will use a 
chromosome length of 60 genes for 10m-by-10m square GCL. 
Using MOGA operators the GAFP searches for the optimal 
GCL which consists of different rectangular GCUs along a 
row while he same GCU is used along a column. 

(2) Overlapping GCL (OGCL) approach: In the second 
approach the total gene number of a chromosome equals the 
multiplications of the numbers obtained dividing the length 
and height of the area of interest by the lower bound. The 
chromosome allocation used in the present research is 
depicted in Fig. 2 where the area of interest spans over 300m-
by-300m and only 20m-by-20m square GCUs constructs the 
GCL. So in this case there are 15 GCUs along the rows as well 
as 15 GCUs along the columns. As we can see from the Fig.2 
a chromosome comprises of 450 genes. In each of the 
chromosomes 30 consecutive genes starting from the left of 
the chromosome string is allocated to the lowest row of GCUs 
as indicated by number 1 in the figure, the next 30 consecutive 
genes belongs to the 2nd row and so on. In each of these sets 
of genes the first 15 genes are allocated to the lengths of 
GCUs starting from left side and rest of the 15 genes are 
allocated to the heights of the corresponding GCUs. In this
approach, we have fixed the base-position of each of the 
GCUs according to the lower bound of the GCU, which is 
20m along the columns heights. So, only for the 20m-by-20m 
square GCU there will be no overlapping, otherwise for all 
GCL overlapping GCUs will cover the area of interest. Hence 
for any chromosome GCU layout begins from row 1 according 
to the first 30 consecutive genes and then the next 30 genes 
are allocated to row 2 where for each of the GCU the lower 
base is 20m above the base of row1. Hence there will be fixed 
number of overlapping GCUs along the columns, except the 
20m-by20m GCL. The OGCL approach is computationally 
more expensive as compared to that of the NoGCL approach.    
  
Initial population was generated using real valued 
chromosome genes. For the NoGCL approach the lower and 
upper bounds of the GCU were 10m and 30m respectively. 
For the OGCL approach we have selected the bounds to be 

20m and 40m respectively in order to reduce the chromosome 
length. In both the approaches initial population contains GCL 
having square GCUs ranging between the lower and upper 
bounds covering the whole area of interest while the rest of the 
chromosomes comprise of random real valued genes within 
the lower and upper bounds of the respective approaches. It is 
worth mentioning that for creating the training signatures only 
those GUCs are selected which fall inside the area of interest, 
since for various chromosome structures some GCL will cover 
far bigger area as compared to our area of interest.  

The MOGA operation is given by the following flowchart: 

The fitness function of the proposed GAFP method is given 
below: 

     

Create validation signatures UE-wise 

Create grid-cell layout according to the chromosome  

Group MDT samples grid-wise and form training signatures 

Select training signatures having same BS IDs as that of a 
validating signature 

Calculate KLD values and select the grid-cell that corresponds to 
the smallest training signature KLD   

Calculate 68 and 95 percentiles of positioning error 

Figure 4. A block diagram representation of GAFP fitness function   
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Figure 2. Allocation of a chromosome for overlapping GCL 
approach   
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Figure 3. A flowchart of MOGA   



We have divided the total number of MDT samples obtained 
from the area of interest into three sets: (i) training data, (ii) 
validation data and (iii) test data. As we can see from Fig.4, 
GAFP uses the training data to create training signatures and 
the validation data to calculate the fitness values of the 
chromosomes in different generations. Finally the test data is 
used to evaluate the performance of the GAFP optimized 
GCL.  
GAFP delivers no single optimum solution but a series of 
equally optimal ones. In order to select a single solution we 
have adopted the approach of the evolution line as a posteriori 
preference articulation technique that uses weights to prioritize 
objectives after the Pareto front has been obtained [19]. The 
evaluation line is drawn in the objective space using a 
weighted function that reflects the preferences towards the 
objectives. The advantage of the function is that it leans the 
evaluation line towards the preferred objectives. Here Pareto-
optimal solution is evaluated based on its point-line distance 
from the evaluation line. This criterion overcomes the issue of 
non-convex areas of the Pareto front, as each solution is 
evaluated based on its closeness to the evaluation line. In our 
simulations equal weight was given to the objective functions 
to select the optimal solution while evaluating the GAFP 
positioning accuracy.     
      

