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Abstract

Concept-based image search is an emerging search paradigm that utilizes a set of concepts as intermediate semantic descriptors of
images to bridge the semantic gap. Typically, a user query is rather complex and cannot be well described using a single concept.
However, it is less effective to tackle such complex queries by simply aggregating the individual search results for the constituent
concepts. In this paper, we propose to introduce the learning to rank techniques to concept-based image search for complex queries.
With freely available social tagged images, we first build concept detectors by jointly leveraging the heterogeneous visual features.
Then, to formulate the image relevance, we explicitly model the individual weight of each constituent concept in a complex query.
The dependence among constituent concepts, as well as the relatedness between query and non-query concepts, are also considered
through modeling the pairwise concept correlations in a factorization way. Finally, we train our model to directly optimize the image
ranking performance for complex queries under a pairwise learning to rank framework. Extensive experiments on two benchmark
datasets well verified the promise of our approach.

Keywords: Concept-based Image Search, Complex Query, Learning to Rank, Factorization Machine

1. Introduction

With rapid advances in Internet and multimedia technologies,
the past few years have witnessed an explosive growth of dig-
ital images on the Web. The proliferation of images raises an
urgent demand for effective image search technologies. Due to
the well-known semantic gap between low-level features and
high-level semantics [1, 2], current commercial search engines
retrieve images mainly based on their associated contextual in-
formation such as titles and surrounding text on Web pages.
However, since the associated text is usually unreliable to de-
scribe the semantic content of images, the performance of text-
based image search methods is still far from satisfactory.

As an alternative to text-based image search, concept-based
image search has recently attracted increasing attention and
proven to be a promising solution for large-scale search tasks
[3, 4, 5]. In concept-based image search, a set of concept de-
tectors are pre-built to predict the presence of specific concepts,
which provide direct access to the semantic content of images.
Given a textual query, it is mapped to a group of primitive con-
cepts, and the search results are made up of the images in which
these concepts are likely to appear. Thanks to the continuous
progress in visual concept detection [6, 7], current concept-
based search techniques can effectively deal with queries in-
volving only one concept. In reality, however, a user query is
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jlshen@smu.edu.sg (Jialie Shen), chenzhumin@sdu.edu.cn (Zhumin
Chen), shuaiqiang.wang@jyu.fi (Shuaiqiang Wang),
majun@sdu.edu.cn (Jun Ma)

rather complex and cannot be well represented by a single con-
cept. For example, consider a query like “a person with a cam-
era on the street”, which apparently involves multiple semantic
concepts, i.e., “person”, “camera”, and “street”.

Confronted with a complex query comprising several seman-
tic concepts, a natural idea is to combine the individual search
results for the constituent concepts in the query. However, such
a straightforward strategy may be ineffective due to the follow-
ing reasons. First of all, many existing methods assume all
constituent concepts are of equal importance [8] or determine
their combination weights based on some heuristic rules [9].
From the perspective of information theory, the importance of
a constituent concept can be interpreted as the information it
bears when the complex query is observed [10]. Different con-
stituent concepts typically exhibit different degrees of informa-
tiveness, which are data-dependent and difficult to determine in
advance. Secondly, the constituent concepts in a complex query
do not appear in isolation; instead, they interact with each other
in the semantic level and mutually reinforce their roles during
the search process. It is inappropriate to consider the consti-
tute concepts independently and ignore their inter-dependence
[3]. Lastly, the concepts not in a complex query may also serve
as the contextual information to enhance the search accuracy
[11]. Recall the aforementioned query example, i.e., “a person
with a camera on the street”. If an image has a high response
for the detector of a non-query concept “sofa”, we may have
high confidence that the image is irrelevant to the query, since
“sofa” rarely appears together with the query concept “street”.
Nevertheless, the information cues conveyed by the non-query
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concepts have not been fully exploited in prior concept-based
image search methods.

Recently, learning to rank techniques [12] have been exten-
sively studied owing to its potential for improving information
retrieval systems. In general, learning to rank refers to applying
supervised machine learning algorithms to construct the opti-
mal ranking model in a search task. Intuitively, through the
supervision step, the possibility is offered that utilizing the in-
formation from the data collection to steer the search process
and reduce the need for making heuristic assumptions [13]. Al-
though great success has been achieved [14, 15], few research
efforts have been devoted to exploring the potential of learning
to rank in concept-based image search.

Motivated by the above discussions, in this paper, we propose
to introduce the learning to ranking techniques to concept-based
image search for complex queries. A collection of concept de-
tectors are first built from social tagged images by jointly lever-
aging the heterogeneous visual features. To mitigate the limita-
tions of existing methods mentioned above, in the formulation
of the image relevance function, we explicitly model the indi-
vidual weight of each constituent concept in a complex query.
The dependence among constituent concepts, as well as the re-
latedness between query and non-query concepts, are also con-
sidered by modeling the pairwise concept correlations. Faced
with the underlying overfitting problem arising from too many
model parameters, we adopt the Factorization Machine [16] to
factorize concept correlations with a low-rank approximation.
The learning of different model parameters is effectively inte-
grated into a pairwise learning to rank framework, and we build
upon the Ranking SVM algorithm [17] to train our model by di-
rectly optimizing the image ranking performance for complex
queries. It is worth noting that the scalability of our approach
is not degraded, even though the supervision step is introduced.
This is because the ground-truth information used in training is
only for a limited number of complex queries, but from which a
query-independent model can be learned and employed to rank
images for all queries.

