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Abstract — The paper is concerned with a coupled problem describing piesoelectric effects in an elastic
body. For this problem, we deduce majorants of the distance between the exact solution and any approx-
imation in the respective energy class of functions satisfying the boundary conditions. The majorants are
fully computable and does not contain mesh dependent constants. They vanish if and only if an approximate
solution coincides with the exact one and provide a realistic measure of the accuracy in terms of the natural
energy norm associated with the coupled problem studied.

Keywords: coupled systems of partial differential equations, piezoelectricity problem, a posteriori error
estimates.
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1. Introduction

Mathematical models arising in the majority of applications are intended to describe
the so-called multiphysics problems, which involve several equations of different
types related to different processes or phenomena. Pieizoelectric models form an im-
portant class of such problems with bidirectional coupling between the mechanical
and electrical system. These models are highly important for modern technological
systems that transform (in a macro or micro scale) mechanical loadings into electric
effects and vice versa. The first linear mathematical model and the corresponding sys-
tem of differential equations of an elastic medium taking into account the interaction
of electric and mechanical fields was derived by W. Voigt [19]. Later R. Toupin, R.
Mindlin, L. Knopoff, S. Kaliski and J. Petikiewicz presented more advanced models
of an elastic medium with polarization (see [7], [8], [17], and [18]). The effects evoked
by thermal and magnetic fields are considered in [2], [3] and [6]. In [1], the authors
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35, FI-40014, Finland; E-mail: repin@pdmi.ras.ru

‡School of Engineering, Zurich University of Applied Sciences, Technikumstrasse 9, CH-8401 Winter-
thur, Switzerland; E-mail: samo@zhaw.ch



A Posteriori Estimates for a Coupled Piezoelectric Model 2

considered a linear model (without the hysteresis effects) for the interaction of the
elastic and electrical fields in a three-dimensional piezoelectric matrix with metallic
inclusions.

Typically, numerical solution of multiphysics problems consists of consequent
solving the respective equations by a certain splitting scheme that exchanges the data
in a suitable order. This is the basic procedure used in lab and industrial environments
wherein specialized single-physics solvers have been developed over the years. Dif-
ficulties of this approach lie within choosing parameters for the involved solvers that
guarantee adequate overall accuracy and efficient use of computational resources. In
other words, the challenging problem in quantitative analysis of complicated coupled
systems is the reliability of numerical results. To address this contention it is required
to understand how to compute the error in a desired quantity of interest. This is the
main goal of the paper where we derive new a posteriori estimates (error majorants) for
the coupled problem considered. Our method is based on a posteriori error estimates
of functional type that was introduced in [9] and developed in [10], [11], [13], [15],
[14] and many other publications. Error estimates of this type are derived by purely
functional methods and provide fully computable measures of the difference between
the exact solution a boundary value problem and an arbitrary function (approxima-
tion) from the corresponding energy space. They do not attract specific information
on the approximate solution (e.g., Galerkin orthogonality, structure of meshes, numer-
ical method used) and do not require extra regularity of the exact solution. As a result,
the estimates contain no mesh dependent constants and are valid for any conform-
ing approximation from the respective class of admissible functions. Moreover, error
majorants are nonnegative functionals, which vanish if and only if an approximate
solution coincides with the exact one. Therefore, they provide computable measures
of the accuracy for a wide spectrum of problems (practical applications of them are
systematically discussed in [5]). In this paper, we deduce error majorants of this type
for the coupled piezoelectric system of elliptic type.

In Section 2, we introduce the notation and define the problem. The main result
is presented in Theorem 3.1 of Section 3, which states the respective error majorant.
Section 4 deals with a special but important case of isotropic media. Finally, Section 5
contains a numerical example which illustrates the performance of the error majorant.

2. Statement of the problem and notation

Let Ω be a bounded Lipschitz domain in Rd (d ∈ {2,3}). We denote two primary
fields as follows:

• u : Ω→ Rd is the vector of elastic displacement,

• ϕ : Ω→ R is the scalar electric potential field.

