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ABSTRACT
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ISBN 978-951-39-7278-3 (nid.)

ISBN 978-951-39-7279-0 (PDF)

Finnish summary

Diss.

The subject of this thesis belongs to the topic of machine learning or, specifically,
to the development of advanced methods for regression analysis, clustering, and
anomaly detection. Industry is constantly seeking improved production prac-
tices and minimized production time and costs. In connection to this, several
industrial case studies are presented in which mathematical models for predict-
ing paper quality were proposed. The most important variables for the prediction
models are selected based on information-theoretic measures and regression trees
approach.

The rest of the original papers are devoted to unsupervised machine learn-
ing. The main focus is developing advanced spectral clustering techniques for
community detection and anomaly detection. As part of these efforts, a num-
ber of enhancements for the dependence clustering algorithm have been pro-
posed. These enhancements include adding regularization for controlling the
size of clusters, extension to the ensemble version for improving model stabil-
ity, handling overlapping clusters, and adaptation to solving anomaly detection
problems and handling big datasets.

Another focus of the thesis is on developing anomaly detection algorithms
for network security data. In connection to this, a probabilistic transition-based
approach is proposed for detecting application-layer distributed denial-of-service
attacks.

The developed approaches are tested on real datasets and are capable of ef-
ficiently solving the given tasks with high accuracy and good performance. They
are shown to be applicable to solving variable selection, graph segmentation, and
anomaly detection tasks in different applications.

Keywords: Clustering, Community detection, Anomaly detection, Paper machine,
Regression analysis, Regression trees, Mutual information, Graph seg-
mentation, Spectral clustering, Variable selection, Big data, Network
security
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1 INTRODUCTION

1.1 Background and research motivation

Currently, the amount and complexity of data being accumulated by compa-
nies and requiring analysis is growing exponentially. Data are becoming a ma-
jor source of generating profit increases for many organizations, with numerous
emerging companies’ total business activities involving data mining and data
analysis. Therefore, business and researchers are focusing on developing efficient
algorithms for processing bigger and more diverse datasets.

Data mining involves exploring and analyzing data, seeking patterns or re-
lationships between variables. Based on the given data, a model is built and
applied to new data subsets. Therefore, it is of great importance that the model
generalizes well. Data mining is a popular toolbox for solving various problems,
and this requires revealing data structures to guide decisions when confidence
is limited. Data mining tools can be divided into several categories according
to the objectives the data analysis aims to achieve. According to [HSMO01], these
categories include the following

1. Exploratory Data Analysis, which refers to exploring the data without specific
knowledge of what to extract;

2. Descriptive Modeling, which aims to describe all the data or the processes
generating the data, such as density estimation, cluster analysis, depen-
dency modeling;

3. Predictive Modeling, where a model is built in classification and regression
that predicts one variable from the known values of other variables;

4. Discovering Patterns and Rules, which focuses on finding useful patterns and
rules from data; this is opposed to the three previous categories, which in-
volve model building; and

5. Retrieval by Content, applies when data are examined for patterns that are
similar to a pattern of interest.

This thesis, which comprises collection of publications, is focused on solving a se-
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ries of theoretical and practical tasks using data mining techniques, with empha-
sis on developing clustering and anomaly detection algorithms. Thus, in [PI],[PII]
a predictive modeling task is addressed. In these works, industrial data with
laboratory measurements collected during test experiments for measuring paper
quality are used. The goal is to select a subset of predictor process variables that
affect the target quality variable the most. In other words, the aim is to build a
model for predicting a target variable from a subset of predictor variables to max-
imize the prediction accuracy. The rest of the works [PIII]-[PVII] aim at solving
descriptive modeling tasks, where advanced clustering and anomaly detection
algorithms are proposed for graph segmentation and network security applica-
tions.

1.2 Research questions

The goal of the thesis is to develop advanced algorithms for variable selection,
community detection, clustering, and anomaly detection, and apply these algo-
rithms for discovering knowledge in datasets from different domains. To meet
these goals, the research aims to answer the following research questions:

RQ1: How should variables be selected from data when features dominate over
samples to leave prediction accuracy high?

RQ2: How can the community detection/clustering task be made more accurate
and efficient?

RQ3: How can anomaly detection techniques be advanced to increase network
security?

RQ4: How can community detection/clustering algorithms be efficiently imple-
mented and adapted to large-scale datasets?

1.3 Structure of the thesis

The remaining part of this thesis is organized as follows. Chapter 2 explains the
theoretical background. The main concepts and algorithms used in the included
publications, as well as those needed for understanding the outcomes of this the-
sis, are thoroughly described. The main concepts that are addressed in this the-
sis include supervised learning, unsupervised learning, model selection, and big
data analysis. Chapter 3 summarizes the results presented in the included re-
search articles, outlining the research contribution and the author’s contribution
in the related publications. Finally, Chapter 4 presents conclusions and provides
directions for future research work. Table 1 lists the contributions of each in-
cluded publication with respect to the research questions formulated in Section
1.2.
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TABLE 1 Contribution of original research articles to the research questions.

Research
Question(s)

Article

RQ1

[PI]: Information-theoretic approach to variable selection in pre-
dictive models applied to paper machine data

[PII]: Variable group selection based on regression trees: paper
machine case study

RQ2

[PII]: Revealing community structures by ensemble clustering
using group diffusion

[PIV]: Probabilistic group dependence approach for discovering
overlapping clusters

[PV]: Scalable implementation of dependence clustering in
Apache Spark

RQ3

[PVI]: Anomaly detection approach to keystroke dynamics ba-
sed user authentication

[PVII]: Probabilistic transition-based approach for detecting
application-layer DDoS attacks in encrypted software-
defined networks

RQ4

[PV]: Scalable implementation of dependence clustering in
Apache Spark




2 THEORETICAL FOUNDATIONS

2.1 Supervised learning

In supervised learning, given a set of data Q = {(x0,y))|i = 1,..,m;x() ¢
R";y() € R}, the goal is to learn an approximation f : x — y (f : R" — R).
One usually starts with a family of models y = f(x,®) parametrized by ® and
aims to find the model parameters © that minimize a discrepancy J(y, §) between
the true output y € R and expected model output § = f(x,®). Regression and
classification problems belong to supervised learning. Regression methods work
with continuous values, while classification methods are used with categorical
data. Supervised learning is commonly employed in applications where future
events are to be predicted based on information from the past.

2.1.1 Linear regression

Regression analysis is a statistical method that investigates the relationships be-
tween a dependent response variable and several independent variables (predic-
tors). Regression analysis is usually used to address the following goals [YS09]:

1. Predicting a response variable y from predictors xi,...,x, as accurately as
possible;

2. Understanding the structural relationships between the response variable y
and predictors x1,...,x,; and

3. Determining a subset of variables from predictors xy,...,x,, that affect the
response variable y the most.

Linear regression is a method that assumes linear relationships between input
and output variables, where input variables can be original predictors undergo-
ing generally nonlinear transformations. Linear regression with multiple vari-
ables, also called multiple linear regression, models the linear relationships be-
tween one dependent variable and more than one independent variable. The
general form of the multiple linear regression model can be described by the fol-
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lowing equation:

n
y(x) = ag + leixi + €,
i=1
where y denotes the dependent variable, x1, ..., x,; are n independent variables,
(«g, ..., y) define the model parameters, and € is the error term. Classical settings
of regression analysis assume the error term € to be normally distributed, with
E(e) = 0 and constant Var(e) = o2.

There are different estimators of the regression parameters, for example,
least squares estimation or maximum likelihood (ML) [YS09], [HTF09]. The least
squares estimation method is considered the most common. In general, given
some estimates for the model parameters d;, i = 1,...,n one can predict the re-
sponse variable using

n
§=do+ ) dix;,
i=1
where i denotes a prediction of y(x).
Least Squares Estimation

Given a multiple linear regression model y(x) = ag + Y/ ; a;x;, the least squares
cost function to be minimized is written in the following form:

D =92,

M

I
—

J(e) =
where & = (ag, ..., &), and yAO) is the i-th expected result. Further, using a matrix
notation the problem can be represented as

X0
X1

y(x) = [wg o - - - ) o X,
Xn
where xg = 1. Therefore, given X € R"*("*1) with each row corresponding to

the i-th sample, the cost function can be represented in the matrix form as
J(e) = (Xoe = §)T (X = ) = o' X X = 2(Xe)T§ + §79. (1)

The least squares method aims to find the estimates & that minimize the least-
squares cost function (1):

& = argmin J ().

By solving the partial differential system

a
PP
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FIGURE 1 Example of classification and regression trees (CART).

it is easy to show that the optimal parameter values in the sense of least squares
minimization are equal to

&= (X"x)DXTy.

It is important to note that linear regression models are not bounded to the
analysis of only the linear relationships between the predictor and target vari-
ables. The linear property is assumed for the model parameters ;; that is, the
dependence of y on x; < g(x;) is linear, where g is generally a nonlinear trans-
formation. Hence, nonlinear relationships can be represented naturally using the
linear regression model by imposing a linear dependence constraint between y
and the transformed predictor space.

2.1.2 Regression trees

Classification and regression trees (CART) are an example of regression mod-
els used for predicting continuous variables (regression) or categorical variables
(classification) [BFOS84]. A CART tree is a binary decision tree that is constructed
by recursively splitting a node into two child nodes, starting with the root node
that contains the whole learning sample (see Figure 1 for visual example). CART
recursive partitioning is a binary procedure that aims to maximize the similarity
of the response variable in each node by utilizing information contained in a set
of predictors. Tree construction in CART consists of three major steps, as follows:
(1) the process of growing a tree, (2) a splitting criterion, and (3) a validation
(stopping) rule for determining the best tree size.

Growing a tree is the process of choosing a split among all the possible splits
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at each node so that the resulting child nodes are the “purest”, that is, the dis-
tribution of the outcomes of all points belonging to each node has the lowest
variability. The growing process starts from the root node by recursively using
the following steps on each node:
1: Find each predictor’s best split, the point that maximizes the splitting crite-
rion the most when the node is split according to it;
2: Among the best splits found in the previous step, choose the one that maxi-
mizes the splitting criterion, the node’s best split; and
3: If a stopping criterion is fulfilled, exit. Otherwise, apply step 1 to each child
node in turn.
The goodness of split is measured by an impurity function. There are two im-
purity functions that are used in regression trees: (1) the least squares (LS) func-
tion and (2) the least absolute deviation (LAD) function [YW99]. Here, only the
LS measure is discussed, since the mechanism for both procedures is the same.
Given a splitting variable j € {1, ..., n} and a split point s € R, the node impu-
rity under the LS criterion is measured by the within-node sum of squares S(j),
defined as
SG) =Y. iy —75)>
i€R
where ;) denotes the mean value of the response variable at node R. The best
split can be found by solving the following optimization problem:

f;}gﬂ(ﬂﬁ) = 5(j) = S(Ru(j,8)) — S(Ra(j,5)),

where Ry(j,s) = {x;,i € R|lx;; < s} and Ra(j,s) = {x;,i € R|x;; > s}. Therefore,
S(R;1(j,s)) is the sum of squares of the left R’s child node, and S(R3(j,s)) is the
sum of squares of the right R’s child node. In other words, the splitting rule
serves to choose the split that causes the maximum reduction in the impurity of
the parent node.

To prevent the tree from growing too large, and thus, overfitting, one should
decide the optimal size of a tree. The standard approach is to grow a “full” tree
Tinax and then perform pruning by minimizing the cost-complexity measure on
the cross-validation set. The cost-complexity measure can be written in the form

Ra(T) = R(T) + a|T],

where T € Ty is any subtree obtained by pruning, |T| determines the number
of terminal nodes in T, « > 0 is the complexity parameter, and R(T) refers to the
sum of misclassification errors (sum of square errors) over all nodes. The goal is
to find, given «, the subtree T, that minimizes R, (T):

Ty = argmin R, (T).
Te Tmax
The parameter « affects the size of the subtree to be selected. Thus, when o = 0,
the biggest tree will be chosen, and with an increase in « the tree size becomes
smaller.
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CART are easy to interpret and can handle mixed (discrete and continuous)
and missing data; moreover, they are resistant to outliers and monotone transfor-
mations in data. CART have been used in many applications, including health
systems, business, ecology, and network planning [FJBD06], [LKO11], [DF10],
[HKO07]. In [PII], regression trees are utilized to discover the best pairs of pre-
dictor variables. Despite their advantages, however, the trees can be unstable,
causing a decrease in prediction accuracy. Due to the hierarchical nature of the
tree-growing process, small changes to the input data can have large effects on
the structure of the tree [Murl12]. As discussed in Section 2.3.2, one way to reduce
the variance of an estimate is bagging. Random forests [Bre01] improve the accu-
racy of regression trees by averaging multiple individual trees that are trained
on a randomly chosen subset of input variables, along with a randomly chosen
subset of data samples. Random forests are applicable in many areas, including
image classification, geography, ecology, and bioinformatics [GBS06], [BZMO07],
[CEB*07], [SWAO8].

2.1.3 k-Nearest Neighbor

k-Nearest Neighbors (kNN) is a simple classifier that selects the k nearest points to
a test input in the training set and classifies the test point using the majority vote
among the k neighbors. Let us denote the training subsetby Y = {y;},i =1, ..., N,
the test input by x, the indices of the k nearest points to x in Y by I;(x,Y), and the
set of classes by ¢,j=1,.,C. The class is defined as follows:

argmax1 Z I(y; = cj),
j ieIk(x,Y)

where I(x) = 11if a is true and 0 otherwise.

The kNN classifier can work well when it is given a good distance measure
and has enough labeled training data, but it fails in high dimensions due to the
curse of dimensionality [HTF09]. In kNN, any distance measure can be used, but the
most common is Euclidean distance. kNN has been successfully applied to many
classification problems, including handwritten digits, satellite image scenes, and
electrocardiogram (ECG) signals [ZBA12], [STB00], [Lee91], [MNWO02], [CMP03],
[SSK13], [KAKNO6]. In [PVI], a kNN based approach was used for detecting
anomalous users during the authentication phase.

2.1.4 Multilayer Perceptron

Artificial neural networks [MP43] were originally designed as algorithms attempt-
ing to mimic human brain. They represent an effective state-of-the-art technique
for many machine learning applications. Neural networks comprise artificial
neurons, information-processing units that are fundamental to the operation of
the neural network [Hay11]. A simple mathematical model for the activity of one
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artificial neuron can be written as follows:
m
y = ¢lag+ Y wix;), 2)
i=1

where vy is the output of the neuron, x;,i = 1, ..., m are the inputs connected to
the neuron, w; are the corresponding synaptic weights of the neuron, ¢ is an
activation function, and ay is bias. The equation 3 is often written in the form

y =) wixi), (©)
i=0

where wy = ag and xg = 1.

The activation function ¢ defines the output of a neuron and can be [inear,
threshold (the output depends on a threshold value), or sigmoid, where ¢(x) = (1+
e~*)~!, which is one of the most widely used activation functions. Other popular
activation functions are the fanh function f(x) = tanh(x) =2/(1+e )1 -1 =
2 - sigmoid(2x) — 1 and a more recent ReLu function h(x) = max(0, x), which is
less computationally expensive than sigmoid and tanh due to involving simpler
mathematical operations. The introduction of ReLu was one of the keys to suc-
cess of modern neural networks, as it allows faster training and leads to sparse
activations. Since, on the right end the derivative does not tend to zero com-
pared with sigmoid or tanh, it helps to tackle the problem of vanishing gradients
[Hay11].

Neural networks can be represented as graphs with connected layers of
nodes, where each node represents a neuron. Each neuron computes a sum of
its inputs (activation from previous layers) weighted by the synaptic weights and
applies the activation function, resulting in activation that is propagated to the
next layer.

The way in which neurons are connected to each other defines the network
architecture, or network topology. For example, feed-forward networks allow con-
nections to be only one way, from input to output. Multilayer perceptron (MLP) be-
longs to the class of feed-forward networks. The models that allow feedback con-
nections are called recurrent neural networks. They are powerful and dynamic, and
they can become extremely complicated. In Hopfield network (associative memory)
models, symmetric connections between the hidden units are allowed [Mur12].

An MLP is represented as a series of logistic regression models. Depending
on whether a classification or regression problem is being solved, the final layer
can either be another logistic regression or a linear regression model. There is an
input layer, output layer, and one or more hidden layers. The activity of a node
is determined by the activities of the previous nodes and their interconnections’
weights. Thus, every node is assigned an input-output (activation) function that,
along with the weights, influences the behavior of the network. An example of an
MLP is shown in Figure 2. In this dissertation, the MLP was used for predicting
paper quality from laboratory measurements, as described in [PI].
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Layer 1 Layer 2 Layer 3 Layer 4
(Input layer) (Hidden layer 1) (Hidden layer 2) (Output layer)

FIGURE 2 Example of a multilayer perceptron (MLP).

The back-propagation algorithm

The model parameters should be adjusted to make the model fit the train-
ing data well. A solution for the learning problem is the weight combination
that minimizes the error function. Using gradient descent, the back-propagation
algorithm seeks the minimum of the error function in the weight space.

Given a training set {(x(i),y(i))}, i = 1,...,m, with the parameter vector ® &
R", let us denote a total number of layers in the network as L and the number of
units (neurons) in layer / as s;. The number of output units equals the number
of classes K one wants to predict. Let us denote the activation function as g,
the output as hg(x) € RK, and the hypothesis that results in the k-th output as
he(x)k. The error function that is usually used in regression is the sum of squared
erTorS:

A L—1 s; Si+1

IPIPI (AT (4)

I=1 p=14=1

NgE

K . .
1©) =Y. Y — he(x),)? -
k=1

N

m

1

Il
_

For multiclass classification, the error function is usually given in the form of
Cross entropy:
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Neural networks can be applied to a problem of multilabel classification. For the
problem of multilabel classification, the most common choice of error function is
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a generalized form of logistic regression:
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In (6), ©1) is a matrix with the number of columns equal to the number of nodes
in the layer / (including the bias unit) and the number of rows equal to the number
of nodes in the next layer (I + 1) (excluding the bias unit).

The gradient descent method involves several steps. First, forward propa-
gation is applied to compute the hypothesis hg(x). Then, the back-propagation
algorithm is applied to compute the derivatives ﬁ](@). Let us denote the error

v
of node p in layer / by (5}(71). The gradient descent method for the error function (6)

can be described as follows:
l
1: Set A,(HZ =0,VIpyqg.
2: fori =1tomdo
3 al) =x).
4  Compute al) for I = 2,..., L using forward propagation;
a(l) = g(@(l_l)a(l_l)).

5. Using y(¥, compute (5( ) =ab) — (),

6 Compute §) = (@M)Ts ZH) aDo(1—a®)forl=L-1,..,2
: (0 () (D) 5(1+1)

7: A(qp) = A( p) T ap o .

8: end for

9:

o [Eal) +ael)ifp £ 0,
%A,glp) if p=0.
d —pW

10: —2=J(®) = Dyy.

89(,(;1),3 () . ()
11: Qg < Oy —aDyy.
Here, o denotes element-wise multiplication also known as the Hadamard prod-
uct, and « denotes the learning rate.

2.1.5 Regularization

Every model can overfit. Overfitting happens when a model appears to be too
powerful for the training data, and as a result, it can memorize data, including
noise. Regularization is a technique used to prevent overfitting during the train-
ing process. Early stopping is a simple way to prevent overfitting. This method
states that as soon as the error on the validation set starts to increase, the training
procedure should stop. If it continues to train, then the initially simple model
becomes more complicated as training progresses, and it eventually overfits.



24

Another classical approach to preventing overfitting is L1 and L, regular-
ization [Murl2]. This manifests in adding a penalty term for parameters to the
cost function (e.g., as in (4)-(6)). In a probabilistic view, this is equivalent to im-
posing a prior on the parameters. The L; norm usually leads to sparser solutions
for parameters compared with the L, norm.

Dropout [SHK"14] is a relatively recent technique for regularization in neu-
ral networks that has especially influenced tremendous success of deep learning.
It decreases overfitting and improves a training process’s speed. Another effect of
dropout is that it prevents co-adaptations of neurons and forces them to specialize
on certain tasks. In dropout, at each training iteration, a portion of the activations
in each layer is randomly masked out according to a predefined probability. This
effectively results in training an ensemble of reduced networks. After the training
finishes, the entire network is used when applied to test examples, and one must
re-normalize the network weights according to the dropout probability to match
this.

Batch normalization [IS15] is another popular and widely accepted regular-
ization technique that is commonly used in deep neural networks [GBC16]. In
batch normalization, not only the inputs to the network, but also the inputs to
every layer are normalized. The normalization is made a part of the model archi-
tecture to prevent stochastic gradient descent [Hay98] from undoing the effect of
normalization. Batch normalization can often result in order-of-magnitude train-
ing speedups, and it tends to reduce overfitting. Batch normalization has the
effect of reducing the internal covariate shift, thereby making the input distribu-
tion of a layer more stable.

2.2 Unsupervised learning

In contrast to supervised learning, which is usually used for prediction and re-
gression, the goal of unsupervised learning is to discover interesting structures
(knowledge) in data. In unsupervised learning, the labels are unknown before-
hand. Moreover, labeling data is an expensive process that normally involves hu-
man experts, and well-labeled data are rarely available. On a high level, the goal
of the unsupervised learning can be to learn a probability distribution p(X) over
the observed data or a generative model of the data Q = {x(1), ..., x(")|x() € R"}.
If only a kernel (pairwise similarities) [HSS08] is given, then one can still search
for clusters of data points.

2.21 Clustering

Clustering is a process of partitioning unlabeled data points into homogeneous
groups. The data points are grouped in such a way that they are similar to one
another in each cluster and different from points in other clusters [HTF09]. Clus-
tering is also referred to as community detection or graph partitioning, and it has
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many applications in data mining, machine learning, signal and image process-
ing, network analysis, pattern recognition, bioinformatics, and so on.

Similarity measures

The definition of similarity between objects to be clustered is fundamental in
cluster analysis. A measure of similarity between two objects in a feature space is
essential to most clustering algorithms. Depending on the similarity measure, the
outcomes of the algorithms can differ significantly [JMF99]. The most common
way to calculate dissimilarity between the objects is using a distance measure.
Due to the variety of data types and scales, the distance measure must be chosen
carefully.

For continuous features, the most common choice of metric is Euclidean dis-
tance. Given x(i), x) € R" the Euclidean distance, calculated as

n . .
a(x,x0) = |Ix® — x|, = [} (x) — xDy2, ™)
k=1

works well for data with an underlying clustering structure when the groups
are compact or well separated [JMF99]. To account for correlations in the data a
scale-invariant Mahalanobis distance can be used:

A (x?,x1)) = \/ (x() — x()5=1(x() — xONT, ®)

where S is the covariance matrix of a random vector variable X € R" assuming
x() ~ X and x) ~ X. When all axes are rescaled to have unit variance, Maha-
lanobis distance resembles Euclidean distance in the transformed space.

The calculation of the distance between data instances is more challenging
when a dataset contains features of different types, that is, continuous and nom-
inal features, since the contribution of features should be fairly balanced. A dis-
tance measure that incorporates both continuous and nominal features is known
as a heterogeneous distance measure. Heterogeneous distances can be computed
after performing the standardization of features or through a linear combination
of distance matrices computed for each set of homogeneous features. Some prox-
imity measures have been introduced for calculating distances between the fea-
tures of heterogeneous types [WM97], [SPB10]. Sometimes, for example, in social
networks analysis, the data are represented in terms of the pairwise proximity
(similarity or dissimilarity) between the objects. Thus, some algorithms that as-
sume distances cannot be used with such data.

The main drawback of clustering algorithms is the lack of standardization,
which means that depending on the type of dataset, the same algorithms can
provide good or poor results. So far, there has not been a standardized method
developed that would work well for all practical problems.



26

S T e

FIGURE 3 Example of a hierarchical cluster tree for Fisher’s dataset.

Types of clustering algorithms

Among the most popular clustering approaches are hierarchical (agglomerative
or divisive) clustering, centroid-based clustering, density-based clustering, spec-
tral clustering, and probabilistic clustering.

Hierarchical clustering defines a similarity measure between clusters and com-
putes a similarity matrix between vertices of a graph. Agglomerative clustering
algorithms start with assigning each point to its own cluster and then recursively
merging a selected pair of clusters into a single cluster. A pair of clusters to be
merged is selected to minimize intergroup dissimilarity. In contrast, divisive clus-
tering methods start by assigning all points to a single cluster and then recur-
sively splitting one of the existing clusters into two new clusters. The splitting
is performed to maximize between-group dissimilarity. Figure 3 shows an exam-
ple of a hierarchical cluster tree for Fisher’s dataset [Fis36]. One of the possible
divisions into three clusters is shown by the dashed line.

Spectral clustering refers to the group of methods based on eigenvalue de-
composition of the similarity matrix or its derivative matrices for clustering da-
tasets. This approach can take into account geometric structures of the data, and
it does not make any assumptions about the shape of clusters; thus, it is good at
finding non-convex clusters.

Density-based methods group data points according to regions of density.
Thus, the points from disconnected regions of high density are assigned to differ-
ent clusters, while the rest are marked as noise.

In centroid-based (prototype) methods, each class is represented by its cen-
troid (or medoid for categorical data attributes), the most central point. The data
points are assigned to a cluster with the nearest centroid.

Probabilistic clustering approaches consider data to be a sample indepen-
dently drawn from a mixture model of several probability distributions [MB88].
Such mixture models can naturally be generalized to clustering heterogeneous
data.
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2.2.1.1 Gaussian mixture model

A Gaussian mixture model (GMM) is a probabilistic model that assumes that data
are generated from a mixture of a finite number of Gaussian distributions, each
representing a different cluster, with unknown parameters. By using a discrete
set of Gaussian functions, each with its own mean and covariance matrix, the
GMM performs better modeling and can smoothly approximate even arbitrarily
shaped densities (clusters).

Let () denote a random sample of size m with density function f(x). In
GMM, each base distribution is a mixture of N parametric multivariate Gaussian
densities in the following form:

N

g(x|®) = kz w;if (x|, k),
—

where wy € [0,1],k = 1,.., N are the weights of the k-th components of the mix-
ture, under the constraint that lec\]:l wr=1,0={wy, ... ON_1, U1, -y UN, Z1, -, ZN }
denotes the parameters of the mixture model, and f (x|, i) are the k-th com-
ponent Gaussian densities with mean vector 1 and covariance matrix 2. Multi-
variate Gaussian distribution is given in the following form:

Flxe ) = Gz exp{ —3 (- 0T e . ©)

To estimate the model parameters © in the GMM, a common approach is
to apply the expectation maximization (EM) algorithm [DLR77]. EM is an iterative
method for numerically approximating the ML estimates of the parameters in a
mixture model. The EM algorithm consists of two phases - the initial expectation
(E)-step, which estimates the components the data points belong to, and the fol-
lowing maximization (M)-step, which re-estimates the parameters based on the
estimation from the previous step.

Assume that the number of mixed components N is known. The log-likeli-
hood is given by the following function.

m ) m N
1(©) =log g(Q]6) = ) logg(xV|©) = }_ log (kakf(xiluk,Zk))- (10)
i=1 i=1 =1

The EM algorithm can be described by the steps given below.

Require: Initial guesses for the parameters ©(0)
1: Evaluate initial value of /() using (10), ® = ")
2: E-step. Using current parameters estimate the responsibilities

@ f (x|, £i)
L @if (XD, £))

Pk(x(i)) =
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3: M-step. Using the current responsibilities re-estimate the parameters

- Y, pk(x(i))x(i)
Yt pe(x0)
g = Lm0 — i) (0 — )T
Zi”  pe(x) ’

. 1
d o Y pr
4: Evaluate /(0). If there is no convergence, return to step 2.

Therefore, given (), the clustering procedure aims to obtain the corresponding la-
belsy) € RN,i =1,...,m by estimating the posterior probabilities of component
membership for a fited GMM p(x()) = Pr( = 1x(). The weights of Gaus-
sian components can be viewed as prior probab111t1es of assigning a data point

to a given component k, as wy = Pr(yk) = 1). Further, each data point can be
assigned to a specific component/cluster according to the maximum a posteriori
(MAP) estimation rule when

y,(ci) =1, if k = argmax; pjx(i),
0, otherwise.

2.2.1.2 k-Means clustering

k-Means [Mac67], [HTF09], [Murl2] is a specific case of EM algorithm for a GMM.
In contrast to the GMM, which generates soft clustering assignments, k-means is a
hard clustering algorithm that deals with divisions into non-overlapping groups.
The problem of parameter estimation is reduced to estimating the cluster cen-
troids. Given a sample () and number of clusters k, one randomly specifies the
initial k cluster centroids K, j = 1,..,k. Then, until the algorithm is converged,
the following two steps are performed:

1. Assigning each observation to the closest cluster centroid:
c; = arg min1<j<k HX(Z) — LL]'||2; and

2. Updating cluster centroids: w;j = (272 I(c; = j)) ! Zizci:jx(l)
2.2.1.3 Spectral clustering

Spectral clustering [HTF09] refers to the group of methods based on the eigen-
value decomposition of the similarity matrix or its derivative matrices for clus-
tering datasets. This approach can take into account geometric structures of the
data, and therefore, it is good at finding non-convex clusters. Compared to the
traditional algorithms, such as k-means or single linkage, spectral clustering has
many fundamental advantages. The main idea behind spectral clustering lies
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in integrating local neighborhood connections to find strongly connected data
components. Spectral clustering is easy to implement and can be solved effi-
ciently using standard linear algebra methods. There are different interpretations
of spectral clustering [Lux07]. Here, the graph cut and random walk-based points
of view are discussed.

The fundamental concept of spectral clustering algorithms is the graph Lap-
lacian [SMO00], [NJWO01], [Lux07]. The algorithms and their outcomes vary de-
pending on what form of graph Laplacian has been used. Given a set of data
points/observations Q = {x()|i = 1,...,m;x(") € R"}, one can represent obser-
vations in the form of a graph defined by an m x m similarity/affinity matrix S.
The similarity, or adjacency, matrix S, symmetric by definition, consists of non-
negative elements s;; representing pairwise similarities between points i and ;.
The closeness between points i and j is usually reciprocal to the distance between
i and j. The bigger the value of s;; is, the closer the two points i and j are to each
other. Let G be a diagonal matrix with diagonal elements

&= Y Si (11)

jen

which are calculated as the sum of the weights of the edges connected to them
and are called the degree of point i. The unnormalized graph Laplacian matrix is
defined as

L=G-S.

In spectral clustering, one finds the k eigenvectors corresponding to the k smallest
eigenvalues of the graph Laplacian L. The rows of the obtained eigenvectors are
then clustered using a standard clustering technique, such as k-means, to provide
a clustering of the original data points. An example of spectral clustering algo-
rithm can be described using the general steps outlined below.

Require: Similarity matrix S € R"*™, parameter k specifying number of clusters.
1: Construct similarity graph G.
2: Calculate Laplacian L.
3: Compute the first k eigenvectors ey, ..., e, of L.
4: Form the matrix E = [ey, ..., e;] € R"*¥ such that the eigenvectors are placed
in columns.
Cluster rows of E as points in R using k-means algorithm.
6: Assign an original data point to cluster i if the corresponding row of matrix E
was assigned to cluster i.

U

The graph cut interpretation

From the graph cut point of view the observations are represented as an undi-
rected similarity graph G =< V, E >, where V and E define vertices and weighted
edges, respectively. Vertices v; € V represent observations x(!). A pair of vertices
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is connected by an edge if the similarity s;; between the corresponding data points
is positive and the edge is assigned the weight s;;. Spectral clustering can be in-
terpreted as finding partitions of the graph such that within-group edges have
high weights and between-group edges have significantly lower weights [Lux07].
Thus, the algorithm aims to construct similarity graphs that represent the local
neighborhood relationships between observations, and the problem of clustering
is reduced to a graph-partition problem, where strongly connected components
are identified as clusters.

There are different ways to define the similarity measure when construct-
ing an affinity matrix/similarity graph; these are usually application-driven and
chosen to better reflect the local behavior and nature of the data and problem. To
give some examples, the Gaussian radial basis function and mutual kNN graph
[PS85] are considered the most common choices.

