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Abstract—Keystroke dynamics is one of the authentication
mechanisms which uses natural typing pattern of a user for
identification. In this work, we introduced Dependence Clus-
tering based approach to user authentication using keystroke
dynamics. In addition, we applied a k-NN-based approach that
demonstrated strong results. Most of the existing approaches
use only genuine users data for training and validation. We
designed a cross validation procedure with artificially generated
impostor samples that improves the learning process yet allows
fair comparison to previous works. We evaluated the methods
using the CMU keystroke dynamics benchmark dataset. Both
proposed approaches outperformed the previous state-of-the-art
results for the CMU dataset for unsupervised learning.

I. INTRODUCTION

With the rapidly expanding internet services industry and,

thus, the increasing importance of cyber security, the user

identification and authentication problems have become a

focus for many research labs. User’s identity is normally

verified by an access control mechanism, which performs the

authentication task. Traditional approaches to access control

provide good performance, however, they have some limi-

tations. For example, passwords or PINs can be forgotten,

lost or stolen which threatens security. Hence, new forms

of authentication based on conjunction of traditional methods

with biometrics are becoming more popular within computer

security.

Biometrics are defined as the physical traits and behavioral

characteristics that identify a living person [1]. Among them,

keystroke dynamics [2] is considered as a strong behavioral

biometric based authentication system. Keystroke dynamics

statistics allow extracting timing features containing informa-

tion about human’s typing rhythms, i.e. time intervals between

(a) the key presses of consecutive keys, (b) pressing a key

and releasing next key, (c) pressing and releasing a key. Such

typing patterns can serve as a human’s identifier due to their

ability to activate similar behavioral and cognitive mechanisms

cf. handwritten signatures. Moreover, implementation cost of

keystroke dynamics is very low as only a keyboard is needed

for data collection. Among other advantages are the ability

to operate in hidden mode, high user acceptance and ease of

integration to existing security systems [3].

Despite all the advantages keystroke dynamics can be in-

fluenced by external factors, e.g. environmental conditions or

keyboard device, or emotional state producing some noise and

causing lower accuracy and permanence [4], [3]. With the help

of statistical, machine learning or other algorithms researchers

can identify behavioral patterns which allow distinguishing

among the users based on specific characteristics. Analysis of

typing patterns can be a powerful security tool for detecting

intrusions or threats, or for distinguishing between genuine

users and impostors during authentication [5], [6], [7], [8].

The rest of the paper is organized as follows. Section

II shortly reviews the current state of keystroke dynamics

techniques. Section III briefly describes the dataset used in this

work and the data collection procedure. Section IV provides

descriptions of the main concepts and methods used in the

paper. Sections IV-A - IV-D explain the DC algorithm and

the DC based anomaly detection method, while Section IV-E

refers to k-NN based anomaly detection approach. Evaluation

procedure is described in Section IV-F. Meanwhile, Section V

is devoted to the experimental results. It describes parameter

estimation procedure and results of the performance tests.

Finally, Section VI concludes the paper.

II. RELATED WORK

Most of the previous research works in keystroke dynamics

refer to authentication systems. For user’s authentication via

keystroke dynamics either static or free text models can be

used. The majority of previous works focus on static text when

users type specific predefined text such as password [7], [2]. In

more advanced and secure systems, users are being continually

authenticated and monitored based on free text models when

users type arbitrary input text of any length [9], [10], [2].

A vast amount of performance results obtained using various

keystroke dynamics datasets have been reported by studies.

Most of the studies collected own data, therefore, making

performance comparison among the works difficult. To tackle

this issue, in [11] authors present a comprehensive comparative

study of detecting anomalies using keystroke dynamics dataset

(CMU), thus, making a good benchmark. The authors collected

data and implemented 14 anomaly detection algorithms for

detecting anomalies in keystroke dynamics. Each detector

was trained on a set of timing vectors of a true user, thus,

providing a true-user behavioral model. Then the rest of data

samples were tested against the true-user behavioral model and

assigned an anomaly score. The parameters tuning was not

performed in the experiments of this study due to a possible



bias in the evaluation results. Instead, the authors used the

parameters reported in the source studies. In addition to [11]

there are a number of works presenting performance results for

the CMU keystroke dynamics benchmark dataset. According

to [11] the top detectors demonstrating best results on the

CMU dataset are the scaled Manhattan distance [12] and the

nearest neighbor with Mahalanobis distance [13] with equal

error rate (EER) values of 0.096 and 0.100, correspondingly.

