Towards Computer-Based Exams in CS1

Vesa Lappalainen1, Antti-Jussi Lakanen1 and Harri Högmander2

1Faculty of Information Technology, University of Jyväskylä, 40014, Jyväskylä, Finland
2Department of Mathematics and Statistics, University of Jyväskylä, 40014, Jyväskylä, Finland

{vesal, antti-jussi.lakanen, harri.hogmander}@jyu.fi

Keywords: CS1; computer-based exam; rainfall; paper vs. computer; novice programmers

Abstract: Even though IDEs are often a central tool when learning to program in CS1, many teachers still lean on paper-based exams. In this study, we examine the “test mode effect” in CS1 exams using the Rainfall problem. The test mode was two-phased. Half of the participants started working on the problem with pen and paper, while the other half had access to an IDE. After submitting their solution, all students could rework their solution on an IDE. The experiment was repeated twice during subsequent course instances. The results were mixed. From the marking perspective, there was no statistically significant difference resulting from the mode. However, the students starting with the paper-based part tended to make more errors in their code, but after the computer-based reworking phase, they matched or exceeded the level of the students who started with the computer-based phase. We also discuss the reliability of automatic assessment that is based on a unit test suite that was developed for the purposes of this study.

1 INTRODUCTION

Working with integrated development environment (IDE) and its advantages such as with debugging, rapid visual feedback, and automatic unit testing can be considered a part of a natural workflow in an introductory programming course. Besides these benefits from the student’s point of view, practical programming in computer-based environment provides teachers a way of evaluating students’ application and problem-solving skills in a semi- or fully automatic fashion (computer-based or computer aided assessment, see, Carter et al., 2003; Russell et al., 2003). Yet, final exams in CS1 are often conducted with pen-and-paper. In the authors’ local context, computer-based exams have long been wished for by the students. In this study, we investigate the test mode effect of a two-phased CS1 final exam. A half of students starts working with the exam with pen-and-paper, while the other half starts working with computers.

One of the obvious challenges of arranging a computer-based exam on a mass course is the need for numerous computers and classrooms to serve all the participants. In a typical course of ours, there are around 250 students, but only 96 computers available in the computer labs. In a setting where students do the same exam at the same time, dividing students to groups and scheduling computer time is practically the only option.

Even though a typical CS1 incorporates other practical parts—such as weekly assignments or a bigger project—that contribute to student’s final grade, course assessment that is solely based on project work or weekly assignments can be problematic for at least two reasons. First, students often collaborate with peers and teaching assistants while working on the assignments. While we encourage students to ask questions and collaborate, it is difficult point out which part of the code a student has figured out himself and which part he or she could not have completed without help from the peers or teachers (Carter et al., 2003). For these reasons, an exam, an open-book exam in our case, can be seen as a reasonably reliable way to assess a CS exam.

The objectives for this work were (1) to investigate if the opportunity to use computers in exams helps in achieving less erroneous code, (2) to inspect to what extent students are able to rework their initial solution (regardless whether it was developed using pen and paper or on an IDE) after giving them a test suite, and (3) to explore how reliable automated assessment is compared to manual, human-made assessment.
2 RELATED WORK

The test mode effect was investigated extensively during the 1980s and ever since the computers became more common in educational settings. Even though a few decades ago reading text from screen typically took a little longer than reading from the paper, this effect of speededness is largely negated by today’s advanced screen technology, such as increased screen resolution (Leeson, 2006). Earlier studies that have compared the use of paper-based exam (PBE) and computer-based exam (CBE) have been concentrating in computerized versions of multiple choice questions (MCQs) or assignments that require plain writing (Özalp-Yaman and Çağıltay, 2010; Bodmann and Robinson, 2004). Less research has been focused on the test content and the process of switching between test modes. At the very least, computerized testing produces a qualitatively different experience from pencil-and-paper testing for the test-taker (McDonald, 2002). Obviously, IDEs provide many tools, such as debugging and automated testing, that are not available in PBE. The question is, how beneficial are these tools for the test-taker in an exam situation? In our literature retrieval, we only found one study that discusses the benefits of an IDE over pen-and-paper coding: Grissom et al. (2016) investigated recursive binary tree algorithms, and did a goal-plan analysis as well as error inspections on student solutions. They found that the students who took the computer-based exam succeeded more often in writing fully correct solutions and also made less errors than those who took the paper-based exam. Switching between different modes was not studied, however, which acts as motivation for this study.

Regarding the question about CBE vs PBE, the Rainfall problem can be considered a good reference point for such study settings. The problem is widely known in computer science education literature and has often been used in programming exams (Seppälä et al., 2015). An interesting characteristic of the problem is that although the problem seems easy at first glance, it soon proves to be quite tricky for many CS1 students (Venables et al., 2009). One of the earliest studies of Rainfall was conducted by Soloway (1986), and later by Ebrahimi (1994). During the 21st century, new vantage points—including functional programming (Fisler, 2014), particularly “bad scenarios” (Simon, 2013), and how to link Rainfall to other exam assignments—(Lakanen et al., 2015) have emerged. In this study, we use the Rainfall problem to identify differences between test modes. In particular, we inspect which subgoals (that is, smaller tasks within the problem itself, see Soloway, 1986) the students stumble to, and also recognize errors based on unit test suite.