IV. PERFORMANCE EVALUATION

A. Simulation Scenario
In this study we have performed test simulations in 
heterogeneous small cell (HSC) network scenario as illustrated 
in Fig. 5. It was simulated by using a state-of-the-art LTE 
Rel’10 dynamic system simulator to model both the downlink 
and the uplink in an OFDM symbol resolution with several 
radio resource management, scheduling, mobility, handover 
and traffic modeling functionalities. Simulation parameters and 
mathematical models are based on the 3GPP TR 36.839 
specifications, defining parameterization for used bandwidth, 
center frequency, path-loss, slow fading, and fast fading 0. 
Moreover, UE measurements e.g., RSRP, were implemented in 
the simulator taking into account the technical requirements for 
the absolute and relative measurement errors and -6 dB Ês/Iot 
cell detection criterion as in 0. 

The HSC network consisted of 57 macro BSs having inter-site 
distance of 500m and operating on CC0 band. In addition, 36 
small cells with omni-directional antennas were randomly 
deployed in the coverage area of 12 centermost macro BSs as 
depicted in Fig. 5 with red circles. Distance to the nearest inter-
site small cell varied from 50m to 170m with average distance 
being 95m. Here, UEs were moving only in the area of 12 
centermost macro BSs but were able to monitor all detected 
cells.  

In order to check the robustness of our proposed method the 
total area of interest which is 300m-by-600m has been equally 
divided into two squares, each of 300m-by-300m. In Fig 5 
these square areas are indicated by alphabetic letters- A and B
with dotted black lines showing their boundaries. Within area-
A there were 36184 MDT samples and within area-B the 
number of MDT samples are 36375. In total, 1623 randomly 
moving outdoor vehicular UEs (30 km/h) were distributed 
uniformly to the simulation area, where 100% resource block 
loading was used for creating interference limited simulation 
environment which is more challenging from cell detection 
point of view. Traffic profile consisted of data generated by 
MDT reports which were sent once per second. More details 
about the used simulation parameters can be found in [11].

B. MOGA Parameters 

The parameters used in the MOGA are summerized in Table I.

TABLE I. MOGA PARAMETERS USED IN SIMULATIONS

 Parameters Type/Value 

Selection type Tournament 

Crossover type and  Scattered  
Crossover fraction 0.8 
Mutation function Constraint dependent 
Fitness functions 68 percentile value of PE, 95 percentile 

value of PE 

Chromosome length 60 and 450 for Non-overlapping and 
Overlapping approaches respectively  

Population size 60 and 100 

Stopping criteria 200 generations and spread of Pareto 
solutions less than tolerance: 0.0001 

Pareto fraction 0.35 

C. Simulation Results 
Robustness Evaluation: For this purpose we have chosen two 
different areas- A and B with different training, validation and 
testing datasets in the simulations. In both of the simulations 
only 10% training data were used to form the training 
signatures, 30% MDT samples were used for validation 
purpose of the GAFP fitness evaluation and rest of 60% data 
for testing the optimized GCL. Here we have used the 
computationally less expensive NoGCL approach with a GA 
population size of 50; it has taken 127 and 132 GA 
generations for area A and B respectively. A comparison study 
between CGCL and NoGCL methods positioning performance 
is shown in Table II. Here we have results from three different 
CGCL grid-cell layouts: 30m-by30m, 20m-by-20m and 10m-
by-10m following the conventional grid-based RF 
fingerprinting. We have chosen these CGCL grid-cell layouts 
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as the grid-cell size parameter used in NoGCL simulations 
range between 30m to 10m. The Pareto front and average 
distance between chromosomes are shown in Fig. 6(a) and 
6(b) respectively, obtained from NoGCL simulation in area B. 
We can see from the 68%-ile and 95%-ile results in Table II 
that the GAFP NoGCL approach gives less PE as compared to 
CGCL in both the areas A and B. In area B the NoGCL 
approach shows an improvement of 10.5% in the 95%-ile PE 
over that of the 10m-by-10m CGCL method. The analyzed 
test MDT sample percentage is bit higher in area A and bit 
lower in area B for the NoGCL than that of the CGCL method. 
The third row in Table II shows the performance results for 
the whole area of interest, i.e.  combined area A and B. Here 
we have used the optimized GCL solutions from the NoGCL 
method simulated separately in areas A and B. Here also the 
NoGCL has better positioning accuracies in both 68%-ile and 
95%-ile as compared to the CGCL. All these results show the 
effectiveness of the proposed GAFP method despite changes 
in cellular network structure.  
Next we have evaluated the GAFP positioning accuracy 
through increasing amount of training data: 50% data for 
training signature creation, 25% for validation and 25% for 
testing. In this case area A was chosen for simulation and both 
NoGCL and OGCL approaches were used. In both methods 
the GA population size was 100 and number of GA 
generations was 200. The results are shown in Table III; here 
we have three different CGCL simulations: 40m-by-40m, 
30m-by-30m and 20m-by-20m. For both the NoGCL and 
OGCL approaches the grid-cell size ranges between 40m to 