The best zero-miss false-alarm (ZMFAR) rate belongs to the

nearest neighbor detector using Mahalanobis distance with the

value of 0.482. Classical Mahalanobis [14] and the normed

Mahalanobis [15] detectors demonstrate equal ZMFAR values

of 0.482.

Following [11] a number of works proposed new algorithms

and compared their performance with existing results. In [16],

the authors followed the study in [11] by introducing new

detectors and improving the results by using the same protocol

and evaluation procedure in order to guarantee fair perfor-

mance comparison. They introduced a new distance measure

by combining Mahalanobis and Manhattan measures and used

it in combination with the nearest neighbor classifier. They

improved EER by 0.9% and ZMFAR by 4.5% compared to the

best results in [11]. Furthermore, the Gaussian mixture model

(GMM) was applied [17] producing EER of 0.087. Despite

the authors also reported additional even better results we

omit them here as the testing procedure was different from the

one described in [11] making the fair comparison impossible.

Another work [18] devoted to applications of neural networks

to keystroke data reports improved results compared to the

best performance values from [11]. The authors got EER

of 0.0773 by using Levenberge-Marquardt backpropagation

network. However, they incorporated negative examples into

the training set. This prevents fair comparison with [11] where

detectors were trained with the use of only positive samples.

All aforementioned performance results can be found in Table

I.

In this work, we propose two anomaly detection approaches

based on k-nearest neighbors (k-NN) and dependence cluster-

ing (DC) [19]. Despite its simplicity, k-NN is a strong bench-

mark and often provides state-of-the art results in different

tasks including biometric identification and authentification

[20]. In our study, we employ a k-NN based approach combin-

ing with Manhattan distance. DC is a spectral clustering type

algorithm which has been used for the clustering tasks. In this

study, we adapt DC to solving anomaly detection problems.

We test the methods on the CMU dataset and compare the

obtained results with the performance reported in [11]. We

reproduce training and evaluation procedures according to [11]

to ensure fair comparison among detectors. Both proposed

methods outperform the previous known state-of-the-art results

on the CMU dataset.

III. DATA

Detailed information of how the data was collected can be

found in [11]. In this section, we provide a brief description

of the data and the data collection procedure. For password

generation and verifying its strength, publicly available tools

were used [21], [22].

The password was generated as a sequence of 10 charac-

ters containing letters, numbers and punctuation signs. The

obtained sequence was manually modified by altering some

punctuation and casing in order to better meet requirements

of a strong password. This resulted in password .tie5Roanl
that still was rated strong. During data collection the same

password was typed by all subjects.

The data was collected from 51 subjects of different age,

sex and handedness groups. Each subject resulted in 400

password-typing samples. After all data had been collected,

a set of timing features were extracted from raw data. Finally,

31 timing features were generated. Despite known correlations

and linear dependency among timing features all of them were

left in the data with a purpose of being useful in evaluation of

future works. Possible adverse effect on some detectors can

be avoided through a careful feature selection procedure [23].

IV. METHODS

A. Preliminary concepts

Dependence Clustering (DC) is a method which considers

geometric structures of data and is based on maximizing the

group dependence measure. First, let us introduce essential

assumptions regarding the data and concepts foundational this

algorithm.

Given a set of data points Ω = {xi|i = 1, ..., N ;xi ∈ R
n}

we form a graph defined by a similarity matrix S of size

N × N . By scaling rows of S so that elements in each

row sum up to one we transform S to the transition matrix

P and the corresponding t-step transition matrix Pt, thus,

defining the Markov chain on this graph. The t-step transition

matrix is calculated as Pt : P t
i,j = Pr(Xt = j|X0 = i),

where X0 represents probability at the initial state and Xt

is a random walk representing a node at the t-th transition.

Further, we assume that the whole chain is ergodic and

that any two nodes in the graph can be connected through

Markovian transitions. This enables calculation of statistical

dependence between graph nodes in a certain evolution step

Di,j,t = Dep(X0 = i,Xt = j) [24] that is defined by the

following equation:

Di,j,t =
Pr(X0 = i,Xt = j)

Pr(X0 = i)Pr(Xt = j)
. (1)

Statistical dependence serves as a measure of closeness be-

tween data points.

