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Abstract— In this paper we propose a novel cluster-based 
RF fingerprinting method for outdoor user-equipment 
(UE) positioning using both LTE and WLAN signals. It 
uses a simple cost effective agglomerative hierarchical 
clustering with Davies-Bouldin criterion to select the 
optimal cluster number. The positioning method does not 
require training signature formation prior to UE position 
estimation phase. It is capable of reducing the search space 
for clustering operation by using LTE cell-ID searching 
criteria. This enables the method to estimate UE 
positioning in short time with less computational expense. 
To validate the cluster-based positioning real-time field 
measurements were collected using readily available 
cellular mobile handset equipped with Nemo Handy 
software. Output results of the proposed method were 
compared with a single grid-cell layout based RF 
fingerprinting method. Simulation results show that if a 
single LTE and six WLAN signal strengths are used then 
the proposed method can improve positioning accuracy of 
35% over the grid-based RF fingerprinting.       

Keywords-component; LTE cell-ID; Grid-based RF fingerprinting; 
Hierarchical Clustering; Minimization of Drive Tests.

I. INTRODUCTION

Location is a vital component in consumer services like social 
media, search, advertising and navigation. For authorities, 
mobile location is mandatory for emergency-call location, and 
can also be used for road-traffic management and machine-to-
machine purposes. GPS-based consumer navigation devices 
have reached mass market status, benefits are undeniable: it is 
ubiquitous and always available, high-accuracy positioning 
[1]. However, GPS has two major drawbacks: the signals 
broadcast by the satellites are too weak to be received indoors 
in places such as shopping malls, and in dense urban 
environments not enough satellites are visible to obtain 
positioning fixes in a reasonable time. The popularity of IEEE 
802.11 infrastructures, their low deployment cost, and the 
advantages of using them for both communication and 
positioning, make them an attractive choice. Therefore, 
authors in [2] have proposed a portable positioning system, 
that utilizes both GPS and Wi-Fi-based pattern matching 

methods to estimate the position [2][3]. To improve this 
combined GPS and Wi-Fi-based Pattern Matching Method, in 
[4] authors proposed to assign weights to different weather 
conditions, determined the position of the mobile terminal by 
the Euclidean distance, and adjusted the weights according to 
the environment. Wi-Fi positioning system based on 
fingerprinting was evaluated in the Sydney CBD area where 
Wi-Fi APs are densely deployed and test results show that it 
works well for outdoor localization with errors in the tens of 
meters [4]. Also in [5] authors have carried out experimental 
analysis for outdoor fingerprinting system, implemented over 
the WLAN and demonstrated that it is feasible to perform 
outdoor positioning with reasonable accuracy using 802.11-
based positioning. A three-phase methodology (measurement, 
calibration and estimation) for locating mobile stations (MS) 
in an indoor environment using wireless technology was 
proposed in [6] where combination of fingerprint and cluster 
based positioning system was developed to overcome the 
problem of the relative effect of doors and walls on signal 
strength and the system is independent of the hardware 
technology manufacturer. A new algorithm was proposed in 
[7] for enhancing the performance of adaptive enhanced cell-
ID (AECID) fingerprint positioning in LTE, where clustering 
was employed to increase the accuracy of the polygon 
computation scheme of the AECID algorithm. The basic 
positioning method in most cellular communication systems is 
the cell-identity (cell-ID) method which has the advantage of 
short response time and thus it fulfills the time to first fix 
(TTFF) requirement for E-911 emergency positioning in the 
North American market which is specified to be below 30s. 
This method is applicable in all situations where there is 
cellular coverage.  
One major requirement of RF fingerprint based positioning is 
to create and maintain the big correlation database in order to 
update the training fingerprints with surrounding structural 
and environmental changes. Operators usually conduct 
extensive and expensive periodical drive test campaigns to 
fulfill this requirement. The operational expenditure (OPEX) 
associated with traditional drive tests can be removed by a 
feature introduced in 3GPP Release 10, known as 
Minimization of Drive Tests (MDT) which enables operators 
to utilize users’ equipment to collect radio measurements and 
associated location information [8]. MDT provides a 
framework for gathering user reported location-aware radio 