The main contributions can be summarized as follows:

• Our approach resolves the problem of concept-based im-
age search from the perspective of learning to rank, and di-
rectly optimizes the image ranking performance for com-
plex queries.

• Our approach explicitly models the individual weight of
each constituent concept. To capture the dependence
among constituent concepts, as well as the relatedness be-
tween query and non-query concepts, the pairwise concept
correlations are also modeled in a factorization way.

• Our approach has been evaluated on two publicly accessi-
ble benchmark datasets. The experimental results demon-
strate the promise of our approach in comparison with the
state-of-the-art methods.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews the related work. Section 3 details our proposed
approach to concept-based image search for complex queries.

Experimental results and analysis are reported in Section 4, fol-
lowed by the conclusion and future work in Section 5.

2. Related Work

2.1. Visual Concept Detection

Serving as the foundation for concept-based image search,
visual concept detection has attracted considerable research in-
terests in the multimedia computing community. Typically, it is
transformed to a classification problem, in which each concept
is treated as a class label and its presence likelihood is estimated
by the classifier prediction score. For example, Lu et al. [18]
proposed an multi-modality classifier combination framework
to improve the accuracy of semantic concept detection. Mul-
tiple classifiers trained on different visual features were com-
bined with a probability-based fusion method. Some studies
provided insights on how to construct feature representations
in building classifiers for concept detection. In [19], an effi-
cient bag-of-visual-word construction method was developed
based on sparse non-negative matrix factorization and GPU en-
abled SIFT feature extraction. Li et al. [20] employed latent
Dirichlet allocation approach to cluster the image data into se-
mantic topics, and the distributions of image low-level features
on such topics were used as the middle-level features of images.
Yan et al. [21] proposed to automatically select semantic mean-
ingful concepts for the event detection task based on both the
events-kit text descriptions and the concept high-level feature
descriptions. A novel event oriented dictionary representation
was then introduced based on the selected semantic concepts.
Besides, the zero-shot learning has also been applied to handle
event detection in videos [22, 23]. The key idea is to pre-train
a number of concept classifiers using data from other sources,
such that an event of interest can be detected based on its se-
mantic correlation with respect to each concept, even when no
labeled example of this event is supplied.

2.2. Concept-based Image Search

Given a collection of concept detectors, concept-based im-
age search for complex queries can be performed by fusing the
individual search results for the constituent concepts in a query.
A critical issue in the fusion strategy is to determine the com-
bination weights. Nastsev et al. [24] proposed to assign equal
weight to the search result for each constituent concept. Chang
et al. [25] weighted the individual concept detectors accord-
ing to their training performance. Li et al. [26] set the weight
to be proportional to the informativeness of a constituent con-
cept. Despite encouraging results reported, these heuristic fu-
sion methods are data-independent and may not be effective
to the same degree in different application scenarios. On the
contrary, in our approach, the individual weight of each con-
stituent concept is explicitly modeled and automatically deter-
mined with the information harvested from the data collection.

Another potential limitation of the above fusion-based meth-
ods lies in that they consider the constituent concepts indepen-
dently and ignore their mutual relationships. To address this
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issue, Yuan et al. [4] leveraged the plentiful but partially re-
lated samples, as well as the users’ feedbacks, to handle com-
plex queries in the interactive concept-based video search. By
extending this idea, they further proposed a higher-level seman-
tic descriptor named “concept bundle”, which integrates mul-
tiple primitive concepts, to describe the visual representation
of complex semantics and enhance the video search for com-
plex queries [27]. Li et al. [10] learned bi-concept detectors
from social tagged images, and applied them in a search en-
gine for retrieving images relevant to bi-concept queries. In
[3], the authors developed an image reranking scheme for com-
plex queries by jointly considering multiple relationships be-
tween concepts and complex queries from high-level to low-
level. Similarly, Guo et al. [5] proposed a multi-layer proba-
bilistic model to incorporate inter-concept relatedness into im-
age reranking for complex queries. Compared to the previous
work, our approach models the pairwise concept correlations
in a factorization manner. Through this way, we consider not
only the dependence among constituent concepts, but also the
relatedness between query and non-query concepts.