20m. Here we can find that the with CGCL method the lowest 
PE values in 68%-ile and 95%-ile are 44.03 and 127.18 meters 
whereas for the GAFP NoGCL approach we have much 
reduced PE values of 24.52 and 55.01 meters respectively. 
Hence the proposed method shows an excellent improvement 
in positioning accuracy of 44.31% and 56.74% in the 68%-ile 
and 95%-ile as compared to the conventional grid-based RF 
fingerprinting.          
       

TABLE II. POSITIONING ACCURACY PERFORMANCE EVALUATION OF CGCL AND GAFP NOGCL METHODS WITH 10% TRAINING DATA

Area of 
Interest 

Positioning Error 

68 %-ile (m) 

Positioning Error 

95 %-ile (m) 

Analyzed Test MDT 

Samples (%) 

CGCL GAFP 

NoGCL 

CGCL GAFP 

NoGCL 

CGCL GAFP 

NoGCL 30 m 20 m 10 m 30 m 20 m 10 m 30 m 20 m 10 m 

AREA A 51.53 49.21 47.27 44.96 131.64 128.47 130.58 115.75 57.99 57.33 55.95 59.94 

AREA B 40.12 34.93 33.02 30.73 93.29 85.21 76.32 65.85 52.84 56.16 52.60 52.82 

AREA AB 45.99 40.05 42.13 38.07 115.02 109.32 110.27 98.49 55.83 54.63 57.06 56.84 

TABLE III. PERFORMANCE EVALUATION OF CGCL, GAFP NOGCL AND GAFP OGCL METHODS WITH 50% TRAINING DATA

GAFP 
Type 

Positioning Error 

68 %-ile (m) 

Positioning Error 

95 %-ile (m) 

Analyzed Test MDT 

Samples (%) 

CGCL 

GAFP 

CGCL 
GAFP 

CGCL 
GAFP 

40 m 30 m 20 m 40 m 30 m 20 m 40 m 30 m 20 m 

NOGCL 48.25 47.58 44.03 24.52 127.18 152.70 135.96 55.01 63.07 62.40 64.53 65.32 

OGCL 48.25 47.58 44.03 26.37 127.18 152.70 135.96 58.13 63.07 62.40 64.53 71.77 

(b) 

(a) 

Figure 6. (a) Pareto front obtained from NoGCL method    
(b) Average distance between chromosomes 



It can be seen from Table III that positioning accuracies 
shown by GAFP OGCL is bit less than the NoGCL but it 
has analyzed 6 more percentage of test samples as 
compared NoGCL method. The histogram of the chosen 
chromosome from OGCL method in shown in Fig. 7. As we 
can see the widths and heights of the grid-cell units are
mostly chosen to be in-between 21 to 27 meters.  

V. CONCLUSION

In this paper we propose a novel method to improve the 
positioning accuracy of grid-based RF fingerprinting through 
autonomous calibration of grid-cell layout. For this purpose 
multi-objective GA is used for selecting the best possible grid-
cell layout over the area of interest so that RF fingerprinting 
gives the optimal output. Comparison study with conventional 
grid-based RF fingerprinting shows that GA optimized RF 
fingerprinting has the ability to calibrate the grid-cell layout in 
an optimal way for improved RF fingerprinting despite the 
change in the cellular network. It was found that with 
sufficient amount of training data the proposed method is able 
provide very good positioning accuracy as compared to that of 
the conventional RF fingerprinting.    
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