3 METHODS

3.1 Participants and context

Students from two CS1 exams were included: 109 participants took the Spring 2015 exam, and 254 participants took the Autumn 2015 exam. The students consisted of both computer science majors as well as minors. The content and structure of the different course instances were close to identical. The weekly routines consisted of two lectures, lab sessions, voluntary support sessions, assignments and their reviews. Furthermore, in both courses a similar pedagogical approach was adopted, and included, for example, demonstrations during the lectures using live programming and interactive clicker sessions.

This 11-week course is a traditional procedural CS1, starting with variables, operators, selection, and functions, carrying on to repetition, arrays, and so on. The concept of array, one of the key points of the Rainfall problem, is introduced briefly during the first course week, and more thoroughly from the fourth week onwards. During the course, the content is brought into context with a “game theme,” where a part of the examples and exercises relate to games each week. To improve code quality, students were introduced to the test-driven development (TDD) approach, and were encouraged to write unit tests with the ComTest tool (Isomöttönen and Lappalainen, 2012). While writing tests first and then using them to develop programs is highly recommended, it was not obligatory. However, students who write unit tests in the weekly assignments and in the final exam are credited with extra points. In the light of the present study, it was hypothesized that students writing tests would benefit from the convention of thinking over and writing down the examples of function inputs and outputs before writing the function implementation.

3.2 Study Design

The study design was composed of two final exam assignments: a regular Rainfall problem (Assignment 1), and an additional part (Assignment 2), where students were given a ready-made collection of unit tests after they had submitted their solutions for Assignment 1. In Assignment 2, the students were allowed to take their Assignment 1 solution and improve it so
that it fulfills the given unit test suite, and then submit this as their Assignment 2 solution. Students, were divided into two groups: Group P, which started the exam with a paper-based part and then moved on to the computer-based part, whereas Group C worked with computers for both the assignments 1 and 2. Both groups worked simultaneously. While working on the computer, students were only allowed to use the IDE in addition to the online submission system. The total duration of the exam was limited to a maximum of four hours. The paper-based and computer-based phases were located in physically different classrooms, so the students had to walk a short distance during the exam when switching the phase.

We divided the participants into homogeneous groups in order reduce disturbing random variation within Groups P and C. To this end, the students were first divided into four groups based on their major: computer science, information systems, physics, and others. This division was tested with analysis of variance (ANOVA) to reveal differences in previous autumns’ final exam scores. For example, the scores of students who majored in information systems were at least 3.2 points (out of 24) lower. After this pre-division, students were randomly divided into Group P and Group C.

3.3 Assignment 1: Rainfall problem

The first assignment for each group was the Rainfall problem. The Group P started with pen and paper. After submitting this phase of the assignment, they moved the a computer class and copied their solution to a computer verbatim (this was done for data collection purposes and to prepare the students for Assignment 2). Furthermore, they were given the opportunity to use an IDE, and rework on their Rainfall problem as well as to write their own unit tests (see Section 3.4) before moving onto Assignment 2 (see Section 3.5). However, the students did not know about this possibility before submitting their pen and paper solutions.

On their part, the Group C started working on the same problem with the computers, and were allowed to write and run their own test cases.

The same question was used on both Spring and Autumn courses; however, the wording was slightly modified to prevent, or at least reduce, direct copypasting of previous exam solutions. While the Spring 2015 version (see Listing 1) used traditional Rainfall phrasing, in the Autumn 2015 version the idea of falling rain was replaced with an analogous idea of a teacher throwing candies to students during lectures. Other changes included replacing a floating point array with an integer array. The sample content was also replaced with new numbers. Further, one example unit test was provided to the students.

Listing 1: Our Spring 2015 version of the Rainfall problem.

```java
/* Implement the ‘Average’ function, which takes the amounts of rainfall as an array and returns the average of the array. Notice that if the value of an element is less than or equal to 0 (‘lowerLimit’), it is discarded, and if it is greater than or equal to 999 (‘sentinel’), stop iterating (the sentinel value is not counted in the average) and return the average of counted values. */
public class Rainfall {
  public static void Main () {
    double[] rainfalls = new double[]{ 12, 0, 42, 14, 999, 12, 55 };
    double avg = Average(rainfalls, 0, 999);
    System.Console.WriteLine(avg);
  }

  public static double Average(
    double[] array, double lowerLimit,
    double sentinel) {
    // Write implementation here
  }

  /* Bonus: Write unit tests. */
```

Even though the changes between the Spring and Autumn experiments were intended to be ever so subtle, some notable consequences occurred. First, it appeared that in the Autumn exam many students interpreted “stopping the iteration” as skipping the sentinel value and then continued with counting the average. Unfortunately, the resulting output produced with the skipping method (26/5 = 5.2) was very close to the desired result of the provided example unit test, which is displayed in Listing 2.

Listing 2: Unit test provided in the Autumn 2015 exam.

```
INPUT data: { 3, 0, 7, 6, 5, 99, 5 }
```
lowerLimit: 0, upperLimit: 99
OUTPUT 5.25

This unintentional proximity of the two very different approaches clearly confused students, and as many as 12% of the Group P students and 5% of the Group C students, whose solutions were more or less fine in other respects, eventually submitted their solution using the skipping method. We looked for this interpretation error in the Spring exam as well, and found none, which suggests that the problem wording was more exact in this case. Therefore, the implementations of the Sentinel subgoal (see Table 2) originated from other difficulties.