2.3. Learning to Rank

There is an emerging research interest in learning to rank due
to its importance in a wide variety of applications, such as in-
formation retrieval [15] and personalized recommendation [28].
Roughly speaking, the existing learning to rank techniques can
be divided into three categories: pointwise methods, pairwise
methods, and listwise methods. In pointwise methods [29],
ranking is treated as a regression or classification problem on
individual items to predict their relevance scores. In pairwise
methods [30], ranking is transformed to a classification prob-
lem on item pairs to predict the preference relation between two
items. In listwise methods [31], ranking is performed to mini-
mize a direct loss between the true ranking list and the estimated
ranking list. A comprehensive survey of learning to rank can be
found in [12]. In this paper, our approach follows the direction
of pairwise methods, because of their superior performance and
relatively low complexity.

3. Framework

To formulate our problem, we declare some notations in ad-
vance. In particular, we use capital letters (e.g., X) and bold
lowercase letters (e.g., x) to denote sets and vectors, respec-
tively. We employ non-bold lowercase letters (e.g., x) to rep-
resent scalars, and Greek letters (e.g., λ) as hyper-parameters.
If not clarified, all vectors are in column form. Table 1 sum-
marizes the key notations and definitions used throughout the
paper.

Our framework consists of three main components: 1) vi-
sual concept detection, 2) image relevance formulation, and 3)
ranking-oriented learning. By harnessing freely available social
tagged images, visual concept detectors are first built without
the need of manually selecting training samples for each con-
cept. With the pre-built concept detectors, an image relevance

Table 1: Summary of key notations and definitions.

Notation Definition

C The set of all concepts
c, q, p A certain concept
T The set of all possible complex queries
Q A certain complex query
x A certain image
L The set of all labeled images
xi,Yi A certain labeled image and the set of con-

cepts associated with it
m The number of concepts
n The number of labeled images
d The dimensionality of the latent space for

concepts
wc The weight of c
vc The vector representation of c in the latent

space
sqc The correlation between q and c
S The set of social tagged images
S c The subset of images tagged with c
Z The set of visual features
z A certain visual feature
k The number of visual neighbors
S x,z The neighbor set of x based on z
D The set of preference pairs
l The sample size in each iteration during

training
α, β, λ, γ The hyper-parameters

function for complex queries is then formulated, which explic-
itly takes into account concept weights and concept correla-
tions. Based on the relevance formulation, the ranking-oriented
learning is ultimately developed to determine the model param-
eters through optimizing the image ranking performance for
complex queries. The architecture of our framework is illus-
trated in Figure 1. In the following, we elaborate on each of the
components and give a full description of the associated algo-
rithms.

3.1. Visual Concept Detection

As a prerequisite to realize concept-based image search, var-
ious concept detectors need to be built in advance to predict
the presence likelihood of the corresponding semantic concepts
given a specific image. An appealing source of labeled im-
ages for concept detection are social tagged images on the Web
[10], in which user-contributed tags encode valuable informa-
tion about the semantic content of images. As mentioned pre-
viously, a typical solution is to train a separate classifier for
each concept over social tagged images, and estimate the pres-
ence of that concept by the classifier prediction score. However,
this concept-specific modeling paradigm suffers from two main
disadvantages. First, it is not scalable to cover the potentially

3
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Figure 1: Schematic illustration of the proposed concept-based image search approach for complex queries.

unlimited array of concepts in existence. Second, how to se-
lect high quality training examples from social tagged images
at large scale is still an open research problem.

To avoid the above problems, we adopt a data-driven ap-
proach, called the neighbor voting algorithm [32], for concept
detection in this paper. The philosophy behind the neighbor
voting algorithm is that if visually similar images are tagged
with the same concepts, these concepts are likely to reflect the
actual visual content. Despite its simplicity, recent studies [33]
have reported that the neighbor voting algorithm remains the
state-of-the-art for visual concept detection. In addition, a se-
mantic concept generally has significant diversity in terms of
the visual appearance. It is hence insufficient to rely on a sin-
gle visual feature to characterize such large visual variations.
In light of this, we seek to jointly leverage the heterogeneous
visual features for building more robust concept detectors.

Let S be a collection of social tagged images, and C a vo-
cabulary consisting of m concepts. For each concept c ∈ C, S c

denotes the subset of images tagged with c, i.e., S c ⊂ S . We use
x to denote an image, and Z is a set of visual features. Given
a visual feature z ∈ Z, we represent x using z and find the k
nearest neighbors of x from S according to the visual similarity
measured over z. S x,z denotes the resulting neighbor set of x,
based on which the neighbor voting algorithm constructs a base
concept detector as follows:

gz(c, x) =

∣∣∣S x,z ∩ S c

∣∣∣
k

−
∣∣∣S c

∣∣∣
|S | , (1)

where | · | is the cardinality of a set. Intuitively, the more fre-
quent a concept occurs in the neighbor set, the more relevant it
might be to the given image; however, common concepts with
high frequency in the entire collection are usually less descrip-
tive, and thus their estimated relevance should be suppressed.
Towards this end, the base concept detector gz(c, x) counts the
difference between the distribution of c in x’s neighbor set and
that in the entire image collection.

