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Abstract 

Several studies have shown that rapid automatized naming (RAN) is a significant predictor of 

mathematics, but the nature of their relationship remains elusive. Thus, the purpose of this meta-

analysis was to estimate the size of their relationship and determine the conditions under which they 

correlate. We used a random-effects model analysis of data from 38 studies (33 unique samples, 

151 correlations, 7,135 participants) to examine the size of the RAN–mathematics relationship and 

the role of different moderators (i.e., math measure and variable, type of RAN task, math age, study 

design, and sample characteristics). The results showed a significant correlation between RAN and 

mathematics (r = .37; 95% confidence interval [CI] .33–.42) as well as a large heterogeneity of 

individual correlations. The results also revealed that RAN produced stronger correlations with 

arithmetic calculation tasks than with general achievement tests; stronger correlations with single-

digit calculation tasks than multi-digit calculation tasks; and stronger correlations with math fluency 

tasks than math accuracy tasks. The effect of these moderators suggests that part of the reason why 

RAN predicts mathematics is that they both require quick access to and retrieval of phonological 

representations from long-term memory. Our findings also suggest that RAN objects or colors can 

be used as early predictors of mathematical skill, especially of arithmetic fluency. 

Keywords:  Rapid automatized naming (RAN), mathematics, arithmetic, meta-analysis 

 

Educational Impact and Implications Statement 

RAN and mathematics are significantly related and RAN can be used as a predictor of later 

mathematical skills, especially of arithmetic fluency. Equally strong correlations between non-

alphanumeric RAN, alphanumeric RAN, and mathematics suggest that the relationship between 

RAN and mathematics is related to both conceptual and phonological processing factors. Non-

alphanumeric RAN can be used as a predictor of mathematics performance even before children go 

to school and become familiar with letters and digits. 
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A Meta-Analysis of the Effects of RAN on Mathematics 

Rapid automatized naming (RAN), defined as the ability to rapidly name familiar 

visual stimuli, such as letters, digits, colors, and objects, has been established as a strong 

concurrent and longitudinal predictor of reading in different languages (e.g., Compton, 2003; 

de Jong & van der Leij, 1999; Georgiou, Torppa, Manolitsis, Parrila, & Lyytinen, 2012; Juul, 

Poulsen, & Elbro, 2014; Landerl & Wimmer, 2008; Lervåg, Bråten, & Hulme, 2009; Liao, 

Georgiou, & Parrila, 2008; Parrila, Kirby, & McQuarrie, 2004; Savage & Frederickson, 

2005) and a core deficit in dyslexia (e.g., de Jong & van der Leij, 2002; Eklund, Torppa, & 

Lyytinen, 2013; Kirby, Parrila, & Pfeiffer, 2003; Korhonen, 1995; Wimmer, Mayringer, & 

Landerl, 1998). Four independent meta-analyses have estimated the correlation between RAN 

and reading to be between .38 and .51 (see Araújo, Reis, Petersson, & Faísca, 2015; 

Scarborough, 1998; Song, Georgiou, Su, & Shu, 2016; Swanson, Trainin, Necoechea, & 

Hammill, 2003).  

 More recently, however, researchers have used RAN as a predictor of another 

important academic skill: mathematics. Despite the steady increase in the number of these 

studies, the findings are mixed and the conclusions indefinite. On the one hand, some studies 

have shown that RAN is an important predictor of mathematical skills and that the 

correlations between rapid naming and mathematics might be as high as those reported for 

reading (e.g., Berg, 2008; Koponen et al., 2016; Swanson, 2006b; Swanson, Jerman, & 

Zheng, 2008). Substantial correlations between RAN and mathematics have been reported in 

both cross-sectional (e.g., Cirino, 2011; Koponen, Aunola, Ahonen, & Nurmi, 2007) and 

longitudinal studies (e.g., Geary, 2011; Georgiou, Tziraki, Manolitsis, & Fella, 2013; 

Koponen et al., 2016). Such correlations have also been reported in various samples, such as 

typically developing children (e.g., Koponen et al., 2016; Niklas & Schneider, 2013), 

children at familial risk for dyslexia (e.g., de Jong, Maassen, & van der Leij, 2014; Koponen, 
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Salmi, Eklund, & Aro, 2013), and children with mathematical difficulties (Mazzocco & 

Grimm, 2013). On the other hand, there are studies reporting either non-significant or weak 

correlations between RAN and mathematics (e.g., Niklas & Schneider, 2013) or high 

variance in the correlations (Hart, Petril, Thompson, & Plomin, 2009). The contradictory 

findings might be related to the fact that math skill is multifactorial by nature (with several 

subskills) and thus RAN does not correlate equally well with all mathematical skills. It is also 

possible that there are some other moderating variables that influence the size of the 

relationship between RAN and mathematics. In order to develop a more comprehensive 

picture of the relationship between RAN and mathematics, this meta-analysis examines the 

size of the relationship between RAN and different mathematics skills as well as the role of 

different moderators in the RAN–math relationship.  

Examining the relationship between RAN and mathematics has important practical 

and theoretical implications. From a practical point of view, generating new information on 

the relationship between RAN and mathematics is important because it will enhance our 

understanding of the early predictors of mathematics development and the possible sources of 

difficulties in mathematics disabilities. If RAN proves to be a significant correlate of 

mathematics, then RAN tasks could be used as predictors of mathematics performance and 

early markers of future mathematical difficulties. Previous studies suggest that RAN, 

measured in children as young as 5 or 6 years old, can predict mathematics skill at school age 

(e.g., Georgiou et al., 2013; Koponen et al., 2013, 2016). Some of the previous studies 

suggest also that RAN make a unique contribution to arithmetic fluency in grades 2 and 3 

above and beyond the contribution of verbal short-term memory, working memory, and 

phonological awareness (Koponen et al., 2013, 2016). However, some researchers have 

questioned the role of RAN in mathematics (e.g., Georgiou et al., 2013; Willburger et al., 

2008). For example, Georgiou et al. (2013) found that processing speed (including numerical 
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items) and visual memory explained most of RAN’s predictive variance in calculation 

fluency. Due to the contradictory findings of previous studies, a meta-analysis could shed 

light on the RAN–mathematics relationship and on the role of different moderating variables.  