One way to find a partition into k clusters Cjy, ..., C is by solving the mincut
problem, that is choosing the Cy, ..., Ci that minimizes

k
cut(Cy, ..., Cy) := Z cut(C;, ),
i=1
where C; = V'\ C; is a complement of the subset C;, cut(C;, C;) = Ypec,qec; Spa-
However, often, the mincut solution involves cutting a single vertex from the rest
of the graph. To avoid division into too small clusters, either the RatioCut [HK92]
or normalized Ncut [SMO0O0] objective function can be optimized; these differ in
how they measure the size of a subset of a graph

k . _‘
RatioCut(Cy, ., C;) = ) G Ci)
= G
k -
-y~ ut(G, G)
NCUt(Cl,...,Ck) = L Vol(ci) ,

where |C;| denotes the number of vertices, and vol(C;) = e, gj, where g; is the
degree of node j as defined in (11).

The probabilistic interpretation

From the probabilistic point of view, the pairwise similarities can be viewed as
edge flows in a Markov random walk [MS01], [Lux07]. A Markov random walk
on a graph is a stochastic process that randomly transitions among vertices and
satisfies the Markov property, wherein the predictions for the future of the pro-
cess are based solely on its present state. Spectral clustering can be interpreted as
trying to find a partition of the graph such that the random walk stays in the same
cluster for a long time and rarely jumps between clusters. Thus, the clustering is
performed by studying the properties of the eigenvectors and the eigenvalues of
the resulting transition matrix, defined as

P=D"!s. (12)
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In (12), P is a stochastic matrix whose rows sum up to one, and elements p;;
represent the probability of moving from node i to node j in one step, provided
the current location is node i. The first eigenvector of the matrix P is the vector
with all elements equal to one. Therefore, the second largest eigenvector of P can
be used to describe the cluster properties of the graph.

To conclude, the main advantages of spectral clustering are its efficiency,
and the lack of assumptions concerning the clusters’ shape. Spectral clustering
does not require clusters to be convex, and it can be used for solving general
problems. Given a sparse similarity graph, the spectral clustering algorithm can
even be efficiently implemented for large datasets. Its main disadvantage is in-
stability with respect to the choice of parameters. Specifically, the algorithm’s
stability depends on the choices of the parameters for the neighborhood graphs.

2.2.2 Community detection

Community detection algorithms are applied in complex systems/networks rep-
resented as graphs. Such algorithms attempt to separate vertices into clusters
such that there are many connecting edges among the vertices of the same cluster
and relatively few edges joining vertices from different clusters. Community de-
tection plays an important role in physics, sociology [SC11], biology [DWMO02],
[JTA"00], and computer science, where systems are often represented by graphs,
and it has become a central concept in understanding the functionality of com-
plex networks.

A simple example of a graph is a random graph where all the edges have
the same weight and the distribution of the edges among the vertices is homo-
geneous. In real systems, however, the graph structure is more complex, since
the distribution of the edges is inhomogeneous not only globally, but also locally.
In this case, a network is said to display a community structure if the vertices of
the network can be easily grouped into communities/clusters such that the edge
density is high inside the clusters and low between the clusters.

Identifying network communities is one of the most important tasks in net-
work analysis. The structure of a network is the only preliminary information
available to an algorithm. This information includes connections between pairs
of vertices and possibly their weights. In real systems, vertices can belong to one
community or multiple communities at once. The research related to identifying
the community structure includes both overlapping and non-overlapping com-
munity detection techniques. The task of overlapping community detection is
more recent compared with revealing non-overlapping structures.

Generally, the community detection task is similar to clustering. The main
difference is that data-clustering algorithms aim to find groups of objects with
similar properties/attributes using a measure of distance or similarity. Commu-
nities in graphs are related to the concept of edge density [For10], and community
detection algorithms operate on a network structure level. Despite the consider-
able interest of the scientific community in community detection over the last few
years, there is no universally accepted solution so far. Numerous methods have
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been proposed to reveal the underlying structure in complex networks.

Traditional community detection techniques include hierarchical clustering,
partitional clustering, spectral clustering, and graph partitioning [For10]. Hierar-
chical clustering algorithms [HTF09] are commonly applied in networks with a
hierarchical structure, such as social networks, where communities have a mul-
tilevel structure by nature. Among the most popular partitional methods are k-
means clustering [Mac67] and fuzzy c-means clustering [Bez81]. Spectral meth-
ods exploit spectral properties of the graph Laplacian matrices [DM04], [PL14],
[PIII], [PIV]. Graph partitioning methods [Pot97] divide the vertices of the graph
into k groups by minimizing the cut size (number of edges lying between clus-
ters). The division is done by iterative bisectioning of the graph [For10]. In graph
partitioning, the number of clusters is known beforehand.

Among other approaches are divisive methods [GNO02] that aim to detect and
remove the edges that connect vertices from different communities [For10] based
on a vertex betweenness measure [GN02], [Fre77].

Optimization-based community detection techniques involve the optimiza-
tion of a clustering quality function over the space of all possible partitions. Such
quality functions represent the goodness of division. A benchmark quality func-
tion is the modularity [NG04], which measures how different the original graph
is from its randomizations. Modularity optimization may lead to resolution prob-
lems [FB07]. Another approach is optimization of the cluster quality functions,
which considers communities as local structures, allows investigating networks
by parts, and avoids resolution problems by ignoring the global scale [BGK™05],
[HSL*11], [LF11].

2.2.2.1 Overlapping community detection

Overlapping community detection, or soft clustering, techniques can be divided
into two classes, namely node-based and link-based approaches. The node-based
overlapping community detection algorithms categorize the nodes of the net-
work, while the link-based overlapping community detection algorithms classify
the edges of the network in clusters. Having multiple memberships for the nodes
increases the space of possible solutions. In overlapping communities, especially
in social networks, the links reflect different types of relationships between the
objects, and they are usually uniquely defined in contrast to nodes [ABL10]. Thus,
multiple links connected to a single node may belong to several different link
communities. In link communities, a node is overlapping with other nodes if the
links connected to it belong to more than one group. Link clustering [ABL10],
clique percolation method [PDFV05], and mixed membership stochastic block-
models [ABFX08] are considered the state-of-the-art overlapping community de-
tection methods. The soft dependence clustering algorithm proposed in [PIV] can
be used for graph segmentation applications, as well as clustering data that have
the notion of distance.
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2.2.3 Anomaly detection

Anomaly detection refers to a problem of finding patterns in data that signifi-
cantly deviate from the expected behavior [CBK09]. There are different names
for such non-conforming patterns, but the most frequently used terms in the field
of anomaly detection are anomalies and outliers. Anomalies can represent one of
several types, depending on their nature and behavior. The simplest anomaly is a
point anomaly, which refers to a single anomalous sample with regard to the rest
of the data. This type of anomaly is the focus of most works on anomaly detec-
tion. Collective anomaly refers to a group of related samples which is anomalous
with respect to the entire dataset. In collective anomaly, not the group samples by
themselves, but the presence of the samples as a group is anomalous. Collective
anomaly may appear only in data where the data points are related (e.g. graph,
sequence, spatial). Contextual anomaly is a single point or group of data points
that are anomalous with respect to the context in the data [CBK09].

Depending on the labeling in the training data, anomaly detection can be
supervised, unsupervised, or semi-supervised. In supervised anomaly detection, train-
ing data are labeled accurately and the predictive model is built for different cate-
gories, which usually leads to accurate detection of known anomalies. However,
obtaining a representative set of accurately labeled data is challenging, especially
when data are dynamic and evolving over time. Unsupervised anomaly detection
handles the most frequent real-world scenarios where labeled data are missing. It
naturally applies to dynamic data and is able to detect rare or zero-day anomalies.
Unlike in supervised techniques, the chance of overfitting is lower using unsu-
pervised anomaly detection. Finally, semi-supervised anomaly detection is a com-
promise between the supervised and unsupervised techniques, and it requires
labeling of only normal categories in the training data, and therefore, building
the normal behavior model. Anomaly detection techniques can be divided into
the following categories: classification based, clustering based, nearest neighbor
(NN) based, statistical, information theoretic, and spectral [CBK09].

Classification-based anomaly detection is a supervised two-phase approach
that, by using the training set, learns a classifier that distinguishes between nor-
mal and anomalous test samples. It can belong to one of the following categories:
neural networks based, support vector machine based, Bayesian networks based,
and rule based [CBKO09].

Supervised anomaly detection can also be based on NN analysis, which as-
sumes that normal data are located in dense neighborhoods, while anomalies
appear far from their closest neighbors. These techniques can be grouped into
distance- and density-based approaches. In the basic NN anomaly detection
methods, the anomaly score for detecting an anomalous test sample is defined
as the distance to its k-th NN in the training set. This basic method has been
extended in terms of how the anomaly score is defined and what distance mea-
sure is used, as well as to improve the efficiency. In density-based techniques, the
density of a sample neighborhood is estimated; that is, samples that lie in a dense
neighborhood are considered to be normal, while samples that lie in a neighbor-
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hood with low density are declared to be anomalous. Density-based techniques
do not perform well when there are regions of different densities in the data. To
overcome this issue, a number of techniques have been developed to compute
the density of instances relative to the density of their neighbors, including local
outlier factor (LOF) [BKNS00] and influenced outlierness (INFLO) [JTHWO06].

Clustering-based anomaly detection can operate in the unsupervised and semi-
supervised modes. Although anomaly detection pursues a different goal than
clustering, several clustering techniques have been employed for detecting anoma-
lies. Moreover, many clustering algorithms already include the notion of outliers.
However, algorithms of this type are not developed specifically to catch anoma-
lies in the data, as their primary goal is to find clusters.

Clustering-based anomaly detection techniques can be grouped into three
categories. Cluster association-based techniques assume that normal data points
belong to clusters in the data. Anomalies are then discovered as the points that
do not belong to any cluster. The most famous algorithm of this type is density-
based spatial clustering of applications with noise (DBSCAN) [EKSX96]. Cen-
troid-based techniques assume that normal data points are located near to their
closest cluster centroid, while anomalies are far away. The distance from each
point to its closest cluster centroid is used as the anomaly score. For example,
self-organizing map (SOM) [Koh98], EM, and k-means have been applied for de-
tecting anomalies in several applications [SBET02]. In [PVI], a dependence clus-
tering (DC)-based approach [PL14] was employed for detecting anomalous users
during the authentication process. In cluster density-based techniques (e.g., Find-
CBLOF [HXDO03]), normal data points belong to large and dense clusters, while
anomalies belong to small or sparse clusters. Therefore, a data point that does
not belong to any cluster, which has a size and/or density greater than a certain
threshold, is marked as anomalous.

Statistical anomaly detection techniques estimate the probability regions of a
stochastic model; hence, normal data points occur in the high-probability regions,
while anomalies occur in the low-probability regions. Statistical algorithms fit
a statistical model for normal behavior using the given data. Then, based on
the results of a statistical inference test, a new point is classified as normal or
anomalous depending on how probable this point is according to the model. In
[PVII], a statistical model based on Markov chain was built to detect anomalous
traffic.

Information-theoretic anomaly detection techniques define anomalies as in-
stances that generate irregularities in the information content of the dataset. The
information content of the data is analyzed using information-theoretic measures,
such as entropy or Kolomogorov complexity [LV97]. Spectral anomaly detection
techniques aim to approximate/embed the data in lower dimensional subspaces
where anomalies can easily be detected.
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2.3 Model selection

2.3.1 The bias/variance trade-off

In predictive models, the accuracy can decrease due to overfitting or underfitting
the data the models are trained on. Overfitting occurs when a predictive model
is trained to fit the training data too closely. Underfitting happens when a chosen
predictive model is not complex enough to capture important features, for exam-
ple, by using a linear model when a quadratic is necessary. To evaluate model
performance better, understanding of the source of prediction errors is impor-
tant. Prediction errors can be divided into errors due to bias, which corresponds
to underfitting, and variance, which corresponds to overfitting. In real life, due
to the imperfect models and finite data, there is always a trade-off between mini-
mization of bias and variance, which is commonly referred to as the bias-variance
dilemma. The bias and variance are side effects of the model complexity. In prac-
tice, the model complexity should be adjusted so that it is not too low or too
high. Low complexity results in poor accuracy, and therefore, high error in both
training and test data. In contrast, being able to model training data too well
and lacking generalization to test data, high complexity models cause a lower
training error and higher test error. In other words, the bias/variance trade-off is
represented by the ability of a model to fit the data well, and more importantly,
to generalize to unseen data points.

From the mathematical point of view, the bias/variance trade-off can be ex-
plained as follows. Suppose we are engaged in regression analysis setting and the
training data are assumed to be generated by a function y = f(x) + €, where f(x)
is the ideal function we want to model and € is the random error corresponding
to noise, which is distributed normally, with E(e) = 0 and Var(e) = 0. Machine
learning algorithms aim to reconstruct an approximation f(x) of the ideal func-
tion f(x) from the noisy data y. The expected squared prediction error at a point
x is defined as

Err(x) = E[(y — f(x))?]. (13)

The error (13) can be decomposed into bias and variance components, as follows
[HTF09]:

Err(x) = (E[f ()] = f(x))* + E[f(x) = E[f()]*] + 0%,
which is equivalent to
Err(x) = Bias® + Variance + Irreducible error.

The irreducible error term 2, which is the variance of the new test target, comes
from the noise € in the training data and is a lower bound for the mean squared
error. More details related to deriving Err(x) can be found in [HTF09]. Bias does
not depend on the size of the training set, and it is high when the data distribu-
tion cannot be modeled well by the selected classifier. Variance depends on the
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FIGURE 4 Test and training error as a function of model complexity from [HTF09].

training set size. The more data are in the training set, the lower the variance
will be. Figure 4 [HTF09] shows how the prediction error depends on the model
complexity. As the model complexity increases, the training error and model gen-
eralization tend to decrease. In contrast, the low complexity of the model causes
underfitting and may result in poor generalization due to a large bias. The vari-
ance increases as classifiers become more complicated.

2.3.2 Consensus/ensemble approaches

Many machine learning techniques are stochastic by nature and can benefit from
combining the results of multiple models. These models can be trained using
different random seeds, different randomly chosen subsets/combinations of fea-
tures, and various initial conditions/parameters; moreover, they can be provided
as outputs of a number of algorithms. The results are then combined according
to some consensus criteria.

A combination of the consensus approach, also referred to as the ensemble
approach, and popular existing classification or clustering techniques leads to
more accurate partitions compared with the results of single learners. Ensemble
approaches lead to reduced variance, as the results are less dependent on pecu-
liarities of a single training set, and reduced bias, as a combination of multiple
classifiers may learn a more expressive concept class than a single classifier can.
Among the most popular ensemble approaches are bagging and boosting.

2.3.21 Bagging

Bagging, or bootstrap aggregation [Bre96], reduces variance by averaging the pre-
diction over a collection of bootstrap samples. Bootstrap samples are additional
data for training generated from the original dataset using random combinations
with repetitions. By training classifiers on a repeatedly perturbed training set,
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bagging generates multiple predictors. The results of the predictors are com-
bined by voting, for the task of classification, or averaging, for the task of regres-
sion. By increasing the size of the training set, one can decrease the variance,
leaving the bias unchanged, which leads to improved prediction. Bagging is usu-
ally employed with regression or classification trees, but it can be used with other
methods as well. There are variations of the classical bagging procedure, which
include sampling of features instead of data instances or learning a set of classi-
fiers with different algorithms.

2.3.2.2 Boosting

Boosting [FS99], initially designed for classification problems, can be extended to
regression as well. Boosting is a two-step approach that combines the outputs of
several weak classifiers to produce a powerful consensus solution. First, one uses
subsets of the original data to produce a series of moderately well-performing
models, or weak classifiers. Next, the performance of the weak classifiers is
boosted by combining them using a specified cost function. In the classical boost-
ing, every new subset contains the elements that were misclassified by the previ-
ous models. However, boosting is not limited to being used with weak learners.
It can also be used with accurate classifiers, thereby serving as the base learner.
Boosting can significantly lower the error rate of a method, as it decreases vari-
ance without increasing bias.

2.4 Bigdata

Modern data communication and social networks have been growing consid-
erably in size, variety, and complexity. Along with the growing complexity of
the existing networks, new types of communication networks have emerged.
To name a few, Internet of Things (IoT), cloud-based, multi-agent, and wireless-
based networks have gained popularity among researchers and companies. The
rapid expansion of big data has been accelerated by the dramatic increase of the
Internet usage, development of cloud computing technologies, acceptance of so-
cial networking and smartphone applications, and so on. There are many appli-
cations of big data in different areas, including health, business, and technology
[FB13], [LRU14].

Big data is usually associated with large and complex datasets characterized
by the following key dimensions [DGdLM13]:

— Volume: a vast amount of data is constantly generated, posing challenges for
storage and analysis using traditional techniques;

— Velocity: data are generated continuously at an exponential rate;

— Variety: generated data have different formats, with the majority being un-
structured; thus, modern techniques must be adapted to handling heteroge-
neous data;
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— Veracity: data may not have sufficient quality or trustworthiness; and

— Value: huge amounts of data do not necessarily translate into high-value
data, as turning data into value (identifying what is valuable with further
transformation, extraction, and analysis) is challenging.

Data are generated at an exponential rate around the world, and this has become
a major source of generating profit increases for many organizations; numerous
emerging companies work solely around data technology. Therefore, businesses
and researchers are focusing on developing new efficient technologies and ar-
chitectures for processing huge amounts of data and extracting value from them.
With the increase of data in terms of volume, velocity, variety, veracity, and value,
traditional techniques suffer from limitations related to the efficient storing, pro-
cessing, and analyzing of the data. To extract meaning from these data, novel
and evolving algorithms and analytics techniques have emerged along with in-
novative and effective ways to use hardware and software platforms. Combining
recent achievements in data mining and large-scale computation technologies re-
sults in innovation in algorithms for the processing and analysis of big datasets.
A common approach is to sacrifice accuracy for efficiency. By using smart ap-
proximations, it is possible to increase efficiency dramatically, while the accuracy
lost is marginal.

Processing large-scale data is an important problem for many domains. Ef-
ficient analysis and timely processing of big datasets requires scalable algorithms
and computational frameworks. Traditional solutions are time consuming; hence,
new technologies and data processing frameworks supporting the big data phe-
nomenon have recently emerged, to name a few, NoSQL, parallel and distributed
paradigms, Apache Hadoop, and Apache Spark.

Apache Hadoop

Hadoop [bib] is an open-source implementation of the MapReduce model [DGO08],
and it is one of the most widely used frameworks/platforms for the distributed
processing of large-scale data. Apache Hadoop implements a scalable fault-tole-
rant distributed platform for MapReduce programs. The Hadoop Distributed File
System (HDFS) provides high-throughput access to application data. Hadoop is
reliable and efficient for big data analysis on large clusters. The main concern
about Hadoop is maintaining the speed in processing large datasets. Because the
data are processed from a disk, Hadoop is inefficient for data mining applications,
which often require numerous iterations, as the waiting time between queries and
waiting time to run the program take too long. Moreover, despite performing rel-
atively well for offline data, it handles real-time stream data poorly.

Apache Spark
Apache Spark [ZCD"12] is a more recent open-source distributed framework

for data analytics that enables, among other things, fast and efficient process-
ing of large streams of data. The key features of Spark are in-memory compu-
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Transformations

FIGURE 5 Apache Spark RDD workflow.

tations that increase the processing speed of an application and fault tolerance.
In addition, Spark supports in-memory caching of datasets, which prevents slow
disk reads and reduces network communications, and as a result, performs much
faster compared with Hadoop-like systems.

Spark adopts Resilient Distributed Dataset (RDD) [ZCD"12], a distributed
memory abstraction that supports two types of operations, as follows: transfor-
mations and actions. Transformations define a new RDD based on the existing
one, and actions either return a value to the driver program or export data to
persistent storage. When a transformation is executed, a new RDD is created,
with its records distributed across the main memory. An action operation causes
each node to process its local set of records and return the result. The Spark RDD
workflow is illustrated in Figure 5.

Spark is used as a tool for creating competent solutions for big data analysis
by performing machine learning and data mining tasks. Many clustering and
anomaly-detection algorithms have been developed or adapted to Spark due to
its efficiency and high performance [MBY*15], [HMX*15],[BTM16],[LC10]. In
[PV], a scalable version of the DC algorithm was proposed and implemented in
Apache Spark using GraphX application programming interface (API) primitives
[XGFS13], [XCD*14].



3 RESEARCH CONTRIBUTIONS

This chapter presents as overview of the results, research contributions and au-
thor’s contribution to the included articles. The chapter is divided into sections
according to the problem areas addressed in this work, which helps to reflect the
contributions in a more comprehensive fashion.

3.1 Variable selection

Articles [PI] and [PII] refer to the problem of variable selection in data-driven
modeling. Specifically, they consider the papermaking industry, where the chan-
ges in paper designs were tested using a pilot paper machine.

Article [PI]: Information-theoretic approach to variable selection in predictive
models applied to paper machine data

Article [PI] presents a pilot paper machine case study of variable selection for
predicting laboratory measurements of paper quality. The quality of the final
paper product depends on numerous quality and process variables in a compli-
cated and nonlinear way. In reality, small changes in process variables can lead
to global changes in quality variables. Field testing is usually a long lasting and
expensive process. Therefore, it is highly important to establish the links among
process and quality variables, that is, determine which process variables influ-
ence the quality variables the most. In this paper, principal component analysis
(PCA) [Jol02], Shannon mutual information [Sha48], and maximal information
coefficient (MIC) [RRF*11] based variable selection techniques were utilized in
the preprocessing phase. Then, the MLP model was applied to the selected sub-
sets of process variables to predict measurements for the three quality variables
classified as the most important ones according to expert knowledge. Based on
the prediction accuracy, the effect of the input variable selection technique on the
paper quality prediction was analyzed. The three chosen methods for variable
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selection were tested and compared using real data collected from the pilot paper
machine. Despite being a relatively new concept, MIC produced the best results,
while PCA appeared to be the least accurate among the three methods (see Ta-
ble II, Figure 1 in [PI]). Therefore, the suggested information-theoretic approach
to variable selection not only allowed accurate prediction results when working
with real data, but it also provided direct insight into the relationships between
variables.

The author of this thesis is the main author of this article. She preprocessed
the data, implemented the testing procedure, performed the data analysis, and
wrote most of the paper.

Article [PII]: Variable group selection based on regression trees: Paper ma-
chine case study

Article [PII] presents another pilot paper machine case study, which is a continu-
ation of the work presented in [PI]. In this paper, a regression tree-based method-
ology for selecting the best groups of predictor variables is proposed. Testing
operation scenarios is an expensive process, which makes collecting extra data
challenging and often results in situations where features dominate over data in-
stances. The discovery of a sufficiently small subset of the strongest correlations
among process and quality variables can provide a better insight into industrial
processes, thereby facilitating the modeling procedure. To increase the efficiency
of the process of variable selection, data analysis algorithms combined with ex-
pert knowledge can be used. This paper focuses on discovering pairs of process
variables that demonstrate the strongest correlations with quality variables when
considered jointly, yet have small or no correlations between them.

The authors compared two methods of selecting the process variable pairs
that are best correlated with quality variables, which were based on regression
tree analysis. In both approaches, models were trained and validated on 100
training sets, which were randomly subsampled from the data, using 10-fold
cross validation. The trees were pruned according to the validation results. The
approaches differ in the way how they identified the most important process vari-
able pairs. The first approach suggested choosing the most important variable
pairs based on the frequency of their occurrence in the top two levels of the trees
with highest accuracy over 100 models. The second approach stated that the total
effect of a variable can be distributed across the tree. First, the importance scores
were calculated for each unique variable in each of the 100 trained regression tree
models. Then, a pair of variables with the highest individual importance scores
was marked as a candidate pair. Finally, the most important variable pairs were
selected as the most frequent ones among the candidate pairs. The outcomes of
the proposed methodology can be seen in Tables II-V in [PII].

The author of this thesis is the main author of this article. She preprocessed
the data, implemented the testing procedure, performed the data analysis, and
wrote most of the paper.



42

3.2 Community detection

Articles [PIII], [PIV], and [PV] refer to the problems of clustering and community
detection and developing algorithms to increase the detection accuracy and per-
formance efficiency, especially when used for big data analysis.

Article [PIITI]: Revealing Community Structures by Ensemble Clustering us-
ing Group Diffusion

In article [PIII], an ensemble clustering approach using group diffusion is pro-
posed to reveal community structures in data. As stated in Section 2.2.2, the
community detection task is similar to clustering. The main difference between
these approaches is that the community detection algorithms analyze the net-
work structure starting with relationships between objects as input, and there-
fore, they are applied in complex systems represented as graphs. The proposed
algorithm, called ensemble group diffusion (EGD), takes into account the geomet-
ric structure of data using group distances and their diffusion across connectivity
scales. Depending on the value of the diffusion-depth parameter, the presented
approach can accurately identify local clusters and the global structure of the
data. Therefore, EGD can determine the underlying geometry of the data, even
for those datasets where some of the common clustering methods fail (see Figure
6 in [PIII]). The method is also capable of reasonably regulating cluster sizes by
an admitted group dependence level. Moreover, EGD is able to produce more ro-
bust clustering results by collectively integrating views from individual diffusion
scales. In this way, a reduction of the combined effect of both bias and variance
error components is expected. In addition, it handles directed graphs nicely.

The proposed EGD algorithm was tested under different settings using both
simulated and real-world datasets against selected state-of-the-art methods of
different types that are frequently used for community structure detection, that is,
modularity clustering, hierarchical clustering, spectral clustering, density-based
clustering [RL14], and an ensemble clustering approach using a knowledge-reuse
framework [SGO3]. The tests show that due to flexibility in the parameter setting,
EGD is suitable for solving structure discovery problems for datasets with differ-
ent underlying structural and density properties. Thus, EGD can discover local
clusters with smaller values of the diffusion depth parameter, while the global
structure can be determined with the higher parameter values (e.g., see Figure
4 in [PIII]). The combination of the diffusion depth values allows clusters to be
defined more accurately. The performance test summary for all the methods in-
cluding EGD across nine datasets can be seen in Figure 7 in [PIII]. More detailed
performance results can be found in supplementary Tables 4-9 in [PIII].

The author of this thesis developed and implemented the proposed algo-
rithm based on the DC method [PL14]; performed most of the tests; interpreted
most of the results; and produced all the figures and tables (except Figure 7).
Moreover, she performed literature review; and wrote Sections 1, 2, 4.1 (partially),
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4.2, 5 (except 5.4), and 6.

Article [PIV]: Probabilistic group dependence approach for discovering over-
lapping clusters

To extend the work in [PIII], paper [PIV] proposes a soft dependence cluster-
ing (SDC) algorithm that is a generalization of the DC method and supports soft
clustering by introducing a soft probability interval. The method adeptly handles
different types of data from different domains, such as biology and text data. For
text datasets, it proved to be more accurate in detecting multiple groups com-
pared to latent Dirichlet allocation (LDA) [BNJ03], which is a method specifically
designed for clustering text data. SDC can be used in graph segmentation appli-
cations, as well as for clustering data that have a notion of distance.

The author of the thesis is the main author of this publication. She devel-
oped and implemented the proposed algorithm based on DC, performed most of
the tests, interpreted the results, produced all the figures and tables, wrote most
of the paper, and presented the paper at the 26th International Workshop on Ma-
chine Learning for Signal Processing in Vietri sul mare, Salerno, Italy.

Article [PV]: Scalable implementation of dependence clustering in Apache
Spark

Article [PV] proposes a scalable version of the DC algorithm that allows bet-
ter performance in the analysis of big datasets. The method is implemented in
Apache Spark using GraphX API primitives. Moreover, a fast approximate dif-
fusion procedure that enables algorithms of the spectral clustering type in the
Spark environment is introduced and implemented in Apache Spark. The pro-
posed implementation was tested using real data presented as densely connected
graphs. The method proved to scale well, and it was more accurate than spectral
clustering.

The author of the thesis is the only author of this publication. She developed
and implemented the proposed algorithm, performed the tests, interpreted the
results, produced all the figures and tables, wrote the paper, and presented it
at the Conference on Evolving and Adaptive Intelligent Systems in Ljubljana,
Slovenia.

3.3 Anomaly detection

Anomaly detection has many applications in various domains. This section re-
flects on the thesis contributions in the field of security, that is, user authentication
in [PVI] and network intrusion detection in [PVII].
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Article [PVI]: Anomaly detection approach to keystroke dynamics based user
authentication

Paper [PVI] proposes two anomaly detection approaches to user authentication
using keystroke dynamics based on kNN and DC. In this paper, the DC algorithm
previously used for the clustering tasks only was adapted to solving anomaly
detection problems by introducing an anomaly score measure. Thus, to detect
anomalies, the training set was first clustered using DC. Then, the test set was
classified according to the median Manhattan distance between a test sample and
each cluster mean (anomaly score). In addition, a KNN-based approach was ap-
plied. As mentioned in Section 2.1.3, kNN is a simple and strong benchmark,
and it often works well given the right distance measure. In [PVI], a kNN-based
approach combined with Manhattan distance was employed. Both proposed ap-
proaches were tested and compared with multiple state-of-the-art classifiers, and
they demonstrated improved results for the CMU keystroke dynamics bench-
mark dataset reported in [KMO09], [ZDJ12].

The author of this thesis is the main author of this article. She preprocessed
the data, developed and implemented the proposed approaches and testing pro-
cedure, performed the data analysis, interpreted the results, and wrote most of
the paper. The author of this thesis also presented the paper at the 22nd IEEE
Symposium on Computers and Communications in Heraklion, Creete, Greece.

Article [PVII]: Probabilistic Transition-Based Approach for Detecting Appli-
cation-Layer DDoS Attacks in Encrypted Software-Defined Networks

Article [PVII] presents a real-time probabilistifc transition-based approach for
detecting application-layer distributed denial-of-service (DDoS) attacks in en-
crypted software-defined networks. Operating with information extracted from
packet headers, the proposed solution can be applied without decrypting in se-
cure protocols that encrypt network connections data. In addition, a DDoS de-
tection system prototype has been implemented for evaluating the proposed ap-
proach. The proposed attack detection mechanism comprises two phases. First,
elementary user behavior patterns are built by applying a clustering algorithm.
Next, a probabilistic transition-based approach is applied to the outcomes of the
first phase to discover more complex sequential behavior patterns. The enhance-
ments of the proposed approach compared with the previous works [ZKHS16]
are as follows: (1) improved performance scores (see Table 1, Figure 2 in [PVII]),
(2) areduced number of parameters, and (3) a significant reduction in the amount
of storage needed by the detection algorithm.

The author of this thesis developed and implemented the proposed prob-
abilistic transition-based approach, performed the testing and evaluation proce-
dures, interpreted the results, and wrote most of the paper. She also presented
the paper at the 11th International Conference on Network and System Security
in Helsinki.



4 CONCLUSION

The main achievements of the work reported in this thesis can be summarized as
follows:

— Approaches based on mutual information measure and regression trees were
proposed for the variable selection task to improve the prediction models in
paper quality control processes. When the dataset is such that features dom-
inate over samples, the proper selection of the most important predictor
variables is essential for the model generalization and prevention of overfit-
ting;

— Advanced variants of the DC algorithm were developed in the following
ways: (1) to improve the model’s stability, DC was extended to an ensem-
ble version, (2) an approach to handling overlapping clusters was devel-
oped to address the need for better handling of the overlapping nature of
many network communities, (3) an adaptation for solving anomaly detec-
tion problems was introduced, and (4) DC was implemented and adapted to
the Apache Spark framework, opening the ability to work with big datasets.

— A real-time probabilistic transition-based approach proposed for detecting
application-layer DDoS attacks demonstrated significant improvements over
the previous works. These advancements included improved performance
scores, a reduced number of parameters, and a significant reduction in the
amount of storage needed by the detection algorithm, which are critical
characteristics when applied in real-time systems; and

— The applications of the developed methods to real datasets showed signifi-
cant performance gains compared with the reference techniques.