To overcome the limitation of single features in describing
the visual content, we further combine the base concept detec-
tors obtained with different visual features. The work in [34]

compared the unsupervised and supervised combination strate-
gies in the context of neighbor voting model, and the empirical
results showed that there is no significant difference in perfor-
mance between them. However, a major disadvantage of the
supervised combination strategy is its expensiveness in terms of
the training efforts, which inevitably leads to much more com-
putational cost. In light of this, we adopt the unsupervised uni-
form combination rule in our approach. Specifically, the con-
cept detector is defined as follows:

r(c, x) =
1
|Z|

∑

z∈Z
gz(c, x) , (2)

where r(c, x) indicates the confidence that the concept c is
present in the image x.

3.2. Image Relevance Formulation

In this paper, we target at the problem of concept-based im-
age search for complex queries. Let Q be a complex query
comprising two or more concepts, i.e., Q ⊂ C and |Q| ≥ 2. The
key challenge is to establish a function f (Q, x) that measures
the relevance score of an image x with respect to the complex
query Q. Intuitively, each constituent concept q ∈ Q partially
describes the user’s search intentions carried by Q, and f (Q, x)
can thus be estimated by aggregating the presence likelihood
of each q in x. Inspired by this, we first formulate f (Q, x) as
follows:

f (Q, x) =
∑

q∈Q

wqr(q, x) , (3)

where wq is a weight parameter indicating the importance of
q. Distinguished from previous methods combining different
constituent concepts heuristically, we explicitly model the indi-
vidual weight of each constituent concept.

Unlike a single-concept query, a complex query also depicts
the intrinsic semantic dependence among its constituent con-
cepts [27]. Different constituent concepts do not appear in iso-
lation; instead, they interact with each other and mutually rein-
force their roles in the search process for the complex query. In
addition, as aforementioned, the concepts not in the query often
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provide additional information cues. Hence, it is highly ben-
eficial to retrieve images by simultaneously using both query
concepts and non-query ones. In view of this, we explore the
possibility of introducing concept correlations to the image rel-
evance function.

WordNet similarity is widely adopted to capture the seman-
tic correlations among concepts. Nonetheless, as it does not
directly reflect how people describe the visual content, some
highly correlated concepts are usually weakly related in the
WordNet ontology [35]. Concept co-occurrence is another
commonly used correlation measurement. However, in most
annotated corpus, images are frequently associated with only a
few concept labels, which may lead to unreliable co-occurrence
statistics. More importantly, apart from the positive correlations
among concepts, there also exist many important negative cor-
relations. Unfortunately, limited by their non-negative property,
both WordNet similarity and co-occurrence statistics cannot re-
flect the potential negative correlations.

Given the drawbacks of existing correlation measurements,
we propose to model the pairwise correlations between con-
cepts, and extend our initial relevance function in Eq. (3) as
follows:

f (Q, x) =
∑

q∈Q

wqr(q, x) +
α

2

∑

q∈Q

∑

p∈Q\q
sqpr(q, x)r(p, x) (4)

+ β
∑

q∈Q

∑

c∈C\Q
sqcr(q, x)r(c, x) ,

where sqp is a model parameter capturing the correlation be-
tween two concepts q and p. We assume that the concept corre-
lations are symmetric, i.e., sqp = spq, and both positive and neg-
ative values are allowed. In Eq. (4), the first term represents the
relevance estimated by separately considering each constituent
concept in the complex query, the second term encodes the in-
teractions among constituent concepts, and the last term ensures
that the information from non-query concepts can also be uti-
lized. The three parts cooperate with each other, leading to a
more accurate estimation for the image relevance. Here, α and
β are two hyper-parameters used to control the relative contri-
bution of each term.

A potential problem in the above formulation is that it re-
quires a huge amount of parameters to model the correlation be-
tween each pair of concepts in the vocabulary. From the view-
point of statistical learning theory, too many model parameters
may degrade the model stability and result in the overfitting
problem. The existing work [36] on text information process-
ing has demonstrated that the semantic space spanned by tex-
tual keywords can be approximated by a smaller set of latent
factors. As one kind of text information, semantic concepts are
also subject to such a low-rank property [37]. Inspired by this,
we apply the Factorization Machine [16] to model the pairwise
concept correlations in a factorization way. Specifically, each
concept c ∈ C is mapped to a vector vc ∈ Rd in a d-dimensional
latent space, and the correlation sqp is subsequently approxi-
mated by sqp = vT

q vp. Intuitively, sqp corresponds to the dot
product of vq and vp in the latent space, which is a commonly
used measure for matching textual vectors. As a result, the im-

age relevance function can be reformulated as follows:

f (Q, x) =
∑

q∈Q

wqr(q, x) +
α

2

∑

q∈Q

∑

p∈Q\q
vT

q vpr(q, x)r(p, x) (5)

+ β
∑

q∈Q

∑

c∈C\Q
vT

q vcr(q, x)r(c, x) .