From a theoretical point of view, examining the RAN–mathematics relationship 

allows us to test some interesting hypotheses regarding the nature of RAN and the underlying 

cognitive processes in mathematics. In reading research, scholars have argued that RAN is an 

index of the speed of access to and retrieval of phonological representations from long-term 

memory (e.g., Bowey, McGuigan, & Ruschena, 2005; Torgesen, Wagner, Rashotte, Burgess, 

& Hecht, 1997). Empirical findings from behavioral studies have also suggested that besides 

reading, mathematics and arithmetical calculation also require quick retrieval of phonological 

representations from long-term memory (de Smedt, Taylor, Archibald, & Ansari, 2010), 

because arithmetic facts are also supposedly stored as phonological forms in long-term 

memory (de Smedt et al., 2010; Simmons & Singleton, 2008). In line with such findings, 

evidence from neuroimaging studies on RAN (e.g., Cummine, Szepesvari, Choinard, Hanif, 

& Georgiou, 2014; Misra, Katzir, Wolf, & Poldrack, 2004) and mathematics (e.g., Dehaene, 

Piazza, Pinel, & Cohen, 2003; Wei, Chen, Zhang, & Zhou, 2014) indicate that both skills are 

associated with regions of the left tempo-parietal cortex, such as the left angular gyrus. This 

region is activated during phonological decoding (e.g., Price & McCrory, 2005). Quick 

access to arithmetical facts is important because it facilitates the calculation process and 

enables the learner to release her working memory capacity for problem solving. Finding a 

predictor for arithmetical calculation fluency at school age could provide a possibility for 

early identification of risk for dysfluency difficulties and thus for early support.  

However, given that mathematics consists of a wide set of different subskills and that 

retrieval of arithmetic facts from memory is not a core requirement in all mathematical tasks, 

RAN should not correlate equally well with all mathematical outcomes. In addition to the 
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distinction between general mathematical achievement and arithmetic calculation, other 

aspects of the math outcome may also influence the RAN–mathematics relationship. As is the 

case with reading tasks (Araújo et al., 2015), RAN (which is a speeded measure) may 

correlate more strongly with the speed of mathematics performance, i.e., tasks in which the 

score is either the response time or the number of items completed within a specified time 

limit. Moreover, the type of arithmetic problems might influence the association between 

RAN and mathematics. Answers to single-digit calculation problems (e.g., 3 + 5; 5 × 2) are 

usually retrieved from memory. This is obviously not the case in multi-digit calculation 

problems (e.g., 325 + 196), which require knowledge of place value and mastery of 

arithmetic procedures in addition to retrieving/calculating partial answers. According to this 

proposal, if RAN is an index of the speed of lexical access (e.g., Norton & Wolf, 2012), it 

should correlate more strongly with single-digit calculation problems than with multi-digit 

calculation problems that require several mental operations on top of retrieval, such as 

calculating partial answers and composing them in order to find the final answers. The type 

of RAN tasks may also influence the RAN–mathematics relationship. Araújo et al. (2015) 

and Scarborough (1998) showed that alphanumeric RAN (digits and letters) is more strongly 

related to reading than non-alphanumeric RAN (objects and colors). Once formal reading 

instruction begins, alphanumeric stimuli are explicitly taught and practiced, in contrast to the 

names of colors and objects that are learned more implicitly during language development. 

Obviously, the same argument holds for mathematics, and thus a stronger relationship would 

be expected between alphanumeric RAN and mathematics than between non-alphanumeric 

RAN and mathematics. However, there might also be some domain-specific features in the 

relationship between RAN and mathematics, and thus the findings not necessary be the same 

for those found for reading. A recent study conducted by Donker, Kroesbergen, Slot, Van 

Viersen, and De Bree (2016) found that children with mathematical difficulties were 
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impaired only in non-alphanumeric RAN, while children with reading or comorbid 

difficulties were impaired in both alphanumeric and non-alphanumeric RAN. Donker et al. 

(2016) suggested that non-alphanumeric RAN requires additional conceptual processing, as 

opposed to alphanumeric RAN, which requires more phonological processing. Furthermore, 

children with mathematical disabilities may have difficulty with the conceptual processing of 

quantities represented by the digits, but not with access to number words per se. 

 This proposal is closely related to the discussion of the underlying deficit in 

mathematical learning difficulties. According to the access deficit hypothesis, the origin of 

mathematical disability lies in problems accessing magnitude representations from symbolic 

information (numbers) (Roussell & Noel, 2007). If this is true, then RAN should be more 

strongly related to mathematics when RAN stimuli are numbers rather than letters, colors, or 

objects. However, another approach suggests that the core deficit of mathematical disabilities 

is in magnitude processing, which can be seen both in non-symbolic and symbolic magnitude 

processing (Butterworth, 2005. According to this view, an equally important division of the 

RAN tasks could be grouping them into numeric (digits, dice) and non-numeric (letters, 

colors, and objects) tasks. The assumption that the RAN–mathematics relationship is 

restricted to the use of a numeric stimulus in RAN tasks has received support in previous 

studies (Landerl, Fussenegger, Moll, & Willburger, 2009; Willburger et al., 2008). However, 

it is also possible that the association between RAN and mathematics might not be specific to 

numbers, but could instead reflect an inherent ability to learn and retrieve arbitrary visual–

verbal associations (Manis, Seidenberg, & Doi, 1999). If this is true, then equally strong 

correlations should be observed between numeric (quantities, digits) and non-numeric RAN 

(letters, colors, and objects) tasks with mathematics.  