Second, it is possible to make an error with the division when operating with integers (Autumn exam) that does not occur when handling floating point numbers or variables (Spring exam). Third, the considering of corner cases was generally encouraged in the Autumn exam, but not in the Spring exam. Fourth, in both exams, it was expected to use lower and upper limits as parameters instead of constant zero or 999 in the function implementation. However, this generalization was particularly instructed only in the Autumn exam. Such ambiguities in the wording of the problem and the subtle changes in the assignments are taken into account for the analyses done in this study.

3.4 Assignment 1 Rework RF (voluntary bonus)

In this phase, Group P students were offered the opportunity to rework on their Rainfall solution (see Figure 1). In the Autumn exam, students gained some bonus marks from this phase contrary to the Spring exam. Further, the wording of the Autumn exam in general was reconsidered to make this part more attractive to students. In the Spring exam, 31 of the 51 students (61%) submitted a solution in this phase, while in the Autumn exam, 101 of 125 (81%) students, respectively, did so. Regarding this study, if a student did not submit a solution in this phase of Assignment 1, his or her solution to the paper-based part (possibly with some manual corrections made by the researchers; see Section 3.6) was used as a solution.

3.5 Assignment 2: Rework with the test suite

In this assignment, students were given a collection of test cases. They copy-pasted their Assignment 1 solution (or their Assignment 1 Rework solution, if they had one), and checked if their code passed the tests in the submission system. Then, students were allowed to rework their code as much as they wished to satisfy as many test cases as possible. After moving on to this assignment, it was no longer possible to rework on the previous assignment anymore. Again, minor differences between the two experiments emerged. In the Spring exam, only the first failed test was shown to students, while in the Autumn exam, students were additionally given the number of tests that they have yet to pass.

3.6 Analysis procedure

Two different types of analyses were made to reveal the mode differences in students’ problem solving process: a subgoal analysis and a test-based analysis.

Subgoal analysis: Students’ solutions for Assignment 1 and Assignment 2 (see 1) were manually searched for errors in the source code according to error categorization found in Lakanen et al. (2015). After the error coding procedure, each error code was associated with the acknowledged subgoals (or tasks), as per the classification made by Fisler (2014) with the addition of a Return plan. The subgoals were:

- Sentinel: Ignore inputs after the sentinel
- Negative: Ignore invalid inputs
- Sum: Sum the inputs
- Count: Count the inputs
- DivZero: Guard against division by zero
- Average: Compute the average
- Return: Return the average from the function

Further, each error code was classified as Incorrect or Missing. Thus, if a student’s solution did not include, for example, any error codes suggesting Incorrect DivZero, then that particular subgoal was accomplished correctly. The programs were coded by the head teaching assistant, who also graded the answers.

Regarding the Sentinel subgoal, all values equal to and above the sentinel should end summing. As the value of the sentinel was a parameter, using a constant value (such as 999) was counted as an incorrect Sentinel plan. Respectively, omitting the parameter value for the lower limit induced an incorrect Count plan.

Since determining the correct and incorrect subgoals (and error codes) manually was highly demanding in terms of workload, the subgoal analysis was done for the Spring 2015 experiment, but it was not repeated in the Autumn 2015 experiment. In the Autumn exam the marking process was based on the subgoal schema with some emphasis on loop structure comprehension.
Unit test analysis: Students’ solutions for Assignments 1 and 2 were automatically analyzed with 32 unit tests. The tests are presented in Appendix A. The first 11 test cases were developed for the Spring 2015 final exam and given to students in Assignment 2. These eleven tests were designed to verify the basic functionality and also reveal errors produced by omitting the corner cases, such as DivZero. Further, they were also used for marking Assignment 2. During the assessment process and while conducting this study, however, we found solutions that satisfied the original 11 tests, and yet were flawed in some way based on the marking. These solutions were then manually inspected, and more tests emerged to observe errors that were previously left unnoticed. Finally, after several iterations, 21 more tests were discovered,1 thus, the total number of the tests of this “extended set” was 32.

The coverage of the tests was checked with randomly generated tests. The random tests did not yield any new failed tests for those solutions that passed all of our tests. At the same time, the same random tests were run on the solutions that passed the original 11 tests (given in the final exam), but did not pass the extended set of 32 tests; this resulted in the same group of solutions that were discovered by our tests. Mutation testing could have enhanced the validity of the tests, but we chose to leave this for the future studies.

Manually correcting the solutions that do not compile: Only 22% (Spring) and 35% (Autumn) of Group P succeeded in writing a compiling solution in their paper-based submission. Comparing a solution that does not compile (later, “not-compiling”) in Assignment 1 to a compiling solution in Assignment 2 would yield biased results in terms of how much students can improve their solution. Besides, it would not reveal the underlying issues and also make it difficult to compare the test passing rates of Group P and Group C. Therefore, for the purpose of this research, the authors manually modified those submissions that only required trivial or cosmetic changes to compile, such as a missing semicolon, typing errors in variable names, or minor scoping errors. Changes that resulted in modifying the algorithm were not made. After the manual corrections, the percentages of the compiling solutions were 84% (Spring) and 90% (Autumn). Further, some students did not submit a solution at all to the Assignment 2, his or her Assignment 1 solution was used for this study.