Because the intrinsic dimensionality of the latent space is typ-
ically much smaller than the total number of concepts (i.e.,
d � m), the number of model parameters in Eq. (5) is signifi-
cantly reduced. Besides, it has been shown that the problems of
concept synonymy and polysemy can be more easily handled in
a low-dimensional semantic space.

3.3. Ranking-oriented Learning

We aim to enhance the accuracy of concept-based image
search for complex queries by learning the relevance function
f in a supervised way. In the supervised scenario, we are given
a set of labeled images L =

{
x1, x2, . . . , xn

}
, where each image

xi is associated with Yi that denotes the set of concepts having
been assigned to xi. Let T be a set of complex queries. Given
a complex query Q ∈ T , the ground-truth relevance of xi with
respect to Q is defined as:

rel(Q, xi) = |Q ∩ Yi| . (6)

Eq. (6) ensures that the images associated with more query
concepts will be assigned higher relevance. Based on the
ground-truth relevance, a set of pairwise preference relations
D ⊆ T × L × L can be further derived:

D =
{
(Q, xi, x j) | rel(Q, xi) > rel(Q, x j)

}
, (7)

where each triple (Q, xi, x j) reflects the partial order informa-
tion of the ground-truth image ranking for Q. To optimize the
image ranking performance for complex queries, we require the
relevance function f to satisfy the preference pairs in D as much
as possible. In other words, the goal of learning is to minimize
the following empirical risk:

R( f ) =
1
|D|

∑

(Q,xi,x j)∈D

1
(

f (Q, xi) ≤ f (Q, x j)
)
, (8)

where 1 (·) is an indicator function that outputs 1 if the input
Boolean expression is true and zero otherwise. Actually, R( f )
measures the proportion of the preference pairs misordered by
the relevance function f .

Since the indicator function 1 (·) is nonsmooth, directly opti-
mizing the empirical risk in Eq. (8) is computationally infeasi-
ble [14]. To address the problem, we adopt the Ranking SVM
framework [17] as the backbone of our learning method. The
basic idea of Ranking SVM is to replace 1

(
f (Q, xi) ≤ f (Q, x j)

)

with the hinge loss function
[
1 −

(
f (Q, xi) − f (Q, x j)

)]
+
. As a

result, the relevance function f can be learned through the fol-
lowing optimization problem:
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Algorithm 1 The Pegasos Algorithm
Input: Set of preference pairs D, sample size l, and learning

rate γ
Output: Model parameters θ = (w, v)

1: for c ∈ C do
2: Initialize wc and vc randomly
3: end for
4: repeat
5: Sample a subset Ds of l training triples from D
6: Compute ∇θΩ based on Eq. (10)
7: Update θ = θ − γ∇θΩ
8: until convergence

Optimization Problem 1.

min.
w,v,ξ

λ1

2

∑

c∈C
w2

c +
λ2

2

∑

c∈C
‖vc‖22 +

1
|D|

∑

(Q,xi,x j)∈D

ξQ,xi,x j (9)

s.t. ∀(Q, xi, x j) ∈ D :

f (Q, xi) ≥ f (Q, x j) + 1 − ξQ,xi,x j , ξQ,xi,x j ≥ 0 .

Here, ξQ,xi,x j is a slack variable associated with the triple
(Q, xi, x j). It can be demonstrated that the average over all slack
variables is an upper bound on the empirical risk in Eq. (8). λ1

and λ2 are the hyper-parameters representing the weights of the
regularization terms.

The main difficulty of Optimization Problem 1 lies in that
there are too many (i.e., |D|) constraints to be considered. To
solve it efficiently, we resort to the Pegasos algorithm [38] to
optimize the primal form of the problem. At each iteration of
the Pegasos algorithm, a subset Ds of l training triples is first
sampled from D uniformly at random. Then, the subgradients
with respect to the model parameters involved with the triples in
Ds are computed. Specifically, we use θ to denote an arbitrary
model parameter, and the subgradient of the objective function
Ω regarding θ can be computed by:

∇θΩ = λθ − 1
l

∑

(Q,xi,x j)∈Ds

∇θξQ,xi,x j , (10)

∇θξQ,xi,x j = 1
(

f (Q, xi) − f (Q, x j) < 1
)

(11)

×
(
∇θ f (Q, xi) − ∇θ f (Q, x j)

)
,

where ∇θ f (Q, x) is the subgradient of the relevance function f
with respect to θ, which is calculated by:



1) r(q, x) if θ = wq, q ∈ Q;

2) α
∑

p∈Q\q
vpr(q, x)r(p, x) if θ = vq, q ∈ Q;

+ β
∑

c∈C\Q
vcr(q, x)r(c, x)

3) 0 if θ = wc, c ∈ C\Q;

4) β
∑

q∈Q

vqr(q, x)r(c, x) if θ = vc, c ∈ C\Q.

(12)

Lastly, θ is updated in the opposite direction of ∇θΩ with a

Table 2: Statistics of the experimental datasets.