measurements from commercial mobile phones that can be 
used for creating and maintaining such training database. This 
procedure allows operators to collect radio measurements, i.e. 
received signal strength and quality, with UE location 
information and a time stamp [9].
In our previous work grid-cell based RF fingerprinting 
(GRFFP) has shown good positioning accuracy in dense urban 
scenario using MDT samples obtained from a dynamic LTE 
system simulator [10][11]. To improve the user equipment 
(UE) positioning accuracy using grid-based RF fingerprinting, 
weighted Kullback-Leibler Divergence based overlapping 
grid-cell layout method was proposed in [12]. However 
GRFFP delivers good positioning when two requirements are 
fulfilled: (i) training signatures need to be updated in regular 
interval of time, (ii) an optimal grid-cell layout needs to be 
chosen for different cellular network scenario and for the 
amount of available training MDT samples.        
In this study we propose a simple cluster-based RF 
fingerprinting (CRFFP) method which does not go through 
any training phase to estimate UE position. It uses MDT 
samples comprising of both LTE and Wi-Fi signals; we refer 
to this as generalized MDT (GMDT). The CRFFP takes 
advantage of the LTE serving cell-ID based searching 
technique to deliver UE positioning in short time. Here we 
also analyze the UE positioning accuracy with three different 
combinations of LTE and Wi-Fi signals and results were 
compared with the traditional GRFFP method.    

The following section contains a brief description of 
the GMDT field measurements used in this study and then the 
conventional GRFFP method is explained. In Section III, first 
description of the proposed CRFFP is given, then test results 
obtained with GRFFP and CRFFP positioning methods are 
presented, and finally concluding remarks are given. 

II. GRID-BASED RF FINGERPRINTING  

A. Generalized MDT 
According to 3GPP specifications MDT enables the operation, 
administration, and maintenance (OAM) system to collect 
radio measurements from the UE, together with location 
information if available when the measurements are taken [8]. 
Here we propose a GMDT that is capable of collecting Wi-Fi 
signal strengths along with the LTE and UE location 
information. There are two main reasons behind this: (i) RF 
fingerprinting gives very good positioning accuracy using Wi-
Fi signal strengths in outdoors (especially in dense urban 
areas), (ii) to decrease the search space in CRFFP positioning 
which also shortens the operation time. In order to create the 
GMDT database we have used Samsung Galaxy S3 (LTE 
capable) which was installed with a handheld drive test 
software application- Nemo Handy. This application is very 
suitable for performing measurements both outdoors and 
indoor spaces while the device being simultaneously used as a 
regular mobile phone [13]. LTE reference signal received 
power (RSRP) and WLAN received signal strength 
indicator (RSSI) measurements were recorded from a 
residential urban area in Tampere, Finland during September 

2014 as shown in Figure 1. Two measurement campaigns 
were done for 800 and 1800 MHz LTE bands, in the 1800 
MHz case, inter-frequency measurements were also reported 
according to the measurement configuration provided by the 
network. Hence in this study we have used GMDT samples 
from LTE 1800 MHz measurements. 

More than 150 kilo-metres of measurements were collected by 
feet, bicycle and car covering approximately an area of 0.33 
square kilo-metres. In all measurements, the route was 
repeated at least twice to ensure that enough measurement 
samples are collected for each grid unit.  

As we can find from Figure 2 that every GMDT sample 
contains at least 1 serving LTE base-station (BS) signal and 
98% of the samples comprises of more than 5 WLAN access 
points (AP). A study conducted in [14], measured the 
significance of Wi-Fi APs for UE position estimation where 
good results were obtained by limiting the Wi-Fi AP number 
to seven for all analyzed samples. In [15] the selection of APs 
was done based on the largest signal strength values recorded 
at each location. Hence we were motivated to use seven 
signals in total including both LTE BSs and WLAN APs. So, 
every GMDT contains the serving LTE BS ID of the recording 
mobile handset. Both LTE and WLAN signals were sorted in 
descending order of signal strength values. We have also used 
three different sets of GMDT samples by choosing different 
combinations of LTE and WLAN signals from the total 
database.  