Group C students’ not compiling solutions were not corrected manually, but if the student did not submit a solution at all to the Assignment 2, his or her Assignment 1 solution was used for this study.

3.7 Trustworthiness of the study

Regarding the subgoal analysis, only one researcher coded all the solutions for the missing and incorrect plans. Some students whose exam marks and error coding seemed to be conflicting (for instance, good marks, but “too many” error codes, or vice versa) were checked, and possibly reanalyzed, by another researcher. Overall, analyzing missing or incorrect subgoals proved to be quite difficult. In the Autumn exam, as we mentioned, the marking was based roughly on the subgoal scheme, and even when the marking was done by two different reviewers, there were some differences. For instance, when one reviewer marked the DivZero subgoal fully correctly for 65.1% students, another reviewer gave full marks for 59.7% of the students. Then again, for some other subgoals, the difference in marks could be the other way around. Regardless of these differences, in the Autumn exam, marks added up quite uniformly for each student between the two reviewers.

There were downsides as well to the unit test-based analysis. First, it was possible to write a program that passes the entire test suite by writing an if block for each test input and fitting return clauses. Obviously, this is not a correct solution. In this study, this was not an issue since all solutions were investigated manually. In the future, if using fully automated assessment, using both randomly generated and prepared tests would help in preventing these types of incorrect solutions. Second, finding an optimal weight coefficient for each test based on the test’s importance relative to the course’s learning goals might highlight the solutions’ characteristics more accurately. Further, it could yield a more sensible marking scheme since the Rainfall problem, at least our version of it, consists of quite a few corner cases. In this study, we hand-picked five tests that we believe are the most valuable for the computing education community, and we present these in Section 4.3.

4 RESULTS

4.1 Overall performance

The marks from reviewing the student solutions are given in Table 1. In both experiments, Group C was marginally better on average, but the difference was

1Thus, all the 32 tests found different errors except the tests T6 and T22, which appear to be redundant for the studied students.
not statistically significant (independent samples t-test; Spring: $t = 0.309, df = 106.8, p = 0.76$; Autumn: $t = -0.638, df = 242.8, p = 0.52$). The Spring exam showed lower percentages, because the overall marks were based on the Assignment 1 answer, while in the Autumn exam the marking was based on the Assignment 2 answer. Even though the results were not fully comparable between the two experiments, it was easy to see that the differences between the two study groups, Group P and Group C, were minimal. Note, that the Group P marks in the Spring exam were based on the paper-based answer, and yet there was a surprisingly low difference between the two groups. Both study groups were marked with same “mindset,” in that the reviewers aimed to form an overall picture of the students’ skills, and concentrate less on irrelevant spelling mistakes or minor blunders. In particular, Group C answers were not reviewed more strictly just because they worked on a computer.

4.2 Subgoal analysis

Table 2 presents the percentages of the missing and incorrect subgoals for the Spring exam. The analysis was only done for the Spring exam. There were some differences worth noting between the Groups P and C. First, Group P made more errors in `DivZero` and `Count` subgoals than Group C did, but their performance improved so that in Assignment 2 Group P made less errors than Group C in these subgoals. Also, Group P ended up with much less `Sentinel` errors after the Assignment 2 phase.

When comparing the overall number of plan errors committed (numbers for individual students are not shown here due to space limitations), it seems that there were no big differences between Group P and Group C, which is in line with the marking results. In Assignment 1, differences in marking were not statistically significant. However, looking at the pure percentages in the Assignment 1 column, the Group P has fewer errors in four out of seven subgoals, and in the Assignment 2 column, the Group P has lower error count in five out of seven subgoals.

4.3 Test case analysis

The test suite is displayed in Appendix A. We have separated both experiments (Spring/Autumn) as well as each group (Group P/Group C) with the experiments.

4.3.1 It’s better to start with pen and paper… or maybe on a computer!

Overall, Group P did better in the Spring experiment, while the difference was nonexistent in the Autumn experiment. In the Spring exam, the overall test pass rates suggested that it was better for the students to start the exam with pen and paper. On average, Group P passed 5.7%-points more tests in the test suite compared to Group C, gaining better results in 28 of the 32 test cases (sign test, $p < 0.001$). Also, the differences in individual tests were quite broad (difference $\min = -14.9$%-points in test T5; $\max = 4.9$%-points in test T25; negative result stands for Group P’s advantage, positive result Group C’s advantage). Further, a slightly bigger proportion of Group P’s solutions passed the test suite (11 test cases) given in the exam (50.9% vs 46.5%). We conjectured that students who started with pen and paper formed a more thorough picture of the problem as they were not “distracted” by compiler errors, or other noise produced by the IDE or the operating system. After forming the initial solution, we assumed that the students had better chances to know what to fix and how to fix it with the help of the IDE and the test suite.

However, in the Autumn exam, this turned out not to be the case, as both Group P and Group C got practically identical test passing rates; Group C had a slight advantage on average (0.4%-points better pass rate) but the differences were very small (difference

Table 2: Subgoals and percentages of missing and incorrect (M+I) plans in Assignment 1 (A1) and Assignment 2 (A2), Spring 2015.