Dataset I Dataset II

# of images 25,000 55,615
# of concepts 18 81
Avg. # of concepts per image 2.03 4.21
# of complex queries 121 488

learning rate γ. The pseudo-code of the Pegasos algorithm is
presented in Algorithm 1.

Once the model parameters are learned, given a new complex
query, the relevance score of a specific image with respect to
the query can be estimated by Eq. (5). Based on this score, we
obtain the image ranking results for the complex query.

4. Experiments

In this section, we report a series of experiments conducted
to evaluate our approach in the scenario of concept-based image
search for complex queries.

4.1. Datasets

To ensure the accuracy and fairness of our empirical re-
sults, we adopted two benchmark image datasets collected from
Flickr1 in our evaluation. Dataset I is MIRFlickr [39], which
consists of 25,000 images. In this dataset, the ground-truth la-
beling for 18 concepts has been provided, and the average num-
ber of concepts per image is 2.03. Note that these concepts all
correspond to frequent tags in Flickr and cover different genres
including scenes, objects, and events. Dataset II is NUS-WIDE-
LITE [40], which contains 55,615 images with their associated
tags. Likewise, the ground-truth annotations of 81 concepts for
all images are available in the dataset. Each image is annotated
with an average of 4.21 concepts.

Since there are no pre-defined complex queries available, we
need to first construct the query set. Following the procedures
in [41], we created a complex query by randomly combining
the given concepts in the dataset. As reported in [42], Web
queries are generally short, and the average number of terms
per query is 2.4. According to the recent statistics2 from the
US, only less than 6.2% of the queries have more than 5 terms.
Therefore, the length of a complex query was set to be between
2 and 5 concepts in our experiments. Besides, we only kept the
complex queries for which more than 1% of all the images are
annotated with their constituent concepts. The preceding steps
finally led to 121 complex queries for Dataset I and 488 for
Dataset II, respectively. On both datasets, we took half of the
complex queries for training, and used the rest for testing. The
main statistics of the datasets are summarized in Table 2.

1http://www.flickr.com/
2http://www.keyworddiscovery.com/keyword-stats.html/
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4.2. Experimental Settings

To implement the concept detectors described in Section 3.1,
we used five types of low-level visual features to represent each
image, namely, 1) 64-dimensional color histogram, 2) 144-
dimensional color correlogram, 3) 73-dimensional edge direc-
tion histogram, 4) 128-dimensional wavelet texture, and 5) 225-
dimensional block-wise color moment. These features charac-
terize images from different perspectives of color, shape and
texture. On the basis of each feature, we used the L1 metric to
measure the visual distance between images. Given an image,
all the other images were ranked by their distance from it and
the k nearest neighbors were subsequently discovered.

Given a complex query, we generated the ranking list by sort-
ing images in descending order of their relevance with respect
to the query. We adopted the Normalized Discounted Cumu-
lative Gain (NDCG) [43] to evaluate the quality of an ranking
list. NDCG at the n-th position is computed as:

NDCG@n =
1
N

n∑

i=1

2rel(i) − 1
log(1 + i)

, (13)

where rel(i) is the relevance of the i-th image in the ranking
list, which is defined in Eq. (6). N is a normalization constant
used to ensure that the NDCG score of the ground-truth image
ranking is 1. The average value of NDCG@n (n = 10, 50, 100)
over all test complex queries was reported to evaluate the over-
all performance.

There are several hyper-parameters in our model. For the
trade-off parameters α and β in Eq. (4), we carried out a grid
search over the range of [0, 1] with the granularity of 0.1. The
best performance was achieved when α = 0.6 and β = 0.1.
For the dimension of the latent space d, we considered the val-
ues in the range of [5, 50] with a step size of 5. The results
demonstrated that there is no significant performance improve-
ment when d is beyond 10. To reduce the computational com-
plexity, we chose d = 10 on both datasets. For the number of
visual neighbors k in Eq. (1), we set k = 300, and the effect of
the value of k on the performance will be discussed later. For
the regularization parameters λ1 and λ2 in Optimization Prob-
lem 1, we performed a logarithmic grid search from 10−5 to 105

with the scaling factor of 10, and observed the best performance
when λ1 = λ2 = 0.1. In Algorithm 1, for the sample size l and
the learning rate γ, we empirically used l = 3000 and γ = 0.01,
respectively.

4.3. Competitors

We compared our approach against several state-of-the-art
methods for concept-based image search. For these baseline
methods, the parameters were tuned via 5-fold cross validation.
Specifically, the competitors in our experiments are:

• TagMatch: This method simply estimates the relevance of
an image based on the overlap between the tags associated
with the image and the concepts in the given query.

• TagProp [8]: This method exploits a weighted nearest-
neighbor model together with the distance metric learning
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Figure 2: Performance comparison on Dataset I.

to predict the presence probability of a concept. Given a
complex query, it takes the product of the presence proba-
bilities of constituent concepts as the relevance score of an
image.