A third moderator of the RAN–mathematics relationship may be the age when 

mathematics was first assessed. Between grades 2 and 3, arithmetic calculation skills 
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generally progress from effortful counting strategies to more automatic retrieval strategies 

(Jordan, 2003; Nunes & Bryant, 1996). Thus, in age-appropriate development of arithmetic 

skills, children usually start using fact retrieval as their main strategy for solving 

mathematical problems between the ages of 9 and 10 (Lemair & Siegler, 1995; Nunes & 

Bryant, 1996). Consequently, after the age of 9, when arithmetic calculation skill has reached 

an automatic level, RAN should be more strongly related to arithmetic, compared to the 

developmental phase when counting-based strategies (e.g., the counting-on strategy) are more 

common.  

Finally, factors such as study design and participant characteristics should be taken 

into account when examining the RAN–mathematics relation. In general, correlations 

between two measures obtained at the same measurement point (as in concurrent studies) are 

stronger than correlations between two measures assessed at different time points (as in 

longitudinal studies). Previous studies in reading have shown that RAN is more strongly 

related to reading among low-performing children (e.g., McBride-Chang & Manis, 1996; 

Savage & Frederickson, 2005; Scarborough, 1998). To our knowledge, no previous studies 

have examined whether the RAN–mathematics relationship is stronger among children with 

math disabilities. In light of the findings of previous reading studies, it would be interesting 

to assess whether RAN is also more strongly associated with math among low-performing 

children. We could assume a higher prevalence of retrieval difficulties among atypical 

samples and overlapping dysfluency problems in naming and calculation. 
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The Present Study 

The current study aims to answer the following six research questions: 

Research question 1. To what extent is RAN related to mathematics? Because of the 

contradictory findings of previous studies, we did not formulate a specific hypothesis.  

Research question 2. Is the RAN–mathematics relationship affected by the nature of 

the mathematics measure (achievement tests vs. arithmetic; multi-digit vs. single-digit 

calculations) or task requirements (fluency vs. accuracy)? Because fluent calculation relies on 

rapid retrieval of the answers (arithmetic facts) from long-term memory, we hypothesized 

that RAN tasks would be more strongly related to arithmetic calculation than to general math 

achievement; more strongly related to single-digit calculation than to multi-digit calculation; 

and more strongly related to math fluency than to math accuracy.  

Research question 3. Is the RAN–mathematics relationship affected by the type of 

RAN task? More specifically, does numeric RAN (numbers and/or quantities) correlate more 

strongly with mathematics than non-numeric RAN (colors, objects, letters)? Furthermore, 

does alphanumeric RAN (digits and letters) correlate more strongly with mathematics than 

non-alphanumeric RAN? Based on the findings of previous studies that showed children with 

dyscalculia have a specific deficit in RAN quantities (e.g., Landerl et al., 2009; Willburger et 

al., 2008), we hypothesized that numeric RAN would be more strongly related to math than 

non-numeric RAN. Because the findings of previous studies on the role of alphanumeric and 

non-alphanumeric RAN in mathematics are mixed, we did not formulate a specific 

hypothesis.  

Research question 4. Is the RAN–mathematics relationship affected by the age when 

math tasks are assessed? We hypothesized that RAN would be more strongly related to 

mathematics after the age of 9 (around the time when arithmetic calculation skill becomes 

automatic) than in younger ages.  
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Research question 5. Is the RAN–mathematics relationship affected by the study 

design (cross-sectional vs. longitudinal)? Given that correlations tend to be higher in skills 

assessed concurrently than when there is a time distance between measurements, we 

hypothesized that RAN would correlate more strongly with mathematics in concurrent 

studies than in longitudinal studies.  

Research question 6. Is the RAN–mathematics relationship affected by the sample 

characteristics (a sample including high prevalence of children with learning disabilities or 

low-performing children vs. a normal sample)? As RAN is more strongly related to reading 

among poor or at-risk readers (e.g., Meyer et al., 1998; Savage & Frederickson, 2005; 

Scarborough, 1998), we hypothesized that RAN would be more strongly associated with 

math among low-performing children. This is based on the assumption that dysfluent 

calculation, which often means retrieval difficulties, is at least partly related to co-occurring 

naming difficulties. However, a strong hypothesis cannot be proposed because the studies 

with atypical samples consist of quite heterogeneous populations with different kinds of 

difficulties and not only children with mathematical difficulties. Moreover, previous math 

literature does not provide information regarding whether the relationship between RAN and 

math would vary among poor-, average-, and well-performing children. 

Method 

Data Collection 

The inclusion, search, and coding procedures are detailed in Figure 1. For the target 

constructs examined in this study (RAN and mathematics), we established the operational 

criteria to determine the indicators of each construct. A task was considered a measure of 

RAN if quick serial naming of an array of objects, colors, letters, digits, or quantities was 

required. In turn, to be considered a measure of math achievement, the test should require 

mathematical skills other than just arithmetic calculation (e.g., knowledge of the number 
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system, fractions, or geometry). Arithmetic calculation included only tasks that required 

solving different arithmetic operations (addition, subtraction, multiplication, and division). 

Arithmetic calculation was further divided into single-digit (e.g., 3 + 4; 6 – 2; 5 × 4) and 

multi-digit calculation (32 + 41, 76 − 12, 14 × 24) tasks. Mathematical accuracy included 

measures based on the accuracy of mathematical problem solving or calculation. To be 

considered a measure of math fluency, the task should require children to solve as many 

arithmetic or other math problems as possible within a specified time limit.  

Inclusionary Criteria and Screening Process 

The search followed the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) statement protocol (Moher, Liberati, Tetzlaff, Altman, & The PRISMA 

Group, 2009), and three methods were used to identify relevant studies. First, we searched 

electronic databases and e-journal services (ERIC, Medline, PubMed, PsychArticles, 

PsychInfo, ProQuest Educational and Psychology Journals, Science Direct, Scopus, and 

Google Scholar) for publications in English by using the keywords “rapid serial naming*”, 

“naming speed*”, “rapid automatized naming*”, and “RAN*” combined with 

“mathematics*” and “arithmetic*” in the subject or title. Second, we searched online 

dissertations and theses via databases (ERIC, ProQuest Dissertations & Theses Global, and 

Google Scholar) with the same keywords. No restrictions were imposed regarding the 

publication year. The search covered studies published before July 2016. Third, we checked 

the reference lists of the collected reports for relevant studies. We contacted authors who had 

published an article with RAN and math measures but had not provided correlations via e-

mail and kindly asked them to send us the correlations. 