Figure 2: (a) Number of detected LTE cells and (b) WLAN APs per 
measurement sample.

Figure 1: GMDT field measurement area in Tampere, Finland 

(a) (b) 



A set of GMDT measurement can be defined by:  

              (1) 
where, j=1, 2 and 3 referring different GMDT set, N is the 
total number of measurement samples of a particular set. The 
nth GMDT sample of a set can be presented by a row vector:  

                         (2) 
where, denotes the LTE BS IDs and WLAN AP IDs, 

stands for the corresponding RSRP and RSSI values, 
and contains the x-y coordinates of the UE obtained from 
GNSS position information.       

B. A Simple Grid-based RF Fingerprinting Method 
Here we have used a single grid-cell layout based RF 
fingerprinting method by segmenting the whole geographical area 
of interest with square grid-cell units (GCU). We have used 
Euclidean distance to measure the statistical difference 
between training fingerprints and test samples since it has 
previously been used for outdoor RF fingerprinting in order to 
obtain good UE positioning accuracy [16].
Training Phase of GRFFP: In conventional GRFFP method 
multiple training signatures are formed within a single GCU 
[10][11]. To reduce the searching time to find the best match 
training signature for a test sample and also to reduce the related 
computational cost, a single training signature (TrainSig) is 
created from all the training GMDT samples (GMDTs) that 
belong to a one particular GCU. The TrainSig formed from all the 
GMDT samples of ith GCU (GMDTsi

All) is define as follows: 
     

                      (3)
where,  contains all unique LTE BS IDs and WLAN AP 
IDs obtained from GMDTsi

All, is a vector of the 
corresponding LTE RSRP and WLAN RSSI values, and 
is the reference x-y coordinate calculated from the mean 
values of x and y coordinates of GMDTsi

All.
An example training signature creation and test phase 
matching of GRFFP method is illustrated in Figure 3. Here for 
simplicity only two GCUs are shown, the blue dots inside a 

GCU represent its GMDT samples and the small red triangle 
depicts the corresponding reference position. We can find 
from Figure 3 that GCU 2 has two samples: GMDT2

1 and 
GMDT2

2 represented by two row vectors. Here black squares 
containing  (L1 indicates LTE BS ID number 1, W1 is 
for WLAN AP ID-1), the corresponding  values (SL

1

indicates RSRP of LTE BS ID-1, SW
1 is RSSI of WLAN AP 

ID-1) are within the green squares and  are inside the blue 
squares. For GCU 2 a single training signature-  has 
been created from GMDT2

1 and GMDT2
2. It has three parts: 

(i) contains all unique LTE and WLAN IDs. (ii) 
comprises of mean RSRP and RSSI values for common LTE 
and WLAN IDs, otherwise the RSRP values are copied from 
either GMDT2

1 or GMDT2
2. And (iii)  gives the reference 

x-y coordinates calculated from the mean x and y coordinates 
of GMDT2

1 and GMDT2
2.   

Test Phase of GRFFP: To test a GMDT we first compare its 
LTE and WLAN IDs with all the training signatures available 
and select those signatures which meet the least matching 
threshold. For example in Figure 3,  contains four 
matching IDs: L1, L4, W2 and W5 which are common to the 
Test sample (TestSam), hence we have 57% of ID match 
between TestSam and . Now if the minimum matching 
threshold is set to 50% then  is selected for distance 
measurement. As shown by red dotted arrows in Figure 3, 
only common RSRP and RSSI values are used to calculate the 
Euclidean distance between TestSam and A simplified 
Mahalanobis distance equation is used for distance calculation 
where the inverse covariance matrix is replace by an identity 
matrix: 

     (4) 
where, and  denotes the RSRP and RSSI values of the 
TestSam and a selected TrainSig respectively and is the identity 
matrix. After separate calculation of all the distances between 
a TestSam and the selected training signatures; the TrainSig
corresponding to the smallest Euclidean distance is chosen for 
positioning purpose. The estimated position of that TestSam is 
given by  of the chosen TrainSig.
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Figure 3: Training and test phases of grid-cell based RF fingerprinting 