• BiGraph [44]: This method proposes a bi-relational graph
model that comprises both the image graph and the con-
cept graph, and connects them by an additional bipartite
graph induced from concept assignments. The random
walk with restart algorithm is performed over the graph
by setting the constituent concepts of a complex query as
the starting nodes. The relevance scores can be calculated
according to the stationary distribution for all image nodes.

• LTRCS: This is our proposed approach that introduces the
learning to rank techniques to concept-based image search
for complex queries.

In our approach, we model the individual weight of each con-
stituent concept in a complex query. The pairwise concept cor-
relations are also modeled to capture the dependence among
constituent concepts, as well as the relatedness between query
and non-query concepts. To investigate the efficacy of each
component, two variants of our original model were also in-
troduced to the comparison:

• LTRCS-EW: Instead of explicitly modeling the weight
of each constituent concept, this method assigns equal
weights to all constituent concepts in a complex query.

• LTRCS-CO: Rather than learning the concept correla-
tions in a supervised manner, this method uses the co-
occurrence statistics as the correlation measurement.

All the methods listed above were fully implemented in Python
or Matlab, and tested on a server equipped with 24-core
2.00GHz Intel Xeon processor and 32GB RAM.

4.4. Overall Performance

Figure 2 displays the empirical results of different methods
on Dataset I. It is clearly shown that LTRCS consistently out-
performs the other competitors in all evaluation metrics. For
example, compared with TagMatch, TagProp, and BiGraph,
LTRCS gains 4.4%, 2.5%, and 7.5% relative improvement in
terms of NDCG@10, respectively. To further analyze the re-
sults, we performed paired t-test [45] to compare the difference
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Table 3: Performance comparison among methods for complex queries with various lengths, in terms of
NDCG@10.

TagMatch TagProp BiGraph LTRCS LTRCS-EW LTRCS-CO

2 Concepts 0.714 0.668 0.637 0.722* 0.622 0.708
3 Concepts 0.698 0.660 0.655 0.723* 0.618 0.706
4 Concepts 0.655 0.648 0.629 0.716* 0.597 0.684
5 Concepts 0.620 0.640 0.629 0.701* 0.593 0.655

Bold typeset indicates the best performance, and * indicates it is statistically significant at p < 0.05 compared
with the runner-up.
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Figure 3: Performance comparison on Dataset II.

between LTRCS and the other methods, and found that the im-
provement of LTRCS is statistically significant at the signifi-
cance level of 0.05. These results verify the potential of LTRCS
in concept-based image search for complex queries.

As can be seen, in comparison to LTRCS, the two variants,
LTRCS-EW and LTRCS-CO, both suffer certain performance
degradation in different metrics. Since each of them determines
one kind of model parameters based on heuristic rules, such re-
sults point clearly to the importance of learning concept weights
and concept correlations in a supervised manner. Besides, we
notice that LTRCS-EW experiences a more significant decrease
in performance than LTRCS-CO, which implies that explicitly
modeling concept weights makes a greater contribution to the
effectiveness of our approach.

Figure 3 summarizes the comparison results on Dataset II.
Again, the proposed approach LTRCS outperforms its counter-
parts with statistically significant improvement in all metrics.
To our surprise, the existing methods, TagProp and BiGraph,
substantially fall behind TagMatch, which only calculates the
relevance of images by matching their associated tags against
the given query. In contrast, LTRCS consistently achieves su-
perior performance to TagMatch, reaching to 4.3% relative im-
provement on average. These findings further support the con-
clusion that our approach emerges as the most effective search
scheme for complex queries among all the competitors.

4.5. Performance Across Queries with Different Lengths

Intuitively, a complex query composed of more concepts car-
ries more sophisticated search intentions, which also increase
the difficulty of the search task for the query. Motivated by this,
we further studied how different methods behave for complex
queries with various lengths. In our experiments, the length

of a complex query ranged from 2 to 5 concepts. We adopted
Dataset II as the evaluation testbed, since it contains sufficient
queries of different lengths. Out of the 245 test queries on
Dataset II, the number of queries of lengths 2, 3, 4, and 5 are
82, 95, 53, and 15, respectively.

Table 3 presents the performance of different methods for
queries of different lengths in terms of NDCG@10. We can
see that with the increase of the length of queries, the search
performance of all methods drops gradually. This phenomenon
is consistent with the intuition that it is more challenging to
generate accurate search results for queries consisting of more
concepts. As expected, LTRCS achieves the best performance
in all cases. Especially, LTRCS gains a higher relative improve-
ment for the complex queries with 4 or 5 concepts, leading to at
least 4.7% and 7.1% for the two types in terms of NDCG@10.
These results indicate that our approach is particularly applica-
ble to long queries in concept-based image search.