<table>
<thead>
<tr>
<th>Subgoal</th>
<th>A1 M+I %</th>
<th>A2 M+I %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group P (n=51)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>DivZero</code></td>
<td>70.6</td>
<td>37.3</td>
</tr>
<tr>
<td><code>Neg</code></td>
<td>5.9</td>
<td>3.9</td>
</tr>
<tr>
<td><code>Sentinel</code></td>
<td>33.3</td>
<td>19.6</td>
</tr>
<tr>
<td><code>Count</code></td>
<td>54.9</td>
<td>35.3</td>
</tr>
<tr>
<td><code>Sum</code></td>
<td>27.5</td>
<td>19.6</td>
</tr>
<tr>
<td><code>Average</code></td>
<td>15.7</td>
<td>17.6</td>
</tr>
<tr>
<td><code>Return</code></td>
<td>13.7</td>
<td>9.8</td>
</tr>
<tr>
<td>Group C (n=58)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>DivZero</code></td>
<td>69.0</td>
<td>44.8</td>
</tr>
<tr>
<td><code>Neg</code></td>
<td>17.2</td>
<td>5.2</td>
</tr>
<tr>
<td><code>Sentinel</code></td>
<td>39.7</td>
<td>34.5</td>
</tr>
<tr>
<td><code>Count</code></td>
<td>44.8</td>
<td>39.7</td>
</tr>
<tr>
<td><code>Sum</code></td>
<td>37.9</td>
<td>17.2</td>
</tr>
<tr>
<td><code>Average</code></td>
<td>13.8</td>
<td>6.9</td>
</tr>
<tr>
<td><code>Return</code></td>
<td>15.5</td>
<td>10.3</td>
</tr>
</tbody>
</table>
min = −4.1%-points in test T5; max = 5.6%-points in test T9; negative result stands for Group P’s advantage, positive result Group C’s advantage) and the “win rate” (Group P: 12, Group C: 20) was not statistically significant (sign test, \(p = 0.22 \)). Further, the proportion of solutions that passed all of the 11 tests given in the exam was practically equal for both groups (Group P: 54.4%, Group C: 56.5%). Even after a rigorous investigation, we were not able to figure out a reason for the different behaviors between the Spring and Autumn experiments. Obviously, as the two course instances had different teachers, there may have been some differences in teaching emphases. However, despite lengthy discussions between the teachers, no clear causes were found.

4.3.2 Solutions get better after switching on to the computer

In an earlier Rainfall study by Lakanen et al. (2015), it was hypothesized that if the students had the opportunity to write their code using the computer, they would be less prone to certain errors. In Figures 2 and 3, the success rates for the selected five tests (tests T1, T2, T3, T5, and T31), are displayed. These five tests stress on the important features of the problem. Four out of the five tests were presented to the students in the exam, while the fifth test (T31) was a “regular” out of the five tests were presented to the students in stress on the important features of the problem. Four

Here, the figures only display an average increase (or decrease), but not how many students improved and how many “worsen” their solution. Under almost every test there were students who had reworked their solution so that it did not pass a test in A2 that it passed in A1, which in most cases was because A2 specified that in the case of zero rainfall the lower limit should be returned. In its worst, this was the case for 25% of the students in the test T11. Yet, while even more students succeeded in passing the test, the total difference in passing rate remains positive.

It is also somewhat surprising that providing the test suite produced only a moderate increase in the success rate. On average, Group P solutions for Assignment 2 (A2) passed 15.7%-points (Spring) and 4.8%-points (Autumn) more tests compared to the computer-based phase of Assignment 1, A1c. Likewise, on average, Group C’s test passing rates for A2 increased 10.0%-points (Spring) and 7.5%-points compared to A1c. Thus, writing own tests produced nearly as good solutions as the test suite provided by the teachers.

Some of the potential increase was diminished by the slight change in the assignment text: A1 did not define the return value in the case of zero count in rainfall days (i.e., empty array), and while exceptions were not a central learning objective, many students returned a constant zero in their solution, which was an acceptable return value according to our test suite. In earlier Rainfall empirical studies, not defining what to do in this corner case seemed to be more of a rule than an exception. However, in A2, students were specifically instructed to return the value of the lower limit parameter in this corner case, which was also tested by our test suite. Still, many students did not pay heed to this instruction, which resulted in a deterioration of the test cases that were related to corner cases, such as zero-day count.

4.3.3 Detailed analysis of the five selected tests

Next, we take a look at the five selected tests in more detail. Test T1 was based on the example data presented in the Spring exam. Group P in the Spring exam managed to pass many more tests than Group P in the Autumn exam. This is explained, at least partly, by the change in the type of data input, which was changed from double array to int array. Thus, in the Spring exam, it was a natural choice to sum the input into a floating point variable. However, in the Autumn exam, many summed the input into an int variable, and made the division without casting the variables (sum or count) into a floating point. As students proceeded to the computer-based phase, this error was mostly noticed and corrected.

