

This is an electronic reprint of the original article. This reprint *may differ* from the original in pagination and typographic detail.

Author(s): Schilder, Johannes; van Hardenbroek, Maarten; Bodelier, Paul; Kirilova, Emiliya P.; Leuenberger, Markus; Lotter, André F.; Heiri, Oliver

Title: Trophic state changes can affect the importance of methane-derived carbon in

aquatic food webs

Year: 2017

Version:

Please cite the original version:

Schilder, J., van Hardenbroek, M., Bodelier, P., Kirilova, E. P., Leuenberger, M., Lotter, A. F., & Heiri, O. (2017). Trophic state changes can affect the importance of methanederived carbon in aquatic food webs. Proceedings of the Royal Society B: Biological Sciences, 284(1857), Article 20170278. https://doi.org/10.1098/rspb.2017.0278

All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

1	This manuscript was published in
2	Proceeding of the Royal Society B
3	on June 21 2017
4	
5 6 7 8	Schilder J, van Hardenbroek, M, Bodelier P, Kirilova EP, Leuenberger M, Lotter AF, Heiri O. 2017 Trophic state changescan affect the importance of methane-derived carbon in aquatic food webs. Proc. R. Soc. B 284: 20170278. http://dx.doi.org/10.1098/rspb.2017.0278
9	Trophic state changes can affect the importance of methane-derived carbon in aquatic
10	food webs
11	Jos Schilder ^{1,2} , Maarten van Hardenbroek ^{1,3} , Paul Bodelier ⁴ , Emiliya P. Kirilova ⁵ , Markus
12	Leuenberger ⁶ , André F. Lotter ^{1,5} and Oliver Heiri ¹
13	¹ Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of
14	Bern, Altenbergrain 21, 3013 Bern, Switzerland
15	² Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35,
16	40014 Jyväskylä, Finland
17	³ School of Geography, Politics & Sociology, Newcastle University, NE1 7RU, UK
18	⁴ Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O.
19	Box 50, 6700 AB Wageningen, the Netherlands
20	⁵ Palaeoecology, Department of Physical Geography, Laboratory of Palaeobotany and
21	Palynology, Utrecht University, 3584 CS Utrecht, the Netherlands
22	⁶ Climate and Environmental Physics Division, Physics Institute and Oeschger Centre for
23	Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
24	
25	Key words: Chironomidae; Daphnia; Methane; Eutrophication; Lakes; Stable Carbon
26	Isotopes

Abstract

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Methane-derived carbon, incorporated by methane oxidizing bacteria, has been identified as a significant source of carbon in food webs of many lakes. By measuring the stable carbon isotopic composition (δ^{13} C values) of particulate organic matter, Chironomidae, and *Daphnia* spp. and their resting eggs (ephippia) we show that methane-derived carbon presently plays a relevant role in the food web of hypertrophic Lake De Waay, the Netherlands. Sediment geochemistry, diatom analyses and $\delta^{13}C$ measurements of chironomid and Daphnia remains in the lake sediments indicate that oligotrophication and re-eutrophication of the lake during the 20th century had a strong impact on in-lake oxygen availability. This, in turn, influenced the relevance of methane-derived carbon in the diet of aquatic invertebrates. Our results show that, contrary to expectations, methane-derived relative to photosynthetically produced organic carbon became more relevant for at least some invertebrates during periods with higher nutrient availability for algal growth, indicating a proportionally higher utilization of methane-derived carbon in the lake's food web during peak eutrophication phases. Contributions of methane-derived carbon to the diet of the investigated invertebrates are estimated to have ranged from 0-11 % during the phase with the lowest nutrient availability to 13-20 % during the peak eutrophication phase.

44

45

46

47

48

49

50

51

Introduction

Eutrophication of inland waters as a consequence of human impact has a detrimental effect on different aspects of the water quality of lakes, rivers and streams [1]. For example, the process can change the chemical properties of the water, leading to oxygen depletion [2] and accumulation of nutrients in the anoxic hypolimnion [3]. Lake ecosystems with low oxygen concentrations and high nutrient loading are characterized by higher output of the important greenhouse gas methane (CH₄) than oxygen-rich lakes and lakes with lower nutrient

availability [4,5], particularly via gas bubbles (ebullition) and release of CH₄ stored in the anoxic hypolimnion during lake overturning [6]. CH₄ formed in lakes can be oxidized by methane-oxidizing bacteria (MOB), predominantly in oxygenated sections of the lake basin [7]. Biogenic CH₄ in freshwater systems is characterized by distinctly low ratios between the stable carbon isotopes 13 C and 12 C (expressed as δ^{13} C values; -80 to -50 ‰) [8,9] and MOB are known to discriminate against the heavier 13 C when metabolizing CH₄ resulting in even lower δ^{13} C values of MOB biomass [10]. These very low values do not occur in aquatic and terrestrial photosynthetic primary producers (-35 to -10 ‰ [11–15]). The very low observed δ^{13} C values of e.g. larvae of non-biting midges (Chironomidae) of the tribe Chironomini [16,17] and planktonic water fleas of the genus *Daphnia* (Cladocera) [18] in some lakes are therefore considered a clear indication of MOB, or organisms feeding on MOB, forming a relevant part of the diet of these organisms.