In the next stage of the research, the proposed real-time probabilistic transition-
based approach for detecting application-layer DDoS attacks can be implemented
and tested in a real-time system in a natural setting. Furthermore, other machine
learning approaches, such as deep learning [GBC16], which has gained tremen-
dous popularity, can be employed as an attempt to address problems of, for ex-
ample, anomaly detection in network security.



YHTEENVETO (FINNISH SUMMARY)

Alykkiiti itseoppivia ratkaisuja reaalimaailman tietopohjaisille sovelluksille

Koneoppiminen on tehokas tyokalu suurta tietojenkésittelya vaativissa tehtavis-
sd, joissa oman ohjelman kirjoittaminen ongelman ratkaisemiseksi on hyvin komp-
leksista tai jopa mahdotonta. Téssd mielessda koneoppiminen voidaan katsoa la-
hestymistavaksi, joka oppii ja tekee itse ohjelmia késittelemistdan tiedoista. Kaik-
kien koneoppimisalgoritmien yhteinen tavoite on kerédta hyodyllista tietoa datas-
ta ja hyodyntda sitd ongelmien ratkaisemiseksi. Koneoppimisalgoritmit voidaan
jakaa karkeasti kahteen kategoriaan eli valvottuun ja ei-valvottuun koneoppimi-
seen. Valvottua oppimista kidytetddn ennakointi- ja luokittelutehtavissa, kun op-
pimiseen liittyvat esimerkkitunnisteet tunnetaan etukédteen. Tdma vastaa tilan-
netta, jossa sekd syotteet ettd tulosteet annetaan ohjelmalle. Ei-valvomaton oppi-
minen viittaa tilanteeseen, jossa l0ydetdan yleiset rakenteet datasta, esimerkiksi
klusteroimalla tai poikkeavuuksien havaitsemisella tilanteissa, joissa tunnisteita
ei ole ennakkoon saatavilla.

Taman vaitoskirjan tarkoituksena on kehittad uusia menetelmid regressio-
analyysille, klusteroinnille ja poikkeamien havaitsemiselle. Teollisuus etsii jatku-
vasti parempia menetelmid tuotantoonsa ja kustannustensa minimointiin ja suur-
ten tietomassojen ollessa kyseessd koneoppiminen on yksi hyvé tyokalu siihen.
Téhén liittyen tdssd tyOssd esitetddn useita tapaustutkimuksia, joissa ehdotetaan
matemaattisia malleja paperin laadun ennustamiseksi. Tarkeimmaét ennustemal-
lien muuttujat on valittu informaatioteorian ja regressiopuiden avulla. Vaditoskir-
jan muut julkaisut kohdistuvat ilman valvontaa tapahtuvaan koneoppimiseen.
Padpaino on kehittyneiden spektristen klusterointitekniikoiden kehittdminen eri-
laisten yhteisojen ja poikkeavuuksien havaitsemisessa. Osana tétd tyota ehdo-
tetaan useita parannuksia riippuvuusklusterointialgoritmeihin. Esitettyjd paran-
nuksia ovat muun muassa regularisoinnin lisadminen klustereiden kokoa ajatel-
len, kokoonpanon laajentaminen mallin vakauden parantamiseksi, paallekkais-
ten klustereiden késittely, sekd mallit anomalioiden havaitsemisongelmiin ja suu-
rien tietojoukkojen kasittelyyn.

Tyon yksi painopiste on ollut poikkeamienhavainnointialgoritmien kehit-
taminen tietoverkoissa. Tassd yhteydessa tyossa esitetddn todenndkoisyyteen pe-
rustuva siirtymépohjainen lihestymistapa sovelluskerroksen hajautetun palvelu-
nestohyokkdyksen havaitsemiseksi. Kehitettyjd ldhestymistapoja on testattu to-
dellisella verkkoliikenteelld ja ne kykenevit tehokkaisiin ratkaisuihin korkealla
tarkkuudella ja hyvilld tuloksilla. Véitoskirjassa esitetyt menetelmaét ovat sovel-
lettavissa muuttujan valinnan, kaavion segmentoinnin ja poikkeamien havain-
nointiin erilaisissa sovelluksissa.
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Abstract—This paper presents an information-theoretic ap-
proach to variable selection for prediction of laboratory mea-
surements of paper quality. Along with a well-known Principal
Component Analysis we considered techniques for variable selec-
tion based on the classical Shannon Mutual Information and a
novel Maximal Information Coefficient. A multilayer perceptron
neural model was used to predict quality measurements and
compare feature selection techniques. The suggested approach
was tested on real industrial data obtained form a pilot paper
machine. The presented results show that information-theoretic
techniques perform better compared to Principal Component
Analysis, providing higher accuracy results.

I. INTRODUCTION

The modern paper making industry is characterized by
complex processes. Modeling such processes is often difficult
using physical models and therefore requires modeling tools
such as neural networks and probabilistic predictive models
[1], [2]. Changes in designs of processes are usually costly,
and real time (online) measurements can help to improve these
processes with less expenses.

There are many challenges in paper making industry, among
which cost reduction plays one of the central roles. One way
to reduce costs is by lowering the quality of raw materials.
However, the final product quality must remain tolerable. This
can be ensured through testing various designs in a pilot
paper machine. A pilot paper machine allows testing different
components, various settings of process control parameters,
and combinations of raw materials. Such changes affect the
quality of the resulting paper product. The measurements
collected during testing new machine designs reflect the effect
of these changes on the product quality. A more detailed
description of the pilot paper machine experiments performed
for obtaining the data sets for current research can be found
in [3].

The quality of final paper product depends on many quality
and process variables. These dependencies are often compli-
cated and nonlinear. In [3], the authors introduced a multilayer
perceptron model for predicting laboratory measurements of
paper quality. They used Principal Component Analysis (PCA)
[4] for reducing input dimensionality. Based on this study,

we examine correlations among process and quality variables
and the impact of input variables selection on the accuracy of
paper quality prediction. The main focus of this paper is to
compare feature selection methods and examine how different
techniques in the preprocessing phase affect the final result.

This paper is organized as follows. Section II describes the
data and how it was preprocessed, Section III is devoted to
dimensionality reduction of the input variables. Three meth-
ods are described in the corresponding subsections. Section
IV is related to a Neural Network model used to compare
dimensionality reduction techniques. The results are presented
in Section V, and Section VI highlights the conclusions and
outlook to future work.

II. DATA DESCRIPTION AND PREPROCESSING

For our task, we used two data sets obtained from the
pilot machine. The data sets contain measurements from
pilot machine runs encompassing ten days over the period
of seven months. Altogether 229 trial points and 10 different
mechanical settings are presented in the data. More detailed
information about the data can be found in [3].

Online measurements collected from sensors during experi-
ments are represented as trial points. At each trial point, quality
measurements and time-averaged process state measurements
had been stored. In the current research we consider 186 state
variables. As we are interested in the end product quality,
we omitted the measurements related to process behavior.
Moreover, some measurements which were carried out straight
after a change in the mechanical settings are usually biased.
Thus, we deleted those trial points which produced unreliable
source measurements. In addition, some trials did not contain
a full set of measurements, as an interesting behavior had
been expected only for several specific paper qualities. Thus,
different collections of trial points are available for all the
paper qualities and due to this we have to examine each quality
variable separately. We also deleted those process variables
which were constant or had a variance equaling zero. We
generated a separate data set for every quality variable. Table
I lists the quality variables examined in this research and the



number of trial points considered for every variable. These
quality variables can be classified as the most important ones.

TABLE I
QUALITY VARIABLES AND NUMBER OF AVAILABLE TRIAL POINTS.

Quality variable Unit Number
Formation Index | (index) 179
Beta-formation g/m? 176
Air permeance ml/min 180

First, the data sets obtained were normalized by z-score
normalization, where each value of the obtained numeric
matrix Z is calculated from the values of the current matrix
X as follows

sy = A (M

gy

Here X and Z are N x M matrixes, N is the number of
trial points in a data set, M is the dimensionality of the input
space corresponding to a specific quality variable, f; is the
mean value of the j-th column, and o; is the j-th variable
standard deviation. At the same time, the features correspond-
ing to quality variables were normalized via Min — Max
normalization according to the formula

x;; —min X (:, 5)

* o= 2
#ig max X (3, j) — min X (3, 5)’ @

where Z* is N x M matrix and X (:,7) is the j-th column
of the matrix X. These normalized data sets have been used
further in the analysis.

III. CORRELATION ANALYSIS

Before training a neural model, we start from dimensionality
reduction. This step is relevant, as there are likely to be many
input variables which correlate among each other, or they are
irrelevant or redundant in the context of others. We compare
three methods for dimensionality reduction, based on PCA [4],
Shannon Mutual Information [5], and Maximal Information
Coefficient (MIC) [6]. Sections A, B, and C describe how we
applied these techniques.

A. PCA

PCA is a well-known technique. In a way similar to that
described in [3], we use a two-step PCA algorithm. Firstly,
we project process measurement data on the major principal
components that explain 90% of variance. Secondly, we in-
troduce new vectors that contain the squares of the projected
coordinates and repeat the procedure from the previous step.
The latter step helps to handle nonlinearities in the process
measurements data. As a result, 12 coordinates are obtained,
which we use as input to the neural network.

B. Mutual Information

The mutual information concept plays an important role in
many areas, including data analysis. There are a number of
works related to variable selection based on mutual informa-
tion, e.g. [7]-[9]. Mutual information is based on the concept
of entropy of a random variable. The mutual information
between two discrete variables X and Y can be interpreted
as the amount of information shared by X and Y and reads
as follows

I(X;Y)=H(X)- HX|Y)

> ) pla,y)log 2ry)

=5, p(z)p(y)

where entropy H(X) and conditional entropy H(X|Y) are
expressed by

H(X)=- Y p(z)logp(z),

TE
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Here x denotes a possible value of X from the alphabet
1, y denotes a possible value of Y from the alphabet €2,
and p represents distribution of a variable. The alphabets
Q1, Qo have been created by assigning variable values to
discrete buckets that quantize the variable domain. Entropy
is a measure of uncertainty in the distribution of a random
variable. The entropy is low if the outcome of the distribution
tends to a particular event, maximal if the outcome is highly
uncertain.

For calculation of the mutual information among quality and
process variables, we use a framework described in [10]. The
calculation of mutual information is based on the Shannon’s
theory [5]. We calculate the mutual information scores for
every pair of quality and process variables, in turn. The higher
the mutual information score between a quality and a process
variable is, the more valuable this process variable is for
predicting the quality variable. From the list obtained, we
select 10 variables with the maximal scores. The procedure
is repeated separately for every quality variable. Thus, for
every quality variable we obtain a list of ten variables with
the highest mutual information scores, which we further use
as input to the neural network model.

C. MIC

MIC is a measure of dependence and was designed for
identifying relationships between pairs of variables in large
data sets. This measure is calculated from a matrix of scores
generated from a given set of two-variable data. For MIC
computation, the largest possible mutual information estimate
is calculated for every possible grid resolution encapsulating
a relationship between these two variables. Then the MIC is
defined as a maximum value among all normalized mutual
information estimates achieved by each grid resolution. The
process captures different types of interesting relationships,



both functional and non-functional. MIC is a part of a fam-
ily of Maximal Information-based Nonparametric Exploration
(MINE) statistics introduced in [6] and can be used to identify
and characterize associations between variables. MIC is based
on mutual information in a way that mutual information is
used to measure performance of each grid. However, it is not
an estimate of mutual information.

We apply MINE for identifying associations among vari-
ables in our data set. MIC scores are then calculated for every
pair of quality and process variables, in turn. We repeat the
procedure separately for each quality variable. A MIC score
tends to 1 if a never-constant noiseless functional relationship
exists between two variables, and the score tends to O if the
variables are statistically independent. Based on this principle,
we then select top 10 process variables, which, in pairs with
quality variables, have received the highest MIC scores. We
provide the resulting top ten list of process variables as an
input for the neural network and predict the quality based on
it.

IV. NEURAL MODEL

An artificial neural network consists of an interconnected
group of artificial neurons which can be divided into several
layers [11]. One of the best-known neural models is the
multilayer perceptron (MLP). An MLP consists of multiple
interconnected layers of nodes comprising a directed graph
topology. Each node, except for the input nodes, has an
activation function. Neurons of the previous layer provide an
input for the neurons of the next layer. Each neuron computes a
weighted sum of its inputs and applies the activation function.
The weights assigned to connections between neurons serve
as free parameters of the neural model. For training the
MLP network, we utilize the back-propagation technique with
regularization.

Artificial neural networks are powerful tools that have been
successfully used to model and solve different problems in
paper industry. Neural networks have been used in a number
of studies for predicting and estimating paper quality. In [12],
the authors propose an MLP network model with one hidden
layer to simulate a nonlinear plant process. They use an inverse
computation of the network model to find the control settings
that guarantee producing the desired quality. In [13], the
authors consider an MLP model based on the idea of choosing
different preprocessing and training algorithms. They use PCA
and stepwise regression statistics for dimensionality reduction
in the preprocessing phase and show that a model based on
PCA preprocessed data has higher performance. In [14], the
authors apply neural network techniques to the prediction of
paper “curl”. In [3], an MLP neural network model is used for
predicting individual quality measurements. The authors train
a separate model for each quality variable every time a new
data point is added to the history database. In our research,
we use a similar approach, but instead of iterative procedure
we train the model using the training set and evaluate it using
the test set. This research is a follow-up study of [3] with

an emphasis on identifying dependencies among the process
variables.

Due to the fact that numbers and collections of available trial
points are different for every quality variable considered in this
research, we train a separate network model for each quality
variable. For the MLP modeling, we divided our data set into
two parts, 70% for the training and validation set, and 30% for
the test set. We split the data in a way that mechanical settings
are balanced in the training and test sets. We used jackknife
cross validation [15] for validating parameters of the neural
network. In jackknife, each instance is consecutively taken
out of the training set and predicted from the model built on
the remaining instances of the set. Further, we choose the best
model in terms of accuracy and perform final testing on the
test set.

In this study, an MLP model is used for prediction of
laboratory measurements and comparison among the variable-
selection techniques. For each quality variable, we apply a
multilayer perceptron with three layers of neurons: input,
output and hidden. A logistic activation function [11] is used
in the hidden layer, and a linear activation function is used in
the output layer. The training input vectors that are fed into the
neural model are the preprocessed state vectors. The size of the
input layer is equal to the dimensionality of the input M. The
training targets are the quality laboratory measurements. Thus,
the training of the neural network boils down to minimization
of the following cost function

N L
1
J(0) = 3 Sl +2) e7]. (5)
j=1

i=1

In the formula above, © represents the parameters of the
model, i.e. connection weights. L equals to the number of
connections in the neural network, excluding biases. e; is
prediction error, which is expressed as

e =i — Vi, (6)

where y; represents predicted values, and y; are target values.
The neural model has two meta-parameters: number of
neurons in the hidden level and regularization coefficient \.
The training was performed with 3, 10, and 25 neurons in
the hidden layer and with A € [0.01,0.1,0.2,0.4]. After the
jackknife cross validation, the parameters were selected in
order to guarantee the highest possible prediction accuracy.

V. RESULTS AND CONCLUSIONS

In this paper, we compare three techniques for variable
selection in predictive models. The first technique is the
well-known PCA approach, the other two techniques, Mutual
Information and MIC, are methods based on the information
theory. Table II lists the accuracy values obtained for the
prediction of quality measurements using examined variable
selection techniques. The accuracy was calculated as

mean(|e|?)

P=1-
var(y)

(7



where e and y are as denoted in Section IV.

From Table II, one can notice that the predictions for the
measurements of the quality variables Air Permeance and
Formation Index have been more accurate than the predictions
for Beta-formation. This result is similar to the one derived in
[3], where this quality variable received the lowest accuracy
among a subset of six.

TABLE 11
NEURAL MODEL ACCURACY.

Variable selection Quality variable
technique Formation Index | Beta-formation | Air permeance
PCA 64.62 56.33 76.44
MIC 79.01 59.65 88.46
Mutual Information 76.78 59.75 80.04

In addition to the neural model accuracy defined by (7), we
used the relative error estimates as a measure of prediction
performance. Fig. 1 shows the averaged absolute values of
the relative error (in percentages) made by predictions on the
test set. These values were calculated as
= (®)
Yi
where e; is prediction error defined by (6), and y; represents
target values. From Fig. 1, one can see that based on the
relative error measure, MIC appeared to be most accurate,
demonstrating the lowest E; values among the three dimen-
sionality reduction methods for each quality variable.

E; = 100 x
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== Ajr permeance
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Fig. 1. Average relative error of prediction

The prediction results have been obtained via an MLP
neural model applied to nine different data sets. For every
quality variable we considered three data sets obtained via
three dimensionality reduction techniques. While PCA and
Shannon Mutual Information have proven their consistency by
being successfully used in many areas, MIC is a relatively new
concept. We compared these methods on real data collected
from the pilot paper machine using two measures of prediction
performance.

Based on the accuracy measure, in two of the three
cases MIC performed better, providing higher accuracy re-
sults. Whereas according to the relative error measure, MIC
demonstrated better results for each quality variable. Overall,
both information-theoretic techniques performed well, while
PCA was less accurate. Based on the results presented, we
can conclude that the information-theoretic approach to vari-
able selection works well with the real data considered in
this research. Moreover, in contrast to PCA, the suggested
information-theoretic approach gives direct insight into the
relationships between variables. This allows us to confirm
that the presented approach can be used for solving real
problems such as prediction of paper quality and similar tasks.
Compared to the traditional PCA technique, this approach
improves the predictive quality of the developed models.

VI. DISCUSSION

In this paper, we presented an information-theoretic ap-
proach to variables selection for predicting paper quality,
based on the measurements from a pilot paper machine. After
preprocessing the data, we selected the variables which got
the highest mutual information and MIC scores. However, this
might not be the optimal way, as there could be correlations
among the selected variables and some important variables
might be missing. In future studies, we plan to improve
the procedure of selecting variables. This could be done by
implementing an algorithm which considers correlation among
more than two variables. In addition, we plan to compare
the performance of the discussed methods to other feature
selection techniques based on information theory, such as
minimal-redundancy-maximal-relevance criterion [7].
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Abstract—This paper presents a methodology for selecting best
groups of predictor variables based on regression trees. Test
results of the developed methodology applied to industrial pilot
paper machine data are presented. Specifically, the results list
process variable groups, which are more valuable in predicting
paper quality variables. The benefit of paper quality prediction
based on process variables is the timely reaction to changes
happening during production process and, thus, the reduced
operational costs. The proposed regression trees based group
variable ranking methodology shows stable results on both data
sets used in this study.

Index Terms—Prediction, Paper quality, Pilot paper machine,
Regression trees.

I. INTRODUCTION

Variable selection is important in data-driven modeling.
Thus, expert knowledge can be sufficient for modeling of
small systems, as the processes and possible effects are well-
known, and different scenarios can be tested and compared
interactively. However, as the number of process variables
increases, modeling becomes a more complex process. In this
scenario, discovery of a sufficiently small subset of strongest
correlations among process variables can provide a better
insight to process facilitating the modeling procedure.

Variable selection is an important problem especially in
those cases when a number of features significantly dominate
amount of samples. As an example, let us mention industrial
multi-sensor systems with a high number of sensors. In case
of pilot paper machine, testing operation scenarios constitutes
an expensive process, which makes collecting extra data ob-
jectionable and leads to a problem when number of features
prevail over instances. Variable selection can also signify a
process of selecting a subset of an original set of variables,
which sufficiently approximates the whole data set.

A substantial amount of research papers on variable se-
lection and data modeling became recently available. [1]
introduces three approaches for variable selection in large-
scale industrial systems, among which there are knowledge-
based, data-based and model-based methods. Knowledge-
based method asserts that using process knowledge can be
used in decreasing the number of variables for process model-
ing. In data-based approach the authors refer to the well-known
Principal Component Analysis (PCA) as a dimensionality
reduction method. Finally, model-based variable selection is

based on the procedure described in [2], where simple dynamic
model candidates are constructed systematically for different
training data segments. These models are evaluated and the
best model is tested on the test set. After modeling, the
importance of variables is analyzed based on the occurrence
of variables in case models. In [3] the authors analyze the
influence of variable selection in the field of traffic signs
classification using the Best First [4] attribute selection ap-
proach. Evolutionary algorithms reveal another useful tool,
which is used in numerous problem areas for solving various
tasks including variable selection for spectroscopy, medical
chemistry, and others [5], [6].

Specifically, this paper deals with studying variable selec-
tion approaches applied to paper making industry. There are
many challenges in modern paper making industry, among
which cost reduction plays one of the central roles. One way
to reduce costs is by lowering the quality of raw materials.
However, the final product quality must remain tolerable.
Changes in designs of processes are usually costly, and real
time measurements can help to improve these processes with
less expenses. Various designs are tested in a pilot paper ma-
chine, which allows examining different components, various
settings of process control parameters, and combinations of
raw materials. The measurements collected during testing new
machine designs reflect how the changes in parameters and
settings affect the product quality. More information about the
pilot paper machine experiments performed for collecting the
data sets used in this research can be found in [7].

The quality of final paper product for each paper grade
and machine design depends on many quality and process
variables in a complicated and nonlinear way. Therefore, it
is important to know about relationships between process
and quality variables. Knowing these allows more efficient
selection of the input variables for predicting paper quality.
Process knowledge can be used for decreasing the number
of variables; however, finding patterns in high-dimensional
data is difficult. Therefore, sophisticated data analysis methods
can be used for solving this task more efficiently, particularly
when combined with expert knowledge. For example, the
authors in [1] describe an automated procedure for detecting
interactions between the variables in large data sets. The
idea of the procedure is based on analysis of the structure



properties of the best candidate model selected among all
dynamic models candidates. Each model candidate consists
of full input combinations for data partitions and is build
systematically depending on sliding window size. Another
work [7] describes a multilayer perceptron model (MLP) for
predicting laboratory measurements of paper quality with the
use of PCA [8] for reducing input dimensionality. Following
this study, [9] examines correlations among process and qual-
ity variables and the impact of input variables selection on
the accuracy of paper quality prediction. The authors compare
three methods of variable selection based on PCA and mutual
information [10]. The authors demonstrate that for the given
data sets methods based on mutual information perform better
than PCA demonstrating higher accuracy values of the MLP
model applied to the selected subsets of variables. However,
they point out that the procedure of selecting variables can
be improved through considering correlations among more
than two variables. In this paper we investigate pairs of
process variables, which demonstrate strongest correlations
with quality variables, when considered jointly, yet having
small or no correlations between themselves.

This paper is organized as follows. Section II describes the
data and how it was preprocessed, Section III is devoted to
regression trees, which are served as a basis for two methods
described in Section IV. The results and conclusions are
presented in Sections V, VL

II. DATA DESCRIPTION AND PREPROCESSING

For our task, we used two data sets obtained from the
pilot machine. The data sets contain measurements of the
sensors from pilot machine runs encompassing ten days over
the period of seven months. The data is expressed as trial
points corresponding to changes in process parameters. After
a change in process parameters, some time is needed until
the process is stabilized. Every trial point usually corre-
sponds to a change in one process parameter, while the rest
of the process parameters remain constant. In addition to
process parameters, there are mechanical settings, which are
the mechanical alterations and which have a major influence
on producing the paper. Altogether 229 trial points and 10
different mechanical settings are presented in the data sets.
More detailed information about the data can be found in [7].

At each trial point, quality measurements and time-averaged
process state measurements had been stored. However, some
of the trial points presented in the data were related to
process behavior instead of quality of the end product. Dur-
ing preprocessing trial points which were missing laboratory
measurements have been omitted since we were interested
in the end product quality. Thus, we reduced our data sets
to 182 trial points with laboratory results. In addition, some
trial points did not contain a full set of measurements, as
an interesting behavior had been expected only for several
specific paper qualities. Hence, different collections of trial
points are available for all the paper qualities and due to this
we have to examine each quality variable separately. We also
deleted those process variables which were constant or had a

variance equaling zero and generated a separate data set for
every quality variable.

Further in the research we consider two data sets: (1) full
data set and (2) reduced data set. The reduced data set contains
only good trial points, which according to the trial leader
responsible for the data sets could facilitate the prediction
method to work. The good data set means that all unfair or
impossible trial points were removed, along with those trial
points, which had been gathered in the beginning of data
collection or after a mechanical settings change.

Table I lists the quality variables and corresponding units
of measurement, classified by expert knowledge as the most
important ones and examined in this research. Table I also lists
the numbers of trial points containing measurements of each
quality variable in the full and reduced data sets.

TABLE I
QUALITY VARIABLES AND NUMBER OF AVAILABLE TRIAL POINTS.
Quality variable Unit Number (Full) | Number (Reduced)
Formation Index | (index) 182 148
Beta-formation g/m? 178 144
Air permeance ml/min 182 148

III. REGRESSION TREES

Regression analysis builds a predictive model from a train-
ing set. Such analysis can have two main purposes: (1) predict
a response variable as accurately as possible; (2) understand
the structural relationships (patterns) between the response
and predictor variables. Classification and regression trees
(CART) are an example of regression models used for predict-
ing continuous variables (regression) or categorical variables
(classification) [11]. Since in this paper we deal with predict-
ing continuous variables, we consider only regression trees.
In regression trees a numerical response is predicted using
numerical and categorical predictor variables. A regression
tree partitions the feature space X into homogeneous disjoint
groups Ay and predicts the most likely fitted value of the
dependent variable E(Y|A; € X) within each group. Each
group is characterized by a typical value of the response
variable, a number of samples in the group, and the values
of the predictor variables defining it.

The binary tree, considered in this paper, is grown by
repeated binary splitting of the data starting from a single
node at the top, representing all the data. Each split is defined
by a simple binary rule, which is based on a single predictor
variable and produces two nodes. The leaves of the tree
(unsplit nodes) express groups of data formed by the tree.
The splitting continues until a sufficiently rich tree is built.
The obtained tree is then usually pruned to offer a required
level of generalization.

For the selection of a tree size cross-validation is often used.
The best tree is the one having the smallest mean squared error
on the validation data set [11].



Regression tree performance is usually given in terms of
mean squared error,

1 N
MSE= <> (y—y")* (1)

i=1
Here N, y, y* are number of samples, measured value and
predicted value correspondingly.

In regression trees, the input variables can be of different
types. The algorithm equally handles numeric, categorical,
binary or ordinal variable types. Trees are able to handle
missing values and are invariant to changing the relative scales
of the predictor variables [11].

Regression trees have been well-studied in the literature
with applications in areas including health systems, business,
ecology, network planning and many others [12]-[15].

IV. METHODS FOR VARIABLE PAIRS SELECTION

We compare two methods for selection of process vari-
able pairs best correlated with quality variables, based on
regression trees analysis. The regression trees model assumes
that regression analysis is performed separately for each of
the three quality variables and, thus, we repeat the algorithm
consequently for each of three quality variables considered
in this research. The following subsections describe proposed
methods.

A. Reduced regression trees based ranking

The idea of this method can be described as follows. Firstly,
we preprocess each of the data sets in a way that 80% of
randomly selected samples go to the training and validation
set, and 20% remain for the test set. We split the data in a way
that mechanical settings are balanced in the training and test
sets, as it is known that for every mechanical setting the paper
machine is considerably different. Secondly, on the training set
we perform the following procedure: (1) training a model; (2)
validating the model via 10-fold cross validation, and, finally,
(3) pruning the tree based on the validation results.

As the data sets are quite small, we had to handle lack of
data by performing final testing on the union of training and
test sets. This step allowed us to get a more transparent picture
about how the algorithm handles the given data. However, this
approach would possibly introduce some bias. Final testing
consists in calculating accuracy on the overall data set.

We repeat the procedure starting from splitting the data into
training and test sets and ending with calculating accuracy on
the overall data set 100 times.

The final step of the algorithm consists of selecting process
variables pairs. Firstly, we choose the best models based on
the accuracy calculated on the union of the training and test
sets.

A model passes best models criterion if its accuracy is above
a certain « threshold A; > «;. Here A; is the accuracy value of
a model at the ¢-th iteration. Then, the most important variables
are chosen according to the frequency of their occurrence in
the top two levels of the selected trees with highest accuracy.

TABLE II

VARIABLE PAIRS ON FULL DATA SET OBTAINED VIA REDUCED
REGRESSION TREES BASED RANKING.

Quality variable

Process variable 1

Process variable 2

Formation Index

Ist press shoe nip tilt

High-vacuum suction box

Formation Index

1st press bottom roll saveall

Pick-up felt uhle boxes

Formation Index

1st press bottom roll saveall

Ist press top roll saveall

Beta-formation

Ist press bottom roll saveall

Ist press top roll saveall

Air permeance

Suction box 1 chamber 3

3rd press nip water removal

Air permeance

VacuMaster - vacuum

3rd press nip water removal

TABLE III

VARIABLE PAIRS ON REDUCED DATA SET OBTAINED VIA REDUCED
REGRESSION TREES BASED RANKING.

Quality variable

Process variable 1

Process variable 2

Formation Index

1st press shoe nip tilt

Total slice flow

Formation Index

Wire stretcher roll - power

Starch total dosage

Beta-formation

3rd press bottom felt uhle
boxes

Bentonite split Middle

Air permeance

VacuMaster - vacuum

3rd press nip water removal

Air permeance

VacuMaster - vacuum

Total slice flow

Tables 11, III list the results of this method. Table II lists the
variables obtained after applying the method on the full data
set, and Table III represents results acquired on the reduced
data set.

B. Regression trees based ranking

This method is an extension of the reduced regression trees
based ranking algorithm described in the previous subsection.
In the same way we randomly divide the data into the training

TABLE IV
VARIABLE PAIRS ON FULL DATA SET OBTAINED VIA REGRESSION TREES
BASED RANKING.

Quality variable | Process variable 1 Process variable 2

Formation Index | 1st press shoe nip tilt High-vacuum suction box

Beta-formation | st press bottom roll saveall | 1st press top roll saveall

Air permeance | Suction box 1 chamber 3 | 3rd press nip water removal

Air permeance | VacuMaster - vacuum 3rd press nip water removal

TABLE V
VARIABLE PAIRS ON REDUCED DATA SET OBTAINED VIA REGRESSION
TREES BASED RANKING.

Quality variable | Process variable 1 Process variable 2

Formation Index | 1st press shoe nip tilt Total slice flow

Beta-formation | 3rd press bottom felt uhle

boxes

Ist press top roll saveall

VacuMaster - vacuum

LB unit - blades 1-2

Air permeance | 3rd press nip water removal

Air permeance | 3rd press nip water removal
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Fig. 1.

Prediction results (a)-(c) on full data set; (d)-(f) on reduced data set, based on the variables obtained by reduced regression trees based ranking.

Prediction results (g)-(i) on full data set; (j)-(I) on reduced data set, based on the variables obtained by regression trees based ranking. Dashed line represents
true measurements values, solid line corresponds to predicted values, and grayed area stands for + o interval of predicted values.

and validation (80%), and the test (20%) sets. Once again
we keep the mechanical settings balanced in the training and
test sets. Then, we repeat the procedure of training a model,
validating the model via 10-fold cross validation, and pruning
the tree based on the validation results 100 times. However, the
algorithm of selecting process variable pairs, which provide
the highest impact into the quality variables, differs.

A peculiarity of the used model of regression trees is that
they are binary. This implies that a total impact of a variable
can be distributed across the tree. To account for this we use

a different variable selection algorithm.

For every tree, for each unique variable n in the tree
we calculate variable importance scores w,, according to the
following formula
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where n = 1: V. V is the number of unique variables in the
tree, O,, equals number of occurrences of the n-th variable
in the tree, Np, ; and Np represent number of data points
belonging to the ¢-th entry of the n-th variable and total
number of data points used to train the tree, correspondingly.
Np n: and Npg,; are numbers of data points that were split
from the i-th entry of the n-th variable into the left and right
branches, respectively. U%_m refers to the total variance of
data that reached the i-th entry of the n-th variable. J%’m- and
a?%’m- represent variances of data that reached left and right
child nodes of the i-th entry of the n-th variable. Intuitively,
this score computes the reduction in the uncertainty of our
prediction due to adding rules corresponding to a variable.