Then we define group dependence Dt as

Dt(s) =
∑

xi,xj∈Ω

(
Di,j,t − d0

)
(sisj + 1)/2, (2)

where Di,j,t is defined in (1), s = [s1, ..., sN ] is a group

assignment vector, where decision variable si = 1 if data point

i belongs to group 1 and si = −1 if it belongs to group 2 and

d0 = 1+ εd is the baseline dependence level which is usually

set to 1. More detailed information about parameter settings

and optimization procedure can be found in [19].



B. DC for two groups

The actual optimization is carried out in the domain of real

numbers R. Hence, we relax the original formulation (2) so

that elements of s become real. We start with a simple case of

bisecting a graph. By varying the group assignment s of all N
points and constraining the L2 norm of s to be equal to one:

||s||2 = 1 we obtain a good partition through maximizing the

group dependence measure Dt(s) as follows:

argmax
||s||=1

Dt(s) = argmax
||s||=1

∑

i,j

(Di,j,t − 1)(sisj + 1)/2

= argmax
||s||=1

sT (Pt(B(t))−1 − 11T )s (3)

where B(t) : B
(t)
j,j = Pr(Xt = j) = [xT

0 P
t]j , x0 is the initial

probability vector representing prior information related to the

initial states, εd is assumed to be 0, for simplicity. The division

of the data points is made based on the signs of the eigenvector

corresponding to the largest positive eigenvalue of G0 and

stops when we get no positive eigenvalues. The matrix G0 is

defined by

G0 = Pt(B(t))−1 − 11T . (4)

Note that generally matrix G0 is not symmetric. However,

the nature of many datasets, including the CMU dataset used

in this study, implies symmetry of similarity relation which

obeys commutative property. Therefore, in this paper we make

divisions based on eigendecomposition of a symmetric matrix

G = G0 +GT
0 .

C. DC for multiple groups

In order to obtain divisions to multiple groups a standard

subsequent division approach is applied [25]. At every step

we make binary splits of each group already found during

the previous iterations, following the procedure described in

Section IV-B. We proceed with an optimal division as the one

which resulted in the maximal increase of group dependence

for the whole dataset. Moreover, the following condition must

fulfill: Dt(sgn(s
′
C))−Dt(sC) > NΔd, where sC and s′C are

within-cluster group configurations of a split candidate cluster

ΩC ⊆ Ω before and after the division, correspondingly, Dt(s)
is defined by (2) and N is the size of ΩC . Δd = δd

∑
gi,j>0 G

is the minimal dependence gain required to split a cluster

into two sub-clusters where δd ∈ [0, 1] is a dependence

gain parameter. δd serves as a regularization parameter which

prevents the algorithm from defining too small or too unclear

clusters. Figure 1 displays pseudo code summarizing the above

steps.

D. DC-based anomaly detection

For discovering anomalies we use the following procedure.

First, we apply z-score normalization [26] to the data. Next,

we build a similarity matrix by first computing pairwise

distance matrix using either Manhattan or Euclidean distance.

We transform the distance matrix to the similarity matrix by

using the following non-linearity sij = exp(−αdij), where dij
denotes an element of the pairwise distance matrix, sij denotes

Require: Set of data points Ω, similarity matrix S, parameters t, δd,
εd.
Initialize a set Ψ = {Ω}, Δd as described in Section IV-C;
Compute transition matrix P from S (see Section IV-A);
while true do

Set Ω′
C = ∅, Ω′ = ∅;

for all ΩC in Ψ do
Find a sub-division s′C of ΩC by solving (3);
Define Ω1

C = {xi| sgn(s′C(i)) > 0} and
Ω2

C = {xi| sgn(s′C(i)) ≤ 0};
if Dt(Ω

1
C) +Dt(Ω

2
C)−Dt(ΩC) > NΔd then

Ω′
C = ΩC , Ω′ = {Ω1

C ,Ω
2
C};

end if
end for
if Ω′

C �= ∅ then
Apply the sub-division of Ω′

C by replacing Ω′
C in Ψ by the

two elements of the set Ω′;
else

Finish the loop.
end if

end while

Fig. 1. Pseudo code for DC algorithm

an element of the similarity matrix and α is a scale parameter.