In addition, we used the following eight inclusionary criteria:  

(a) The RAN tasks required serial naming instead of isolated naming;  
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(b) Original empirical data were based on direct assessment (not teacher/parent rating 

scales or surveys);   

(c) Correlations were reported at the level of naming sub-tasks (studies including 

RAN composite scores consisting of several subskills were excluded);  

(d) RAN was used as a predictor of a mathematics outcome or both constructs (RAN 

and mathematics) were measured concurrently (studies in which mathematics performance 

was assessed prior to RAN were excluded);  

(e) Math was measured at school age or the calculation was measured at kindergarten 

(early number skills were not included);  

(f) When analyzing the moderator effect of mathematics age, studies reporting RAN–

math correlations among samples consisting of several age groups in the same sample (three 

or more age groups) were excluded if all age groups were not younger or older than 9 years; 

 (g) When multiple measures were used to assess one construct, all qualified 

correlations were included in the dataset. In the analyses, dependencies between correlations 

from a single study or a single data set were taken into account; and 

(h) All studies that provided effect sizes (d) and regression coefficients (R2, beta) as 

an estimate of the RAN–math relationship were also included after they had been converted 

into the Pearson product-moment correlation coefficient effect sizes r (Borenstein, Hedges, 

Higgins, & Rothstein, 2009; Cohen, 1988).  

After these criteria were used, 33 unique samples with 151 outcomes were found (min 

= 1, max = 40) with sample sizes ranging from 29 to 628 (see Table 2).  

Coding Procedures 

After the qualified studies had been selected, we coded relevant information from the 

studies. This information included the following variables of descriptive data: (a) number of 

participants; (b) mean ages of the participants at the time RAN and math were measured; (c) 
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design: longitudinal versus cross-sectional; (d) sample characteristics: typical or atypical; (e) 

the type of measure used for each construct and the outcome variable (e.g., accuracy or 

fluency); and (f) the year of publication. In the published studies, some measures were coded 

so that a negative correlation indicated a positive relationship between RAN and 

mathematical performance. In these cases, the effect size measures were recoded such that a 

positive correlation always indicated a positive relationship. The first author, together with an 

expert in math research, double-coded the moderator variables. The agreement rate between 

the coders varied between 89% and 94%. Differences between the coders were mostly due to 

limited information provided in the studies regarding the sample characteristics and tasks. 

Differences in the scoring by the raters were resolved after discussions with the first author. 

Moderators 

We coded two types of moderators: procedural and sample characteristics. Procedural 

moderators included the math domain assessed (general math achievement vs. arithmetic and 

single-digit vs. multi-digit calculation), outcome variable in arithmetic (fluency vs. accuracy), 

RAN stimulus (non-numeric vs. numeric and non-alphanumeric vs. alphanumeric), and study 

design (cross-sectional vs. longitudinal). Sample moderators included the mathematical age 

of the children as a continuous variable and the sample type (two categories: an atypical 

sample that consisted of a high prevalence of low achievers or children with learning 

disabilities vs. a typical sample, i.e., a population-based sample or a sample with high 

prevalence of high achievers).  

Effect Size Calculations 

Effect sizes (d) and regression coefficients (R2, beta) were first transformed into the 

Pearson product-moment correlation coefficient effect sizes r (Borenstein et al., 2009; Cohen, 

1988). Next, the r effect sizes were transformed into Fisher’s z values to be used in a meta-

analysis, and the variance was calculated with Cox’s (2008) formula 1/(n – 3). 
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Meta-analytic Integration 

Summative results and graphics (funnel plot, symmetry tests, violin plots, and forest 

plot) were produced in R (R Project, 2015). The metafor (Viechtbauer, 2010) package was 

used for funnel plot symmetry tests and forest plot construction. The Fisher z values were 

averaged by the studies individually and then transformed back into Pearson’s correlation 

coefficients. The estimation method was the random-effects model with the restricted 

maximum likelihood (REML) method. The funnel plot asymmetry was tested with a trim fill 

test and a regression test in which the predictor was the standard error (Sterne & Egger, 2005; 

Sterne et al., 2011). We used the vioplot package (Adler, 2005) for the violin plot production 

(Hintze & Nelson, 1998).  

A random-effects meta-analysis and a meta-regression analysis for the moderators 

were performed in R (R Project, 2015). We used the robumeta application package (Fisher & 

Tipton, 2015) and the robust variance estimation (RVE) method (Hedges, Tipton, & Johnson, 

2010; Tanner-Smith & Tipton, 2014) because there were several correlations from a single 

study and thus the data points were not independent. We adopted a dependent effects meta-

regression (D-MR) approach. The correlation coefficients were clustered into unique 

samples; that is, the number of studies represented the number of unique study samples. The 

weight of each study was the square of the standard error (Lipsey & Wilson, 2001). The 

heterogeneity was estimated from τ2 and I2 statistics (Higgins & Thompson, 2002). τ2 was 

interpreted as between-study variance in study-average effect sizes. I2 assessed the percentage 

of the total variance attributable to true heterogeneity. The efficient weights were analyzed 

with a sensitivity approach (effects of various ρ values (0–1) on the results). Because the 

results were not sensitive to the ρ values used, the results were reported for ρ = .80. Finally, 

small sample adjustments were used in the analysis (Tipton, 2015). The moderator effects 

were analyzed as within-study and between-study partition effects (i.e., the partition was 
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done by using group.center and group.mean robumeta functions). Partitioned moderators 

were entered into the analysis separately in order to maximize the number of studies and 

correlation coefficients in the calculations.  