Note that percentages cannot be higher than the total number of compiling solutions for each group.
In tests T2 and T3, the lower and upper limits were changed, so the students had to take into account the parameter values because the test did not pass if constant values were used. Again, the possible integer division error is visible in the Autumn Group P. Test T5 was based on the corner case of an empty array, where both the Autumn groups clearly beat the Spring groups in Assignment 1. This was probably due to the slight change in the wording of the Autumn exam problem, where the considering of corner cases was particularly encouraged. However, since the way to deal with this particular corner case was not specified, we assume that the Spring test-takers in Group P might have suffered more on this occasion (de Raadt, 2009). The big difference between white (students’ own tests) and black (our test suite) bars indeed suggests that the students did not consider this particular corner case.

Finally, test T31 was based on a regular average so that the whole input array was within the given limits. The output is also an integer, thus preventing the int division error. The students performed well on this test in both the Spring and Autumn exams. The slight drop in Group P’s average score in the Spring exam is explained by the fact that for a small number of students the manually corrected version (on the paper-based phase; the manual corrections were made by the authors) was “better” than the student’s own solution in the computer-based phase. For example, one student’s `array.Count`, which does not compile in C# but is conceptually correct, was corrected by the authors to `array.Length`. However, during the
computer-based phase, the student had “fixed” his solution by replacing the abovementioned count with a constant 7 in the same position. Whether he was not able to figure out the array `Length` property in the IDE, or he was simply in a hurry to move on to the other paper-based assignments, we do not know.

4.3.4 Challenges of the test suite approach

We used ComTest to simplify student’s test writing while producing de facto industry standard xUnit test cases. We discovered that one challenge with the xUnit-like test suite is that runtime errors print merely the exception output without the input data. One of such errors is `IndexOutOfBoundsException`, which is a common error while solving Rainfall (Lakanen et al., 2015). We contemplate that if the examinee could see the input that caused the test to fail, locating the issue would be easier. This challenge occurs when the source code for the tests is hidden, as in our case. In the future, we will advance the test framework to provide better context-dependent error messages.

4.4 Number of submissions

Within the given time frame, students could work on their solution for as long as they liked and submit their solution to the submission system. The system also produced compilation outputs for the students. The average number of submissions are given in Table 3.

<table>
<thead>
<tr>
<th>Group</th>
<th>A1c</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Spring</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>Autumn</td>
<td>11.5</td>
</tr>
<tr>
<td>C</td>
<td>Spring</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>Autumn</td>
<td>9.9</td>
</tr>
</tbody>
</table>

The number of solutions was not restricted by the system, but we found that the maximum number of submissions for a single student was 100. The low number in the A1c column in the Spring rows highlights the difference in motivating students to submit a solution in the computer-based phase of Assignment 1. Thus, the submission number is “moved” to Assignment 2. The submission number must be treated with caution, as students could work and compile their solution in the IDE or in the online system. Both these methods were used during the course. We did not have a mechanism to count the number of compilations in the IDE. On average, Group P students used 50 minutes on the computer-based phase of A1 after transferring the pen-and-paper solution to a computer. Likewise, Group C used 1 hour and 18 minutes on A1 from the start of the exam.

4.5 Human assessment vs. automated assessment

In this subsection, we discuss how reliable automated assessment (based on a test suite) is compared to manual assessing. Figures 4 and 5 present the marks from the manual assessment in Assignment 1 (paper-based phase) as a function of the number of passed test cases in Assignments 1 and 2, respectively\(^{2}\). First, in Figure 4, the correlation is quite high ($r = 0.865$), and the success rate in the given test explains 75% ($R^2 = 0.748$) of the variation of the marks in Assignment 1. The cluster in the 20 test boundary is explained by the `DivZero` error; if everything else was fine but `DivZero` was committed, 12 test cases failed. There are quite a few cases above the linear regression line where the exam score is higher than the “expected” number of passed tests. Overall, in the midfield of Figure 4, where only a part of the tests pass, the deviation in the human-given marks seems the widest. This is natural, since an experienced reviewer can “sniff out” tinges of a correct answer even when a test case would fail. Humans can more easily distinguish between conceptual errors and typing errors. Often times reviewers give (at least some) marks for the correct train of thought, even though the student did not express his or her thoughts entirely correct in the paper.

![Figure 4: The number of passed tests in Assignment 1 (automated assessment) compared to Assignment 1 marks (manual assessment).](image)

In Figure 5, many students have “glided” to the right, meaning they passed more tests, resulting in a higher correlation ($r = 0.898$) and, therefore, a higher coefficient of determination for Assignment 2 ($R^2 = 0.81$). By placing more weight on some key tests and

\(^{2}\text{Note that both of these figures correspond to Group P of the Spring exam.}\)
less weight on some corner cases, the explanation rate could be even higher. Here, we consider that the reviewer has successfully interpreted the student’s potential in fixing the solution. A typical example in the paper-based part is that a student muddles up comparison operators <= and >=. Using a wrong operator, even mistakenly, results in failing nearly all the tests. However, this kind of a mistake is—presumably—quickly noted and corrected by the student. Therefore, while the reduction in human-given marks was agreed to be minimal, the test-based assessment gives nearly a zero score for an idea that is very close to correct. From this premise, an even higher correlation in Figure 5 ($r = 0.898$) was anticipated.