The strain tensor ε is the symmetric part of the displacement gradient:

ε(u) =
1
2

(
∇u+(∇u)T

)
(2.1)
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We consider the system of equations describing deformation of a piesocristallic body
in Ω

Divσ(u,ϕ) = f , (2.2)
−divD(u,ϕ) = g, (2.3)

containing the body force vector f and the scalar field of the electric charge density
g . Here Div and div denote the divergence operators for the tensor and vector valued
functions, respectively, i.e., Divτ = ∇ · τ = τi j, j and divq = ∇ · q = qi,i . Here and
later on the Einstein summation convention of summation over the repeated indices is
adopted.

The stress tensor σ and the dielectric displacement D are coupled via the linear
piezoelectric material law:

σ(u,ϕ) = Lε(u) + B ·∇ϕ (2.4)

−D(u,ϕ) = K ·∇ϕ − BT : ε(u) (2.5)

In (2.4) and (2.5), L = (Li jkl) is the (forth-order) linear-elastic material tensor,
which is subject to the condition

c2
1 |ε|2 6 Lε : ε 6 c2

2 |ε|2, ∀ε ∈Md×d
sym , (2.6)

where Md×d
sym is the space of symmetric real valued d×d tensors. We assume that the

elements of the elasticity tensor are bounded and possess natural symmetry properties:

Li jkm = L jikm = Lkmi j ∈ L∞(Ω), i, j,k,m = 1, ...,d. (2.7)

Also, the relations (2.4) and (2.5) contain the (third-order) piezoelectric tensor

B = (bi js), bi js ∈ L∞(Ω)

and the (second-order) dielectric material tensor K = (Ki j), , which satisfies the sym-
metry and ellipticity conditions

Ki j = K ji ∈ L∞(Ω), (2.8)

γ
2
1 |ζ |2 6 K ζ ·ζ 6 γ

2
2 |ζ |2, ∀ζ ∈ Rd . (2.9)

The system (2.2) – (2.5) is supplied with the boundary conditions

u = u0 on ΓD,u, (2.10)
ϕ = ϕ0 on ΓD,ϕ (2.11)

stated for the case where the Dirichlet boundary conditions u0 for the elastic com-
ponent of the solution is defined on ΓD,u and ϕ = ϕ0 for the electric component is
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defined on ΓD,ϕ (in general, these are two different parts of the boundary Γ). On the
remaining parts ΓN,u and ΓN,ϕ we impose the homogeneous Neumann conditions

σ ·n = 0 on ΓN,u, (2.12)
D ·n = 0 on ΓN,ϕ . (2.13)

In what follows, we use the spaces H(Ω,Div) and H(Ω,div) containing square sum-
mable tensor valued and vector valued functions having square summable divergences.
Subspaces of these spaces formed by the functions satisfying the homogeneous Neu-
mann conditions are denoted by

H+(Ω,Div) :=

τ ∈ H(Ω,Div) |
∫
Ω

(τ : ∇w+Divτ ·w)dx = 0 on ΓN,u ∀w ∈V0,


and

H+(Ω,div) :=

q ∈ H(Ω,div) |
∫
Ω

(q ·∇ψ +divqψ)dx = 0 on ΓN,ϕ ∀ψ ∈M0

 ,

respectively.
The generalized solution of the problem (2.2)-(2.13) is defined by the system of

integral identities

c(u,w)+b(ϕ,w) = F (w), ∀w ∈V0, (2.14)
−b(η ,u)+ k (ϕ,η) = G(η), ∀η ∈M0, (2.15)

where the solution pair (u,ϕ) is seeking in the sets

u ∈V0 +u0, V0 :=
{

v ∈ H1(Ω;R3)
∣∣v|ΓD,u = 0

}
(2.16)

and
ϕ ∈M0 +ϕ0, M0 :=

{
ψ ∈ H1(Ω)

∣∣∣ψ|ΓD,ϕ = 0
}
. (2.17)

The right hand sides and forms associated with elasticity, piezoelectric and permittiv-
ity tensors are defined by the relations

c(u,w) :=
∫
Ω

ε(u) : L : ε(w)dx =
∫
Ω

Li jkl εi j(u) : εkl(w)dx, (2.18)

b(ϕ,w) :=
∫
Ω

ε(w) : B ·∇ϕ dx =
∫
Ω

bi js εi j(u)ϕ,s dx, (2.19)

k (ϕ,η) :=
∫
Ω

∇ϕ ·K ·∇η dx =
∫
Ω

Ki j ϕ,i η, j dx, , (2.20)