III. CLUSTER-BASED RF FINGERPRINTING

A. An Efficient Cluster-based Positioning Algorithm 
At first the GMDT samples of the total data-base are sorted 
into different GMDT groups according to the serving LTE BS 
ID. For testing a sample the group that matches the serving 
LTE BS ID of that TestSam is selected. From this selected 
group GMDT samples are selected which fulfill the least 
matching threshold- the matching is similar to the one 
described in section II (B), the only difference is that here 
matching is between TestSam and a GMDT sample of the 
selected group. Now for the clustering purpose, the 
values of the TestSam and the selected GMDTs are put together 
in the same pool. We have used a simple agglomerative 
hierarchical clustering with Davies-Bouldin criterion to select 
the optimal cluster number [17]. This criterion is based on a 
ratio of within-cluster and between-cluster distances. The 
Davies-Bouldin index (DB) is defined by the follow equation:   

            (5) 

where, Di,j is the within-to-between cluster distance ratio for 
the ith and jth clusters. Di,j is given by, 

              (6) 

where,  is the average distance between each point in the ith
cluster and the centroid of the ith cluster.  is the average 
distance between each point in the ith cluster and the centroid 
of the jth cluster.  is the Euclidean distance between the 
centroids of the ith and jth clusters. The optimal cluster 

number is obtained between 1 to 6 clusters using the smallest 
Davies-Bouldin index value. After multiple clusters are 
formed, clustering criteria (CC) is checked: the cluster which 
contains the TestSam must have two GMDTs. If CC is met, then 
the cluster that contains the TestSam is selected and TestSam UE 
position is calculated from the mean x-y coordinates of all 
GMDTs of that cluster. If CC is not fulfilled the matching 
threshold is reduced and clustering is performed again in order 
to analyze the TestSam. Thus CRFF method does not need any 
prior training before the test phase; it utilizes the cell-ID 
advantages in reducing the search space thereby reduces 
position estimation time. Hence it offers a computationally 
less expensive RF fingerprinting method which can be 
implemented in real-time using GMDT. CRFFP positioning 
method is described in Figure 4. 

   

    

B.  Experimental Results: Outdoor UE positioning 
In the total GMDT data-set we have merged multiple samples into a single one which contain similar LTE BS ID and WLAN AP 
ID and were recorded from the same x-y coordinate. In order to avoid over-optimal results consecutive GMDTs have been 
grouped into chunks of 20 samples in sequence. Training and test data-sets were created by randomly choosing such data chunks. 

TABLE I: RESULTS OF GRFFP AND CRFFP METHODS USING LTE AND WLAN SIGNALS

LTE
and

WLAN
Combi-
nation

Matc-
hing

Thres
-hold 

Using Total Test GMDT Samples Using Common Test GMDTs between GRFFP 
and CRFFP 

GRFFP CRFFP GRFFP CRFFP Comm.
Test

GMDT 
(%) 

68% 
PE
(m) 

95%  
PE
(m) 

Test
GMDT  

(%) 

68% 
PE
(m) 

95%  
PE
(m) 

Test
GMDT  

(%) 

68% 
PE
(m) 

95%  
PE
(m) 

68% 
PE
(m) 

95%  
PE
(m) 

LTE
BS:3 & 
WLAN
AP:4 

80% 16.91 45.41 85.86 9.40 33.74 21.17 14.21 39.77 9.40 33.75 21.15 

60% 17.65 47.78 97.68 10.39 35.84 43.60 14.02 40.35 10.40 35.85 43.59 

40% 17.88 48.99 99.96 14.16 51.17 61.77 15.59 42.57 14.16 51.17 61.77 

LTE
BS:2 & 
WLAN
AP:5 

80% 15.16 42.69 85.36 7.58 26.39 21.94 11.98 36.04 7.61 26.45 21.83 

60% 16.04 44.76 97.51 7.94 27.59 46.04 11.81 36.03 7.95 27.60 46.02 

40% 16.33 45.92 100 9.14 33.88 62.37 12.66 38.32 9.14 33.88 62.37 

LTE
BS:1 & 
WLAN
AP:6 

80% 14.29 40.31 85.43 7.33 22.80 24.59 11.47 33.69 7.36 22.81 24.38 

60% 15.09 42.54 97.02 7.24 20.56 51.35 10.60 31.76 7.24 20.58 51.32 

40% 15.35 43.42 99.97 7.80 24.34 69.21 11.17 33.89 7.80 24.34 69.21 

1. Select GMDT Group According to the serving LTE BS ID of TestSam

3. Group Together  values of TestSam and Selected GMDT samples 
and Perform Hierarchical Clustering with Davies-Bouldin Criterion    