Below the linear regression line in Figure 5, there were some students who improved their A2 solutions more than what would have been expected by the A1 (manual assessment) marks. While the underlying reasons for this remained unresolved, one possible explanation is that the switch between the paper-based and the computer-based phases gave them a natural break from the cognitive load. While physically moving from a classroom to another, they came up with ideas that they did not think about before. Below the regression line, there were also a handful of cases where an incorrect, trivial solution, such as return lowerlimit, passed many tests. Again, note that there were many test cases that specifically pinpointed different corner cases.

With regard to Group C, as well as both of the Autumn groups, the marking was based on either the situation after the computer-based phase (A1c) or the test suite phase (A2). Therefore, the correlation coefficients cannot be directly compared to the ones presented above. However, by using selected weight coefficients, R^2 values ranging from 0.835 to 0.862 were reached.

Figure 5: The number of passed tests in Assignment 2 (automatic assessment) compared to Assignment 1 marks (manual assessment).

To summarize, the results of test-based automatic assessment seems to be comparable to human-made assessment with a reasonable reliability.

5 DISCUSSION

In this study, we inspected the differences of paper-based and computer-based exams from several perspectives. First, in a relatively simple problem, such as Rainfall in this study, it is hard to say which is better for the student in terms of overall score or error-tendency: a paper-based exam or a computer-based exam. By a simple problem we mean that students can be reasonably expected to work out a solution without a debugger or advanced features of an IDE. Then, when the assignment gets harder in that using debugging tools or other features becomes a more natural way of solving the problem, students can benefit more from a computer-based exam. Our exam actually included another assignment, that was a Rainfall-like problem, but was a harder problem in general. Due to the space limitations, we will report the full results of this 2x2 crossover study in later studies, but as a general observation, the group using the computer had a clear advantage over the pen-and-paper group with the average scores of 60% vs 39%. The difference was statistically significant. It is interesting, though, that the average score in A3 for the computer-users was quite near to the Group C Rainfall average score, which was 64%.

With regard to our second objective, we found, as anticipated, that students produced less erroneous code on a computer and with the help of an IDE when compared to pen-and-paper code. Further, if we compare the Groups P and C, there were not big differences in terms of passed tests that would have been caused by the switch in the mode (from the paper-based phase to the computer-based phase).

Third, it seems that with the Rainfall problem, automated assessment of computer-based exams gives quite reliable results when compared to manual assessment. However, this area clearly still needs more research.

The opportunities for automated assessment have fascinated scholars and researchers to arrange computer-based exams in computing education. In this study, we followed that direction. Even though manual assessment brings out qualitatively different nuances in student-written programs, interpreting the programs can be tricky. In our exams, we used two reviewers for each assignment that required code writing, and different interpretations still existed despite a fine-grained set of specifications for marking. In this regard, computer-based assessment should not be abandoned only because the assessment result can lead to a discourse; whether assessing students manually or automatically always leaves room for dissenting opinions and interpretation. Working with com-
puters is also a working mode that is typically practiced throughout a CS1 course, thus a natural way to complete the exam. Based on this study, we believe that automated assessment could be comparable to manual assessment from a score / marking perspective. An important challenge, however, is to figure out a comprehensive and sufficient, yet appropriate test suite that is based on the CS1 learning goals and also the characteristics specific to the teaching context. Earlier Rainfall studies as well as our own experiments from several earlier course exams did greatly help in generating the test suite that was utilized in this study. How to generalize this into other types of assignments as well, remains a future topic.

REFERENCES

Simon (2013). Soloway’s rainfall problem has become harder. In Learning and Teaching in Computing and Engineering (LaTiCE), 2013, pages 130–135. IEEE.

A TEST SUITE AND TEST PASSING RATES.

Table 4: Test suite and passing rates for each test. All the numbers below Spring 2015 and Autumn 2015 columns are percentages.