The funnel plot and forest plot graphics and the overall testing of asymmetry were 

kept at the level of unique samples; i.e., the data was the sample average of coefficients. The 

violin plot was used for the illustrations of distribution of all correlation coefficients (Figure 

4). The average RAN–mathematics result presented in the forest plot (metafor) is the same as 

the average RAN–mathematics result in Table 2 (robumeta), but they were obtained via 

different random effects meta-analytic approaches.  

Results 

The literature search yielded 306 reports. We then narrowed down the literature to 92 

potentially relevant reports (after duplicates were removed and the titles screened). Further 

screening of the abstracts resulted in 53 candidate reports. After the full texts were read, 38 

reports with 33 unique samples were included in the meta-analysis. Figure 2 provides a 

funnel plot graph of the unique samples in which the correlation coefficients were averaged 

within the unique samples. The regression test for funnel plot asymmetry showed that the 

standard error was not a statistically significant predictor (z = 1.67, p = .095). The trim and 

fill analysis revealed that there was an estimated number of five missing studies on the left 

side of the funnel plot. The probability that there were no missing studies on the left side of 

the funnel plot was statistically significant (p = .016). The unique sample-averaged 

coefficients (Fisher’s z) varied from .17 to .77, as is observable from the random-effect model 

forest plot graph presented in Figure 3. In sum, there was large variation among the 

correlation coefficients and substantive heterogeneity (Q(32) = 136.51, p < .001).  

The summarized results are presented in Table 2 (Question1). The mean random-

effects model RAN–math weighted Fisher’s z coefficient equaled .38 (p < .001, 95% CI [.33, 



A META-ANALYSIS ON THE EFFECTS OF RAN ON MATH 16 
 
 

.43), and after being back-transformed to Pearson r, equaled .37 (95% CI [.32, .41]). The 

violin plot of Fisher’s z coefficients presented in Figure 4 indicates that the distribution is 

clearly positively skewed.  

Next, we examined the role of the different moderators. In the within-study and 

between-study meta-regression analyses, variations in the moderator effects were taken into 

account. The results showed that after the between-study partition estimation, the 

achievement versus arithmetic task (i.e., domain of math assessed 1) was a significant 

moderator (β = .12, p < .05). Arithmetic math measurements were associated with higher 

correlation coefficients. At the within-study partition level, the type of calculation performed 

(single-digit vs. multi-digit calculations) was a significant moderator (β = .14, p < .01). The 

correlations were higher for the single-digit calculations. The math outcome measure (fluency 

vs. accuracy) was also a significant moderator associated with the between-study variation (β 

= –.13, p < .05). Fluency math outcomes produced higher correlations than math accuracy 

outcomes. Numeric RAN tasks also produced significantly larger correlations with math 

outcomes than non-numeric RAN (β = .04, p < .01); however, the statistically significant p 

(despite the low beta) might be an artifact (type I error) associated with the estimation 

methods (see Tipton, 2015). The type of RAN stimulus (alphanumeric vs. non-

alphanumeric), the design of the study (cross-sectional vs. longitudinal), age when math was 

assessed (at or below 9 years vs. above 9 years), and type of sample (population-based 

sample or sample with high prevalence of high achievers vs. high prevalence of low 

achievers or children with learning disabilities) were not significant moderators.  

  Discussion 

The number of studies using RAN as a predictor of mathematics performance has 

steadily increased over the last decade (e.g., Berg, 2008; Cirino, 2011; Geary, 2011; 

Georgiou et al., 2013; Hecht et al., 2001; Koponen et al., 2007, 2013; Swanson et al., 2008). 
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However, the nature of the RAN–mathematics relationship remains elusive. The current 

meta-analysis aimed first to examine the size of the RAN–mathematics relationship. We 

found a positive and significant relationship (r = .37) between RAN and mathematics and the 

effect size was large (Cohen, 1988). Interestingly, the average size of the RAN–mathematics 

relationship is close to that reported in previous meta-analyses of RAN and reading (Araújo 

et al., 2015; Scarborough, 1998; Song et al., 2016; Swanson et al., 2003).  

However, the size of the RAN–mathematics relationship appears to be influenced by 

different moderators. First, the math domain used in previous studies was related to the 

strength of the RAN–mathematics relationship. As expected, RAN was a stronger correlate of 

math when math was operationalized with an arithmetic calculation task than when math was 

operationalized with general math achievement tests. More specifically, arithmetic tasks (e.g., 

Woodcock-Johnson math fluency) require responding to simple addition, subtraction, and 

multiplication problems or finding partial and total answers in multi-digit calculations. 

Retrieving the names of numbers, operation symbols (e.g., +, −), and answers from long-term 

memory are central processes in arithmetical calculation, which tap the same capacities as 

RAN. In contrast, math achievement tests (e.g., the Wechsler Individual Achievement Test 

[WIAT] numerical operations) involve a wider set of mathematical subskills, including 

problems that cannot be simply solved with the retrieval of an answer from long-term 

memory. Consequently, compared to RAN, these tasks require a number of different 

processes, which results in lower correlations between them.   

In previous arithmetic calculation studies, single-digit calculations produced 

significantly stronger correlations than multi-digit calculations. This finding is in line with 

those of previous studies conducted by Koponen and colleagues (Koponen et al., 2007, 2013, 

2016), which showed that RAN was related with reading and single-digit calculation fluency, 

but not with multi-digit calculation (Koponen et al., 2007). Although single-digit calculation 
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is needed to obtain intermediate answers in multi-digit calculation, understanding place 

value, the ability to retrieve procedural knowledge, the use of algorithms, and monitoring 

multistep processes are required in multi-digit calculation. In other words, multi-digit 

calculation includes retrieving factual, procedural, and conceptual knowledge, whereas RAN 

and fluent single-digit calculation rely more on retrieving factual knowledge, such as names 

of numbers or objects.  