4.6. Impact of Number of Visual Neighbors

In this study, we develop the neighbor voting algorithm to
build visual concept detectors. A key parameter in the algo-
rithm is the number of visual neighbors considered, i.e., the
parameter k. To investigate the impact of k, we conducted ex-
periments to observe the performance variation of our approach
when changing k from 10 to 2000. Figure 4 shows how the per-
formance varies with different values of k on Dataset I, where
three curves fluctuate, reflecting the impact of k in terms of dif-
ferent metrics. It can be observed that all performance curves
have a similar variation trend. Specifically, as k increases, the
performance curves go up at first, but when k is beyond a certain
threshold, they turn to decline with further increase of k. We be-
lieve this phenomenon is reasonable because a small number of
neighbors are unable to completely characterize the semantics
of a given image, whereas too many neighbors may introduce
information irrelevant to that image. In our case, the best per-
formance is achieved when k = 300.

4.7. Efficiency Analysis

To further examine the practical utility of our approach, in
this subsection, we analyze the efficiency of our learning algo-
rithm. The complexity of estimating the image relevance in Eq.
(5) is O

(
qmd

)
, where q is the average length of complex queries.

Given the fact that most complex queries are composed of only
a few concepts, we have q � m, and the complexity can be
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regarded as O
(
md

)
. In Eq. (12), the subgradient of the rele-

vance function f can be computed in O
(
md

)
. Consequently, the

overall complexity of one iteration in Algorithm 1 is O
(
lmd

)
.

In actual experiments, our Python implementation of the
algorithm took approximately 4.16 seconds per iteration on
Dataset I and 7.57 seconds on Dataset II, respectively. Figure
5 displays the convergence process of the iterative optimiza-
tion, which was measured by the objective function value over
a set of randomly selected training triples. It shows that the
algorithm generally converges within 30 iterations during train-
ing. In Table 4, we report the training time of our approach
in comparison with that of the other supervised competitors,
i.e., TagProp and BiGraph. Clearly, LTRCS gives a substan-
tial reduction in the training time when compared to BiGraph.
Although LTRCS takes over 1.5 times longer than TagProp, it
has a significant superiority in accuracy as shown in Figure 2
and Figure 3. We believe the gain outweighs the loss. Once
training is completed, during testing, our approach took an av-
erage of 0.17 seconds to yield the image ranking result for a
complex query. This means that our trained model can be used
interactively by users without any perceived delay. To sum up,
the above analysis verifies that our approach is computationally
efficient and applicable to large-scale use cases.

Table 4: Training time comparison (in seconds).

TagProp BiGraph LTRCS

Dataset I 70.2 467.0 124.8
Dataset II 139.2 1324.4 227.1
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Figure 6: Illustration of the learned pairwise correlations between concepts.

4.8. Correlation Illustration
In our framework, we model the concept correlations to cap-

ture the dependence among constituent concepts as well as the
relatedness between query and non-query concepts. To gain a
more intuitive understanding, we randomly sample a subset of
concepts, and illustrate the learned correlations between each
pair of the sampled concepts in Figure 6, where a color map is
used to indicate the magnitude of the correlations.

From the figure, we can see that many frequently co-
occurring concepts, such as (clouds, sky), (beach, sea) and
(lake, sunset), are assigned higher correlations. Analogously,
the pairs of concepts with the same or similar meanings, like
(road, street) and (sea, water), also have higher correlations. In
contrast, lower negative correlation values are allocated to those
rarely co-occurring concepts, such as (beach, buildings), (per-
son, sky) and (leaf, sunset). Note that the range of the learned
correlation values is asymmetric about zero. Moreover, the el-
ements on the main diagonal represent the self-correlation of
each concept. It can be clearly observed that, a diagonal el-
ement generally has a higher correlation value compared with
the other elements in the same row or column, which is in ac-
cordance with the intuition that a concept is more correlated
with itself than with others. In view of these findings, we be-
lieve that various kinds of relationships among concepts can be
effectively captured by the learned correlations.

5. Conclusion and Future Work

In this paper, we have investigated the challenge of concept-
based image search for complex queries, and addressed the
problem from the perspective of learning to rank. With freely
available social tagged images, we build concept detectors by
jointly leveraging the heterogeneous visual features. To avoid
the risk of making heuristic assumptions, the individual weight
of each constituent concept in a complex query is explicitly
modeled when estimating the image relevance. To capture the
dependence among constituent concepts, as well as the relat-
edness between query and non-query concepts, the pairwise
concept correlations are also modeled with a low-rank approx-
imation. The learning of different parameters are performed
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through directly optimizing the image ranking performance for
complex queries. Extensive experiments have been conducted
on two benchmark datasets in comparison with the state-of-the-
art methods from different aspects. The results have demon-
strated the effectiveness of our approach.

Our future work will focus on three directions. Firstly, we in-
tend to apply the distance metric learning techniques to improve
the quality of visual neighbors for concept detection. Secondly,
we plan to experiment with other learning to rank algorithms
to enhance the learning process of our current scheme. Finally,
we will further investigate the scalability of our approach by
experimenting on larger image datasets.
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