After calculating weights of the variables we mark a pair
of variables that have highest weight values individually as a
candidate pair. The final pairs of process variables are selected
among all trees based on the frequency of their occurrence.
Thus, we end up with choosing those pairs, which have
maximal occurrence frequency among all candidate pairs with
highest weights in their trees.

Tables IV, V list the results of this method. Table IV
describes the variables obtained on the full data set, and Table
V represents results acquired on the reduced data set.

V. RESULTS

This paper presents two approaches to group variable se-
lection in paper industry based on regression trees. Two real
data sets were used for testing the methods and comparing the
results. As shown in Tables II-V, both methods demonstrate
similar results within each data set. However, there are differ-
ences in groups of selected variables between the data sets.
Figure 1 displays the prediction results using the groups of
variables obtained by suggested methods applied to full and
reduced data sets. As one can see from Figure 1 prediction for
measurements of Beta-formation is less accurate comparing
to prediction results for Formation Index and Air permeance,
which is similar to outcomes of [7] and [9]. Furthermore,
Figure 1 proves that the prediction results for all quality
variables are comparable between the data sets.

VI. CONCLUSIONS

The importance of variables was analyzed using two meth-
ods with the use of two data sets containing real data. To
test how well the selected groups of process variables predict
quality variables, we estimated the laboratory measurements
by applying regression trees to the selected variables groups.

There is no significant difference between the results corre-
sponding to different data sets. According to expert opinion,
the groups of predictor variables discovered in this research
look credible. For the operating personnel, the obtained list
of variable pairs gives new information about which combi-
nations of process variables are more valuable in predicting
quality variables.
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We propose an ensemble clustering approach using group diffusion to reveal community structures in
data. We represent data points as a directed graph and assume each data point belong to single clus-
ter membership instead of multiple memberships. The method is based on the concept of ensemble
group diffusion with a parameter to represent diffusion depth in clustering. The ability to modulate the
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of clusters. Depending on the value of the diffusion-depth parameter, the presented approach can deter-
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single outcomes of the method results in better cluster segmentation. Due to this property, the pro-
posed method performs well on data sets where other conventional clustering methods fail. We test the
method with both simulated and real-world data sets. The results support our theoretical conjectures on
improved accuracy compared to other selected methods.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Interest in the analysis of complex networks has rapidly grown
over the past few years. Network models have been used in differ-
ent areas including economics, biology, social sciences, and com-
puter science, where systems are often represented as graphs. An-
alyzing network models in practice is a challenging task due to
the complexity of the networks, particularly when the underly-
ing community structure is unknown. There are two general ap-
proaches to reveal the community structure of networks. The first
approach is graph partitioning when the number of clusters is
known. The second approach, called community structure detec-
tion, is more challenging, as it divides a network into clusters
or groups graph nodes when the number of clusters is unknown
beforehand. For community structure detection, both identifying
clusters and determining the number of clusters must be solved
simultaneously.

The detection of community structures in an arbitrary graph is
a challenging task. In recent years, several methods have been de-
veloped and applied, including min-cut based approaches, clique

* Corresponding author.
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Ivannikova), park.2706@osu.edu (H. Park), timo.t.hamalainen@jyu.fi (T. Himadldinen),
skylee@hanyang.ac.kr (K. Lee).
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based approaches, modularity based approaches, clustering ap-
proaches, and so forth [1]. These approaches share an essential
tool, clustering, in a sense to find good clusters of nodes in a
graph that improve a certain criterion. Clustering, indeed, is a uni-
versal tool applied in many different fields of data analysis, such
as data mining, statistics, marketing, and others [2]. The goal of
cluster analysis is to partition data into groups or clusters based
on pairwise similarity so that observations inside one cluster are
more similar than the ones belonging to different clusters [3]. The
dimensionality of the data set has a strong influence on the per-
formance of clustering algorithms. Some methods work well for
low-dimensional data, whereas they are unable to find structure in
high-dimensional data sets. High-dimensional data pose a number
of challenges for researchers and practitioners. First of all, high-
dimensional data are more likely to be sparse, which makes it dif-
ficult for algorithms to find structures in the data. Moreover, in
high-dimensional data sets, points may belong to diverse clusters
in different subspaces. Capturing the geometric structure of the
manifold from the data, whether low- or high-dimensional, plays
an essential role in reliable clustering results. Clustering meth-
ods without considering such geometric structures can fail to pro-
duce accurate results and find mere local structures in sparse high-
dimensional data.

In addition to geometric structures of real-world data, another
challenge for clustering in community detection tasks is that the
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results cannot be validated as there is no ground truth available for
the data sets, as in supervised learning. Furthermore, various clus-
tering methods often generate different and biased structures in a
data set due to different optimization criteria they adopt. To over-
come these issues in different clustering results, combining mul-
tiple partitions can improve the quality of clustering results sig-
nificantly. In this sense, a collective approach called clustering en-
semble aims to provide more robust, stable, and novel solutions
by leveraging a consensus of multiple clustering runs. The main
goal of clustering ensemble algorithms is to define a clustering so-
lution that maximizes a consensus function and to select a parti-
tion generation procedure. Partitioning can be performed using (1)
data resampling [4,5], (2) different parameter values or initializa-
tions [6,7], and (3) different clustering algorithms such as k-means,
density-based, graph-partitioning-based, and statistics-based [8].

In this paper, we propose an ensemble clustering algorithm
based on the concept of ensemble group diffusion, denoted by En-
semble Group Diffusion, EGD. The proposed method takes into ac-
count not only the geometric structure of data using group dis-
tances, but also the diffusion of group distances across connec-
tivity scales. Moreover, the presented method is able to produce
more robust clustering results by collectively integrating views
from individual diffusion scales. The method is also capable of
reasonably regulating cluster sizes by an admitted group depen-
dence level. In addition, it nicely handles directed graphs as op-
posed to other approaches. Further, we present a detailed anal-
ysis of the degree of the collective integration and propose a
guideline for parameter settings. We demonstrate the efficacy of
the proposed method using not only an illustrative simple ex-
ample, demonstration test cases and simulation studies, but also
real-world data sets such as the researcher collaboration net-
work in a healthcare system from the National Institute of Health
(NIH) in the US., a consumer behavioral pattern captured by the
co-purchasing network from Amazon, a leading consumer online
shopping place in the U.S. and a gene-expression microarray data
sets.

The rest of the paper is organized as follows. Section 2 re-
views clustering techniques used in community detection.
Section 3 describes preliminary concepts for the proposed al-
gorithm. Section 4 provides theoretical justification for the
proposed clustering method. Section 5 compares the performance
of the proposed method to popular and state-of-the-art clustering
algorithms under different settings and data sets. Section 6 dis-
cusses the implications of our development of the algorithm and
concludes the paper.

2. Related work

Many clustering algorithms have been proposed in the liter-
ature of community structure detection and clustering analysis.
Modularity-based methods established by Newman [9] have shown
exceptional performance in many cases [10-12]. These methods are
nonparametric and are designed to maximize the modularity as an
objective function. These methods, however, fail to detect smaller
communities in some cases where such granular identification is
desirable. It is hard to say whether the detected clusters are indeed
single communities or clusters of smaller communities. For ex-
ample, Fortunato and Barthélemy [13] analyzed modularity-based
methods and their applicability in the area of community detec-
tion. Their research points out that the modularity function has
a resolution limit. Communities that are smaller than a threshold
in a certain criterion may not be revealed, even when the whole
graph is identified as a single community. In addition, working
with pairwise similarity between nodes, modularity-based meth-
ods are inherently unable to handle directional relationships com-
monly observed in reality.

Other clustering methods for community detection also exist.
Hierarchical clustering [3], agglomerative or divisive, is another
technique commonly used for community detection. Hierarchical
clustering [3] first defines a similarity measure between clusters
and computes a similarity matrix between vertices of a graph.
Among the most critical disadvantages of hierarchical clustering
is that the results can be different depending on the similarity
measure used, although it is a universal phenomenon in most
clustering methods. Besides, agglomerative hierarchical clustering
does not scale well, which is crucial for clustering graphs [14].
In essence, approaches based on a predefined number of clus-
ters require an additional important step that involves a decision
criterion for the optimal number of clusters. Spectral clustering
[3] refers to the group of methods based on eigenvalue decom-
position of the similarity matrix or its derivative matrices for clus-
tering data sets. This approach is good at finding non-convex clus-
ters, able to take into account geometric structures of the data [3].
However, it works with similarity matrices, which reflect only bidi-
rectional relationships among the nodes in a graph. The result de-
pends on the number of selected eigenvectors. Along with spec-
tral and density-based methods considering geometric structures
of data, Park and Lee [15] proposed a group-dependence cluster-
ing approach. This approach is based on the idea of maximizing a
measure called group dependence. The central idea of the method
is that any two nodes in the graph can be considered as being
connected through Markovian transitions. This conceptualization
allows for the calculation of ‘dependence distance’ [16] between
graph nodes in a certain evolution step, which can adjust the level
of connectivity scale in group assignment. Though the method sup-
ports the ability to adjust the level of the connectivity scale in
clustering, it fails to present a collective view of clusters accord-
ing to the connectivity scale and was insufficient in coping with
directional structures between nodes. Density-based methods de-
tect clusters according to the local density of data points. Based on
a density threshold, the points from disconnected regions of high
density are assigned to different clusters when the rest are marked
as noise. However, such methods, computationally expensive, are
suitable only for data defined by a set of coordinates. To overcome
these drawbacks, an alternative approach, called clustering by ‘fast
search and find of density peaks’ (FSFDP) [17], defines the clus-
ter centers as local density maxima that are relatively distant from
any point of higher local density. After that, each remaining point
is assigned to the same cluster as its nearest neighbor of higher
density.

Attempts to improve the quality of clustering results brought
forth developing a number of ensemble clustering approaches dur-
ing recent years. Zheng et al. used aggregated distance matrices
and combined both partitional clustering and hierarchical cluster-
ing results [18]. Wang et al. used a Bayesian graphical model to
aggregate mixed cluster results and maximized an approximation
of the posterior distribution [19]. The clustering approach, pro-
posed in [8] as one of the state-of-the art approaches, addresses
the problem of combining multiple partitions of a set of objects us-
ing the knowledge-reuse framework [20]. It formulates the cluster
ensemble problem by introducing an objective function for com-
bining multiple clustering solutions and by solving the correspond-
ing optimization problem. This way the final consensus solution
is obtained without accessing original features. The authors pro-
pose the following three consensus functions: cluster-based sim-
ilarity partitioning algorithm (CSPA) based on a measure of pair-
wise similarity, HyperGraph Partitioning Algorithm (HGPA) based
on approximation of the maximum mutual information objective,
and meta-cLustering algorithm (MCLA) based on solving a cluster
correspondence problem. The final solution is selected among the
three consensus clusterings as the one with the highest average
mutual information.
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3. Preliminary concepts

In this section, we briefly summarize the concept of group de-
pendence that links data points by a Markov random walk and
the concept of a clustering ensemble that combines several divi-
sion outcomes. Then, in the next section, we propose the concept
of ensemble group diffusion to measure a multiscale cohesion level
for a group division in an integrative fashion. Ensemble group dif-
fusion gives rise to a new clustering method for community detec-
tion, which will be discussed in detail in regards to its characteris-
tics and parameters.

3.1. Group dependence

The concept of group dependence is closely related to the
Markov random walk and provides a general foundation for a dis-
tance measure between data points that considers the geometri-
cal structure [21]. Group dependence proposed by Park and Lee
[15] is a measure that quantifies the goodness-of-division of an
undirected graph. In this paper let us suppose that a directed graph
of data points (nodes) xy,---,x, € R? is given. Denote the set of
data points by Q = {xq,...,x}. We view the graph as a Markov
chain, assuming the whole chain is ergodic and all transitions fol-
low the Markovian property.

We start with a simple case of bisecting the graph, then provid-
ing instructions on how to divide it into more than two groups in
the following section. Let s; = 1, a decision variable, if data point
i belongs to group 1 and s; =—1 if it belongs to group 2. Ob-
serve that the quantity (s;s;+1)/2 is 1 if i and j are in the same
group and O otherwise. Denote the group assignment vector by
s = [s1,...,Sp]. Group dependence is defined as follows:

Definition 1. Group dependence D; for a given group assignment
s and connectivity scale parameter ¢ is
. . (sisj+1)
D = Dep(Xp = ,X =i)—-1 —_—,
k= > (Dep(Xo=jXe=i)—1) 3

Xi, XjeQ

in which Dep(Xp=j,X; =i), as dependence, is defined by
P(Xg=j.X;=i) . §

W and t, as an exogenously given parameter, means the

t-step-wide neighborhood evolution in Q.

Dependence is closely linked to the point-wise mutual infor-
mation in information theory and the lift measure in associa-
tion rule learning. Intuitively speaking, dependence captures how
x; in the initial state is inter-dependent with x; at the tth step:
Dep(Xg = j,Xr = 1) <1 means that j and i are negatively depen-
dent; Dep(Xp = j,X; =i) =1 means that they are independent;
Dep(Xo = j, X = 1) > 1 means that they are positively dependent.
The term, Dep(Xy = j, X; = i) — 1, represents the degree of relative
dependence in comparison to the level of independence as the ref-
erence point. Accordingly, group dependence D; measures the over-
all coherence of group assignment s in terms of dependence for
the whole data set at the t-step transition. Based on group depen-
dence, we propose another measure of ensemble group diffusion
to reflect the multiscale dependence structure in a directed graph.
We then look for a good group assignment s of all n points to max-
imize the measure.

3.2. Clustering ensemble

As the idea of ensemble group diffusion closely relates to clus-
tering ensembles, we briefly introduce the basic concept of a clus-
tering ensemble. Cluster ensembles basically address the problem
of combining multiple base clustering results for the same data set
into a final consensus solution. Depending on how to reach a con-
sensus solution, several approaches (such as graph-based, matrix-

based, and probabilistic models [22]) exist in the literature. How-
ever, the problem formation in cluster ensembles is universal as
follows. We start with a base clustering algorithm that generates
the group assignment s of the data points in Q2. We prepare M base
clustering results by supplying different parameters to one base
algorithm. From them, we obtain M different group assignments
s(, ..., s(M)_The results from the M base clustering algorithms can
be stacked together to form an overall clustering matrix. Given the
overall clustering matrix, the cluster ensemble problem is to com-
bine the M base clustering results for the n data points to generate
a consensus clustering, which should be more accurate and stable
than the individual base clusterings.

In this paper, we calculate diffusion matrices of dependence
for each parameter value of connectivity level t and aggregate the
diffusion matrices. Specifically, we similarly start with a directed
graph of n data points in € with probability matrix P. Having a
set of possible parameters, denoted by T, we calculate [Dep(Xy =
J: Xt =D)]; jo1,.. n for every teT and then obtain a cumulative ma-
trix, the ensemble group diffusion, as the sum of the individual
group diffusion results:

D) =YD=Y Y (Dep(x(,:j,x[:i)q)i(sisf;u (1)

teT teT x;.xjeQ

The final clustering is obtained through solving the maximiza-
tion problem for the cumulative matrix D(s). Combining individ-
ual diffusion matrices to ensemble group diffusion can be viewed
as a peer regularization. Diffusion matrices obtained with a small
t value pull the overall solution towards having smaller clusters.
Similarly, diffusion matrices from a large t value shift the optimal
solution towards coarser and larger scale representations. The con-
struction of ensemble group diffusion brings stable clustering re-
sults under various degrees of resolution and heterogeneous struc-
tures in the data set. Thus, it aims to solve the resolution limit is-
sue in which an obvious small-sized community is rarely detected
when the whole graph is sufficiently large.

4. Clustering with ensemble group diffusion

We incorporate group dependence and ensemble clustering to
present a new approach of ensemble group diffusion that finds the
community structure in a directed graph. Given a transition ma-
trix P, we denote the one-step backward transition matrix by Pg,
which is calculated from P. Then by backward Markovian transi-
tions, the t-step transition matrix is P§: szi.j =P(Xy = jIX; =1). We
observe that if x; and x; are close in the geometric structure of
the data, the backward transition probability should be large. The
posterior transition probability involves a backward Markov chain,
representing the probability of the initial state j after reaching state
i at the tth step transition as a measure of the difference between
the two states i and j in the directed graph.

In particular, the backward transition probability P,; i should be
at least greater than the probability that x; and x; are connected by
chance among all data points. Thus, the greater Pé:i, j is among the
data points in a cluster, the better the cluster is. Also, a partition of
the data set is meaningful when a whole connectivity level by the
partition should increase more than that by a random configura-
tion. The quantity 3, ; (Pé,tj —1/n) should be great for all x; and x;
pairs in the same cluster, where the threshold probability 1/n rep-
resents the random probability among n data points. If one seeks a
tight configuration, one may use a value larger than 1/n. In quanti-
fying the connectivity level in detail, we use not only the concept
of geometric diffusion, but also modulate the diffusion depth pa-
rameter t by varying t in a certain interval. Thus, we define the
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collective geometric diffusion to be
DY B = 1/m),
teT ij
where T is the set of diffusion depth values.

We denote the group assignment vector by s = [sq, ..., Sn]. Let
s; = 1 if data point i belongs to group 1 and s; = —1 if it belongs to
group 2. To obtain a good partition in terms of collective geometric
diffusion, we solve the following programming:

argmaxsZZ(l’g:iv}' - 1/n)w. (2)
teT ij

We show that collective geometric diffusion is in proportion to en-
semble group diffusion when all initial states have equal probabil-
ity as non-informative prior because

NP - 1) = 1n Y Y (P = jiX =i —1)

teT i teT i
PO = j.Xe =)
=1 —_ - 1
/nzz( i)
B P(Xo = j, X =)
= <P<x[ —DPCo=)) 1)
=1/nY. Y (Dep(Xo = j. Xe = i) — 1).
teT ij

Thus, the programming in (2) is equivalent to maximizing the en-

semble group diffusion
. . (sisj+1)
argmax, Yy (Dep(Xo = j, Xe =) — 1)%4

teT ij

Note again that the quantity (s;s; + 1)/2 is 1 if i and j are in the
same group and 0 otherwise. Thus, an optimal clustering scheme
is achievable through maximizing the collective geometric diffu-
sion measure by varying the group assignment s of all n points.
To express the level of closeness to a group, the group identity
s; is extended from discrete to continuous with the norm of s
fixed. By the set of diffusion depths T, we can effectively adjust
the level of the connectivity scale for which two points are associ-
ated. When infinite diffusion steps are taken, for the infinite value
of t, the Markov chain converges to the stationary distribution and
the collective geometric connectivity becomes trivial. For instance,
one can set T to be {1, 2} as a short-range scale or {5, 6, 7, 8} as a
mid-range scale. In practice, one could start with T as a long-range
scale such as {1, ---, 8} and, depending on the result, shrink it, or
vice versa (start with T as a short-range scale and expand it). We
will see the effect of T by varying it in the experiment section. We
express the maximization of the ensemble group diffusion with re-
spect to s subject to [|s|| = 1 as follows:

argmax, sy (P —1/n117)s := argmax, s'Gs, (3)
teT
where
G=Y (A 1/m1"). (4)
tel

We numerically find the eigenvalues and eigenvectors of G. The ex-
istence of the largest and positive eigenvalue and its eigenvector s;
implies that the ensemble group diffusion is maximally increased
by adjusting a division of the data set on the direction of the cor-
responding eigenvector s;. We mention the computational hurdle
is computing eigenvalues and eigenvectors of G, and we compare
its running times in the experiment section. Moreover, the divi-
sion of the data points is based on the signs of s;. In fact, s; is
a one-dimensional representation of the data points, which can be

used for a general purpose such as visualization and classification
because the sign and magnitude of s; relate to the degree of close-
ness to one group against the other. We note that the eigenvector
associated with the zero eigenvalue represents assigning all data
points to just one group. On the contrary, nonexistence of a pos-
itive eigenvalue implies any further division of the data yields no
gain.

4.1. Detecting more than two groups

The procedure explained so far either divides a graph into two
groups or decides not to divide further. It is natural to consider a
network with more than two groups latent in its community struc-
ture. To obtain more than two clusters, we adopt a standard ap-
proach to subsequently divide the groups found [9,15]. We look for
a possible division for each group found in the previous step by
constructing a new backward transition matrix Pgj; for a detected
group g as a subset of the data set: Py, with size |g] x |g|, defined
by
Plgi = (PO = jIX: = DIVi, j e g},

Following the same procedure based on P, the solution of
argmax|5)—1G'® in (3) enables us to decide whether a division is
possible or not.

It is important to note that the new group configuration with a
new division found does not always result in an increase in the en-
semble group diffusion of the whole graph because the new simi-
larity matrix P, reflects only a part of the whole data set without
considering connections to the nodes belonging to other groups.
Hence, among the possible divisions, we look for only the division
which causes the ensemble group diffusion in (3) for the whole
data set to increase most when the new division is applied.

Furthermore, we require that the increase is at least by certain
margin. Specifically, for the purpose of regularizing the solution,
we introduce a dependence gain parameter §, € [0, 1]. This param-
eter is used for calculating the minimal dependence gain value re-
quired to split a cluster into two sub-clusters and is defined as

Ag=684 Y G,

2,0
where G =[g;;] is defined in (4). For setting the value of &4 in
practice, we recommend starting with quite a small value, close
to zero, and increasing it depending on the results. One can ver-
ify that Zgwo G is the upper bound for cumulative collective geo-
metric diffusion. Thus, the division into sub-clusters proceeds if the
difference between the collective geometric diffusion values corre-
sponding to the group configurations before and after the division
is higher than the dependence gain:
D(s') —D(s) > nAy,
where D is defined in (1), s and s’ denote the group configura-
tions before and after the division into sub-clusters, respectively,
and n stands for the size of the set of data points 2. The depen-
dence gain parameter prevents the algorithm from identifying clus-
ters that are too small or not clear enough, which allows control-
ling the desired level of clarity in finding clusters. In summary, we
stop dividing the group when we find no positive eigenvalues from
group ensemble matrix G or the dependence gain fail to exceed
nAy.

4.2. lllustrative examples

This section demonstrates the performance and steps of the
proposed algorithm. For illustration, we construct a simulated sim-
ilarity matrix, which is generated as follows. We randomly gener-
ate 500 points in two dimensional space where every point be-
longs to one of three clusters. One cluster is generated from a
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Fig. 1. (a) The original data set and true cluster division from illustrative example, (b) similarity matrix corresponding to the data in (a).

Gaussian distribution with identity covariance matrix I and con-
tains 200 points. The second cluster is formed by a Gaussian distri-
bution with covariance matrix 0.25 x I and consists of 100 points.
It is shifted from the center of the first cluster by approximately
2.7 units. The third cluster is constructed from a uniform distribu-
tion in the interval (0, 2). It consists of 200 points and is shifted
from the center of the first cluster by approximately 2.8 units. The
obtained data is illustrated in Fig. 1(a), where clusters are colored
differently. The data set has quite a visible underlying community
structure, although cluster membership for some of the points on
the border is not clear. We construct a distance matrix using the
Euclidean distance. The distance between two points x and y is
calculated as [Ix —y|| = /> ;(x; — y;)2, where i denotes a dimen-
sion. The similarity matrix shown in Fig. 1(b) is formed from the
distance matrix using the general form of a Gaussian radial basis
function

h(x.y) = exp(—|x - y[|?/o’?). (5)

where o > 0. In this example, considering the units of x; —y;, we
empirically set the parameter o to 0.2 and §, to 0.12. We notice
that three standard deviations of x; —y;, 30y,y,, is 0.212 and the
choice of §, from the interval [0.05, 0.12] brings no change in the
clustering result. Therefore, we choose the upper limit of this in-
terval §; = 0.12.

We apply the proposed method (EGD) clustering to the ob-
tained similarity matrix. We consider the diffusion depth pa-
rameter values T = {3}, T = {8} and their combination T = {3, 8}.
Fig. 2(a)-(c) shows clustering results with EGD for the data and pa-
rameters described above. Every cluster is marked in its own color.
The clusters corresponding to original data clusters are displayed
in similar colors. The algorithm with T = {3} fails to find the un-
derlying data structure and assigns nearly all points to one cluster
(see Fig. 2(a)). For T = {8}, the method successfully determines one
cluster marked green (see Fig. 2(b)), but shuffles the two remain-
ing clusters. For T = {3, 8}, the proposed EGD approach discovers
all three clusters, except for a few elements near the border and
a small group of points treated as a separate cluster. We note that
the border between clusters in this data set is not obvious and the
problem of clustering such points belonging to the border will be
addressed further in Section 6. Apparently, the collective nature of
the proposed method leverages the benefits of runs with a single ¢
(see Fig. 2(c)).

Furthermore, using the data set with ground-truth, we show
the effectiveness of the EGD algorithm by providing clustering re-
sults under various settings of the parameter T. Figs. 2(d), (e), and
(f) display clustering results for T = {2}, T = {7} and their combi-
nation T = {2, 7}, respectively. The algorithm with T = {2} assigns
nearly all points to one cluster (see Fig. 2(d)). For T = {7}, the

method determines two clusters marked green and blue, but mixes
points in the third cluster (see Fig. 2(e)). For T = {2, 7}, the EGD
algorithm discovers all three clusters, except for a few elements
near the border and a small group of points treated as a separate
cluster. Clustering results for T = {1}, T = {9} and their combina-
tion T = {1, 9}, displayed in Figs. 2(h), (i), and (j), are similar to the
ones obtained for T = {3}, T = {8}, and T = {3, 8}, and consistently
show the benefit of collective diffusion depths.

To demonstrate the functioning of the ensemble algorithm, we
display how the data set is split by the eigenvectors of the en-
semble group diffusion matrix G in (4) in every iteration. We con-
sider the case when T = {3, 8}. The first eigenvector correspond-
ing to the first iteration of the algorithm splits the data set into
two clusters, green and black (see Fig. 3(a)-(b)). At the second it-
eration, its own first eigenvector splits the green cluster into two
parts, green and blue (see Fig. 3(c)-(d)). Last, the first eigenvec-
tor corresponding to the third iteration separates the green cluster
from the previous step into two subclusters, marked green and red
(see Fig. 3(e)~(f)). In Fig. 3 values of the eigenvectors and the cor-
responding points on the scatter plots are displayed in the same
color. In addition, we add Figs. 10 and 11 in Supplementary Mate-
rials to show how the data set is split by the eigenvectors of the
matrix G in every iteration for T ={2,7} and T = {1,9}, respec-
tively. The results demonstrate that the algorithm is stable under
various parameter settings and provides reasonable separation into
groups. Then, we set §; = 0 to promote cluster splits. We run EGD
by varying t from small to bigger values to show how cluster struc-
ture evolves by changing t values. Fig. 4 demonstrates the effect
of increasing t on clustering results, evolution from local to global
structure.

For comparison, we provide the results of the modularity, spec-
tral, and hierarchical clustering methods used further in this work
(see Fig. 5). As parameter values for spectral and hierarchical meth-
ods we provide true (k =3) and wrong numbers of clusters (k =
2,4). Hierarchical clustering method places all data points mainly
in one cluster for all tested parameter values (see Fig. 5(a)-(c)).
Spectral clustering correctly determines one cluster for k=5 but
shuffles points belonging to the other two clusters. However, for
k =3, spectral clustering performs relatively well, which is quite
natural in that the true number of clusters was provided in this
case. The results of the spectral clustering approach can be seen in
Fig. 5(d)-(f). The modularity approach fails for this data set as it
discovers too many clusters (see Fig. 5(g)).

Next, we applied the EGD algorithm to the test cases in
which underlying manifold structures exist, as presented in Fig. 6.
Fig. 6(a)-(c) refer to artificial data sets representing classes of dif-
ferent shapes [23]. Fig. 6(d) displays the test case which the FLAME
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approach [24] used as a challenging test case. For computing dis-
tance matrices we adopted Manhattan distance measure for the
two spirals data set displayed in Fig. 6(a) and standardized Eu-
clidean distance measure for the remaining test cases. Similarity
matrices were calculated from distance matrices using Gaussian ra-
dial basis function as in (5). EGD successfully determined true clus-
ters for the test cases as shown in Figs. 6(a)-(c). In particular, the
results for the test case (d) are comparable to the original method.
Note that unlike original method, EGD assigned two outlier points
displayed in red to a separate cluster that looks natural in this case
and shows a potential ability to reveal a community that is small
in scale.

The illustrative and demo examples show that the proposed
EGD clustering approach can determine the underlying geometry
of the data, even for those data sets where some of the common
clustering methods fail. We attribute it to the property of ensem-
ble group diffusion that inherently combines individual outcomes
to result in better cluster segmentation.

5. Experimental and empirical results
5.1. Benchmark methods

We compare the EGD clustering with other well-known meth-
ods frequently used for community structure detection. Among
those methods are agglomerative hierarchical clustering, spectral
clustering, modularity clustering [9], density-based clustering and
a knowledge reuse framework-based (KRF) clustering ensemble ap-
proach proposed in [8]. We apply the KRF approach to the results

obtained by Metis [25] and graph partitioning (GP) [26] algorithms
by varying the number of clusters.

As a density-based method we refer to clustering by ‘fast search
and find of density peaks’ (FSFDP) by Rodriguez and Laio [17]. We
use a Matlab implementation of FSFDP as was expounded in [27].
In order to define cluster centers the original method adopted a
manual setting by supervised analysis of a decision graph that
displays local density p; versus distance &; from points of higher
density for each data point i. Then one finds a rectangular region
where both §; and p; are high [27]. As the procedure was quite
inefficient and deteriorated in the multiple data sets used, we de-
signed a heuristic for automatic selection of cluster centers by bin-
ning the data points into k equally spaced intervals along the axes
and marking points with maximal § in each bin as cluster centers.

We employ both simulated and real-life data sets to compare
performance of the clustering algorithms, including the proposed
EGD method in this paper. In order to evaluate the performance
of these algorithms, we need to have “true clustering labels” for
each data set. The simulated data set clearly has one, as we sim-
ulate the data set from a predefined correlation matrix structure.
For other real-world data sets, we deliberately chose empirical set-
tings where we can define such true clustering for all nodes.

5.2. Performance evaluation

Given true clustering labels, we measure the performance of the
clustering results using two approaches: Rand measure [28] and
normalized mutual information (NMI) [8]. The Rand measure is
based on the dyad-level accuracy of clustering results, counting the
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number of pairs in which an algorithm’s clustering result and the
true clustering specification agree. In essence, it combines the ra-
tio of correctly clustered pairs (CC) and the ratio of correctly sepa-
rated pairs (CS). CC and CS quantify the performance of clustering
algorithms in terms of what percentage of pairs are correctly clus-
tered or separated given the true clustering results. They represent

two extremes of a clustering algorithm’s performance. If an algo-
rithm tends to cluster aggressively by putting too many nodes into
the same cluster, it will score high in CC but low in CS, and vice
versa. Thus, a desirable clustering algorithm should score high in
the Rand measure, balancing CC and CS.

These three measures are computed as follows:

Zi,j 1(x1=x,)] {yi=y;}
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where X = {x;},i=1,-.-,n is the clustering result under evalua-
tionand Y = {y;},i=1,---,nis the true cluster labels. n represents
the number of nodes in the graph.

On the other hand, we employ another measure, NMI, to cap-
ture similarity between the true and test clustering results in a
holistic way. Mutual information is a concept from information
theory and increases as two input sequences are similar to each
other. The normalized variant that we use in this paper scales it
into the range between zero and one. The normalization process is
similar to that of the Pearson correlation coefficient. In this case,
the information-theoretic entropy serves as a normalization fac-
tor. The information entropy measures how random each input se-
quence is. Following Strehl and Ghosh [8], NMI is calculated as fol-
lows:

Rand =

IX.Y)

JHOOH®Y)'

where I(X, Y) denotes mutual information between X and Y, and
H(X) and H(Y) denote the information entropy of X and Y, respec-
tively.

NMI(X,Y) =
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Fig. 7. Performance summary of the proposed method and other methods in terms of (a) NMI, (b) RAND.

We show the performance summary of the proposed method
and other methods in terms of NMI and RND across 9 data sets
in Fig. 7. We give detailed description of the data sets and perfor-
mance comparisons in the following sections.