The type of math outcome also explained a significant amount of variance in the 

RAN–mathematics relationship. Fluency outcomes produced stronger correlations with RAN 

than accuracy outcomes. This is similar to the finding reported for the RAN–reading 

relationship (Araújo et al., 2015; Song et al., 2016). These moderator effects support the view 

that RAN reflects, to some extent, the efficiency of access to and retrieval of phonological 

representations from long-term memory, which are needed in fluent calculation (de Smedt & 

Boets, 2010; Koponen et al., 2013).  

The distinction between alphanumeric and non-alphanumeric RAN tasks failed to 

explain the significant variance in the RAN–mathematics relationship. This might partly be 

due to the different types of processes involved in RAN and in basic reading and arithmetic 

skills. More specifically, some researchers have argued that RAN letters and digits activate 

the same neural networks that are involved in phonological and orthographic processing in 

reading (e.g., Cummine et al., 2014, 2015; Misra et al., 2004). In contrast, RAN objects also 

engage networks that are involved in semantic processing (e.g., Cummine et al., 2014; 

Humphreys, Price, & Riddoch, 1999). Since reading is usually assessed with word 

recognition and decoding tasks and not with comprehension tasks that would require 

semantic processing, alphanumeric RAN proves to be more reliable in predicting reading 

over non-alphanumeric RAN. In math, many tasks involve access to magnitude, and the use 

of magnitude information is beneficial in solving mathematical problems. Magnitude 
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processing is also helpful in arithmetic calculation. For example, knowing that 6 is 1 more 

than 5 and being able to retrieve the answer for 5 + 5, which equals 10, can help an individual 

derive the answer for 5 + 6. Thus, in mathematics, parallel access to phonological and 

semantic information may boost the association between non-alphanumeric RAN and 

mathematics and explain why an equally strong correlation was found between non-

alphanumeric and alphanumeric RAN tasks with math in the present meta-analysis. This 

suggestion is in line with the findings of a recent study conducted by Donker et al. (2016), in 

which non-alphanumeric RAN correlated with mathematics but alphanumeric RAN did not in 

a sample of children with math learning disabilities. Donker et al. suggested that non-

alphanumeric RAN requires additional conceptual processing compared to the mere 

phonological processing that is required in alphanumeric RAN. Children with difficulties in 

math may have difficulties in conceptual processing over and above the difficulties in 

accessing and retrieving the digit names. 

Using numeric stimuli (numbers or quantities) versus non-numeric stimuli (letters, 

objects, or colors) had a very small effect on the RAN–math relationship and explained only 

the within-studies (not between) variation. This suggests that the RAN–math relationship 

cannot be explained by the use of numeric stimuli alone, but is related to the naming process 

itself. Thus, the findings from the present meta-analysis are only partially in line with the 

findings of Willburger et al. (2008) and Landerl et al. (2009), who showed that children with 

dyscalculia exhibited a unique deficit in the rapid naming of quantities, whereas a more 

general deficit in the rapid naming of objects, letters, digits, and quantities was evident in the 

dyslexia group and the comorbid dyslexia/dyscalculia group.  

Math age or sample characteristics (high prevalence of children with difficulties or 

low-achieving children vs. a normal sample) did not account for the large variation among 

the correlations. The non-significant moderator effects of age were unexpected because fact 



A META-ANALYSIS ON THE EFFECTS OF RAN ON MATH 20 
 
 

retrieval ability underlies the RAN–mathematics relation, and in math, fact retrieval is less 

automatized in younger children. There can be several reasons for this finding, one of which 

is the confounding effect within moderators. More studies and correlations are needed in 

order to examine the interactions between the moderators. The non-significant moderator 

effect of sample type (typical vs. atypical) was not expected either. A possible explanation 

may be that the “atypical sample” grouping covered quite heterogeneous populations with 

different kinds of difficulties and not solely children with mathematical or language-based 

difficulties. Along these lines, a theoretically important but unexplored question is whether 

the RAN–mathematics relationship is similar or different among poor- and well-performing 

children. The findings of the present study did not provide any evidence that there are 

differences among these groups. However, as stated above, in the present study it was not 

possible to compare correlations in children with difficulties in math and/or naming to those 

of typically achieving children. Finally, it was expected that RAN would correlate more 

strongly with mathematics in concurrent studies than in longitudinal studies. Although there 

was a trend showing that concurrent correlations are higher than longitudinal correlations, the 

difference was not significant.  

Limitations 

Some limitations of the present study are worth mentioning. The search procedure 

may have left out some relevant reports. For example, only published studies, theses, and 

dissertations were included, which is known to cause some publication bias, meaning that 

studies with large and/or statistically significant effects, relative to reports with small or null 

effects, are more likely to be published (Polanin, Tanner-Smith, & Hennessy, 2015). 

However, publication bias in general may be less important when looking at correlational 

studies when the effect sizes are purely descriptive and not related to the outcome of the 

study (e.g., intervention effect). Heterogeneity among the RAN–mathematics correlations 
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was anticipated, but it was larger than expected. In this study, we used independent and 

correlated correlation coefficients to develop a general understanding regarding the RAN–

math association. This means that the independence of observation assumption was 

purposefully violated in the overall association calculation. However, we used the robust 

variance estimation method in the moderator analysis that used correlated data. Due to the 

low number of unique samples, only one partitioned moderator was analyzed at a time and it 

was not possible to analyze interactions between moderator factors. Some moderator effects 

might be confounded (e.g., math achievement was mostly assessed with accuracy-based 

measurements). In addition, much of the variance in the RAN–mathematics correlations was 

left unexplained. A possible reason for this could be that there are interactions between some 

of the moderators that were not taken into account. For example, math age could matter only 

if arithmetic fluency (not math accuracy) was used as an outcome measure. Finally, we used 

Fisher’s z values in the calculations, which may bias the results upward (cf., Schmidt & 

Hunter, 2015). Also, we followed the meta-regression approach for correlated data in which 

the moderators were dummy coded; however, there is still relatively little research on the 

method itself and its biases (Hedges et al., 2010; Tipton, 2015). Forthcoming research may 

better understand the heterogeneity of the RAN–mathematics relationship and moderator 

associations within a meta-analytic structural equation modeling framework (Cheung, 2008, 

2015a, 2015b). More studies are also needed in order to analyze possible interaction effects 

between the different moderators. 