F(w) :=
∫
Ω

f ·wdx, G(η) :=
∫
Ω

gη dx, (2.21)
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Solution of the system (2.14)-(2.15) exists and it is a unique element of the set (V0 +
u0)× (M0 +ϕ0) [16]:

It is not difficult to see that the norm

|[u,ϕ|]2 := ‖ε(u)‖2
L+‖∇ϕ‖2

K = c(u,u) + k(ϕ, ϕ) (2.22)

is the natural energy norm associated with our problem. We use it as a suitable measure
of the distance to the exact solution.

3. Estimate of the deviation from the exact solution

Assume that v∈V0+u0 and ψ ∈M0+ϕ0 are approximations of u and ϕ , respectively.
Our goal is to deduce a computable upper bound of the norm

|[u−v,ϕ−ψ|]2 := ‖ε(u−v)‖2
L+‖∇(ϕ−ψ)‖2

K . (3.1)

Consider the quantities

M1(v,ψ,τ) := ||τ−Lε(v)−B ·∇ψ ||L−1 +µF(L,Ω,ΓD,u)‖ f +Divτ‖ (3.2)

and

M2(v,ψ,q) := ||q−K∇ψ +BT : ε(v) ||K−1 +µF(K,Ω,ΓD,ϕ)‖g+divq‖, (3.3)

where µF are constants in the Friedrichs type inequalities

‖w‖6 µF(L,Ω,ΓD,u) ||ε(w) ||L, ∀w ∈V0

and
‖η‖6 µF(K,Ω,ΓD,ϕ) ||∇η ||K , ∀ϕ ∈M0.

Here and later on ‖ · ‖ stands for the L2 norm of a vector or scalar valued function. The
quantities M1 and M2 contain only known functions (approximations v and ψ , and the
functions τ ∈ H+(Ω,Div) and q ∈ H+(Ω,div) that can be viewed as approximations
of the exact elastic stress and of the exact flux, respectively).

Theorem below shows that these two quantities majorate the error norm.

Theorem 3.1. i) For any v ∈ V0 +u0 and ψ ∈ M0 combined error norm is
bounded from above by the estimate

|[u−v, ϕ−ψ]|2 6 M 2
1 (v,ψ,τ)+M 2

2 (v,ψ,q), (3.4)

where τ and q are arbitrary functions in the spaces H+(Ω,Div) and H+(Ω,div),
respectively.

ii) The right-hand side of (3.4) vanishes if and only if v = u, ψ = ϕ, τ = Lε(u)+
B ·∇ϕ and q = K ∇ϕ−BT : ε(u).
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Proof: Let v ∈V0 +u0 and ψ ∈M0 +ϕ0. We reform (2.14) and (2.15) as follows

c(u−v,w)+b(ϕ−ψ,w) = F(w)− c(v,w)−b(ψ,w) (3.5)
−b(η ,u−v)+ k (ϕ−ψ,η) = G(η)+b(η ,v)− k(ψ,η). (3.6)

Let w = u−v and η = ϕ−ψ . By adding the equations (3.5) and (3.6), we obtain the
norm |[u−v,ϕ−ψ|]2 in the left-hand side.

In the right-hand side, we have

F(w)− c(v,w)−b(ψ,w)+G(η)+b(η ,v)− k(ψ,η)

=
∫

Ω

( f +Divτ) ·wdx+
∫

Ω

(τ−Lε(v)−B ·∇ψ) : ε(w)dx

+
∫

Ω

(g+divq)η dx+
∫

Ω

(q−K∇ψ +BT : ε(v)) ·∇η dx, (3.7)

where τ ∈ H+(Ω,Div) and q ∈ H+(Ω,div) . The first term is estimated as follows:∫
Ω

( f +Divτ) ·wdx 6 ‖ f +Divτ‖‖w‖6 µF(L,Ω,ΓD,u) ||ε(w) ||L ‖ f +Divτ‖.