5.3. Simulation tests

Our evaluation starts with the tests on synthetically generated
data sets. We use a simulated correlation matrix with four ev-
ident groups, which represents a graph of 12 nodes. The group
structure imposed into the correlation matrix is {1,2}, {3,4,5,6},
{7.8,9}, {10,11,12}. Within-group true correlation coefficients are 0.9,
0.7, 0.6, and 0.8. Nodes in groups 1 and 2 are positively corre-
lated by 0.2 and those in groups 3 and 4 are negatively corre-
lated by —0.4. All other inter-group correlations are set to zero.
Each node represents a random variable and the edges of the graph
are Pearson sample correlation coefficients r; ; in the range from
—1 to 1. The distance between two points i and j is calculated as
lx; = xjll = 1/(r; j + 1). For calculating the similarity matrix W, a
general form of the Gaussian radial basis function in Eq. (5) was
used. More detailed information about the data can be found in
[15,29].

We evaluate each clustering method as an average over 10,000
replications. For each replication, we build a sample correlation
matrix from random realizations from the true correlation ma-
trix. Following Stone and Ayroles [29], we extract nine observations
from the true correlation matrix using a multivariate normal dis-
tribution. In order to see the effects of the width parameter o, we
vary o from 0.1 to 0.15 and 0.3.

We tested EGD by varying the diffusion depth parameter set
as T= {1}, {12}, {1,234}, and {1,2,3,45,6,78} from short-range
to long-range scales. Our benchmark methods include agglomer-
ative hierarchical clustering, spectral clustering, modularity clus-
tering, density-based clustering and KRF applied to the results of
Metis and GP. We informed benchmark methods other than Modu-
larity about the number of clusters with both the true value (k = 4)
and misleading values (k = 3,5). Table 4 in Supplementary Mate-
rials shows the results of simulation experiments using the nine
clustering methods. Boldface values denote the highest number in
each column. EGD outperforms other methods for all values of o.
The method demonstrates more accurate results for relatively low
values of o =0.1,0.15 and low values of the parameter §,4, with
the highest NMI and Rand scores of 0.91 and 0.94, correspondingly
for both o values.

To verify the performance differences between the proposed
method and the other methods, we applied post statistical anal-
ysis using repeated measures ANOVA. The tests showed that the
proposed method outperformed the other methods in the simula-
tion experiments with 95% confidence levels. Please refer to Sup-
plementary Materials (Table 2) to see the p-values of the tests.

5.4. Co-PI network from the NIH research funding data

To benchmark the performance of the proposed method in
the real-world context, we constructed a principal-investigator (PI)
network from the funding data of the National Institute of Health
(NIH) of the United States. The NIH is a collective body of 27 insti-
tutes and centers (ICs), disbursing $25-30B every year for biomed-
ical research. This accounts for a significant portion of the total
biomedical research funding of the U.S. and the NIH is the single
largest public entity in the picture. As a public agency, the NIH
keeps track of detailed funding information for each grant includ-
ing grant application abstract, activity type, amount of grant, list of
co-PIs, and institution of the head PIL

For each grant, one or more researchers are in charge of car-
rying out the proposed research project. Among them, one per-
son is designated as head PI (or contact PI), who is meant to
be the primary corresponding agent for the project. Each project
record also contains the head PI's associated institution (university,
research institute, or private company) and its address. Although
most grants are executed by a single PI, a few projects are led by
multiple Pls, in which case the project is run by a head PI and co-
Pls.

We focus on the projects having multiple co-Pls to construct
the collaboration network of researchers in biomedical research.
By counting the number of co-occurrences of Pls, we obtain the
weighted undirected graph of the co-PI network.

In order to test the clustering algorithms, we need not only a
network but also true labels of the nodes. We prepared the true
labels based on the location of the affiliated institution of a PI. In
essence, we infer whether PIs are co-located from the collaboration
network structure among the co-Pls. Reasoning behind this infer-
ence is that researchers in the same geographical region are more
likely to collaborate on research project supported by NIH funding.

We first collected all grant data between 2000 and 2012 from
NIH’s data retrieval interface called EXPORTER. The NIH publishes
funding records not only for its 27 ICs but also for some other
related agencies. Then, a small number of research grants are
awarded to non-US institutions. Last, some large projects are bro-
ken into subproject records occasionally. In such cases, we only
consider the ultimate parent project record. Since our focus is on
the NIH’s U.S. funding records, we remove non-U.S. projects from
our sample. After filtering out non-NIH, non-US grants, and sub-
project records, we are left with 707,496 grants. 14,093 projects
among them have more than one PI and the number of unique
PIs is 11,999. As institution information is only available for the
head PI, we removed PIs for which we cannot identify the institu-
tion, and 9769 PIs remain. The collaboration network is extremely
sparse because of a myriad of isolated cliques of two or three PIs.
We extracted the connected components of size greater than or
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equal to 10 from the entire landscape. At last, we are left with
993 PIs from 217 institutions in 44 states. Assuming that inves-
tigators affiliated with institutions that are geographically close to
each other have a higher chance to collaborate as co-Pls, we use
the state as a true clustering label for each PI based on the loca-
tion of their institution.

Table 5 in Supplementary Materials shows the performance
comparison with the NIH data set. The EGD clustering with §; = 0
and T = {1} outperforms all other configurations and algorithms,
including modularity clustering. We observe a high Rand measure
and low NMI consistently across all methods. Low CC and high CS
scores explain why Rand measure is higher than NMI. This im-
plies that the co-PI network is highly fragmented and it has a fairly
low chance that two PlIs are associated with the institutions in the
same state. When algorithms place nodes into the same cluster,
it is more likely to be wrong than when they separate out nodes
into different clusters. Thus, under this sparse clustering structure,
we see that NMI is a more robust measure than the Rand mea-
sure, although these two measures were close to each other in the
simulation study in the previous section. Last, the hierarchical clus-
tering and FSFDP clustering scores are low in both Rand and NMI,
which suggests that the methods clearly failed to correctly identify
the latent community structure. Spectral clustering, Metis, GP, and
KRF produced better results, but still fell short of the results from
modularity clustering and the EGD clustering.

5.5. Social network data with ground truth membership records

Social networks have gained a significant number of users over
the past decade. Various social network services operate in the
web with a different focus, such as for friendship or professional
career networks. This trend led to an explosion of availability of
social network data that could be used for academic research. In-
deed, various fields such as marketing and psychology have used
data sets from real world social network services to address a spe-
cific research question. Clustering algorithm development is one
of the fields that can immediately benefit from using these so-
cial network data sets. One hurdle that prevents one from doing
such research is that raw social network data usually does not pro-
vide ground truth membership of the nodes. In order to test clus-
tering algorithm performance, we need a true clustering that can
be compared against as a benchmark. The notion of ground truth
membership depends on how you frame the clustering task. For
instance, suppose that we are interested in clustering people in a
professional career social network. Depending on our research in-
terest, community structure may be defined by age group or the
industry that they are working in. In this case, both age group and
industry code can serve as the ground truth membership label for
each person in the network.

This section is devoted to the analysis using ground truth net-
works provided by Yang and Leskovec [30], who constructed a
large set of networks with explicit ground truth community struc-
ture from a number of different domains. We apply the EGD algo-
rithm to the Stanford Network Analysis Project (SNAP) data con-
sisting of three data sets and compare its performance with the
benchmark methods in the same way as before. SNAP data used in
this section are in fact undirected graphs with binary edge weights
describing three well known real world networks.

The first data set is Amazon’'s product co-purchasing network.
The data set is constructed based on the feature which lists corre-
sponding products (goods) under the tag “Customers Who Bought
This Item Also Bought” [30]. The ground truth community is con-
structed in a way that all its members share a common pur-
pose. Amazon-defined product categories (e.g., electronics, beauty
& health, or clothing) serve as the ground-truth communities. The
second data set is from DBLP, which is a widely known bibliog-

raphy repository archiving archiving publication records particu-
larly focusing on the field of computer science. Yang and Leskovec
[30] extracted authors’ collaboration network from publication
data. The authors are connected if they have a joint publication.
The publication venues serve as ground-truth communities for the
authors. Last, the third data set comes from YouTube, an online
video sharing community. It acts as a social network where users
can form friendships, create own groups, and join other groups.
Such group membership provides ground-truth communities of the
users.

In the original data set, Yang and Leskovec [30] provided the
list of the top 5,000 largest communities along with network data
(i.e., nodes and edges). Since the size of the networks is too large,
we first need to reduce the data to check how the clustering al-
gorithms work with smaller data sets. We preprocessed the data
in a way that we randomly select top 10 mutually exclusive com-
munities. This guarantees that each node belongs to only a single
community, which clears the ambiguity concern of multiple mem-
bership. Second, in order to lift the computational burden, we re-
ject a sample containing more than 300 nodes. Last, we randomly
choose 100 samples to construct the final set of samples. The net-
work and community statistics averaged over 100 samples are as
follows. The average number of nodes and edges in three data sets
(Amazon, DBLP, YouTube) are (132,107,103) and (387,314,171), re-
spectively. All data sets have similar number of nodes, but samples
from YouTube are much more sparse networks, as they have about
half the number of edges compared to the other two data sets. The
average clustering coefficients are (0.69,0.88,0.30); DBLP exhibits
the highest level of clustering coefficients. In sum, these three sets
of samples have different network-level characteristics, which al-
lows us to examine the sensitivity of algorithm performance by
comparing the algorithms in these three different settings.

Table 6 in Supplementary Materials shows the performance
comparison among the nine clustering algorithms with various
configurations. In these results, the EGD method predominantly
outperformed all other benchmark algorithms. §; =0 and 0.001
produce the best outcome and a larger set of t led to a better
outcome than the smaller set, such as T = {1}. The overall accu-
racy scores measured in NMI are in the descending order of DBLP
(95.74%), Amazon (94.05%), and YouTube (88.81%), which suggests
that higher average clustering coefficient is associated with more
accurate clustering outcomes. The statistical testing for the three
data sets showed that the proposed method outperformed the
other methods in the SNAP experiments with 95% confidence lev-
els except for comparisons with spectral clustering. Notice that for
DBLP and YouTube we informed spectral clustering of the correct
number of clusters. To see the p-values of the tests, refer to Sup-
plementary Materials (Table 3).

5.6. Amazon co-purchasing relationships

Since our proposed method and the dependence clustering
works on the adjacency matrix of the network, it is not limited
to undirected graphs. Rather, we surmise that our method may
work better on directed graphs compared to other favored choices
of clustering methods. We construct a set of directed graph sam-
ples from Amazon’s co-purchasing relationship between products.
If product i is purchased together with product j frequently, we de-
note the relationship as a directed edge from i to j. Note that this
relationship is not necessarily reflexive because the absolute level
of demand for the two products may starkly differ. This data set
is also compiled by SNAP [31]. SNAP collected the co-purchasing
network data at multiple points in time. The version we used to
construct our samples was collected by SNAP on June 1, 2003.
The original population data set consists of 403,394 nodes and
3,387,388 directed edges.
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Product co-purchasing networks can serve our purpose of test-
ing the clustering algorithms only if we also have true labels of
all nodes. SNAP also provides the metadata for each node such as
the product name, product group, and optional subcategories that
the product belongs to. SNAP collected the metadata in summer
2006, approximately three years after the co-purchasing network
was collected. However, we argue that this gap in data collection
time does not affect our samples and results in a significant way
because product group and subcategories do not change frequently
over time. Most of the nodes fall into one of four product groups:
books, music CDs, videos, and DVDs. We decide to select one prod-
uct group and choose books only for our final samples for three
reasons. First, we narrow down to a single product group because
we suspect co-purchasing links exist extremely sparsely across dif-
ferent product groups. Second, books are highly standardized prod-
ucts and have a well-defined classification scheme based on the
topical subject. Third, books represent more than 70% of the orig-
inal SNAP data set, thus, choosing books does not undermine the
representativeness of our samples. In order to uniquely assign each
book to a single true label, we pick the most frequent subject cat-
egory for a book when the book is tagged with multiple subject
areas.

With these settings in place, it is impractical for us to run vari-
ous clustering algorithms on the full data set. We thus create sam-
ples from the full data set with which we test and compare the
performance of different clustering algorithms within a reasonable
amount of time. The detailed sampling steps are as follows. First,
we choose a random book and the randomly chosen book then be-
comes the only member of the seed set. Second, for each book
in the seed set, we look up books frequently co-purchased with
the focal book. Third, we add the co-purchased books to the seed
set. Fourth, we repeat Step 2 and 3 until the size of the seed set
reaches the previously defined threshold. We set the threshold at
100 for our sampling process, so all of our sampled networks have
at least 100 nodes. Last, we extract all directed edges between the
nodes in the final seed set. In essence, this sampling process gener-
ates multiple layers of egonetworks superposed to each other. The
adjacency matrix resulting from the sampling process is binary and
asymmetric. We create 10 sample networks and labels using this
sampling process. The performance metrics are averaged across the
10 samples when reported in the results section.

Each sampled network, on average, contains 165.3 nodes and
774.8 edges, which results in an average network density of
0.03132. 34% of the directed edges are reciprocal, which means
that the two nodes have a bidirectional relationship in such cases.
The frequently co-purchased relationship is not reflexive by itself,
but a significant portion of the relationship in our samples is in-
deed bidirectional, largely because of our sampling process relying
on egonetworks. Still, more than 60% of the relationships are unidi-
rectional. The average number of subject categories for each sam-
pled network is 22.3. One may suspect that most of the nodes in
a sampled network belong to a single category also because of our
reliance on egonetworks for sampling. However, category member-
ship turns out to be quite evenly distributed. The most frequent
category accounts for only 16% of the nodes in a network and the
average Herfindahl-Hirschman Index, representing the concentra-
tion of proportions, is 0.0873, which is not particularly high.

Table 7 in Supplementary Materials shows the performance
comparison between the proposed EGD and modularity clustering
methods. After the previous tests we decided to narrow down the
comparison analysis to these two methods, as they show the most
stable results and both methods do not require a parameter spec-
ifying the number of clusters. EGD with low values of t and 44
outperforms modularity clustering in terms of NMI. Moreover, our
method is able to inherently handle the directed relationship by
a transition matrix, whereas the modularity approach forces the

Table 1
Description of the data sets.

Data set # classes  # samples  # features  Distance/Similarity
Lung cancer 4 197 1000 Euclidean/

Gaussian (o =0.1)
St. Jude 6 248 985 Standardized Euclidean/
leukemia |D — max(D)[*

* D refers to distance matrix

directed relationship to be symmetric. Thus, compared to modu-
larity clustering, our approach can better handle problems where
data sets with inherent directed nature are involved.

5.7. Gene-expression data

In this section we consider two high-dimensional data sets as
regards to gene-expression profiles. One is the lung cancer data
set [32] including four known classes of speciments: 139 ade-
nocarcinomas (AD), 21 squamous cell carcinomas (SQ), 20 pul-
monary carcinoids (COID), and 17 normal lung (NL). The other is
St. Jude leukemia data set [33] that contains samples from pedi-
atric acute lymphoblastic leukemia patients. The data set includes
six leukemia subtypes: 43 T-lineage (T-ALL), 27 E2A-PBX1, 15 BCR-
ABL, 79 TEL-AML1, 20 MLL rearrangements, and 64 hyperdiploid
karyotype (i.e., > 50 chromosomes). More detailed description of
the data sets can be found in Table 1.

For both data sets similarity matrices are obtained from the
distance matrices using the measures described in Table 1. For
the lung cancer data set the test results show that EGD outper-
forms other approaches demonstrating the highest NMI and Rand
measure scores, as shown in Table 8 (Supplementary Materials).
Note that though Modularity clustering method performs better in
terms of NMI, it assigns every point to a separate cluster, which
is hardly practical. Moreover, hierarchical clustering that provides
the highest Rand measure score allocates nearly all the points to a
single cluster with an exception of only a few samples. The same
happens to FSFDP and KRF. Spectral clustering neither succeeds.

For the St. Jude leukemia data set EGD performs best with the
highest NMI value of 0.88, as shown in Table 9 (Supplementary
Materials). The highest Rand measure score of 0.96 is provided by
spectral clustering. However, compared to spectral clustering the
loss of EGD in Rand measure is not significant. Hierarchical and
KRF approaches fail by assigning the majority of the points to a
single cluster which is verified by significantly low values of CS
and high values of CC.

5.8. Running times

Finally, the running time for the methods and the data sets
used in this work are displayed in Fig. 8. The experiments were
conducted on a system with the following characteristics: 64-bit
Windows 10 operating system, Intel(R) Core(TM) i5-3317U CPU
1.70 GHz, 8GB RAM, and MATLAB (R2014b). MATLAB implementa-
tions of the KRF approach, Metis, and GP used in the experiments
are available at [34,35]. For the methods which require the num-
ber of clusters as a parameter, only iterations when the true pa-
rameter values are provided were considered during the running-
time evaluation. Fig. 8(a) displays running times on the logarithmic
scale grouped by the data sets and averaged over the data sets,
correspondingly. Fig. 8(b) shows running times in seconds for each
method averaged over the data sets. The proposed EGD demon-
strated good performance and proved to be the most efficient for
the majority of the data sets among the ensemble methods used
for comparison in this work. In addition, we show running times
according to the length of input data in Fig. 9. The data set consists
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Fig. 9. Running times of the methods against data input length (logarithmic scale).

of randomly generated points in two dimensional space where ev-
ery point belongs to one of three clusters (n points in a cluster),
similarly to the example from Fig. 1(a). In the tests, n varies in
the interval from 50 to 6000. The experiments were conducted
on a system with the following characteristics: 1TB of RAM, 64
CPU cores (8 cores Intel(R) Xeon(R) E7-8837 2.67 GHz per CPU),
and MATLAB (R2017a). The proposed EGD showed consistent per-
formance among the tested methods. One can see that EGD is
comparable to Modularity, outperforming it for large input lengths
(n>2000) and KRF+GP for all the values of T.

6. Discussions and conclusion

Cluster ensemble algorithms recently became popular in the
field of data analysis because of the growing capabilities of com-
puting technologies. With careful selection of consensus procedure,
they prove to be more accurate compared to individual cluster-
ing results. Ensemble strategies benefit from combining individual
runs of a component algorithm diversified in a randomized or sys-
tematic fashion. Randomized diversity is usually achieved by ma-
nipulating data (e.g., bagging and nonparametric bootstrapping),
whereas systematic diversity is the result of varying parameters
(e.g., parametric bootstrapping). In this paper, we employ the latter
approach.

Our method, EGD, proposed in this paper is an ensemble ap-
proach that maximizes the group diffusion measure. Ensemble di-
versity is achieved by varying the diffusion depth parameter t. This
way, the combined effect of both bias and variance error compo-
nents reduction is expected. Cluster size can be bounded below by
proper settings of the dependence gain parameter §; ranging in

o o

Average running time, sec.
o

(b)

Fig. 8. Running times of the methods (a) grouped by the data sets (logarithmic scale), (b) averaged over the data sets.

the interval [0, 1]. We suggest using small values of §, for the data
sets with sparse clustering structure. On the other hand, for the
data sets with dense structure and expected unclear boundaries,
we recommend using higher values of §;. We must note that the
cluster size can be bounded below by setting a hard threshold on
the minimal number of points in the cluster. This provides direct
intuition to setting the threshold according to the expected size of
the smallest cluster. The solution with a dependence gain param-
eter is more flexible and acts as a form of soft threshold. The in-
tuition for setting the dependence gain parameter is, however, less
straightforward.

For evaluating the algorithm, we use both simulated and real-
world data sets. In the simulated data set, EGD outperforms mod-
ularity clustering with respect to Rand and NMI measures. When
small values of the width parameter o are used, better perfor-
mance is achieved for larger sets of t values. Similarly, structures of
the SNAP and gene-expression data sets are best revealed by EGD
with a larger set of t values. This is likely due to the non-uniform
density of the underlying data, which requires consideration at dif-
ferent scales. On the other hand, for the NIH data set with sparse
clustering structure, EGD outperforms all other methods including
modularity clustering for small t values. This implies that this data
set has a fine-grained structure which is better discovered by small
diffusion depths. In general, this zooming mechanism is ensured by
the parameter t in particular. The method is able to determine lo-
cal clusters with smaller values of t, whereas higher t values allow
for determining the global structure. The combination of its values
allows for defining clusters more accurately.

Therefore, we conclude that EGD is suitable for solving struc-
ture discovery problems for data sets covering a wide spectrum of
underlying structural and density properties thanks to flexibility in
the tuning of the parameters. Diffusion depth and dependence gain
parameters serve the purpose of selectively addressing data analy-
sis at different scales, whereas the ensemble binding provides inte-
gration over the scales. The benefit of the proposed method, how-
ever, presents the questions of how one should set the parameters
and of what are the theoretical interpretations, and of how one
can optimally set the gain parameter depending on cluster depths,
which will be a future research direction.

Despite accurate results shown in our tests, the proposed EGD
algorithm can be improved further by a number of advances. In
particular, we will give more detailed attention to the regulariza-
tion of the algorithm’s optimization criterion and the ability to
efficiently handle large-sized data in the next phase of our re-
search. Additionally, it is highly demanded to extend the method
by adding the ability to determine overlapped clusters, where
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each instance may belong to multiple clusters simultaneously. This
problem is particularly important in the field of community detec-
tion in social networks, where multiple membership is a natural
attribute.
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Supplementary Materials

Table 2: Results (p-values) of repeated measure ANOVA tests for Simulation data (the null
hypothesis is 11 = p2, in which p; means the performance of method 4, and the alternative is

H1 # p2)

Metod1 Method2 NMI Rand

Simulation data, o = 0.1

EGD (34 = 0.01,7 = {1}) Modularity <0.001  <0.001
Hierarchical (k=5) <0.001 <0.001
Spectral (k=5) <0.001 <0.001
FSFDP (k=5) <0.001  <0.001
KRF+Metis <0.001  <0.001
KRF+GP <0.001  <0.001

Simulation data, o = 0.15

EGD (64 =0,7 ={1,2}) Modularity <0.001 <0.001
Hierarchical (k=5) <0.001 <0.001
Spectral (k=5) <0.001  <0.001
FSFDP (k=5) <0.001  <0.001
KRF+Metis <0.001 <0.001
KRF+GP <0.001 <0.001

Simulation data, o = 0.3

EGD (64 =0,7 = {1}) Modularity <0.001 <0.001
Hierarchical (k=4) <0.001 <0.001
Spectral (k=4) <0.001  <0.001
FSFDP (k=5) <0.001 <0.001
KRF+Metis <0.001  <0.001
KRF+GP <0.001 <0.001
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Table 3: Results (p-values) of repeated measure ANOVA tests for SNAP data (the null hy-

pothesis is @1 = p2, in which p; means the performance of method ¢, and the alternative is

B # p2)

Metod1 Method2 NMI Rand

Amazon

EGD (64 = 0,T={1 to 8}) Modularity <0.001 <0.001
Hierarchical (k=11) <0.001 <0.001
Spectral (k=9) <0.001  0.131
FSFDP (k=11) <0.001 <0.001
KRF+Metis <0.001 <0.001
KRF+GP <0.001 <0.001

DBLP

EGD (54 = 0.001,T={1 to 8}) Modularity <0.001  <0.001
Hierarchical (k=11) <0.001 <0.001
Spectral (k=10) 0.300 0.043
FSFDP (k=11) <0.001 <0.001
KRF-+Metis <0.001 <0.001
KRF+GP <0.001 <0.001

YouTube

EGD (64 = 0,T={1 to 8}) Modularity <0.001 <0.001
Hierarchical (k=11) <0.001 <0.001
Spectral (k=10) 0.200 0.977
FSFDP (k=11) <0.001  <0.001
KRF+Metis <0.001 <0.001
KRF+GP <0.001  <0.001
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Figure 10: EGD clustering steps in illustrative example for 7' = {2,7}. (a) The first eigenvec-
tor of similarity matrix at the first iteration, (b) the first division, (c) the first eigenvector of
similarity matrix at the second iteration, (d) the second division, (e) the first eigenvector of

similarity matrix at the third iteration, (f) the third division.
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Figure 11: EGD clustering steps in illustrative example for 7' = {1,9}. (a) The first eigenvec-
tor of similarity matrix at the first iteration, (b) the first division, (c) the first eigenvector of
similarity matrix at the second iteration, (d) the second division, (e) the first eigenvector of

similarity matrix at the third iteration, (f) the third division.
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Table 4: Simulation

o=.1 o=.15 o=.3

Method d4 Parameter CC CS Rand NMI CcC CS Rand NMI CC CS Rand NMI
EGD 0 T={1} 0.8220  0.9680  0.9392 0.9073 0.8107 0.9764  0.9438 0.9115 0.8687 0.9445 0.9295 0.8956
T={1,2} 0.8434  0.9598  0.9369 0.9064 0.8433  0.9695 0.9446 0.9135 0.8826  0.9305  0.9210 0.8880

T ={1to4} 0.8623  0.9509  0.9335 0.9050 0.8696  0.9578  0.9405 0.9102 0.8956  0.9083  0.9058 0.8734

T = {1 to 8} 0.8751  0.9432  0.9298 0.9030 0.8902  0.9434  0.9329 0.9043 0.9031  0.8824  0.8865 0.8547

0.01 T ={1} 0.8310 0.9661 0.9395 0.9079 0.8238  0.9732  0.9438 0.9112 0.8729  0.9392  0.9261 0.8915

T ={1,2} 0.8511  0.9578  0.9367 0.9067 0.8520  0.9657  0.9433 0.9119 0.8863  0.9253  0.9176 0.8841

T = {1 to 4} 0.8677  0.9493  0.9332 0.9049 0.8753  0.9544  0.9388 0.9085 0.8984  0.9024  0.9016 0.8687

T = {1 to 8} 0.8807  0.9412  0.9293 0.9027 0.8936  0.9404  0.9312 0.9025 0.9067  0.8756  0.8817 0.8495

0.2 T ={1} 0.9327  0.8520  0.8679 0.8382 0.9285  0.8393  0.8568 0.8261 0.9199  0.8179  0.8379 0.7984
T={1,2} 0.9317  0.8565  0.8713 0.8421 0.9296  0.8493  0.8651 0.8352 0.9223  0.8158  0.8368 0.7989
T = {1 to 4} 0.9338  0.8529  0.8689 0.8403 0.9334  0.8495  0.8660 0.8374 0.9278  0.7986  0.8240 0.7887

T = {1 to 8} 0.9362 0.8482  0.8655 0.8377 0.9371  0.8452  0.8633 0.8358 0.9339  0.7743  0.8057 0.7745

Modularity 0.0516  0.9999  0.8131 0.7512 0.1925  0.9993  0.8404 0.7835 0.6826  0.9881  0.9279 0.8902
Hierarchical k= 0.8861  0.7338  0.7638 0.7433 0.9236  0.7611  0.7931 0.7805 0.9487 0.7879  0.8196 0.8075
=4 0.8131  0.9028  0.8851 0.8441 0.8484  0.9158  0.9026 0.8683 0.8690  0.9153  0.9062 0.8757
=5 0.7156  0.9576  0.9100 0.8654 0.7356  0.9582  0.9143 0.8722 0.7408  0.9568  0.9142 0.8718

Spectral k= 0.9148  0.7404  0.7747 0.7523 0.9175 0.7511  0.7839 0.7614 0.9271  0.7875  0.8150 0.7905
k= 0.8361  0.8689  0.8624 0.8236 0.8406  0.8811  0.8731 0.8348 0.8530  0.9124  0.9007 0.8632
k= 0.7276  0.9309  0.8908 0.8421 0.7308  0.9407  0.8993 0.8515 0.7271  0.9550  0.9101 0.8624

Continued on next page



Table 4: Simulation — continued from previous page

9¥

o=.1 o=.15 o=.3
Method 84 Parameter cC CS Rand NMI cC CS Rand NMI CcC CS Rand NMI
FSFDP k=3 0.8750  0.6123  0.6640 0.6482 0.8935 0.6454  0.6942 0.6835 0.9281 0.6488  0.7038 0.6923
k= 0.8315 0.6618  0.6952 0.6707 0.8493  0.6954  0.7257 0.7078 0.8984 0.6894  0.7306 0.7138
k=5 0.7958  0.6935  0.7137 0.6828 0.8044 0.7249  0.7405 0.7167 0.8703  0.7130  0.7440 0.7235
Metis k=3 0.8467  0.8491  0.8486 0.7748 0.8476  0.8511  0.8504 0.7777 0.8444  0.8506  0.8494 0.7739
k=4 0.8148  0.9532  0.9260 0.8752 0.8085 0.9554  0.9264 0.8763 0.7946  0.9528  0.9216 0.8688
k=5 0.6647  0.9754  0.9142 0.8643 0.6680 0.9782  0.9171 0.8685 0.6566 0.9744  0.9118 0.8584
KRF+Metis 0.6781 0.9738  0.9155 0.8675 0.6774  0.9767  0.9177 0.8697 0.6675 0.9733  0.9131 0.8612
GP k=3 0.9115 0.7460  0.7786 0.7532 0.9125 0.7586  0.7889 0.7627 0.9139 0.7808  0.8070 0.7778
k=4 0.8269 0.8726  0.8636 0.8217 0.8268 0.8855  0.8739 0.8319 0.8296 0.8996  0.8858 0.8428
k=5 0.7174  0.9362  0.8931 0.8422 0.7153  0.9450  0.8997 0.8491 0.7104  0.9487  0.9017 0.8495

KRF+GP 0.6948  0.9446  0.8954 0.8402 0.7013  0.9536  0.9039 0.8520 0.6952  0.9581  0.9063 0.8537




Table 5: NIH

Method dd Parameter CC CS Rand NMI
EGD 0 T={1} 0.3422 0.9306 0.9201 0.4946
T={1,2} 0.3253  0.9305  0.9192 0.4868

T = {1 to 4} 0.2907 0.9311  0.9156 0.4743

T = {1 to 8} 0.2915 0.9312  0.9155 0.4726

0.0001 T = {1} 0.3313  0.9306  0.9195 0.4881

T={1,2} 0.3253  0.9305  0.9192 0.4868

T = {1 to 4} 0.2907 0.9311  0.9156 0.4743

T = {1 to 8} 0.2915 0.9312  0.9155 0.4726

Modularity 0.3048 0.9308  0.9173 0.4843
Hierarchical k=43 0.0753  0.9303  0.2287 0.1690
k=44 0.0753  0.9303  0.2287 0.1699

k=45 0.0754  0.9307  0.2305 0.1717

Spectral k=43 0.1322  0.9299  0.8767 0.3571
k=44 0.1424  0.9303  0.8810 0.3705

k=45 0.1309 0.9295  0.8797 0.3523

FSFDP k=43 0.0777 0.9612  0.1559 0.1686
k=44 0.0771  0.9547  0.1565 0.1519

k=45 0.0773  0.9504  0.1745 0.1612

Metis k=43 0.2436  0.9296  0.9142 0.4093
k=44 0.2703  0.9300  0.9157 0.4296

k=45 0.2533  0.9296  0.9152 0.4189

KRF+Metis 0.2505 0.9295  0.9150 0.4134
GP k=43 0.1568  0.9297  0.8938 0.3676
k=44 0.1430 0.9294  0.8893 0.3613

k=45 0.1694  0.9299  0.8975 0.3788

KRF+GP 0.2150  0.9287  0.9135 0.3800
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Table 6: SNAP

Amazon DBLP YouTube

Method d4 Parameter CcC CS Rand NMI CcC CS Rand NMI CcC () Rand NMI
EGD 0 T={1} 0.7056 1 0.9331 0.9290 0.7269  0.9998  0.9456 0.9357 0.4743  0.9978  0.8470 0.8311
T={1,2} 0.7479 1 0.9410 0.9394 0.7959  0.9999  0.9537 0.9513 0.6607  0.9960  0.8851 0.8841

T ={1to 4} 0.8042 1 0.9516 0.9535 0.8518  0.9999  0.9609 0.9635 0.8117  0.9942  0.9261 0.9235
T = {1 to 8} 0.8661 1 0.9643 0.9673 0.8935 1 0.9674 0.9732 0.9031  0.9886  0.9554  0.9473