4. Check Clustering Criteria: (i) Multiple Clusters are Created and (ii) The 
Cluster that Contains TestSam has Multiple GMDTs. If CC is fulfilled Go-to 

Next Step 5, otherwise reduce Matching Threshold and Go-to Step 3     

2. Select GMDT samples which are Equal and Above the Matching 
Threshold for the TestSam IDs         

5. Select the Cluster which Contains the Test GMDT; then Estimate Test 
UE Position from the mean x-y coordinates of the GMDTs of that Cluster   

Figure 4: Block-diagram of the CRFFP Positioning Method 



In the simulations we have used 23080 training GMDTs and 
2565 samples were tested. The GRFFP method uses a 10m-
by-10m grid-cell layout which was chosen from several square 
grid-cell layouts according to the delivered positioning 
accuracy.  Tenfold cross-validation method was used to obtain 
positioning results for both GRFFP and CRFFP methods with 
three different GMDT data-sets as shown in Table I. For the 
1st GMDT data-set each sample is constructed with maximum 
3 LTE BS signals (LTEBS) and 4 WLAN AP signals 
(WLANAP); in 2nd GMDT data-set there are 2 LTEBS and 5 
WLANAP; and the 3rd set comprises of only 1 LTEBS and 6 
WLANAP . In Table I the second column indicates the different 
matching threshold used in both of the methods. After that UE 
positioning error (PE) results (68%-ile and 95 %-ile values) 
along with the analyzed test sample percentages are given 
when both methods use all the test samples. From these results 
we can find that when 80% matching threshold was used the 
68 %-ile and 95 %-ile PEs of CRFFP are lower than that of 
respective GRFFP PE values, but the GRFFP method has 
analyzed more test samples than CRFFP. Hence on right side 
of Table I we have PE results considering only those test 
samples which were analyzed in both methods. This help to 
compare the proposed method with the GRFFP in the best 
possible way. It is found from the simulation results with 
common test results that when 1st data-set was used, CRFFP 
has given lower PE in both 68%-ile and 95 %-ile values for 
80% and 60% of matching threshold. However when the 
threshold is lowered to 40%, GRFFP has given better 
positioning in 95 %-ile than that of CRFFP. With the 2nd data-
set CRFFP outperforms GRFFP in both percentile values and 
also for all three matching thresholds used. The best 
positioning accuracy given by CRFFP is with the 3rd data-set 
and for 80 % of threshold: it has shown 35% improvement in 
positioning accuracy for both the 68%-ile and 95%-iles as 
compared to that of the GRFFP. It is clear from the results that 
CRFFP offers better positioning than GRFFP when matching 
threshold is high and 5 or 6 WLAN signals are used. Hence in 
dense urban areas where multiple WLAN signals can be 
detected CRFFP is capable of providing good outdoor UE 
positioning with GMDT samples. 

IV. CONCLUSION

In this paper we propose a novel cluster-based RF 
fingerprinting method  for outdoor UE positioning which uses 
LTE and WLAN signals. It provides better positioning 
accuracy as compared to that of grid-based RF fingerprinting.  
The benifit of the cluster-based approach is that it uses simple 
clustering method and no prior training phase for estimating 
test UE positioning. During cluster operation it reduces the 
searching space by utilizing LTE cell-ID; thus delivers output 
result in short time. The proposed method is capable of 
providing good positioning by using only serving LTE BS 
signal and six WLAN AP signals. Hence the present research 
outcome suggests that the next MDT functionality should 
include WLAN signals into consideration; which would 
benefit cellular operators to develop cost-effective solutions 
for developing real-time positioning systems.   
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