We anticipate that this non-linearity matches distribution of

the pairwise distances well. In other words, it gives more

resolution in the region of the distances we are interested in the

most. Further, using the DC algorithm we divide the training

set into clusters. The median Manhattan distance between a

test sample and each cluster mean is then used as anomaly

score for this test sample.

E. k-NN-based anomaly detection

k-NN [14] is a well-known method used for classification

or regression. It belongs to the category of instance-based

learning methods when training phase is essentially missing.

All computations are done locally with k nearest neighbors

from the training set during testing phase.

For discovering anomalies we use the following procedure.

First, we apply z-score normalization [26] to the data. Then

for every test sample we compute Manhattan distance between

itself and the mean value of its k-nearest neighbors. This

distance is used as anomaly score for the test sample.

F. Evaluation

In our experiments we used the same procedure of building

training and testing sets as described in [11]. Thus, for each

user the first 200 samples were assigned to the training set

and the last 200 samples were assigned to the test set as

positive samples (true user’s patterns). Moreover, the first 5

repetitions from every other user were added to the test set as

negative samples (impostor’s patterns). Note that training sets

are constructed so that they contain only positive examples. To

be able to perform cross-validation we need, however, negative

samples as well. Using the true impostors’ patterns during

cross-validation would lead to unfair comparison with the

results from [11] as our algorithms will indirectly learn to dis-

criminate among positive and negative samples. Therefore, we



TABLE I
PERFORMANCE COMPARISON OF THE BEST REPORTED ALGORITHMS ON THE SAME CMU DATASET. MEAN AND (STANDARD DEVIATION) ARE SHOWN

FOR THE EQUAL ERROR RATE (EER) AND ZERO-MISS FALSE-ALARM RATES (ZMFAR).

Algorithm Parameters EER ZMFAR

Nearest Neighbor (Mahalanobis) 0.100 (0.064) 0.468 (0.272)
Manhattan (scaled) 0.096 (0.069) 0.601 (0.337)
GMM 0.087 (0.058) -
Combined Mahalanobis and Mahattan distance 0.084 (0.056) -
k-NN (Manhattan) k=3 0.078 (0.055) 0.385 (0.267)
k-NN (Manhattan) k=6 0.078 (0.056) 0.377 (0.272)
k-NN (Manhattan) k=8 0.078 (0.057) 0.377 (0.276)
DC (Euclidean) * 0.078 (0.056) 0.390 (0.280)
DC (Manhattan) ** 0.077 (0.055) 0.358 (0.256)

* δd = 0, εd = 0.001, α = 3.33, t = 1, Manhattan distance; ** δd = 0, εd = 0.01, α = 10, t = 1, Manhattan distance

designed a procedure to generate artificial negative samples.

For each user we generated 200 additional negative samples

by randomly sampling values for every feature independently

from the entire data. Thus, for every user we obtained 200

new artificial samples served as impostors. Finally, we merged

the obtained negative samples with the original training sets.

We ran 10-fold cross validation procedure on the obtained

validation sets of 400 samples independently for each user.

Note that the randomly obtained artificial samples are not the

points from the original dataset. Therefore, with this procedure

we avoid using real test samples in the training/validation

phase.

After the optimal parameter values had been set up the

methods were red trained and tested using the same procedure

as described in [11]. The obtained anomaly scores were

converted into standard measures of error. The following two

measures have been used for estimating performance of all

detectors.

• Equal error rate (EER) [27] corresponds to a point on

the ROC curve where miss rate and false-alarm rate are

equal.

• Zero-miss false-alarm rate (ZMFAR) [13] is a measure

minimizing false-alarm rate constraining the miss rate is

zero.

V. RESULTS

The results corresponding to the best parameter values

obtained during cross validation as well as the parameter

values themselves are shown in Table I. For reference, Table

I also displays the best results from the previous studies

related to the CMU dataset, reported in Section II. One can

see that the presented k-NN and DC approaches demonstrate

improved results compared to the previous works. Thus, EER

was improved by 7% compared to combined Mahalanobis

and Manhattan distance detector [16]. We cannot compare our

ZMFAR with the results from [16] as it was not reported in

their work. Although, we improved ZMFAR by 11% compared

to Nearest Neighbor (Mahalanobis) demonstrating the lowest

ZMFAR in [11].