0.001 T ={1} 0.7135 1 0.9346 0.9315 0.7447  0.9998  0.9481 0.9408 0.4949  0.9963  0.8511 0.8346

T ={1,2} 0.7603  0.9999  0.9432 0.9425 0.8093  0.9998  0.9554 0.9545 0.6706  0.9955  0.8878 0.8845

T = {1 to 4} 0.8122  0.9999  0.9528 0.9550 0.8565  0.9999  0.9617 0.9648 0.8150  0.9935  0.9267 0.9204

T ={1to 8} 0.8661  0.9999 0.9643 0.9667 0.8957 1 0.9679 0.9740 0.9062  0.9872  0.9557 0.9446

0.01 T ={1} 0.7884  0.9853  0.9366 0.9117 0.8441  0.9946  0.9569 0.9497 0.6091  0.9787  0.8648 0.8229

T={1,2} 0.8084  0.9877 0.9419 0.9200 0.8663  0.9949 0.9601 0.9547 0.7580  0.9770 0.9004 0.8638

T ={1to 4} 0.8543  0.9865  0.9507 0.9274 0.8984 0.9949  0.9650 0.9608 0.8538  0.9797  0.9308 0.8925

T = {1 to 8} 8846 0.9899  0.9599 0.9424 0.9122  0.9958 0.9682  0.9658 0.9252  0.9729  0.9508 0.9083

Modularity 0.7916 1 0.9504 0.9501 0.8455  0.9999  0.9610 0.9624 0.7238  0.9937  0.9017 0.9019
Hierarchical =9 0.7843  0.3300  0.4209 0.3085 0.7966  0.6917  0.7157 0.6687 0.7609  0.2146  0.3662 0.1839
=10 0.7600  0.3553  0.4376 0.3239 0.7728  0.7227  0.7396 0.6847 0.744  0.2396  0.3822 0.2006

0 =11 0.7306  0.3881  0.4598 0.3444 0.7457  0.7537  0.7627 0.6996 0.7269  0.2666  0.4001 0.2182

Spectral k=9 0.7907  0.9282  0.8951 0.8473 0.8234 0.9041  0.8800 0.8385 0.7029 0.9336  0.8621 0.8063
k=10 0.7243  0.9449  0.8960 0.8458 0.8088  0.9279  0.8959 0.8606 0.7102  0.9767  0.8977 0.8625

k=11 0.6320 0.9479  0.8837 0.8271 0.7175  0.9333  0.8918 0.8449 0.6043 0.9775  0.8718 0.833

Continued on next page
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Table 6: SNAP — continued from previous page

Amazon DBLP YouTube
Method 84 Parameter cC CS Rand NMI cC CS Rand NMI cC CS Rand NMI
FSFDP k=9 0.6960 0.5464  0.5781 0.4942 0.7418 0.6198  0.6398 0.5845 0.6863  0.4495  0.5133 0.3788
k=10 0.6531  0.5977  0.6087  0.5182 0.7203  0.6572  0.6686 0.6044 0.6616  0.4728  0.5268 0.3866
k=11 0.6454  0.6201  0.6280 0.5341 0.7020 0.6751  0.6818 0.6115 0.6398 0.5103  0.5480  0.4086
KRF+Metis =9 0.5117  0.9716  0.8803 0.7931 0.6836 0.9707  0.9174 0.8422 0.2436  0.9296  0.9142 0.4093
: =10 0.4744  0.9779  0.8793 0.7953 0.6454 0.9781  0.9192 0.8482 0.2703  0.9300  0.9157  0.4296
k=11 0.4396  0.9822  0.8773 0.7948 0.6221  0.9852  0.9225 0.8619 0.2533  0.9296  0.9152 0.4189
0.4442  0.9808  0.8769 0.7883 0.6261  0.9835  0.9213 0.8543 0.2505 0.9295  0.9150  0.4134
KRF+GP =9 0.4818 0.8880  0.8095 0.6497 0.5280 0.8435  0.7908 0.6252 0.1568  0.9297  0.8938 0.3676
=10 0.4500 0.9086  0.8203 0.6619 0.4882  0.8547  0.7964  0.6169 0.1430  0.9294  0.8893 0.3613
11 0.4137  0.9229  0.8263 0.6667 0.4800 0.8820  0.8182 0.6474 0.1694 0.9299  0.8975 0.3788
0.3492  0.9605  0.8464 0.6652 0.3922  0.9527  0.8689 0.6534 0.2150  0.9287  0.9135 0.3800




Table 7: Amazon co-purchasing relationships

Method dd Parameter CcC CS Rand NMI
EGD 0 T={1} 0.0772  0.9184 0.8317 0.2971
T ={1,2} 0.0813 0.9192  0.7697 0.2563
T = {1 to 4} 0.0810 0.9185  0.8190 0.2746
T = {1 to 8} 0.0808 0.9188  0.7680 0.2326
0.001 T ={1} 0.0800 0.9185  0.8179 0.2564
T={1,2} 0.0816 0.9192  0.7616 0.2253
T ={1to 4} 0.0804 0.9184  0.8116 0.2381
T = {1 to 8} 0.0804 0.9187  0.7641 0.2065
Modularity 0.0778 0.9182 0.8441  0.2872




Table 8: Lung cancer

Method Od Parameter CcC CS Rand NMI
EGD 0.09 T ={1} 0.2928 0.7630  0.5164 0.1069
T ={1,2} 0.2172  0.7902  0.4896 0.1259
T ={1to 4} 0.2643  0.7477  0.4941 0.0345
T ={1 to 8} 0.3346  0.7997 0.5557 0.3609
Modularity 0 1 0.4754 0.4192
Hierarchical = 0.9963 0.0386  0.5410 0.0974
=4 0.9947  0.0578  0.5493 0.1206
=5 0.9931 0.0771 0.5576  0.1408
Spectral = 0.4330 0.6147  0.5194 0.0188
=4 0.4162 0.6056  0.5063 0.0153
= 0.5231  0.4420  0.4845 0.0508
FSFDP = 0.9864 0.0063  0.5204 0.0103
=4 0.9864 0.0063  0.5204 0.0103
=5 0.9864 0.0063  0.5204 0.0103
Metis k= 0.3281 0.6680  0.4897 0.0061
=4 0.2435 0.7508  0.4847 0.0083
= 0.1952 0.8032  0.4843 0.0160
KRF+Metis 1 0 0.5246 0
GP =3 0.3292 0.6675  0.4901 0.0137
=4 0.2512  0.7543  0.4904 0.0246
=5 0.1986  0.7994  0.4843 0.0493
KRF+GP 1 0 0.5246 0




Table 9: St. Jude leukemia

Method Od Parameter CcC CS Rand NMI
EGD 0.06 T ={1} 0.9469 0.9319  0.9351 0.8262
T ={1,2} 0.9469 0.9623  0.9589  0.8800
T ={1to 4} 0.8882  0.9648  0.9482 0.8539
T ={1 to 8} 0.7514  0.9827  0.9325 0.8172
Modularity 0.9686 0.8411  0.8688 0.7640
Hierarchical k=3 0.9512  0.0475 0.2436 0.0845
k=4 0.9485 0.0568  0.2503 0.0974
k=5 0.9482  0.0568  0.2503 0.0953
Spectral k=3 0.9418 0.9646 0.9596  0.8663
k=4 0.7265 0.9640  0.9125 0.7675
k=5 0.8488 0.9879  0.9578 0.8640
FSFDP k=3 0.9449 0.7988  0.8305 0.7428
k=4 0.9233  0.8833  0.8920 0.8253
k=5 0.9175 0.8761  0.8851 0.8038
Metis k=3 0.9497 0.3772  0.5015 0.4488
k=4 0.7265 0.7412  0.7380 0.4956
k=5 0.6348 0.6824  0.6721 0.4129
KRF+Metis 1 0 0.2170 0
GP k=3 0.6333  0.9242  0.8611 0.6845
k=4 0.5557  0.9454  0.8608 0.6704
k=5 0.4956  0.9593  0.8587 0.6764
KRF+GP 1 0 0.2170 0
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ABSTRACT

This article proposes Soft Dependence Clustering (SDC)
algorithm which belongs to the class of spectral clustering
methods. On each iteration, SDC performs a hierarchical
clustering producing a binary split which greedily maximizes
the group dependence score. One of the advantages of SDC
is the fact that division of a group into two clusters is done
based on the adjustable threshold which has a clear prob-
abilistic interpretation. Due to this property, the algorithm
naturally allows fuzzy group separations which makes it also
suitable for cluster overlaps analysis. SDC can be used for
graph segmentation applications as well as clustering data
that has notion of distance. The proposed algorithm is com-
pared with a few selected clustering methods using simulated
and real-world data sets. The results clearly demonstrate that
given reasonable settings, SDC outperforms other methods in
the comparison.

Index Terms— Soft clustering, spectral analysis, random
walk, Markov chain

1. INTRODUCTION

Over the recent years, there has been a significant increase
in the interest towards detecting overlapping clusters in data.
Despite the majority of clustering algorithms being designed
for hard clustering only, the ability to identify cluster overlaps
is crucial for many real-world data sets. Detecting such clus-
ter overlaps in data provides a better understanding of both
the structure and nature of the underlying application areas
since in many of them data set items can naturally belong
to multiple clusters. An example of such situation is the in-
terplay between multiple genes that regulate biological pro-
cesses — for many of them, ultimate discovery of the overlap-
ping groups of genes provides a more realistic model of cel-
lular activity, compared to the mutually exclusive clustering
[1]. Similarly, many real-world text data sets have complex
structure where items belong to multiple groups. For exam-
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ple, in Reuters data set [2], the newswire stories are grouped
based on the category codes and assigned to several highly un-
balanced classes. Another example are network communities
where a node can belong simultaneously to several communi-
ties leading to overlapping community structure.

To tackle problems with overlapping clusters, a number
of clustering schemes have been developed. One frequently
used approach is running a well-known clustering method
and adjusting the result to produce overlapping clusters, e.g.
through introducing a threshold parameter. However, such an
approach has limitations. First, constraints for the objective
function being optimized do not match the expected cluster-
ing scheme. Second, the setting of the global threshold value
remains an open question [3]. Therefore, some common mod-
els have been generalized to allow overlapping clusters [3],
[4].

In this paper, we propose Soft Dependence Clustering
(SDC) algorithm which considers geometric structure of data
and is based on maximizing a measure called group depen-
dence [5]. This measure provides flexibility in adjusting the
level of detail and connectivity scale in network analysis.
Park and Lee [6] demonstrated efficacy of similar method for
clustering into distinct groups. The proposed SDC algorithm
is therefore a generalization of the dependence clustering
method which supports soft clustering. Performance of the
method proposed here is compared with Spectral Fuzzy C-
Means (SFCM) [7] and Latent Dirihlet Allocation (LDA) [8]
where the first is a soft version of k-Means applied after spec-
tral decomposition of a random-walk transition matrix and
the second is a common choice for processing text data sets.
These methods are known to be good at discovering clusters
in data where overlapping clusters assumption is natural.

The rest of the paper is organized as follows. Section 2
provides descriptions of the main concepts and methods used
in the paper. Sections 2.1 - 2.4 explain the proposed SDC
clustering algorithm. Meanwhile, SFCM and LDA methods
used for comparison with SDC are provided in Sections 2.5



and 2.6, respectively. Section 3 is devoted to the experimental
results. It describes evaluation metrics, data sets, parameter
estimation and results of the performance tests. Finally, Sec-
tion 4 completes the paper with conclusions and discussions.

2. METODS

2.1. Preliminary concepts

Given a set of data points Q = {z;|i = 1,..., N;z; € R"},
we assume that points from the set €2 form a graph defined by
a similariy matrix S of size N x N with entries from R rep-
resenting pairwise similarities. Next, we define the Markov
chain on this graph by transforming S to the transition matrix
P and the corresponding ¢-step transition matrix P* : P, =
Pr(X; = j|Xo = i), where a probability variable X repre-
sents the initial state and X, is a random walk representing a
node at the ¢-th transition. The transformation is effectively
done by scaling rows of S so that elements in each row sum
up to one. Further, we assume that the whole chain is ergodic
and that all transitions follow the Markovian property. Statis-
tical dependence D, ; , = Dep(Xy = i, X; = j) [5] captures
how the node in the initial state and the node at ¢-th transition
are inter-dependent and is defined by the following equation:

b PriXo=iX =)
SOET Pr(Xg = i) Pr(X, = j)

ey

Let us denote a group assignment vector by s = [s1, ..., Sn],
where decision variable s; = 1 if data point ¢ belongs to group
1 and s; = —1 if it belongs to group 2. Note that in such
notation 1/2(s;s;+1) is 1 if ¢ and j are in the same group and
is 0, otherwise. Thus, given s and ¢, the group dependence for
a particular choice of s is defined by the following equation:

Dt(S) = 1/2 Z (Di,j,t — do)(SiSj + 1), 2)

T;,x;E€EQ

where D; ;; is defined by (1) and dy = 1 + €4 is the base-
line dependence level which is usually set to 1. A constant
dy effectively normalizes the statistical dependence for each
pair of points equaling zero when points are considered to be
independent. More details about parameter settings and opti-
mization procedure can be found in [6].

2.2. Dependence clustering for two groups

For a simple case of bisecting a graph, an optimal cluster-
ing solution can be achieved through maximizing the group
dependence measure D;(s) by varying the group assignment
s of all IV points. The actual optimization is carried out in
the domain of real numbers R by relaxing the original for-
mulation (2) so that elements of s become real. Moreover,
we constrain the Ly norm of s to be equal to one: ||s|[z = 1
and assume for simplicity that ¢; = 0. Then, a good parti-
tion is obtained through solving the following maximization

problem [6]:

argmax D, (s) = arg max 1/2 Z(Dm’,t —1)(sisj +1)

lIsl|=1 [Isl|=1 i
=argmaxs? (P*(B®)"! —11T)s  (3)
[Isl|=1
where B(*) : B](tj) = Pr(X; = j) = [#{P?);, and xg is

the initial probability vector representing prior information
related to the initial states. Finally, let us define

G =P ®BY)"t 117, 4)

Then, division of the data points is made based on the signs
of the eigenvector corresponding to the largest positive eigen-
value of G. The nonexistence of positive eigenvalues means
no possible benefits from any further divisions.

2.3. Dependence clustering for multiple groups

To obtain divisions to multiple groups, we apply a standard
subsequent division approach [9]. At every step we consider
binary divisions of every group already found during the pre-
vious iterations, following the algorithm described in Section
2.2. Among possible divisions we proceed with the one that
results in the maximal increase of group dependence for the
whole data set, effectively performing a greedy search.

For the purpose of regularizing the solution, we introduce
a dependence gain parameter d; € [0, 1], which prevents the
algorithm from defining too small or too unclear clusters. The
minimal dependence gain required to split a cluster into two
sub-clusters is calculated as Ay = dq4 Z o G, where G is
defined by (4). Let us denote a set of po1nts that belong to
a split candidate cluster by Q¢ C €. We denote the within-
cluster group configurations before and after the division of
Q¢ into two sub-clusters by s¢ (i.e. sin (2)) and s’ (i.e. s in
(3)), respectively. The division into the sub-clusters proceeds
if Di(sgn(s’'c)) — Di(sc) > NAg, where D,(s) is defined
by (2) and N is the size of Q. Note that all elements from
sc are equal to one. We denote D () = Dy(s¢) when all
elements from s have the same sign.

24. SDC

Dependence clustering has alreardy demonstrated accurate re-
sults compared to a number of methods [6]. However, it pro-
vides only a hard clustering scheme and is not designed for
handling overlaps. SDC algorithm proposed here extends the
earlier scheme from [6] by introducing a soft probability in-
terval.

Note that the binary split of data points on every itera-
tion of the dependence clustering algorithm is made based
on the signs of the eigenvector corresponding to the largest
positive eigenvalue of G defined in (4). To extend the ba-
sic algorithm to perform soft clustering, we therefore need to



re-define the split decision to be soft itself. In other words,
we need to introduce the uncertainty region [0, ,,] which fil-
ters only instances belonging to positive split if values of their
corresponding decision eigenvector belong to this interval.

On the other hand, this soft decision interval should be
adjusted on every iteration depending on a particular eigen-
vector configuration. A solution to this would be to interpret
eigenvector values as generated from two probability distribu-
tions: one with a negative mean and the other with a positive
mean. Having estimated such probabilities, one could then
introduce a soft probability interval 6p = [p;, py], such that
pr + pr, = 1. This interval defines the lower and the upper
bounds of the posterior probability that a data point should
have in order to be assigned to both clusters.

In our implementation, posterior probabilities are com-
puted from likelihood probability distributions assuming
equal priors for both clusters, i.e. by normalizing the like-
lihoods sum to one. The two probability distributions are
estimated by Gaussian kernel density estimation with stan-
dard deviation or bandwidth o. Figure 1 displays pseudo code
summarizing the above steps.

2.5. SFCM

The basic FCM [7] algorithm works as follows. We denote a
number of clusters by V., centers of the corresponding clus-
ters by ¢ = (c1, ..., cn, ), the degree of membership of the
point x; in the cluster ¢; by ;5 : Z;V=1 ti; = 1 and the de-
gree of fuzzy overlaps by m > 0. Given the parameters N,
m and initialization values for 1;; FCM minimizes the objec-

tive function: J,, = SN, Zji“l wit || @i — ¢ ||*, where

¢ = Silywigas) Sy W g = 1/ (@i = 5 |
/| zi — e |[)?™=1) are recalculated at every iteration.
Performing clustering in the original R™ space can be non-
optimal especially if n is large. Therefore, we do dimension-
ality reduction, first. This step is done by spectral decom-
position of the ¢-step transition matrix P! obtained from the
similarity matrix S defined in Section 2.1. Only top [V, eigen-
vectors with the largest eigenvalues are retained, excluding
the first one that equals to the unit vector [10]. Then FCM is
applied to the selected N, eigenvectors.

Thus, cluster attribution decision goes as follows. First,
each data point is assigned to a cluster with the largest mem-
bership value. Moreover, point x; belongs to both clusters c;
and ¢y, if its membership values satisfy the following criteria:

lij — par| < A,
pij + pak > R + Ay,

where A_ and A, are free parameters that define maximal
difference and minimal sum of the two memberships in order
to declare a data instance as belonging to both clusters. In our
experimental setup, we use MathWorks fuzzy logic toolbox
[11] for FCM computation.

Require: Set of data points €2, similarity matrix S, parameters ¢, d4,
€4, 0p, O.
Initialize a set ¥ = {Q}, Ay as described in Section 2.3;
Compute transition matrix P from S (see Section 2.1);
while true do
Set O =0, QY = 0;
for all ¢ in ¥ do
Find a sub-division s’ ¢ of Q¢ by solving (3);
Fit two probability distributions P(z;|—), P(z;|4+) using
Gaussian kernel density estimation with bandwidth o ap-
plied to negative and positive values of the eigenvector s'¢
correspondingly.
Estimate posterior probabilities for 4+ and — classes given
zi as P(=|zi) = P(xi|=)/(P(zi|=) + P(zil+)),
P(+|e) = 1 - P(~|a.):
Define Qf = {xi|sgn(s'c(i)) > 0} U {z;|P(—|z:) €
§p, P(+|z;) € 6p} and Q% = {z;]sgn(s'c(i)) < 0} U
{z:|P(—|z:) € 0p, P(+|z:) € op};
if D/(Q&) + Di(Q%) — Di(Qc) > NA,4 then
O =Qc, Q' = {08, 0%}
end if
end for
if Q¢ # 0 then
Apply the sub-division of Q¢ by replacing Q. in ¥ by the
two elements of the set )';
else
Finish the loop.
end if
end while

Fig. 1. Pseudo code for SDC algorithm

2.6. LDA

In LDA formulation [8] we assume that the number of top-
ics K is given beforehand and fixed, the number of words
in the vocabulary is V, the number of documents is N
and the number of words in d-th document is NV;. Let us
denote a set of documents by w = (wi,...,wy), Where

wqg = (wqz1,...,wan,) defines a sequence of words in
d-th document. We denote topics assigned to words by
z = (#1,...,2n), where each zg = (zq,1,..., Za,n,) cOITE-

sponds to wg. Suppose, B = {B;|i = 1, ..., V'} is a collection
of parameters of Dirichlet distribution [8] corresponding to
prior weights of words in a topic and o = {«;|i = 1,..., K}
is a collection of parameters of Dirichlet distribution corre-
sponding to prior weights of topics in a document. Given
parameters o and 3, the joint probability of w, z, @ and ¢ is

K N
P(w,2.0,¢la,8) = [[ P(¢:l8) [] P0dler)
=1 d=1

Ng
< (I Pzanl0a)P(wanle. zan)),
n=1

where 04 ~ Dirg (a) is a multinomial distribution of topics
in document d, p; ~ Diry (3) is a multinomial distribution



of words in topic %, 24y, 18 identity of topic of word 7 in doc-
ument d sampled from 6, and wy,,, is identity of word n in
document d sampled from ¢, . Then, LDA problem con-
sists in inferring the latent variables z, 6 and ¢ that maximize
posterior distribution P(z, 6, p|w, «, 3) [8].

To estimate performance of the LDA, we use a Matlab
Topic Modeling toolbox [12]. We adapted this implementa-
tion for discovering overlapping clusters of documents. First,
we extract topics with LDA model by estimating z, 6 and .
Then, to every document we assign a label corresponding to
the topic which received maximal probability p,,,, over all
topics. In addition, we assign to every document all other
topics with probabilities p; such that p; > pa. — d. Here,
the probability margin parameter § denotes the maximal prob-
ability difference between the winner topic probability p,,qx
and a probability of a candidate topic p; where: =1, ..., K.

3. EXPERIMENTAL RESULTS

3.1. Evaluation metrics

Given the true clustering labels, we use the following evalua-
tion approaches to measure performance of the algorithms:
Normalized Mutual Information (NMI) is an information
theory based metric used to compare true labels and predicted
results - employed here as described in [13].

Average F-score computed [14] as Fy, = 1/2(Fi; + Fiq),
where F; is Fi-score of best-matching true label to each de-
tected label and F 4 is F-score of best-matching detected la-
bel to each true label. In addition, average F s and FY,, scores
are introduced that are calculated similarly to F'-score and
show how well an algorithm clusters the true single-labeled
and true multi-labeled instances, respectively.

3.2. Demonstration example

For a demo example, we construct a similarity matrix by ran-
domly generating 600 points in the two dimensional space
where every point belongs to one of three clusters. Each
of these clusters is formed by a Gaussian distribution with
covariance matrix 0.5 x I and consists of 200 points. Two
clusters are shifted from the center of first cluster by approx-
imately 1.7 units in the opposite directions along the axis x.
The obtained data set is shown in Figure 2(a), where each
cluster is displayed in its own color. It is clearly visible that
the border is fuzzy and the points in its vicinity are most likely
to have an overlapping nature.

The proposed SDC algorithm is applied to the demo ex-
ample data set. Figure 2(b) shows clustering results with SDC
for the parameters o = 0.01, ¢4 = 0.1,¢ = 1, §; = 0.1 and
the probability interval p = [0.4,0.6]. The clusters corre-
sponding to original data clusters are displayed in similar col-
ors. Discovered overlapping instances are marked by black
circles. The method successfully determines all three clusters
and marks points near the identified border as overlaps. The
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Fig. 2. (a) The original data set and true cluster division from
demo example, (b) SDC clustering results for the demo ex-
ample. Black circles denote overlapping instances.

results of SFCM for this data set are similar to the results of
SDC clustering algorithm. This is likely due to the data fitting
well the underlying assumptions of the methods. Therefore,
we omit the results of SFCM here.

3.3. Reuters data set

In our tests we refer to the tag *Topics’ of the Reuters data
set [2]. Four topics were selected: grain, crude, interest and
trade. Initially, only the first 2000 articles were taken where at
least one of the selected topics was present. Similarity matrix
for the articles was defined as a cosine similarity among Lo-
normalized term frequency (TF) document vectors.

First, we performed feature selection by extracting a sub-
set of articles where only one of the selected topics was
present. Next, we generated TF features following the pro-
cedure of removing punctuation, tokenization, stemming
(Porter stemmer [15]) and ignoring all terms that appear
in more than 40% of documents. Among the obtained TF
features we selected the 500 most discriminative features
according to the 2 test [16], which effectively resulted in
a reduced vocabulary of 500 terms. We repeated the same
procedure of generating TF matrix for each of the 2000 doc-
uments considering only terms from the reduced vocabulary.
Finally, we obtained 1876 articles with at least one non-zero
feature and built a cosine similarity matrix S used as an input
for the tested algorithms.

In our experiments, we were interested in discovering pa-
rameter settings for which the tested algorithms produced the
best clustering results in terms of selected average F-score
and NMI cluster quality measures. These best parameter val-
ues were selected based on the results of a grid search (see
Table 1 for the parameter grid settings). The performance re-
sults are displayed in Table 2 with the highest metrics’ values
marked in bold. Presence of two lines for a method in Table
2 signifies that NMI and average F'-score have attained their
maximum values for different sets of parameters. As one can
see from this table, SDC outperforms other methods under all
their parameter settings from Table 1. We would like to draw



Table 1. Parameter grid settings for the Reuters and Gene
data sets. Intervals are denoted with square brackets.

Reuters Gene

op [0.2,0.8] [0.2, 0.8]
o da [0.01, 0.2], step 0.01 [0.01, 0.1], step 0.005
Al ea [0.0,0.2], step 0.01 [1077,107°], step 10~
“1 e 001 0.01

t  [23],step 1 [2,4], step 1

A_[0.01, 0.2], step 0.01 [0.01, 0.1], step 0.005
s A4 [-0.05, 0.2], step 0.01 [0, 0.1], step 0.01
8 N [4,8], step 1 [12,27], step 1
| m 3 [3,5], step 1

t 2 [2,4], step 1
< a [2.5,25], step 2.5 [1,10], step 0.01
Al B [0.005,0.01],step 0.005 [0.01,0.2], step 0.01

6 [0.001,0.3], step 0.001 [0.05,0.3], step 0.05

K [3,5], step 1 [10,27], step 1

Table 2. Reuters results

Parameters ~ NMI F Fis Fip,

SDC * 0.5994 0.8680 0.8702 0.7631
*k 0.6116 0.8613 0.8638 0.7080

SFCM | #s* 0.5592 0.8250 0.8291 0.5147
LDA wkk (05413 0.8441  0.8499 0.5765

*5p = [0.2,0.8], 04 = 0.13, €4 = 0.16, 0 = 0.01, £ = 2
#% §p = [0.2,0.8], 64 = 0.07, €4 = 0.18, 0 = 0.01, £ = 2
w6 A =009, Ay =0.1, No=4,m=3,t=2

sk 3 = 0.0125, a = 7.5, 8 = 0.016, K = 4

your attention to the fact that it significantly outperforms both
SFCM and LDA in clustering multi-labeled data points. Note
that SDC consistently outperforms LDA, which is a special-
ized algorithm for text clustering. Clearly, in the grid search
we identified a number of parameter settings which did not
lead SDC to a reasonable performance. This is a normal sit-
uation for any algorithm and some recommendations for pa-
rameter settings are therefore required to bring the algorithm
to or close to its (near) optimal performance.

Optimal ¢4 and d,4 values can be chosen based on dynam-
ics of group dependence curves (group dependence divided
by 3 9550 G as a function of iteration number, see Section
2.3). The curves with higher group dependence values are
more likely corresponding to the better parameter values for
€q. The suitable value for d4 can be selected based on ob-
serving the region of group dependence curve where it transi-
tions from being steep to being flat(ter). The point where such
transition happens corresponds to the iteration where further
division should be stopped since any subsequent dependence
gain will be insignificant and produced clusters become less
contrastive. Once the point of deflection/stop is decided upon,
&4 1s assigned a value that is greater than the dependence gain
following next division and smaller than the dependence gain
from the past divisions.

Q (5]

Q Q

= =

Q Q

ks ks

= =

[ (5]

Q =%

(9] (5]
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3 3 - €, =4x10
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Fig. 3. (a) Group dependence curves for the Reuters data set,
(b) group dependence curves for the Genbase data set. The
cross signs mark iterations where divisions stop.

Figure 3(a) shows group dependence curves for the
Reuters data set for a number of values of ¢;. The solid
line displays the curve corresponding to €4 = 0.16 resulted
in the best average F-score, while the dotted line repre-
sents the curve corresponding to ¢, = 0.18 leading to best
NMI score. We can see that the maximal group dependence
value is reached by the curve corresponding to ¢; = 0.16.
Moreover, for this curve the suggested value of §, should be
approximately 0.13 which agrees with Table 2. Analysis of
Figure 3(a) suggests that group dependence curves correlate
better with average F-score compared to NMI.

3.4. Genbase data set

Genbase data set [17] contains descriptions of patterns (mo-
tifs) associated with the most important protein families. It
consists of 662 instances with 1185 attributes and each protein
can be associated with 27 labels at maximum. All attributes
are binary, hence, enabling application of LDA. The data set
used here was obtained from the KEEL data repository [18].

To obtain the similarity matrix from the original feature
space of the data set, we first constructed a matrix of pair-wise
Hamming distances between instances of the data set H =
{hijli,j = 1,.., N} as percentages of the number of coordi-
nates that differ. Then, the similarity matrix S = {s;;|i,j =
1,..., N} was derived from the distance matrix using the fol-
lowing transformation: s;; = |h;; — max; ; hgjl.

The testing procedure was similar to the one described
in Section 3.3. We compared performance of SDC against
SFCM and LDA. The best parameter values were selected
based on the results of a grid search (see Table 1 for the pa-
rameter grid settings). Performance results are shown in Ta-
ble 3 where the highest values of the performance measures
are marked in bold. As one can notice, under some settings
SDC outperforms SFCM and LDA with regard to all perfor-
mance measures except for Fi,, for SFCM where it, however,
demonstrates comparable results. Furthermore, SDC signifi-
cantly outperforms both SFCM and LDA in clustering single-
labeled data points. In addition, in Figure 3(b) we plot group



Table 3. Genbase results

Parameters NMI 2l Fis Fim
SDC * 0.6808 0.6671 0.5840 0.6729
SFCM ok 0.6186 0.6047 0.4391 0.6737

wokk 0.6247  0.6043  0.4397 0.6788
LDA Hokok 0.5051 0.5542 0.5451 0.6394
Rk (5195 0.5284 0.4631 0.6260

*§p =1[0.2,0.8],64 = 0.06,e4 =6 x 107, 0 = 0.01,t =4
# A =001, Ay =004 N.=12,m=5,t=2

ok A =0.035, Ay =01, No =12, m =5,t = 2

sk B = 0,02, =1,6 = 0.3, K = 13

st 3 — 0,03, a = 2,8 = 0.05, K = 16

dependence curves for a number of parameter values of ¢4.
From this figure we can see that the curve with the maxi-
mal group dependence value corresponds to €5 = 6 x 1077
which is the same that led to the maximal average F; and NMI
scores during clustering via SDC. The recommended value of
&4 for this curve shoud be approximately 0.06.

4. CONCLUSIONS

In this work, we presented Soft Dependence Clustering algo-
rithm for revealing structure in data with overlapping clusters
and provided recommendations for parameter settings. This
algorithm specifically designed for discovering cluster over-
laps is an adaptation of Dependence Clustering method intro-
duced earlier. It has a solid probabilistic interpretation de-
rived from Markov chain random-walk model. The method
provides firmly accurate results compared to SFCM and LDA
used for performance comparison analysis in the presented
work. Depending on the data set, SDC provides either sig-
nificantly higher or comparable accuracy in all performance
measures considered in this paper. The method handles well
different types of data from different domains such as biology
and text data. For text data sets it proved to be more accurate
in detecting multiple groups compared to LDA, which is a
method specially designed for clustering text data.

Despite the SDC algorithm demonstrating substantially
accurate results, it is not specifically designed for clustering
big data. As the next step, we plan to work towards seam-
less and efficient integration of our proposed algorithm into a
modern big data framework.
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Abstract—This article proposes a scalable version of the
Dependence Clustering algorithm which belongs to the class
of spectral clustering methods. The method is implemented
in Apache Spark using GraphX API primitives. Moreover, a
fast approximate diffusion procedure that enables algorithms
of spectral clustering type in Spark environment is introduced.
In addition, the proposed algorithm is benchmarked against
Spectral clustering. Results of applying the method to real-life
data allow concluding that the implementation scales well, yet
demonstrating good performance for densely connected graphs.