Analogously ∫
Ω

(g+divq)η dx 6 ‖g+divq‖ µF(K,Ω,ΓD,ϕ) ||∇η ||K .

Next, we use the algebraic inequalities

χ : ε 6 (Lχ : χ)1/2 (L−1
ε : ε)1/2

and
q · p 6 (Kq ·q)1/2 (K−1 p · p)1/2.

Hence,∫
Ω

(τ−Lε(v)−B ·∇ψ) : ε(w)dx 6 ||τ−Lε(v)−B ·∇ψ ||L−1 ||ε(w) ||L,∫
Ω

(q−K∇ψ +BT : ε(v)) ·∇η dx 6 ||q−K∇ψ +BT : ε(v) ||K−1 ||∇η ||K .

In the right-hand side we have two terms:

I1 =
(

µF(L,Ω,ΓD,u)‖ f +Divτ‖+ ||τ−Lε(v)−B ·∇ψ ||L−1

)
||ε(u−v) ||L,

I2 =
(

µF(K,Ω,ΓD,ϕ)‖g+divq‖+ ||q−K∇ψ +BT : ε(v) ||K−1

)
||∇(ϕ−ψ) ||K
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Then,

|[u−v, ϕ−ψ]|2 6 I1+ I2 6
(
M 2

1 (v,ψ,τ)+M 2
2 (v,ψ,q)

)1/2
|[u−v, ϕ−ψ]|, (3.8)

and we arrive at the estimate (3.4).
To prove ii), we note that vanishing of the right-hand side of (3.4) means that

almost everywhere in Ω it holds

Divτ + f = 0, (3.9)
divq+g = 0, (3.10)
τ = Lε(v)+B ·∇ψ, (3.11)

q = K ∇ψ−BT : ε(v). (3.12)

From (3.9) and (3.11) it follows that:∫
Ω

(Lε(v)+B ·∇ψ) : ε(w)dx =
∫

Ω

f ·wdx ∀w ∈V0. (3.13)

Analogously, (3.10) and (3.12) imply∫
Ω

(K∇ψ ·∇η− ε(v) : B ·∇η)dx =
∫

Ω

gηdx ∀η ∈M0. (3.14)

Since v and ψ satisfy the main boundary conditions, (3.13) and (3.14) show that they
satisfy the system (2.14) – (2.15), which solution is unique. Thus, we conclude these
functions coincide with u and ϕ , respectively.

Remark 3.1. It is easy to see that

µF(L,Ω,ΓD,u)6 ‖L‖µF(Ω,ΓD,u),

µF(K,Ω,ΓD,ϕ)6 ‖K‖µF(Ω,ΓD,ϕ),

where µF(Ω,ΓD,u) and µF(Ω,ΓD,ϕ) are constants in the inequalities

‖w‖6 µF(Ω,ΓD,u)‖∇w‖, ∀w ∈V0,

‖η‖6 µF(Ω,ΓD,ϕ)‖∇η‖, ∀ϕ ∈M0.

Computable estimates of the constants µF(Ω,ΓD,u) and µF(Ω,ΓD,ϕ) can be found in
[4], [11], [12].

It is worth adding a concise comment on application of the majorant in combina-
tion with finite element approximations. Let v = uh and ψ = ϕh, be FEM solutions
computed on a mesh Th. The simplest way to apply (3.4) is to reconstruct τ and q
from the respective numerical stress τ̂h = Lε(uh) and numerical flux q̂h = K ∇ψh. In
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general, these functions may not belong to H+(Ω,Div) and H+(Ω,div), respectively.
Therefore, a certain averaging (smoothing) procedure is required. A wide spectrum of
known type post–processing procedures can be used for this purpose (see, e.g., [?,?]
and the references therein). Post–processed functions τ̂h and q̂h preserve continuity
of the normal components τhn and (q · n) along the interelement boundaries. The
substitution of τh and qh will give a simply computable and guaranteed bound of the
error. To make a sharper bound it is necessary to minimize the right-hand side of (3.4)
over τ and q using τ̂h and q̂h as the initial guess. Since M 2

1 +M 2
2 is a quadratic

functional, this can be done by standard procedures well tested for elliptic boundary
value problems (see [5]).