<table>
<thead>
<tr>
<th>Id</th>
<th>Input (data, lower & upper limit)</th>
<th>Output</th>
<th>Spring 2015</th>
<th>Autumn 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group P (n=51)</td>
<td>Group C (n=58)</td>
</tr>
<tr>
<td>1</td>
<td>{12, 0, 42, 14, S, 12, 55}, 0, S</td>
<td>22.667</td>
<td>A1p 47 53</td>
<td>A1c 62 62</td>
</tr>
<tr>
<td>2</td>
<td>{12, 0, 42, 14, S, 12, 55}, 1, 42</td>
<td>12</td>
<td>A1p 45 51</td>
<td>A1c 45 64</td>
</tr>
<tr>
<td>3</td>
<td>{12, 0, 42, 14, S+1, 12, 55}, -1, 41</td>
<td>6</td>
<td>A1p 49 51</td>
<td>A1c 47 57</td>
</tr>
<tr>
<td>4</td>
<td>{12, 0, 42, 14, S, 12, 55}, 0, 0</td>
<td>0</td>
<td>A1p 41 45</td>
<td>A1c 36 66</td>
</tr>
<tr>
<td>5</td>
<td>{}, 0, S</td>
<td>0</td>
<td>A1p 31 35</td>
<td>A1c 47 69</td>
</tr>
<tr>
<td>6</td>
<td>{0, 10}, 0, S</td>
<td>10</td>
<td>A1p 51 55</td>
<td>A1c 53 60</td>
</tr>
<tr>
<td>7</td>
<td>{12, 5, 42, 14, S-1, 12, 55}, 0, S</td>
<td>34</td>
<td>A1p 65 65</td>
<td>A1c 64 69</td>
</tr>
<tr>
<td>8</td>
<td>{-1, -2, 0, 0, S}, 0, S</td>
<td>0</td>
<td>A1p 43 49</td>
<td>A1c 50 55</td>
</tr>
<tr>
<td>9</td>
<td>{-1, -2, S, 1}, 0, S</td>
<td>0</td>
<td>A1p 41 45</td>
<td>A1c 40 53</td>
</tr>
<tr>
<td>10</td>
<td>{12, 0, 42, 14, S, 12, 55}, S, 0</td>
<td>99</td>
<td>A1p 41 43</td>
<td>A1c 41 53</td>
</tr>
<tr>
<td>11</td>
<td>{12, 0, 42, 14, S, 12, 55}, 98, 0</td>
<td>98</td>
<td>A1p 43 47</td>
<td>A1c 40 53</td>
</tr>
<tr>
<td>12</td>
<td>{-5}, -5, S</td>
<td>-5</td>
<td>A1p 37 41</td>
<td>A1c 47 50</td>
</tr>
<tr>
<td>13</td>
<td>{}, -10, S</td>
<td>-10</td>
<td>A1p 31 35</td>
<td>A1c 47 53</td>
</tr>
<tr>
<td>14</td>
<td>{-1, 0, 1}, -10, S</td>
<td>0</td>
<td>A1p 61 57</td>
<td>A1c 64 64</td>
</tr>
<tr>
<td>15</td>
<td>{10}, -10, S</td>
<td>10</td>
<td>A1p 71 67</td>
<td>A1c 66 74</td>
</tr>
<tr>
<td>16</td>
<td>{1000, 2000}, -10, 3000</td>
<td>1500</td>
<td>A1p 63 57</td>
<td>A1c 57 67</td>
</tr>
<tr>
<td>17</td>
<td>{10, 1000, 2000}, 10, 3000</td>
<td>1500</td>
<td>A1p 39 43</td>
<td>A1c 43 57</td>
</tr>
<tr>
<td>19</td>
<td>{1, 2, 3, -2}, -2, 10</td>
<td>0</td>
<td>A1p 49 49</td>
<td>A1c 40 52</td>
</tr>
<tr>
<td>20</td>
<td>{1, 2, 3, 0}, -2, 10</td>
<td>1.5</td>
<td>A1p 61 57</td>
<td>A1c 57 67</td>
</tr>
<tr>
<td>21</td>
<td>{-5, -6}, -5, S</td>
<td>-5</td>
<td>A1p 29 35</td>
<td>A1c 41 47</td>
</tr>
<tr>
<td>22</td>
<td>{0, 2}, 0, S</td>
<td>2</td>
<td>A1p 51 55</td>
<td>A1c 53 60</td>
</tr>
<tr>
<td>23</td>
<td>{0, 2, 3, 4, 5}, 4, S</td>
<td>5</td>
<td>A1p 45 45</td>
<td>A1c 34 55</td>
</tr>
<tr>
<td>25</td>
<td>{4, 5, 3, 4, 5}, 4, S</td>
<td>4</td>
<td>A1p 43 47</td>
<td>A1c 43 50</td>
</tr>
<tr>
<td>26</td>
<td>{2, S+1}, S+1, 0, S</td>
<td>2</td>
<td>A1p 59 61</td>
<td>A1c 57 66</td>
</tr>
<tr>
<td>27</td>
<td>{-1, S}, 2, 0, S</td>
<td>0</td>
<td>A1p 39 47</td>
<td>A1c 48 55</td>
</tr>
<tr>
<td>28</td>
<td>{-1, 0, 0, 5}, -10, S</td>
<td>1</td>
<td>A1p 59 55</td>
<td>A1c 57 69</td>
</tr>
<tr>
<td>29</td>
<td>{1, 2, S, -1, 2, 3, 1, S+1}, -2, S+1</td>
<td>15.286</td>
<td>A1p 39 43</td>
<td>A1c 47 59</td>
</tr>
<tr>
<td>30</td>
<td>{12, 0, 42, 14, S, 12, 55}, 0, S+1</td>
<td>39</td>
<td>A1p 45 51</td>
<td>A1c 52 62</td>
</tr>
<tr>
<td>31</td>
<td>{12, 14, 16}, 0, S</td>
<td>14</td>
<td>A1p 65 63</td>
<td>A1c 64 69</td>
</tr>
<tr>
<td>32</td>
<td>{3, 0, 7, 6, S, S, 5}, 0, S</td>
<td>5.25</td>
<td>A1p 47 53</td>
<td>A1c 59 60</td>
</tr>
</tbody>
</table>

Notes: (i) S = Sentinel value. In the Spring 2015 experiment the value was 999, and in the Autumn 2015 experiment the value was 99. (ii) The Output column presents the values with the value 99 for Sentinel. (iii) The floating point values in the Output column are rounded for the sake of readability. (iv) A1p = Assignment 1, paper-based; A1c = Assignment 1, computer based.