The best results have been shown by the DC method when

using Manhattan distance in both stages of the algorithm:

generating similarity matrix at the step of clustering and

calculating distance at the step of discovering anomalies.

We pay attention to the fact that not only the EER and

ZMFAR performance measures have been improved but also

their standard deviation values (displayed in brackets) became

lower, which signifies superior robustness of the proposed

methods.
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Fig. 2. (a) - ROC curves, (b) - zoomed in ROC curves for anomaly detection
algorithms.

To visualize the results we plot ROC curves in Figure

2. Figure 2(b) is a zoomed version of Figure 2(a). ROC

curves corresponding to the DC and k-NN based approaches

proposed in this paper are displayed by plain and dotted lines,

correspondingly. Furthermore, by dashed and dash-dot lines

we plot ROC curves for Manhattan (Scaled) and Nearest

Neighbor (Mahalanobis) detectors which demonstrated the

best EER and ZMFAR in [11]. The threshold for calculating

EER is chosen so that detector miss and false-alarm rates are

equal. In Figure 2 it corresponds to the point where the line

y = 1− x displayed in red crosses the detector ROC curve.

While computing ROC curves we used concatenated predic-

tion results for all users, i.e. the varied parameter for building

ROC curves represented global user-wide threshold (anomaly

score) values. Note, this approach is different from the one

used for calculation of EER and ZMFAR scores in Table I as

the scores were taken as averages from per-user ROC curves.

In the latter case the ROC curve parameter was varied for each

user independently representing individual user threshold. The

obtained ROC curve is a smoothed version of the individual



user ROC curves due to substantial variation in ZMFAR rate,

in particular. Average EER and ZMFAR rates are higher than

the ones measured from the user-wide ROC curve, since by

varying anomaly score individually for every user we have

more degrees of freedom, i.e. more powerful model. The

ROC curves show that the methods generalize well even using

global anomaly score threshold and can be further improved

by choosing specialized per-user thresholds.

VI. CONCLUSIONS

In this work we proposed two approaches for detecting

anomalies in the CMU dataset. One approach is based on the

well-known k-NN and the other approach is based on DC

thoroughly described here. Both proposed approaches outper-

form previous results that we know for this dataset respecting

unsupervised learning setting. The main contributions of our

work include:

(a) We improved upon the previous state-of-the-art results

for the CMU dataset reported in [11], [16] for the

unsupervised learning.

(b) We designed a cross validation procedure with artificially

generated negative samples that allows avoiding the use

of true negative samples in the learning process. Using

the true negative samples during cross-validation would

prevent fair comparison with the previous studies and

result in violation of purely unsupervised learning setting.

The improved results for the CMU dataset, indirectly,

justify the validity of this procedure.

(c) We adapted a spectral clustering style algorithm pre-

viously used only for clustering problems to anomaly

detection.

The practical implications of the presented results manifest in

enabling more accurate and robust intrusion detection systems.

In the future the proposed approaches can be extended

to other datasets related to more diverse security threats.

Moreover, we plan to extend the DC approach to using depen-

dence distance when computing anomaly score or determining

the closest cluster of a test point. This extension requires

changes in implementation of the DC algorithm that will

allow performing real-time incremental computations with test

points.
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uous and non-intrusive identity verification in real-time environments
based on free-text keystroke dynamics,” in 2011 IEEE International
Joint Conference on Biometrics, IJCB 2011, Washington, DC, USA,
October 11-13, 2011, 2011, pp. 1–8.

[9] D. Gunetti and C. Picardi, “Keystroke analysis of free text,” ACM Trans.
Inf. Syst. Secur., vol. 8, no. 3, pp. 312–347, Aug. 2005.

[10] P. Kang and S. Cho, “Keystroke dynamics-based user authentication
using long and free text strings from various input devices,” Information
Sciences, vol. 308, pp. 72 – 93, 2015.

[11] K. S. Killourhy and R. A. Maxion, “Comparing anomaly-detection
algorithms for keystroke dynamics.” in DSN. IEEE Computer Society,
2009, pp. 125–134.
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