I. INTRODUCTION

Efficient analysis and processing of large-scale datasets
requires scalable algorithms and computational frameworks.
To address this challenge, distributed large-scale data process-
ing frameworks have emerged in recent years. One of the
most widely-used frameworks/platforms for processing large-
scale data, Hadoop [1] is an open source implementation
of MapReduce [2]. Despite performing relatively well for
offline data, it handles real-time stream data poorly. Moreover,
Hadoop normally processes data from the disk which is ineffi-
cient for data mining applications that often require numerous
iterations. It has been reported by a number of works that
Hadoop-run algorithms sustain significant performance loss
due to disk I/O operations and network communications [3],
[4].

Apache Spark [5] is a more recent open-source distributed
framework for data analytics which enables, among other
things, fast and efficient processing of large streams of data.
The key features of Spark are in-memory computations and
fault-tolerance. Spark adopts Resilient Distributed Dataset
(RDD) [5], a distributed memory abstraction which supports
two types of operations: transformations and actions. Trans-
formations define a new RDD based on the existing one, and
actions either return a value to the driver program or export
data to a persistent storage. When a transformation is executed
a new RDD is created with its records distributed across the
main memory. An action operation causes each node to process
its local set of records and return the result. Spark also supports
in-memory caching of datasets which prevents slow disk reads
and performs much faster compared to Hadoop-like systems.

Spark proved itself to be effective for performing machine
learning and data mining tasks involving big datasets. Re-
cently, many works refer to Spark as a tool for creating

competent solutions for data analysis. Many clustering and
anomaly detection algorithms have been developed or adapted
to Spark due to its efficience and high performance. Apache
Spark MLIib library [6] has a number of implemented cluster-
ing algorithms such as k-Means, bisecting k-Means, Gaussian
mixtures (GMM), and Power Iteration Clustering (PIC). Some
other famous clustering algorithms have been implemented
in Spark framework but they do not belong to core Spark
libraries, e.g. CURE [7] and a scalable random sampling
variation of fuzzy c-Means [§].

Spectral clustering methods [9] detect structure of data
distribution based on information aquired from the spectrum of
the data affinity matrix. One of the hardest computational tasks
usually seen in spectral clustering methods is the necessity to
solve an eigenvalue problem of the Laplacian matrix derived
from the data affinity matrix. Therefore, spectral clustering al-
gorithms often need to be adapted when applied to large-scale
datasets. One way to improve efficience is reducing size of the
affinity matrix. Another solution is avoiding recomputation as
new data points arrive, making the method suitable for real-
time algorithms [10], [11]. A number of methods have been
developed in order to avoid high complexity caused by calcu-
lating spectrum of the Laplacian matrix and to make spectral
clustering applicable for large scale datasets. Among them
are approximation methods which perform spectral clustering
on either a subset of representative data points or randomly
sampled values of the affinity matrix and extend the obtained
results to the remaining data points [12], [13], [14], [15].

PIC [16] is an efficient method for clustering data which
embeds data points in a low-dimensional subspace derived
from the affinity matrix, similarly to other spectral clustering
methods. Under the hood, PIC applies 1D k-Means to a non-
converged top ranked eigenvector. In PIC embedding results
in approximation of a linear combination of all eigenvectors
of a normalized affinity matrix where eigenvalues serve as co-
efficients of the linear combination. Such approach is efficient
compared to traditional spectral clustering due to performing
only a small number of matrix-vector multiplications instead
of running iterations until convergence.

Dependence Clustering (DEP) [17] is a method which con-
siders geometric structures of data and is based on maximizing
the group dependence measure. The method assumes that any
two nodes in the graph can be connected through Markovian



transitions that enables calculation of dependence distance
[18] between graph nodes in a certain evolution step. The
level of connectivity scale in group assignment can be adjusted
improving the flexibility in regulating the level of detail. This
approach determines the optimal number of clusters while
dividing the data into clusters. This is particularly important
for exploratory research related to real world applications with
an unknown number of clusters beforehand. In this paper, a
Spark-based implementation of DEP ! which allows better
performance for analysis of big datasets is introduced.

The main contributions of the paper consist of

1) Introducing and implementing in Apache Spark a fast

approximate diffusion that enables spectral clustering
type algorithms in Spark environment.

2) Implementing a scalable version of DEP in Apache

Spark framework.

The rest of the paper is organized as follows. Section
IT provides descriptions of the main concepts and methods
used in the paper. Sections II-A - II-C explain the proposed
DEP clustering algorithm. Meanwhile, Spark implementation
is described in Section II-D. Section III is devoted to the
experimental results. It introduces evaluation metrics, data
sets and results of the performance tests. Finally, Section IV
completes the paper with conclusions and discussions.

II. METHODS
A. Preliminary concepts

We start with a graph defined by an affinity matrix A [19].
The graph is formed by a set of data points Q = {a;|i =
1,...,N;xz; € R"}. Therefore, the matrix A with entries from
R representing pairwise similarities has size N x N. We
define a Markov chain on this graph by transforming A to
the transition matrix P and the corresponding ¢-step transition
matrix P* : P}, = Pr(X; = j|Xo = i), where a probability
variable X represents the initial state and X is a random walk
representing a node at the ¢-th transition. The transformation
from A to P is done by scaling rows of A so that elements
in each row sum up to one. Assuming that the whole chain is
ergodic and all transitions follow the Markovian property we
define statistical dependence D; j; = Dep(Xy = i, X; = j)
[18] by the following equation:

Pr(Xo=1,Xt=j)
Pr(Xo =i)Pr(X; =j)
Statistical dependence captures inter-dependency of the node
in the initial state and the node at ¢-th transition. Let us denote
a group assignment vector by s = [s1, ..., 5], where decision
variable s; = 1 if data point ¢ belongs to group 1 and s; = —1
if it belongs to group 2. Note that in such notation (s;s;+1)/2
is 1 if ¢ and 7 are in the same group and is 0, otherwise. Thus,
given s and ¢, the group dependence for a particular choice of
s is defined as follows:

Z (Dj,ji — do)(sis; + 1), (2

w“zjeﬂ

D=

&)

D ==

Uhttps://github.com/Korelena/spark

where D; ;; is defined in (1), dg = 1 + €4 is the baseline
dependence level which is usually set to 1 and €4 is a depen-
dence margin parameter. A constant d effectively normalizes
the statistical dependence for each pair of points equaling zero
when points are considered to be independent. More details
about parameter settings and optimization procedure can be
found in [17].

Group dependence described above captures aggregate inter-
dependency of points within the groups along with considering
the geometrical structure of the data. Hence, statistical depen-
dence serves as a measure of closeness between data points.

B. DEP for two groups

We start with describing the DEP algorithm for a simple
case of bisecting a graph. An optimal clustering solution
can be achieved through maximizing the group dependence
measure D, by varying the group assignment s of all /V points.
We constrain the norm of s to be equal to one: |[s||s = 1
assuming for simplicity that e; = 0. Moreover, we relax the
original formulation (2) so that elements of s become real as
the actual optimization is carried out in the domain of real
numbers R. Then, we obtain a good partition by solving the
following maximization problem:

1
arg max D; = arg max 5 Z(Dm’,t —1)(sis5 + 1).
[[sl/=1 [[sl|=1 i
It can be shown [17] that the problem above is equivalent to
argmaxs’ (P*(B®)~! —117)s,
lIs]|=1

where diagonal matrix B(®) : Bj(tj) = Pr(X; = j) = [2fP!];,
x¢ is the initial probability vector representing prior informa-
tion related to the initial states, and 1 is the all-ones vector.
This constrained optimization problem can be solved by using
one of the standard eigendecomposition numerical algorithms,
e.g. Power iteration or Arnoldi iteration [20], [27].

Finally, division of the data points is made based on the
signs of the eigenvector corresponding to the largest positive
eigenvalue of G defined by

G=pP(B®)" 117, (3)

The nonexistence of positive eigenvalues means no possible
benefits for increasing D; from further divisions.

C. DEP for multiple groups

To obtain divisions to multiple groups, we apply a standard
subsequent division approach [21]. At every step we consider
binary divisions of every group already found during the
previous iterations, following the DEP algorithm described in
Section II-B. Among possible divisions we proceed with the
one that results in the maximal increase of group dependence
for the whole dataset, effectively performing greedy search.

For the purpose of preventing the algorithm from defining
too small or unclear clusters, we introduce a dependence gain
parameter &4 € [0, 1]. The minimal dependence gain required
to split a cluster into two subclusters is calculated as Ay =



0q ng>o G, where G is defined in (3). Let us denote a set
of points that belong to a split candidate cluster by Q¢ C
Q). We denote the within-cluster group configurations before
and after the division of ¢ into two subclusters by sc and
sc., respectively. The division into the subclusters proceeds if
Dy(sc) — Di(sc) > NAg4, where Dy is defined in (2) and N
is size of (2. Note that all elements from s¢ are equal to one.

D. Spark implementation

Our implementation is written in Scala and is inspired by
the implementation of PIC [16]. In addition, we implemented
a Python wrapper. We used GraphX Spark API as a backend
to store sparse dependence matrices in a distributed manner
and perform computations [22], [23]. GraphX exposes data-
parallel and graph-parallel paradigms that allow a versatile set
of operations to be done within a single framework.

Consider the data is represented as a graph G =< V, E >
where V' and E define nodes and weighted edges, correspond-
ingly. We assume that data chunks of order O(]V|) can be
stored on a single machine. We also assume that sparsity
of data allows redistributing the data across O(log(]E|) ma-
chines. Typical real world large scale graphs tend to respect
skewed power-law distributions of node degrees [24], [25],
[26].

For computing the largest eigenvector of a matrix we used
the Power Iteration (PI) method [27]. PI is an iterative method
that works as follows. Starting with an arbitrary initial vector
vop # 0 it performs an update vi41 = cAvy, where A is
the affinity matrix, ¢ = ||Avy||~! is a normalizing constant.
Due to simplicity of its operations, as only matrix-vector
multiplications are performed, the PI method can be used as
an integral part of scalable large-scale data analytics solutions.

The proposed implementation of the DEP algorithm is
summarized in a pseudo-code below.

Require: Normalized graph G =<V, E > cf. (3), Ay

1: Initialize a list of data structures holding information about
each group L = [l;], where the first group includes all
nodes [;.V = V and has group dependence [i.D; =
De, B Cij-

2: while true do

3:  maxDepGain = 0

4:  maxGroup = -1

5. for all [; in L do

6: Take a subgraph G’ =< I;.V,E' >C G

7 Apply PI algorithm to G’ and obtain the highest

ranked eigenvector s.

8: Split nodes of G into two sets: V{ for s < 0 and V
for s >0

9: Take two subgraphs of G': G} =< V/,E{ > and

h=<Vy,E)>

10: Set D} =3, _peijand DI =5 o e

11: Compflte a%egéigéncg gain oft thiszs:plbi’tJ 352dep]Gain
= D} + D? —1;.D;

12: if depGain > maxDepGain then

13: maxDepGain = depGain

14: maxGroup = 4%

15: end if

16:  end for

17:  if maxDepGain > NA, then

18: Initialize entries for the two new subgroups of max-
Group in L

19:  else

20: return L which contains entries for all found groups

21:  end if

22: end while

Another computational problem that we addressed was a
diffusion operator [28]. Iterating Markov transition matrix by
taking powers of P has an effect of diffusing probability mass
from the high potential regions to the potential lower ones.
Since a direct multiplication of the large-scale sparse matrices
is computationally demanding we approximate the effect of
probability diffusion by the locally guided diffusion of affinity
in the original affinity space. Namely, we design a procedure of
joining disconnected nodes with the high transitive similarities,
i.e. on the path v; Siky Ve RN v; between disconnected
nodes v; and v; all the weights of the edges e; i, e ; and the
influx of the node vj, are relatively high.

Fig. 1. Tllustration of the diffusion procedure. Bold edges denote paths that
satisfy constraints for a new edge addition. Expressions along the bold lines
are the conditions that enabled emergence of new edges. Added edges are
marked dashed. Expressions along the dashed lines determine weights of
the newly formed edges. Node names in the boxes denote nodes that are
aggregated at a particular node aside.

The procedure goes as follows (see Fig. 1). First, for every
node v; we calculate an influx I(v;) as a sum of weights of
all in-bound edges. Then at every node v; we aggregate a
hash map of nodes v; such that there exists an outgoing edge
from v; to v;. IDs of the nodes v; serve as keys of the hash
map and weights of the edges e; ; serve as its values. Entries
of only those nodes are aggregated that pass a strength test
eij x I(v;) > A,. At the next step triples of edge, source and
destination nodes are considered, i.e. hash maps of two nodes
v;, v; and their connecting edge e; ; are brought together. A



new edge e; j, is added to the graph if e; ; > A, and there is
an entry for the node vy, in the hash map of v;. The weight of a
newly formed edge becomes the maximum aggregation among
all the paths that enable the new edge, i.e. max,, (e; x X € ;).
This procedure is guided solely by the local neighbourhood
information. Under the assumption of the graph sparsity and
with a proper set of parameters it should scale well. Namely,
A, along with A, control sizes of the hash maps at each
node and the number of added edges. Thus, the procedure
effectively simulates diffusion and, at the same time, the graph
sparsity remains protected by allowing only strong edges to
emerge.

III. EXPERIMENTAL RESULTS

A. Experimental environment

In our experiments we used two setups. The local setup
is a standalone version of Spark that supports parallelization
across multiple cores. The test server had the following char-
acteristics: 1TB of RAM, 64 CPU cores (8 cores Intel Xeon
e7-8837 2.67GHz per CPU). For our tests we only reserved
16 cores/executors with 4GB RAM each and 16 GB RAM for
the driver program. The second setup is a cluster deployed on
Amazon Web Services (AWS) that had 4 slave nodes with 4
cores each and 12.4GB RAM per slave reserved for Spark. A
master node had 4 cores and 16GB RAM in total.

B. Evaluation metrics

Given true clustering labels/categories, we used the follow-
ing two evaluation metrics to measure performance of the
algorithms.

Purity [29], [30] focuses on the frequency of the most
common category in each cluster and is computed as follows.
First, each cluster is assigned to the most frequent category
in the cluster. Then the number of correctly assigned items is
counted and divided by the total number of clustered items V.
the Purity is defined by the following equation:

Zmax|ckﬁb [,

where C = {c¢1,ca,...,cx} is the set of clusters and B =
{b1,ba,...,bs} is the set of categories, ¢; is a set of labels
assigned to the i-th discovered cluster, and b; is a set of j-th
cluster categories.

Inverse Purity [30] focuses on the frequency of the most
common cluster in each category and is defined by the
following equation:

Purity(C, B)

InversePurity(C, B)

Zmax|ckﬂb |

Note, that Purity becomes higher when the number of clusters
is large and reaches its maximum when each item gets its own
cluster. Inverse Purity reaches its maximum when all items
belong to a single cluster. Therefore, a combination of the
two measures is normally used for more accurate results.

TABLE I
DIFFUSION TEST RESULTS REPORTED FOR THE REUTERS-1856 DATASET.

P Patramztjrs A, Purity | Inverse Purity
1 0] - - 0.6775 0.8566
05 |0 | - - 0.2947 1.0
05 |2]03] 850 | 0.6439 0.7766
05 | 1]03] 850 | 0.2947 1.0
075 10| - - 0.2947 1.0
075|103 1700 | 0.6210 0.8336

C. Reuters data set

In our tests we refer to the tag Topics of the Reuters
dataset [31]. We prepared two datasets named Reuters-8852
and Reuters-1876. Reuters-8852 was formed in the following
way. Among all topics the following ten were selected: money-
Jx, grain, crude, interest, trade, ship, acq, earn, wheat and
corn. Initially, 9400 articles were taken where at least one
of the selected topics was present. The affinity matrix for
the articles was defined as a cosine similarity among Lo-
normalized term frequency (TF) document vectors.

We cleaned the data in the following way. First, we extracted
a subset of articles where only one of the selected topics was
present. Next, we generated TF features following the pro-
cedure of removing punctuation, tokenization and stemming
(Porter stemmer [32]). We skipped all the terms that appeared
in more than 40% of documents. Among the obtained TF
features we selected the 1000 most discriminative features
according to the x? test [33], which effectively resulted in
a reduced vocabulary of 1000 terms. Similarly, we generated
TF matrix for each of the 9400 documents considering only
terms from the reduced vocabulary. Finally, we obtained 8852
articles with at least one non-zero feature and built the affinity
matrix A which we used for testing the algorithm.

Reuters-1876 was derived in a similar way except that we
used 500 TF features and considered only four topics: grain,
crude, interest and trade. This dataset initially contained 2000
documents before all the empty documents were removed.
Finally, Reuters-1876 had 1876 documents.

D. Diffusion test

To verify correctness of the diffusion procedure we run the
tests on the Reuters-1876 dataset. Table I displays results of
applying DEP to the Reuters-1876 dataset undergoing different
subsampling and diffusion rates. Here the parameter p stands
for the sampling probability. The parameter ¢ is the number
of diffusion iterations applied to a graph. Thus, ¢ = 0 means
no diffusion was applied. First, we run the DEP algorithm on
the original Reuters-1876 dense graph data. Next, we run DEP
on the same dataset which was subsampled first by a factor
of two (p = 0.5) that significantly degraded clustering scores.
Applying DEP to the subsampled by a factor of two data with
diffusion under parameter settings: t=2, A.=0.3, A,=85.0
produced results comparable to the clustering results without



subsampling and diffusion. Moreover, running diffusion under
the same parameter settings but only ones (¢t = 1) still resulted
in degraded solution. The latter means that subsampling has
made severe damage to the graph structure.

We also applied DEP with and without diffusion to a less
degraded graph where only quater of the edges were randomly
discarded (p = 0.75) to verify the effect of the diffusion
scale parameter ¢. In this case running the algorithm without
diffusion resulted in much less accurate results compared to
the scores of a run with diffusion applied. In all the runs
€4=0.16, 6,=0.13. These results confirm that the diffusion
procedure correctly reconstructs the graph structure.

E. Scalability test

We verity scalability of our implementation using both local
and cluster setups. To perform the test we first sparsify the
Reuters-8852 dataset by dropping all the edges that have
weights less than 0.35. After this step 3742377 edges and all
8852 nodes were retained. Next, we run the DEP algorithm
for the successively reduced dataset measuring execution times
(see Fig.2). We partitioned the dataset to 16 partitions. In this
experiment, other parameters were set to the following values:
eq = 0.35, §4 = 0.00, t=0.

One can verify that the DEP algorithm scaled near linearly
in terms of the number of computations with respect to the
number of nodes. From Fig. 2 one can see that the difference
in timings between local and cluster setups is nearly constant
and is apparently caused by additional network communication
in cluster setup.
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Fig. 2. Execution time of DEP as a function of number of nodes in the
dataset.

F. Performance comparison

We compared clustering results of the DEP and Spectral
clustering [9] methods applied to the Reuters-1856 dataset.

TABLE 11
PERFORMANCE COMPARISON RESULTS REPORTED FOR THE
REUTERS-1856 DATASET. MEAN AND (STANDARD DEVIATION) ARE
SHOWN FOR PURITY AND INVERSE PURITY.

Method
DEP
Spectral clustering

Purity
0.6775 (0.0)
0.3070 (0.0079)

Inverse Purity
0.8566 (0.0)
0.6825 (0.2000)

The results are displayed in Table II. For each method we
reported mean and standard deviation values of Purity and
Inverse Purity computed over 100 iterations. DEP was more
accurate compared to Spectral clustering with regard to both
measures. Moreover, low standard deviation implies that DEP
was more stable compared to Spectral clustering.

IV. CONCLUSION

In this paper we described a scalable Spark-based imple-
mentation of the DEP algorithm for clustering data points.
The implementation is backed by the efficient Graphx API
that supports graph-parallel and data-parallel paradigms. The
method belongs to the class of spectral clustering algorithms
and performs iteratively greedy binary splits to subgroups,
thus, also resembling divisive hierarchical clustering scheme.

We introduced an approximate diffusion algorithm that acts
over affinity data matrix and simulates Markov transitions. One
should, however, carefully choose parameters in order to avoid
memory overflow and to stay in bounded computational re-
sources requirements. An interesting research direction would
be to further explore various schemes for carrying out the
diffusion.

The tests with real data show that the proposed implemen-
tation performs well. Moreover, our algorithm outperformed
Spectral clustering which is a common, yet, strong benchmark
in cluster analysis. The proposed algorithm can be applied for
cluster analysis of large data sets. The potential applications
of the algorithm span analysis of text, social networks and
network security data, which is a focus of future research.
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Abstract—Keystroke dynamics is one of the authentication
mechanisms which uses natural typing pattern of a user for
identification. In this work, we introduced Dependence Clus-
tering based approach to user authentication using keystroke
dynamics. In addition, we applied a £-NN-based approach that
demonstrated strong results. Most of the existing approaches
use only genuine users data for training and validation. We
designed a cross validation procedure with artificially generated
impostor samples that improves the learning process yet allows
fair comparison to previous works. We evaluated the methods
using the CMU keystroke dynamics benchmark dataset. Both
proposed approaches outperformed the previous state-of-the-art
results for the CMU dataset for unsupervised learning.

I. INTRODUCTION

With the rapidly expanding internet services industry and,
thus, the increasing importance of cyber security, the user
identification and authentication problems have become a
focus for many research labs. User’s identity is normally
verified by an access control mechanism, which performs the
authentication task. Traditional approaches to access control
provide good performance, however, they have some limi-
tations. For example, passwords or PINs can be forgotten,
lost or stolen which threatens security. Hence, new forms
of authentication based on conjunction of traditional methods
with biometrics are becoming more popular within computer
security.

Biometrics are defined as the physical traits and behavioral
characteristics that identify a living person [1]. Among them,
keystroke dynamics [2] is considered as a strong behavioral
biometric based authentication system. Keystroke dynamics
statistics allow extracting timing features containing informa-
tion about human’s typing rhythms, i.e. time intervals between
(a) the key presses of consecutive keys, (b) pressing a key
and releasing next key, (c) pressing and releasing a key. Such
typing patterns can serve as a human’s identifier due to their
ability to activate similar behavioral and cognitive mechanisms
cf. handwritten signatures. Moreover, implementation cost of
keystroke dynamics is very low as only a keyboard is needed
for data collection. Among other advantages are the ability
to operate in hidden mode, high user acceptance and ease of
integration to existing security systems [3].

Despite all the advantages keystroke dynamics can be in-
fluenced by external factors, e.g. environmental conditions or
keyboard device, or emotional state producing some noise and

causing lower accuracy and permanence [4], [3]. With the help
of statistical, machine learning or other algorithms researchers
can identify behavioral patterns which allow distinguishing
among the users based on specific characteristics. Analysis of
typing patterns can be a powerful security tool for detecting
intrusions or threats, or for distinguishing between genuine
users and impostors during authentication [5], [6], [7], [8].

The rest of the paper is organized as follows. Section
I shortly reviews the current state of keystroke dynamics
techniques. Section III briefly describes the dataset used in this
work and the data collection procedure. Section IV provides
descriptions of the main concepts and methods used in the
paper. Sections IV-A - IV-D explain the DC algorithm and
the DC based anomaly detection method, while Section IV-E
refers to £-NN based anomaly detection approach. Evaluation
procedure is described in Section IV-F. Meanwhile, Section V
is devoted to the experimental results. It describes parameter
estimation procedure and results of the performance tests.
Finally, Section VI concludes the paper.

II. RELATED WORK

Most of the previous research works in keystroke dynamics
refer to authentication systems. For user’s authentication via
keystroke dynamics either static or free text models can be
used. The majority of previous works focus on static text when
users type specific predefined text such as password [7], [2]. In
more advanced and secure systems, users are being continually
authenticated and monitored based on free text models when
users type arbitrary input text of any length [9], [10], [2].

A vast amount of performance results obtained using various
keystroke dynamics datasets have been reported by studies.
Most of the studies collected own data, therefore, making
performance comparison among the works difficult. To tackle
this issue, in [11] authors present a comprehensive comparative
study of detecting anomalies using keystroke dynamics dataset
(CMU), thus, making a good benchmark. The authors collected
data and implemented 14 anomaly detection algorithms for
detecting anomalies in keystroke dynamics. Each detector
was trained on a set of timing vectors of a true user, thus,
providing a true-user behavioral model. Then the rest of data
samples were tested against the true-user behavioral model and
assigned an anomaly score. The parameters tuning was not
performed in the experiments of this study due to a possible



bias in the evaluation results. Instead, the authors used the
parameters reported in the source studies. In addition to [11]
there are a number of works presenting performance results for
the CMU keystroke dynamics benchmark dataset. According
to [11] the top detectors demonstrating best results on the
CMU dataset are the scaled Manhattan distance [12] and the
nearest neighbor with Mahalanobis distance [13] with equal
error rate (EER) values of 0.096 and 0.100, correspondingly.
The best zero-miss false-alarm (ZMFAR) rate belongs to the
nearest neighbor detector using Mahalanobis distance with the
value of 0.482. Classical Mahalanobis [14] and the normed
Mahalanobis [15] detectors demonstrate equal ZMFAR values
of 0.482.

Following [11] a number of works proposed new algorithms
and compared their performance with existing results. In [16],
the authors followed the study in [11] by introducing new
detectors and improving the results by using the same protocol
and evaluation procedure in order to guarantee fair perfor-
mance comparison. They introduced a new distance measure
by combining Mahalanobis and Manhattan measures and used
it in combination with the nearest neighbor classifier. They
improved EER by 0.9% and ZMFAR by 4.5% compared to the
best results in [11]. Furthermore, the Gaussian mixture model
(GMM) was applied [17] producing EER of 0.087. Despite
the authors also reported additional even better results we
omit them here as the testing procedure was different from the
one described in [11] making the fair comparison impossible.
Another work [18] devoted to applications of neural networks
to keystroke data reports improved results compared to the
best performance values from [11]. The authors got EER
of 0.0773 by using Levenberge-Marquardt backpropagation
network. However, they incorporated negative examples into
the training set. This prevents fair comparison with [11] where
detectors were trained with the use of only positive samples.
All aforementioned performance results can be found in Table
L.

In this work, we propose two anomaly detection approaches
based on k-nearest neighbors (k-NN) and dependence cluster-
ing (DC) [19]. Despite its simplicity, k-NN is a strong bench-
mark and often provides state-of-the art results in different
tasks including biometric identification and authentification
[20]. In our study, we employ a k-NN based approach combin-
ing with Manhattan distance. DC is a spectral clustering type
algorithm which has been used for the clustering tasks. In this
study, we adapt DC to solving anomaly detection problems.
We test the methods on the CMU dataset and compare the
obtained results with the performance reported in [11]. We
reproduce training and evaluation procedures according to [11]
to ensure fair comparison among detectors. Both proposed
methods outperform the previous known state-of-the-art results
on the CMU dataset.

III. DATA

Detailed information of how the data was collected can be
found in [11]. In this section, we provide a brief description
of the data and the data collection procedure. For password

generation and verifying its strength, publicly available tools
were used [21], [22].

The password was generated as a sequence of 10 charac-
ters containing letters, numbers and punctuation signs. The
obtained sequence was manually modified by altering some
punctuation and casing in order to better meet requirements
of a strong password. This resulted in password .tie5Roanl
that still was rated strong. During data collection the same
password was typed by all subjects.

The data was collected from 51 subjects of different age,
sex and handedness groups. Each subject resulted in 400
password-typing samples. After all data had been collected,
a set of timing features were extracted from raw data. Finally,
31 timing features were generated. Despite known correlations
and linear dependency among timing features all of them were
left in the data with a purpose of being useful in evaluation of
future works. Possible adverse effect on some detectors can
be avoided through a careful feature selection procedure [23].

IV. METHODS
A. Preliminary concepts

Dependence Clustering (DC) is a method which considers
geometric structures of data and is based on maximizing the
group dependence measure. First, let us introduce essential
assumptions regarding the data and concepts foundational this
algorithm.

Given a set of data points = {x;|i = 1,..., N;z; € R"}
we form a graph defined by a similarity matrix S of size
N x N. By scaling rows of S so that elements in each
row sum up to one we transform S to the transition matrix
P and the corresponding t-step transition matrix P¢, thus,
defining the Markov chain on this graph. The ¢-step transition
matrix is calculated as P* : P/, = Pr(X; = j|Xo = 1),
where X represents probability at the initial state and X,
is a random walk representing a node at the ¢-th transition.
Further, we assume that the whole chain is ergodic and
that any two nodes in the graph can be connected through
Markovian transitions. This enables calculation of statistical
dependence between graph nodes in a certain evolution step
D; ;i = Dep(Xo = i,X; = j) [24] that is defined by the
following equation:

o Pr(Xo=1,Xt=1j)
BOET Pr(Xo = i) Pr(X, = j)
Statistical dependence serves as a measure of closeness be-

tween data points.
Then we define group dependence D; as

Di(s)= > (Diji—do)(sisj +1)/2, 2)

Ti,Xj e

D

(1)

where D, ;, is defined in (1), s = [s1,...,sn] is a group
assignment vector, where decision variable s; = 1 if data point
1 belongs to group 1 and s; = —1 if it belongs to group 2 and
dy = 1+ ¢4 is the baseline dependence level which is usually
set to 1. More detailed information about parameter settings
and optimization procedure can be found in [19].



B. DC for two groups

The actual optimization is carried out in the domain of real
numbers R. Hence, we relax the original formulation (2) so
that elements of s become real. We start with a simple case of
bisecting a graph. By varying the group assignment s of all N
points and constraining the Ly norm of s to be equal to one:
[|s||2 = 1 we obtain a good partition through maximizing the
group dependence measure D;(s) as follows:

arg max D, (s) = arg max Z(Dw}t —1)(sis;+1)/2

[Isl/=1 [Isll=1 57
= argmaxs” (P*(B®)~! —117)s 3)
[sl|=1

where B®) BJ(? = Pr(X; = j) = [z P'];, o is the initial
probability vector representing prior information related to the
initial states, €4 is assumed to be 0, for simplicity. The division
of the data points is made based on the signs of the eigenvector
corresponding to the largest positive eigenvalue of Gy and
stops when we get no positive eigenvalues. The matrix Gy is

defined by
Go =P/ (BW)"' —117. )

Note that generally matrix Gg is not symmetric. However,
the nature of many datasets, including the CMU dataset used
in this study, implies symmetry of similarity relation which
obeys commutative property. Therefore, in this paper we make
divisions based on eigendecomposition of a symmetric matrix
G=Goy+ Gg

C. DC for multiple groups

In order to obtain divisions to multiple groups a standard
subsequent division approach is applied [25]. At every step
we make binary splits of each group already found during
the previous iterations, following the procedure described in
Section IV-B. We proceed with an optimal division as the one
which resulted in the maximal increase of group dependence
for the whole dataset. Moreover, the following condition must
fulfill: Dy (sgn(s’c))— Di(s¢) > NAy, where s¢ and s’ are
within-cluster group configurations of a split candidate cluster
Q¢ C Q) before and after the division, correspondingly, D (s)
is defined by (2) and N is the size of Q¢. Ag = g4 ng_ 50 G
is the minimal dependence gain required to split a cluster
into two sub-clusters where 6, € [0,1] is a dependence
gain parameter. d, serves as a regularization parameter which
prevents the algorithm from defining too small or too unclear
clusters. Figure 1 displays pseudo code summarizing the above
steps.