In the last section, we discuss numerical evaluation of the majorant with the
paradigm of a model plane strain problem associated with isotropic media.

4. Isotropic media in 3D

If elastic media is isotropic, then the components of L and L−1 depend on two mater-
ial constants only K0 and µ that depend on properties of media to resist compression
and shear forces, respectively. Due to ε = 1

3 trε I + εD and trε = ε11 + ε22 + ε33, we
obtain in this case,

Lε = K0 trε I + 2µ ε
D (4.1)

and

L−1
τ =

1
9K0

trτ I +
1

2µ
τ

D. (4.2)

Then

Lε +B∇ψ− τ =

(
K0 trε + B0 trΨ− 1

3
trτ

)
I +

(
2µ ε

D + ν Ψ
D− τ

D) ,
where

B0 =
b13

3
=

b23

3
=

b33

3
, ν =

b42

2
=

b51

2
, Ψ =

(
ψ,3 0 ψ,1
0 ψ,3 ψ,2

ψ,1 ψ,2 ψ,3

)
,

and we find

ε(v)+L−1(B∇ψ)−L−1
τ =

(
1
3

trε +
B0

3K0
trΨ− 1

9K0
trτ

)
I

+

(
ε

D +
ν

2µ
Ψ

D− 1
2µ

τ
D
)
.
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Then, the parts M 1 and M 2 of the majorant (3.4) have the form

M 1 =

(∫
Ω

[
K0

3

(
trε +

B0

K0
trΨ− 1

3K0
trτ

)2

+2µ

∣∣∣∣εD +
ν

2µ
Ψ

D− 1
2µ

τ
D
∣∣∣∣2
])1/2

+ µF(L,Ω,ΓD,u)‖ f +Divτ‖, (4.3)

M 2 =


∫

Ω


q1+4ν ε13

k11
−ψ,1

q2+4ν ε23
k22

−ψ,2

q3+3B0 trε
k33

−ψ,3

 ·


q1 +4ν ε13− k11 ψ,1

q2 +4ν ε23− k22 ψ,2

q3 +3B0 trε− k33 ψ,3




1/2

+ µF(K,Ω,ΓD,ϕ)‖g+divq‖. (4.4)

Due to symmetries in the elasticity, the piezoelectric and the permittivity tensors, we
can use the so–called Voigt notation (or Voigt mapping), that suggests a method of
compact representation of symmetric tensors (this leads to simplifications in writing
certain algebraic relations). For example, the tensors from (2.18)-(2.20) can be ex-
pressed as matrices

L=


c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

 , B =


0 0 b13
0 0 b23
0 0 b33
0 b42 0

b51 0 0
0 0 0

 , K =

( k11 0 0
0 k22 0
0 0 k33

)
.

In the Voigt notation the strain tensor (2.1) and its deviatoric part are represented by
the vectors

ε =


ε11
ε22
ε33

2ε23
2ε13
2ε12

 and ε
D =



2,ε11−ε22−ε33
3

2,ε22−ε11−ε33
3

2,ε33−ε11−ε22
3

2ε23
2ε13
2ε12


respectively. If the material (e.g., PZT ceramics) can be treated as isotropic, we obtain
additionaly

c11 = c22 = c33 = K0 +
4
3

µ, c44 = c55 = µ, c66 =
c11− c22

2
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c12 = c21 = c13 = c31 = c23 = c32 = K0−
2
3

µ,

and
b13 = b23, b42 = b51, k11 = k22.

In terms of the Lame constants

L=


λ +2µ λ λ 0 0 0

λ λ +2µ λ 0 0 0
λ λ λ +2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 ,

and M1 can be expressed as follows:

M 1 =

{∫
Ω

[
(λ trε + 2ρ ψ,2)

(
ρ µ−ν λ

µ (λ +µ)
trΨ +

λ

4 µ (λ +µ)
trτ

)
I

+2µ |ε + 2ν Ψ − τ|2
]}1/2

+µF(L,Ω,ΓD,u)‖ f +Divτ‖ (4.5)
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