Conclusions and Implications 

To date, we have learned about RAN through the studies examining its value as a 

predictor of reading (e.g., Araújo et al., 2015). The current study revealed that RAN is also a 

strong correlate of mathematics (particularly of math fluency). A practical implication of this 

finding is that RAN could be used as an early predictor of mathematics development and 
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perhaps even as a risk factor of future mathematics difficulties, particularly of arithmetic 

dysfluency (e.g., Koponen, Aro, Räsänen, & Ahonen, 2007; Koponen et al., 2006; Waber et 

al., 2000). This should be taken into account when assessing school readiness, monitoring 

skill development, and planning for educational support. In addition, given that no significant 

differences were found in the size of the correlations between the different types of RAN 

tasks and mathematics, researchers may rely on non-alphanumeric RAN as a predictor of 

mathematics performance even before children go to school and become familiar with letters 

and digits. 

From a theoretical point of view, the effects of the moderators (arithmetic vs. math 

achievement, single-digit vs. multi-digit, and fluency vs. accuracy in math) support the view 

that the RAN–mathematics relationship can at least partially be explained by shared 

underlying processing requirements, i.e., rapid access from visual stimuli to phonological 

representation stored in long-term memory. Previous studies suggested that this kind of 

process is important in fluent calculation (de Smedt & Boets, 2010; Koponen et al., 2013). 

Equally strong correlations between non-alphanumeric RAN, alphanumeric RAN, and 

mathematics suggest that the relationship between RAN and mathematics is related to both 

conceptual and phonological processing factors. 
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Table 1 

 Description of the Studies Presenting RAN-math Correlations 

          

Author Year n r  Sample 

type 

Design Age  Math  Math 

variable 

RAN 

stimulus math measure 

Ackerman 2001 101 .43 LD and 

controls 

Cross-

sectional 

116.4 Multi-digit calc. A L+ D+. 

D& L 

Berg 2008 90 .44 Normal Cross-

sectional 

121.5 Multi-digit calc. A D 

van Bergen 2014 196 .48  LD and 

controls 

Longitudinal 107.1 Multi-digit calc. F C 

Chan 2010 168 .43 LD and 

controls 

Cross-

sectional 

110.4 Multi-digit calc. A D 

       
Single-digit calc. F 

 

Cirino 2011 285 .41–.47 Normal Cross-

sectional 

73.4 Single-digit calc. F D 

         
L 

         
O 

Foster 2015 208 .31–.34 Normal Longitudinal 67.4–74.4 Math achievement A O 

Fuchs 2005 272 .24–.29 LA and 

controls 

Cross-

sectional 

 
Math achievement F D 

       
Multi-digit calc. A 

 

       
Single-digit calc. F 

 

de Jong 1999 166 .28–.31 Normal Longitudinal 100.4 Single-digit calc. F O 

Geary 2011 177 .16–.47 Normal Longitudinal 74.0–

134.0 

Math achievement A D 

         
L 

Georgiou 2013 72 .40 Normal Longitudinal 83.1 Multi-digit calc. F O + C 

Hannula 2010 139 .25 Normal Longitudinal 102 Multi-digit calc. A O + C 
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Hart 2009 628 .11–.43 Twin Longitudinal 102.5–

118.7 

Multi-digit calc. A L+ D 

       
Single-digit calc. F 

 

Kleemans 2012 160 .17–.39 LD and 

controls 

Longitudinal 85.1 Single-digit calc. F O 

Koponen 2006 29 .64 LD Cross-

sectional 

123.6 Single-digit calc. F O + C 

Koponen 2007 207 .13–.37 Normal Longitudinal 129 Single-digit calc. F O 
       

Multi-digit calc. A 
 

Koponen 2013 362 .28–.42 LD and 

controls 

Longitudinal 108.0–

118.0 

Multi-digit calc. F C 

Koponen 2016 378 .27–.36 Normal Longitudinal 115.0–

127.0 

Multi-digit calc. F O 

         
O 

Krajewski 2009 130 .33–.44 Normal Longitudinal 91.0–

103.0 

Math achievement A Dots & D 

Landerl 2010 439 .32 LD and 

controls 

Cross-

sectional 

111 Multi-digit calc. F L+D+O 

Lepola 2005 139 .15–.25 Normal Longitudinal 104 Multi-digit calc. A O + C 
       

Single-digit calc. A 
 

Moll 2014 89 .26–.49 LD and 

controls 

Cross-

sectional 

NA Single-digit calc. F L 

       
Multi-digit calc. A D 

Niklas 2013a,b 608 .07–.27 Normal Cross-

sectional 

77.0–87.0 Math achievement A O 

Swanson  2004 353 .63 LA and 

controls 

Cross-

sectional 

107.9 Multi-digit calc. A & F L+ D 

Swanson 2006a 127 .50–.59 HA and 

normal  

Cross-

sectional 

88.4 Multi-digit calc. A L 

        
F D 

Swanson 2006b 320 .52 LA and 

controls 

Longitudinal 120.1 Multi-digit calc. A & F L+ D 

Swanson 2007 353 .38–.64 Normal Cross-

sectional 

NA Multi-digit calc. A D 
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Multi-digit calc. F L 

Swanson 2008 205 .64–.65 Normal Cross-

sectional 

91.8 Multi-digit calc. F D 

         
L 

Swanson et 

al. 

2008 353 .43–.60 LA and 

controls 

Longitudinal 132.7  Multi-digit calc. 