D. DC-based anomaly detection

For discovering anomalies we use the following procedure.
First, we apply z-score normalization [26] to the data. Next,
we build a similarity matrix by first computing pairwise
distance matrix using either Manhattan or Euclidean distance.
We transform the distance matrix to the similarity matrix by
using the following non-linearity s;; = exp(—ad;;), where d;;
denotes an element of the pairwise distance matrix, s;; denotes

Require: Set of data points 2, similarity matrix S, parameters ¢, 94,
€qd.
Initialize a set ¥ = {Q}, Ay as described in Section IV-C;
Compute transition matrix P from S (see Section IV-A);
while true do
Set Qx =0, Q' =0;
for all Q¢ in ¥ do
Find a sub-division s’'¢ of Q¢ by solving (3);
Define Q¢ = {x;|sgn(s’'c(i)) > 0} and
QF = {zi]sgn(s'c (i) < 0}
if D.(Q&) + Di(Q%) — Di(Qc) > NA, then
QL = Qc., ' = (b, Q2 );
end if
end for
if Q¢ # 0 then
Apply the sub-division of Q¢ by replacing Q¢ in ¥ by the
two elements of the set ';
else
Finish the loop.
end if
end while

Fig. 1. Pseudo code for DC algorithm

an element of the similarity matrix and « is a scale parameter.
We anticipate that this non-linearity matches distribution of
the pairwise distances well. In other words, it gives more
resolution in the region of the distances we are interested in the
most. Further, using the DC algorithm we divide the training
set into clusters. The median Manhattan distance between a
test sample and each cluster mean is then used as anomaly
score for this test sample.

E. k-NN-based anomaly detection

k-NN [14] is a well-known method used for classification
or regression. It belongs to the category of instance-based
learning methods when training phase is essentially missing.
All computations are done locally with k£ nearest neighbors
from the training set during testing phase.

For discovering anomalies we use the following procedure.
First, we apply z-score normalization [26] to the data. Then
for every test sample we compute Manhattan distance between
itself and the mean value of its k-nearest neighbors. This
distance is used as anomaly score for the test sample.

FE. Evaluation

In our experiments we used the same procedure of building
training and testing sets as described in [11]. Thus, for each
user the first 200 samples were assigned to the training set
and the last 200 samples were assigned to the test set as
positive samples (true user’s patterns). Moreover, the first 5
repetitions from every other user were added to the test set as
negative samples (impostor’s patterns). Note that training sets
are constructed so that they contain only positive examples. To
be able to perform cross-validation we need, however, negative
samples as well. Using the true impostors’ patterns during
cross-validation would lead to unfair comparison with the
results from [11] as our algorithms will indirectly learn to dis-
criminate among positive and negative samples. Therefore, we



TABLE I
PERFORMANCE COMPARISON OF THE BEST REPORTED ALGORITHMS ON THE SAME CMU DATASET. MEAN AND (STANDARD DEVIATION) ARE SHOWN
FOR THE EQUAL ERROR RATE (EER) AND ZERO-MISS FALSE-ALARM RATES (ZMFAR).

Algorithm Parameters EER ZMFAR
Nearest Neighbor (Mahalanobis) 0.100 (0.064) 0.468 (0.272)
Manhattan (scaled) 0.096 (0.069) 0.601 (0.337)
GMM 0.087 (0.058) -
Combined Mahalanobis and Mahattan distance 0.084 (0.056) -

k-NN (Manhattan) k=3 0.078 (0.055) 0.385 (0.267)
k-NN (Manhattan) k=6 0.078 (0.056) 0.377 (0.272)
k-NN (Manhattan) k=8 0.078 (0.057) 0.377 (0.276)
DC (Euclidean) * 0.078 (0.056) 0.390 (0.280)
DC (Manhattan) * 0.077 (0.055) 0.358 (0.256)

#0643 =0, eg = 0.001, o = 3.33, t = 1, Manhattan distance; ** §5 = 0, ¢4 = 0.01, o« = 10, t = 1, Manhattan distance

designed a procedure to generate artificial negative samples.
For each user we generated 200 additional negative samples
by randomly sampling values for every feature independently
from the entire data. Thus, for every user we obtained 200
new artificial samples served as impostors. Finally, we merged
the obtained negative samples with the original training sets.
We ran 10-fold cross validation procedure on the obtained
validation sets of 400 samples independently for each user.
Note that the randomly obtained artificial samples are not the
points from the original dataset. Therefore, with this procedure
we avoid using real test samples in the training/validation
phase.

After the optimal parameter values had been set up the
methods were red trained and tested using the same procedure
as described in [11]. The obtained anomaly scores were
converted into standard measures of error. The following two
measures have been used for estimating performance of all
detectors.

o Equal error rate (EER) [27] corresponds to a point on
the ROC curve where miss rate and false-alarm rate are
equal.

o Zero-miss false-alarm rate (ZMFAR) [13] is a measure
minimizing false-alarm rate constraining the miss rate is
Zero.

V. RESULTS

The results corresponding to the best parameter values
obtained during cross validation as well as the parameter
values themselves are shown in Table I. For reference, Table
I also displays the best results from the previous studies
related to the CMU dataset, reported in Section II. One can
see that the presented k-NN and DC approaches demonstrate
improved results compared to the previous works. Thus, EER
was improved by 7% compared to combined Mahalanobis
and Manhattan distance detector [16]. We cannot compare our
ZMFAR with the results from [16] as it was not reported in
their work. Although, we improved ZMFAR by 11% compared
to Nearest Neighbor (Mahalanobis) demonstrating the lowest
ZMFAR in [11].

The best results have been shown by the DC method when
using Manhattan distance in both stages of the algorithm:

generating similarity matrix at the step of clustering and
calculating distance at the step of discovering anomalies.
We pay attention to the fact that not only the EER and
ZMFAR performance measures have been improved but also
their standard deviation values (displayed in brackets) became
lower, which signifies superior robustness of the proposed
methods.
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Fig. 2. (a) - ROC curves, (b) - zoomed in ROC curves for anomaly detection
algorithms.

To visualize the results we plot ROC curves in Figure
2. Figure 2(b) is a zoomed version of Figure 2(a). ROC
curves corresponding to the DC and k-NN based approaches
proposed in this paper are displayed by plain and dotted lines,
correspondingly. Furthermore, by dashed and dash-dot lines
we plot ROC curves for Manhattan (Scaled) and Nearest
Neighbor (Mahalanobis) detectors which demonstrated the
best EER and ZMFAR in [11]. The threshold for calculating
EER is chosen so that detector miss and false-alarm rates are
equal. In Figure 2 it corresponds to the point where the line
y = 1 — x displayed in red crosses the detector ROC curve.

While computing ROC curves we used concatenated predic-
tion results for all users, i.e. the varied parameter for building
ROC curves represented global user-wide threshold (anomaly
score) values. Note, this approach is different from the one
used for calculation of EER and ZMFAR scores in Table I as
the scores were taken as averages from per-user ROC curves.
In the latter case the ROC curve parameter was varied for each
user independently representing individual user threshold. The
obtained ROC curve is a smoothed version of the individual



user ROC curves due to substantial variation in ZMFAR rate,
in particular. Average EER and ZMFAR rates are higher than
the ones measured from the user-wide ROC curve, since by
varying anomaly score individually for every user we have
more degrees of freedom, i.e. more powerful model. The
ROC curves show that the methods generalize well even using
global anomaly score threshold and can be further improved
by choosing specialized per-user thresholds.

VI. CONCLUSIONS

In this work we proposed two approaches for detecting
anomalies in the CMU dataset. One approach is based on the
well-known k-NN and the other approach is based on DC
thoroughly described here. Both proposed approaches outper-
form previous results that we know for this dataset respecting
unsupervised learning setting. The main contributions of our
work include:

(a) We improved upon the previous state-of-the-art results
for the CMU dataset reported in [11], [16] for the
unsupervised learning.

(b) We designed a cross validation procedure with artificially

generated negative samples that allows avoiding the use

of true negative samples in the learning process. Using
the true negative samples during cross-validation would
prevent fair comparison with the previous studies and
result in violation of purely unsupervised learning setting.

The improved results for the CMU dataset, indirectly,

justify the validity of this procedure.

(c) We adapted a spectral clustering style algorithm pre-

viously used only for clustering problems to anomaly

detection.

The practical implications of the presented results manifest in
enabling more accurate and robust intrusion detection systems.

In the future the proposed approaches can be extended
to other datasets related to more diverse security threats.
Moreover, we plan to extend the DC approach to using depen-
dence distance when computing anomaly score or determining
the closest cluster of a test point. This extension requires
changes in implementation of the DC algorithm that will
allow performing real-time incremental computations with test
points.
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Abstract. With the emergence of cloud computing, many attacks,
including Distributed Denial-of-Service (DDoS) attacks, have changed
their direction towards cloud environment. In particular, DDoS attacks
have changed in scale, methods, and targets and become more com-
plex by using advantages provided by cloud computing. Modern cloud
computing environments can benefit from moving towards Software-
Defined Networking (SDN) technology, which allows network engineers
and administrators to respond quickly to the changing business require-
ments. In this paper, we propose an approach for detecting application-
layer DDoS attacks in cloud environment with SDN. The algorithm is
applied to statistics extracted from network flows and, therefore, is suit-
able for detecting attacks that utilize encrypted protocols. The proposed
detection approach is comprised of the extraction of normal user behav-
ior patterns and detection of anomalies that significantly deviate from
these patterns. The algorithm is evaluated using DDoS detection system
prototype. Simulation results show that intermediate application-layer
DDoS attacks can be properly detected, while the number of false alarms
remains low.

Keywords: DDoS attack - Anomaly detection - SDN - Clustering -
Behavior pattern - Probabilistic model

1 Introduction

Distributed Denial-of-Service (DDoS) is a coordinated attack which by using
multiple hosts prevents legitimate users from accessing a specific network
resource, e.g. email, websites, online banking, etc. In DDoS attack, by taking
control of the computer and sending a stream of packets an attacker may per-
form attacks to other computers by sending spam messages or huge amount of
data to a website. The target server, overloaded with requests, either becomes
very slow even unusable or totally crashes since it can only process a certain
number of requests at once. Thus, the server becomes unavailable to the legiti-
mate clients. Another way of the attack is sending malformed packets that cause
© Springer International Publishing AG 2017
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the target machine to freeze or reboot [15]. There are many other ways to deny
services on the Internet [21]. DDoS attacks have become a major threat to the
stability in modern high-speed networks [19]. Being hard to detect and abort in
a timely fashion, these attacks can be used to disable strategic business, gov-
ernment, media and public utility sites prompting victims to loose productivity,
revenue and reputation.

Traditional DDoS attacks are carried out at the network layer. Among them
are volume-based attacks (e.g. UDP floods, ICMP floods, etc.) and protocol
attacks (e.g. SYN floods, Smurf DDoS, etc.). Volume-based attacks attempt to
consume the bandwidth either within the target network/service, or between
the target network/service and the rest of the Internet, when protocol attacks
attempt to consume actual server or intermediate communication equipment
resources, such as firewalls and load balancer. Recently, these types of attacks
have been well studied and various schemes for protecting network against such
attacks have been reported [2,8,14]. Application-layer attack is a more advanced
attack which targets vulnerabilities in operative systems and web applications.
These attacks can be performed by seemingly innocent and legitimate requests
from only a few attacking machines generating low traffic rate, which makes
them difficult to detect and mitigate.

One of the most frequent application-layer DDoS attacks nowadays are
attacks that involve the use of HT'TP protocol. These attacks can be grouped
into three major categories, depending on the level of sophistication [21]. Triv-
ial attacks, where each bot sends a limited number of unrelated HTTP attacks
towards the target site, comprise the majority of application-level DDoS attacks
on the Internet. In intermediate attacks bots continuously generate random
sequences of browser-like requests of web pages with all embedded content. Such
procedure allows the attack traffic fitting better in regular human requests.
Advanced attacks consist of a carefully chosen sequence of HTTP requests in
order to better mimic the browsing behavior of regular human visitors. Advanced
DDoS attacks are believed to raise popularity in the future [21].

Defending against a trivial HT'TP attack does not require a complex detection
system. Trivial attack can be detected by inspecting each request to determine
if it comes from a legitimate user. Intermediate and advanced attacks, however,
require more sophisticated techniques [21]. To name a few, paper [24] analyses
intermediate application-layer DDoS attacks by defining a model of normal user
behavior via a number of clustering techniques and comparing conversations
against such normal patterns. Xu et al. [23] model user browsing behavior by
random walk graph and identify attackers based on analysis of their page-request
sequences. Paper [3] proposes a new clustering algorithm against HTTP-GET
attacks using entropy-based clustering and Bayes factor analysis for classification
of legitimate sessions. Most of the current studies devoted to HT' TP-based DDoS
attack detection focus on un-encrypted HTTP traffic. Nowadays many DDoS
attacks are utilizing secure protocols for data encryption in the application layer
of network connections making their detection more difficult. In this work, we
concentrate on intermediate attacks in encrypted traffic.
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Recently, cloud computing has become a strong contender to traditional
on-premise implementations. The main reason is that cloud environments offer
advantages such as on-demand resource availability, pay as you go billing, better
hardware utilization, no in-house depreciation losses, and, no maintenance over-
head [20]. Cloud resources are provided to the customers in the form of virtual
machines (VMs). Cloud service provider has to guarantee the security of the
machines by filtering unwanted traffic from other cloud customer networks and
external hosts. Despite willing to be secured against attacks, cloud customers
may wish to remain their traffic un-encrypted. Thus, the cloud service provider
has to detect attacks without relying on encrypted packet payload. With the
emergence of cloud computing, many attacks, including DDoS attacks, have
changed their direction towards cloud environment. In particular, DDoS attacks
have changed in scale, methods, and targets and become more complex by using
advantages provided by cloud computing.

Modern cloud computing environments can benefit from moving towards
Software-Defined Networking (SDN) technology. In SDN, the control logic is
separated from individual forwarding devices, such as routers and switches, and
implemented in a logically centralized controller. This allows the network con-
trol to be programmable and the underlying infrastructure to be abstracted for
applications and network services. As a result, SDN allows network engineers
and administrators to respond quickly to the changing business requirements by
shaping traffic from the central controller without having to touch the physical
switches. They use software to prioritize, redirect or block traffic either globally
or in varying degrees down to individual packet levels.

There have been a number of works related to detection of network-based
DDoS attacks in SDN. Phan et al. [18] introduce a hybrid approach based
on combination of SVM and SOM [6] for flow classification in network traffic.
Another work [22] suggests an attack detection system based on Bloom Filter
and SDN to handle the link flooding attacks. In [11] a method based on SDN
to detect DDoS attacks initiated by a larger number of bots for solving server
attacks is proposed. The method uses the standard OpenFlow APIs designed for
operation in general SDN environments. Other approaches related to detection
of network-based DDoS attacks in SDN using machine learning techniques are
described in [1,4,10]. To the best of our knowledge, there are only a few studies
that try to detect application-based DDoS attacks in cloud environments with
the help of SDN. Mohammadi et al. [16] present a software defined solution
named Completely Automated DDoS Attack Mitigation Platform (CAAMP).
When suspicious traffic is detected, CAAMP stores a copy of the original appli-
cation on a private cloud and redirects suspicious traffic there. Thus, more time
can be spent for processing suspicious traffic with no extra costs.

The aim of our research is to provide efficient and proactive solution for
detecting application-layer DDoS attacks in cloud environment with the help
of SDN. We propose a detection approach which is comprised of extracting
normal user behavior patterns and detecting anomalies that significantly deviate
from these patterns. This allows detection of attacks from legitimately connected
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network machines that are accomplished by using legitimate requests. Due to
operating with information extracted from packet headers, the proposed scheme
can be applied in secure protocols that encrypt the data of network connections
without its decrypting. In order to evaluate our scheme, we implement a DDoS
detection system prototype that employs the proposed algorithm. Simulation
results show that intermediate application-layer DDoS attacks can be properly
detected, while the number of false alarms remains very low. Finally, not only
do we provide solution for detecting application-layer DDoS attacks in SDN-
driven cloud environments, but also enhance the detection algorithm proposed
in previous work [25]. These enhancements include:

1. Improved performance scores (FPR, TPR, accuracy).

2. Reduced number of parameters to effectively just one, which is the cluster
number parameter in the first phase training when using k-Means. The second
training phase is essentially parameterless.

3. Significant reducing the amount of storage needed by the detection algorithm.
That is we only need to store centroids from the clustering phase and transi-
tion/marginal probability matrices from the second phase for each sequence
length plus thresholds that are found automatically. Thus, the storage com-
plexity is quadratic in the number of possible clusters O(k?), while it was at
least O(k%).

The rest of the paper is organized as follows. Section 2 briefly describes the
experiment setup. Section 3 summarizes main concepts and provides theoretical
background of the proposed approach. Section4 describes the algorithm pro-
posed in the paper. Section 4.1 explains feature extraction process, while train-
ing and detection procedures are clarified in Sects. 4.2, 4.3 and 4.4. Meanwhile,
Sect. 5 is devoted to the experimental results. It describes simulation environ-
ment, data set and results of the performance tests. Finally, Sect.6 concludes
the paper and outlines future work.

2 Problem Formulation

We consider a cloud environment in which cloud customers are allowed to create
private virtual networks and connect them to the existing public networks with
the help of virtual routers. In addition, every customer can spawn several virtual
instances in own virtual networks. Each customer operates inside one of the
projects created by a system administrator for a particular set of user accounts.
We assume that neither user or administrator accounts have been compromised.

Further, we assume that networking inside the cloud is carried out with the
help of SDN that includes an SDN controller and several SDN forwarding devices
that are designed for working with virtual instances. SDN controller and switches
communicate between each other inside the cloud management network and are
not available directly from the data center VMs or external hosts. Scenarios in
which either the controller or one of the switches is compromised are out of scope
of this paper.
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We consider a cloud customer that deploys several virtual web servers inside
a virtual network providing access for other cloud customers as well as external
hosts. Communication between the web servers and the users is carried out with
encrypted traffic. Even though the web service provider relies on the data center
security defenses, it cannot allow the cloud security engineers to decrypt the
network traffic since it would violate regulations on privacy along with a high
risk of conflict with the web service users. For this reason, detection of DDoS
attacks is assumed to be carried out on network flow level.

In this study, we assume that network flows are captured on each SDN for-
warding device and sent to the controller with the help of a NetFlow or sFlow
agent. The controller investigates the received flow statistics and discovers behav-
ior patterns of normal users. Once discovered, normal behavior patterns can be
used to detect DDoS attacks against the web server applications and to block
traffic from malicious cloud customers or external attackers in online mode.

3 Theoretical Background

3.1 k-Means-Based Clustering

k-Means [12,13] is one of the most popular algorithms for cluster analysis. It
aims at partitioning data points into k clusters with the parameter k fixed a
priory. Given a set of points x = (x1,...,Xn), X; € R™ the algorithm starts with
initializing k centroids, one for each cluster, and assigning each data point x; to
the nearest centroid. Then iteratively the algorithm recalculates the centroids
and re-assigns the data points to new clusters until convergence of the algorithm.
Specifically, the algorithm aims at minimizing the sum of Euclidean distances
between each data point and the mean value of the cluster this point belongs to,
or to find

k
argcminz Z Ix — ,Ui||27

=1 xeC;

where C = {Cq, ..., Ci} are data partitions and p = (1, ..., pi;) are corresponding
centroids.

3.2 CURE-Based Clustering

Despite traditional clustering methods have been widely used in data analysis,
they have a number of drawbacks. For example, centroid-based methods, includ-
ing k-Means, use only one point (centroid) to represent a cluster. If a cluster is
large or has an arbitrary shape, the centroids of its subclusters can be distant
from each other that could cause unnecessary splitting. On the opposite edge of
the spectrum, all points-based methods such as k-NN or kernel, use all points
for cluster representation and are sensitive to outliers and even slight changes
in the position of data points. Both approaches fail to work well for defining
non-spherical or arbitrarily shaped clusters [5].
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Clustering Using REpresentatives (CURE) [5] is a hierarchical clustering
algorithm which is a compromise between centroid-based and all point-based
approaches and is suitable for large scale data sets. Compared to traditional
methods, this approach is less sensitive to outliers and defines well even non-
spherical clusters. First, initial clusters are created by hierarchical clustering of
randomly picked sample points. Next, k scattered points describing a cluster
shape and extent are picked, as disperse as possible. After shrinking towards
the cluster centroid by a fixed fraction « these points become representatives of
the cluster. When representative points are set up for each of the initial clusters
the whole data set is rescanned and each point is assigned to the closest cluster.
In traditional version of CURE the closest cluster for a point is defined as the
closest one among all representative points of all the clusters. We modify the
original procedure of cluster assignment as follows. After clusters are found, we
take all representatives and centroids and continue using them as if they were
an output of a centroid-based clustering algorithm, i.e., each centroid and/or
representative is thought to be a center of a cluster. Such gradation of clusters
allows better capturing complexity of user behavior types.

3.3 Probabilistic Transition-Based Approach for Detecting DDoS
Attacks

Let C = {¢li = 1,..,K} be a set of labels. Given a sequence of labels
c = (c1,...,en) € CN | let P(ci|ci—1,l = N) denote conditional probability of
observing label ¢; after ¢;_1 in a sequence of length N. Marginal probability of
observing label ¢; at the beginning of the sequence is denoted as P(¢;|l = N).
We factorize joint probability distribution over sequences of length N as the
following product:

N
P(cy,...,en|l = N) = P(es|l = N) x [[ P(eslei,1 = N), (1)
1=2

where | denotes length of the sequence. We estimate P(c;|c;—1,l = N) as

A n(ciflv Ci, N)
P(cilei1,l=N)= —————= 2
(Cl‘cl 1 ) D(Cifl,N) ) ( )
where n(c;—1,¢;, N) denotes count of observations of pairs (¢;_1,¢;) in all
sequences of length N over all time windows and sessions, n(c¢;_1, V) denotes
count of observations of label ¢; 1 in all sequences of length N over all time
windows and sessions. Moreover, P(c¢;|l = N) is estimated as
A n(c;, N
P(cill = N) £ K(i) (3)
> j=1 n(c;, N)

Note, that in (3) we use the fact that the marginal probability of observing a
label in a sequence should be equal to the marginal probability of observing the
label at the beginning of a sequence since the windows are sliced arbitrarily.
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During training phase we estimate conditional and marginal probabilities
according to (2)—(3). Moreover, for every length of sequence N that is present in
the training data we calculate minimal joint probabilities d, which are further
used as thresholds to examine new data for anomalies during test phase.

During test phase, we first calculate joint probability of a sequence of length
N according to (1) and then compare it against a corresponding threshold value
On. If the sequence satisfies P(cq,...,en|l = N) < dn it is marked anomalous.

4 Algorithm

4.1 Feature Extraction

To detect outliers, we build a normal user behavior model. The features for build-
ing this model are extracted from a portion of network traffic at a very short time
window that allows timely detection of attacks. The presented approach is based
on the analysis of network traffic flows, namely, groups of IP packets with some
common properties passing a monitoring point at a specified time interval. This
time interval is defined to be equal to the time window. For analysis, we con-
sider traffic flow extracted from the current time window. Furthermore, to reduce
amount of data to be analyzed, we utilize aggregated traffic information by taking
into account all packets of the flow transferred during previous time windows.
Next, we re-construct client to server conversations by combining the flow
pairs such that the source socket of one flow equals to the destination socket of
the other flow and vice versa. A conversation can be characterized by source IP,
address, source port, destination IP address and destination port. For each such
conversation, we extract the following information at every time interval:

Duration of the conversation.

Number of packets sent in 1 second.

Number of bytes sent in 1 second.

Average packet size.

Presence of packets with different TCP flags: URG, ACK, PSH, RST, SYN
and FIN.

Cr o

The set of features is defined by existing protocols for collecting IP traf-
fic information such as NetFlow and sFlow. Since the values of the extracted
feature vectors can have different scales, we standardize them using min-max
normalization [6] by scaling to a range [0,1].

4.2 Training

We perform training using the standardized extracted features described in
Sect. 4.1. First, we apply a clustering algorithm to divide the features into dis-
tinct groups representing specific classes of traffic in the network system. Thus,
the algorithm discovers hidden patterns in the dataset. We assume that the
traffic being clustered is mostly legitimate despite the fact it can be encrypted.
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Therefore, we state that the obtained clusters describe behavior of normal users.
Second, we group together conversations with the same source IP address, des-
tination IP address and destination port extracted at a certain time interval.
Such groups serve as an approximation of a user session and are analyzed sepa-
rately, as other studies propose [3,23,24]. Next, we represent each session in every
time window by a sequence of cluster labels obtained at the first step. Finally,
from the obtained sequences we estimate conditional and marginal probabilities
P(cilci—1,l = N), P(c;]l = N) according to (2)—(3). For every sequence we cal-
culate its probability using estimated parameters and model (1). In addition, we
calculate thresholds §y by finding minimum among all sequence probabilities
for a particular length of a sequence N.

4.3 Online Training Procedure

As behavioral patterns of users can change over time, we need to adapt our mod-
els in real-time. For adapting the clustering phase model we can use streaming
k-Means algorithm. After clustering and classification have been done for a par-
ticular window ¢, one can update cluster centroids using the following formula:

pitt=pbo+ > x-(1-9),

XE€Xnormal

where p! is centroid of the cluster ¢ at the time window ¢, C! is the set of data
points assigned to the cluster i, Ynormar iS @ set of data points classified as
normal, and ¢ € [0,1] is a constant reflecting how fast the model has changed
when a new observation emerged, i.e. for bigger § the model changes slower. For
CURE the same formula can be used, but representatives are updated instead
of the cluster centroids.

To update transition probabilities from the probabilistic model dynamically,
we apply the following updates that are performed for each pair of labels (¢;—1, ¢;)
from the label sequences that were classified as normal:

P(ci|Ci_1 = Ci_l,l = N) — P(ci|Ci_1 = Ci_l,l = N) + ¢,
P(ci|C’i_1 ?é Ci_l,l = N) — P(ci|Cz-_1 7& Ci_1,l = N) — 6/(K — 1),

where C;_1 is a random variable that denotes cluster label at position i — 1
and e represents the velocity of change of a conditional probability once a new
evidence has been observed. Thus, e affects how fast model is changed with
respect to new data. These updates guarantee that the conditional probability
remains properly normalized by adding a probability mass to the parameter that
accounts for the new data and removing the same amount of probability mass
from the parameters that do not correspond to the new data. Moreover, these
updates implement a forgetting mechanism as the old evidence gets less and less
influence on the model with time.

In order to keep thresholds dy up to date we propose to store top Ng
data sequences in a heap data structure with keys equal to probabilities of



Probabilistic Transition-Based Approach 539

the data sequences. We need to keep a separate heap for label sequences of
each length. Every time the model is updated the top element with the lowest
probability (equal to the current threshold dy) is popped out and pushed in
the heap again with a new recomputed probability key. Moreover, the threshold
Oy is assigned the new value. This way threshold can either become bigger or
smaller. Threshold value is also updated once a new normal data sequence gets
smaller probability under the current model.

4.4 Detection

For detecting anomalies we use a model of normal user behavior obtained during
training phase. First, we assign each session with a sequence of cluster numbers
using clustering model from the training phase. Then, similarly to the training
phase, we calculate probability of every sequence using estimated probability
parameters and the model (1). The obtained probability values are compared
against thresholds dx to decide whether the sequence is anomalous or not. If
probability of a sequence is less than a threshold probability then it is marked
as anomaly.

5 Algorithm Performance

5.1 Simulation Environment and Data Set

We test the attack detection algorithm proposed in this study in a virtual net-
work environment that includes a small botnet, command and control center
(C2) and a target web bank server (see Fig.1). The target server is running
in the Openstack [7] cloud environment where networks are carried out by an
Opendaylight [9] integrated SDN controller and several Open vSwitches [17].
Bots and C2 are located outside the cloud. Each bot is a VM with running a
special program implemented in Java, it receives commands from C2 and gener-
ates some traffic to the server. It is worth noting that all the traffic is transfered
by using encrypted SSL/TLS protocol. All network flows are captured on SDN
switches and sent to the controller with the help of NetFlow agents.

In order to generate a normal bank user traffic, we specify several scenarios
that each bot follows when using the bank site. Each such scenario consists of
several actions following each other. The list of the actions consists of logging
in to the system by using the corresponding user account, checking the account
balance, transferring some money to another account, checking the result of the
transaction, logging out of the system, and some other actions. Each action cor-
responds to requesting a certain page of the bank service with all of its embedded
content. Pauses between two adjacent actions are selected in a way similar to a
human user behavior. For example, checking the account balance usually takes
only a couple of seconds, whereas filling in information to transfer money to
another account may take much longer time.

In addition to the normal traffic, we perform an intermediate DDoS attack
during which several bots-attackers try to mimic the browsing behavior of regular
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Fig. 1. Virtual network simulation environment.

users by requesting sequences of web pages with all embedded content from
the service. However, unlike the normal user behavior, these sequences are not
related to each other by any logic but generated randomly. We consider the case
when the attacker sends traffic with about the same rate as normal users, and
each attacker’s connection individually looks like normal. More advanced attack
scenarios are left for future works.

5.2 Results

We evaluate the proposed approach on the test set described in Sect.5.1. We
propose two methods for detecting intermediate DDoS attacks which both con-
sist of two phases. The first method (k-Means+Prob) uses k-Means clustering in
the first phase and probabilistic transition-based approach (Prob) in the second
phase. The second method (CURE+Prob) applies CURE clustering in the first
phase and Prob in the second phase. The algorithms have been evaluated using
the detection accuracy, true positive rate (TPR) and false positive rate (FPR)
performance metrics [6].

In our experiments, the time window size is set to 5 seconds, due to the nature
of the data. Moreover, we are only interested in results when FPR is below 1% as
the high number of false alarms is one of the most important known drawbacks
of anomaly-based detection systems.

Table 1 displays accuracy of detecting intermediate DDoS attacks for the pro-
posed detection schemes. For comparison, we also include to Table 1 performance
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Table 1. Accuracy of detecting intermediate DDoS attacks

Algorithm TPR (%) | FPR (%) | Accuracy (%)
k-Means+Prob | 98.66 0 99.58
CURE+Prob 95.65 0 86.16
2-gram k-Means | 95.08 0.24 86.61
3-gram k-Means | 91.21 0 73.66

results of the k-Means-based data stream clustering approach proposed in [25].
The parameters of the methods are selected to maximize the detection accuracy
on validation set. The best result is shown by the (k-Means+Prob) approach
which outperforms other methods by 13% in terms of accuracy. Still, other meth-
ods perform relatively well reaching accuracy of 86% with FPR equaling to or
near zero.

To visualize the results, we plot ROC curves in Fig.2(a). ROC curves cor-
responding to the (k-Means+Prob) and (CURE+Prob) methods proposed in
this paper are displayed by dashed and plain lines, correspondingly. Further-
more, by dash-dot and dotted lines we plot ROC curves for the k-Means-based
data stream clustering approach proposed in [25] for 2-gram and 3-gram mod-
els, respectively. From the ROC curves one can see that (k-Means+Prob) is the
only among the presented algorithms that reaches TPR of 100%. Other methods
demonstrate similar performance reaching the highest TPR of around 98% at
FPR near 1.5%.

In addition, for the best performing algorithm (k-Means+Prob) we plot how
performance scores depend on number of clusters, which is the only parameter
of this method. Figure2(b) shows that the algorithm performs relatively well
for all parameter values reaching the maximum in accuracy and TPR when the
number of clusters is equal to 12. FPR, which is plotted in (100%—FPR) scale
for better visual representation, remains below 1% for all parameter values.

100
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- S =

g (@) ¢
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v ©
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Fig. 2. (a) - ROC curves for detection of intermediate DDoS attacks, (b) - dependence
of performance scores from number of clusters for the (k-Means+Prob) algorithm.
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6 Conclusions and Future Work

In this work, we proposed probabilistic transition-based approach for detect-
ing intermediate application-layer DDoS attacks in cloud environment with the
use of SDN. Operating with information extracted from the packet headers
makes this approach suitable for detecting DDoS attacks from encrypted traffic.
We tested the proposed algorithms against other methods used for detecting
application-layer DDoS attacks in encrypted networks proposed earlier in [25].
Both presented algorithms demonstrated good performance results. Moreover,
(k-Means+Prob) significantly outperforms other evaluated algorithms under the
condition of FPR < 1%.

In the future, we plan to improve the algorithm in terms of the detection
accuracy and test it with a bigger dataset. In addition, more focus will be on
the simulation and detection of more advanced DDoS attacks.

Acknowledgment. This research was supported by the Nokia Foundation Scholar-
ship funded by Nokia, Finland.
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