(verbal) 

F L+ D 

Träff 2013 134 .37–.48 LA and 

controls 

Cross-

sectional 

142 Single-digit calc. F C 

        
A 

 

van Daal 2012 82 .46–.61 LD and  Cross-

sectional 

167 Single-digit calc. F O 

    
controls 

    
C 

         
D 

         
L 

         
L+ D 

van der Sluis 2007 127 .38–.45 Normal Cross-

sectional 

128 Multi-digit calc. F Q 

         
D 

         
L 

         
C 

Waber 2000 188 .16–.33 LD Cross-

sectional 

114  Math achievement A D 

         
L 

         
C 

         
O 

Wocadlo 2007 63 .35  At- risk 

group 

Cross-

sectional 

97  Math achievement A L+ D 

 

Note. HA=high achieving; LA= Low achieving; LD= Learning difficulties; A =Accuracy; F=Fluency; Co= Comprehension; D=Digits; C=Colors, O= 

Objects; L=Letters; Q=quantities. 
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Table 2  

Number of Correlations, Meta-regression Estimate based on Fisher’s z, Standard error, T-test results, 95% Confidence Interval (CI), 

Heterogeneity Statistics of the Relationship Between RAN-math and Procedural and Sample Moderators 

 n(k) Estimate StdErr t-value df p 95% CI τ2 I2 

Null model 

 Intercept 

 

Procedural moderators 

 

33(151) 

 

.38 

 

.03 

 

15.19 

 

31.25 

 

<.001 

 

[.33,.43] 

 

.02 

 

81.25 

 Domain of math assessed 

1 

Center 

Mean 

 

33(148) 

34(151) 

 

 

.01 

.12 

 

.05 

.05 

 

0.28 

2.51 

 

1.002 

8.41 

 

.828 

.035 

 

[-.66, .69] 

[.04, .23] 

 

.02 

.02 

 

81.29 

78.99 

 Domain of math assessed 

2 

Center 

Mean 

 

27(92) 

27(98) 

 

 

.14 

-.05 

 

.03 

.07 

 

5.11 

-0.74 

 

5.87 

17.01 

 

.002 

.469 

 

 [.08, .21] 

[-.19,.09] 

 

.02 

.02 

 

79.02 

80.32 

 Math outcome 

Center 

Mean 

 

33(146) 

33(151) 

 

 

-.07 

-.13 

 

.05 

.05 

 

-1.40 

-2.34 

 

8.84 

21.68 

 

.194 

.029 

 

 [-.19, .04] 

[-.24, -.01] 

 

.02 

.02 

 

80.30 

79.64 

 RAN stimulus 1 

Center 

Mean 

 

27(115) 

27(124) 

 

.04 

.14 

 

.01 

.08 

 

3.59 

1.78 

 

6.79 

8.36 

 

.009 

.111 

 

 [.01, .07] 

[-.04, .32] 

 

.02 

.02 

 

82.19 

81.48 

  RAN stimulus 2 

Center 

Mean 

 

31(145) 

31(146) 

 

.01 

.09 

 

.07 

.06 

 

0.10 

1.51 

 

3.962 

23.97 

 

.924 

.144 

 

 [-.19, .21] 

[-.03, .21] 

 

.02 

.02 

 

82.18 

81.13 

 Design 

Center1 

Mean 

 

- 

34(152) 

 

- 

-.08 

 

- 

.04 

 

- 

-1.83 

 

- 

26.16 

 

- 

.079 

 

- 

[-.17, .01] 

 

- 

.02 

 

- 

81.20 

          

 

 

        Continues 
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 n(k) Estimate StdErr t-value df p 95% CI τ2 I2 

Sample moderators          

 Age of math assessed   

Center 

 Mean 

 

30(136) 

30(136) 

 

-.00 

.04 

 

.04 

.05 

 

-0.05 

0.81 

 

2.922 

22.29 

 

.963 

.428 

 

 [-.14, .13] 

[-.07, .16] 

 

.02 

.02 

 

79.30 

79.87 

 Type of sample 

Center 

Mean 

 

33(151) 

33(151) 

 

.02 

.02 

 

.12 

.05 

 

0.14 

0.45 

 

1.002 

28.63 

 

.913 

.656 

 

[-1.5, 1.53] 

[-.08, .12] 

 

.02 

.02 

 

81.28 

81.68 

Note. n(k): number of samples (number of coefficients). Estimate: Robumeta correlated data meta-regression estimate, small-sample adjustment, ρ=0.80. 

StdErr: standard error. CI: confidence interval. Domain of math assessed 1: 0=achievement, 1=arithmetic, Domain of math assessed 2: 0=multi-digit, 

1=single digit. Math outcome: 0=fluency, 1=accuracy. RAN stimulus 1: 0=nonnumeric, 1=numeric. RAN stimulus 2: 0=non-alphanumeric, 1=alphanumeric. 

Design: 0=cross-sectional, 1=longitudinal. Age of math assessed: 0=at or below 9 years, 1= above 9 years. Type of sample: 0=typical sample, 1=atypical 

sample. Center: within-study centered estimation. Mean: between-study centered estimation. 1 Estimation was not possible. 2 The result should be viewed 

with some caution due to low degrees of freedom value; df<4. 
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Figure 1. Flow diagram for the search for and inclusion of studies. 
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Figure 2. A funnel plot graph of the averaged and Fisher’s z transformed RAN–Math correlation coefficients 

in the unique samples (N=33). 
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Figure 3. Overall random-effect model meta-analysis average of Fisher’s z transformed correlation 

coefficient of RAN–Math correlation coefficients (displayed by ◆) in the unique samples (N=33) and 

coefficient with 95% confidence interval for each study. Coefficients represent average values of each 

unique sample.  
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Figure 4. Violin plot of Fisher’s z transformed correlation coefficients between RAN and Math (N=151) 
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Figure 5. Violin plot of Fisher’s z transformed correlation coefficients for procedural moderators 
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Figure 6. Violin plot of Fisher’s z transformed correlation coefficients for sample moderators 

 