Planktonic filterers such as *Daphnia* can graze MOB from the water column during stratification, a process which can effectively reduce MOB biomass and lead to increased epilimnetic CH₄ concentrations at least in some shallow boreal lakes [19]. Furthermore, *Daphnia* has been shown to rely strongly on MOB-derived carbon during autumn overturning, when the CH₄ stored in deep anoxic water layers of stratified lakes comes into contact with oxygen [20]. Benthic invertebrates that can incorporate CH₄-derived carbon, such as chironomid larvae of the tribe Chironomini, either feed on MOB in the sediments (deposit feeders) or MOB associated with suspended organic particles (filter feeders). Some Chironomini larvae have have been shown to actively maintain an oxic-anoxic interface within their tubes, providing a habitat for MOB which they feed on [21]. δ¹³C values of chironomids and *Daphnia* closely reflect those of their food source (differences of 0-1 ‰) and of their fossilizing chitinous structures (reported offsets of 0-1 ‰) [22–25]. Chitinous remains deposited and buried in the lake sediments retain their original isotopic composition [23]. Hence, analysis of δ¹³C values of "fossil" chironomid and *Daphnia* remains can provide

insights on their past food sources and into whether CH_4 -derived carbon formed a major component of their diet [23,26–31]. Available studies indicate that chitinous remains with low $\delta^{13}C$ values are deposited in lakes with high surface and deep water CH_4 concentrations and diffusive CH_4 emissions [28,29].

It is unclear whether an increase in nutrient loading, in addition to a higher CH_4 output, also results in a higher contribution of CH_4 -derived carbon to the lake food webs. Higher photosynthetic primary productivity associated with higher nutrient loading can increase the availability of algal organic matter. As a consequence, a higher proportion of algae in the diet of invertebrate groups that may also incorporate CH_4 -derived carbon could be expected. However, higher algal productivity can also lead to decreased oxygen concentrations in lake sediments and deep water layers, and associated increases in CH_4 production and CH_4 availability in lake ecosystems. This can favour the growth of MOB and their temporal and spatial availability within lakes. Therefore, how the relevance of CH_4 -derived carbon in the food web of lakes changes under influence of (past or future) changes in nutrient concentrations and productivity remains poorly constrained, particularly on decadal time scales which are not covered by instrumental measurements of CH_4 concentrations and $\delta^{13}C$ values in aquatic ecosystems.

The δ^{13} C values of chitinous remains of aquatic invertebrates were previously mainly studied in oligo- to mesotrophic, often remote lakes (e.g. [27,29,30,32]). Here, we present a study of the δ^{13} C values of fossil Chironomini head capsules and *Daphnia* resting eggs (ephippia) from recent (20th century) sediments from a small and presently hypertrophic dimictic lake in the Netherlands (Figure 1). The study lake, Lake De Waay, underwent a transition from eutrophic (TP ~100 μ g l⁻¹) to more mesotrophic conditions (TP ~40 μ g l⁻¹) and then again to hypertrophic conditions (TP >100 μ g l⁻¹) during the past ~100 years [33,34]. The impact of 20th century temperature changes on lake ecosystems in the Netherlands is

likely to have been relatively minor compared to direct anthropogenic environmental disturbances. Therefore, this study provides an opportunity to investigate the effects of both oligotrophication and (re-)eutrophication and the associated changes in oxygenation regime on the contribution of CH₄-derived carbon to the aquatic food web, and indirectly on in-lake dissolved CH₄ availability, under relatively stable climatic conditions. We compare fossil invertebrate δ^{13} C values with a diatom-inferred reconstruction of total phosphorus concentrations (DI-TP) in the lake water and the Fe: Mn ratio of the sediments, which is expected to increase with decreasing oxygen availability at the sediment-water interface [35]. If CH₄-derived carbon became more relevant for Lake De Waay's foodweb under conditions with higher nutrient availability we expect to see a positive relationship between nutrient availability (DI-TP) and anoxia (Fe: Mn ratio), which in turn are expected to be negatively related to δ¹³C values of the examined invertebrate groups that can incorporate CH₄-derived carbon. Conversely, if higher availability of algal material in the eu- to hypertrophic phases led to a lower relevance of CH₄-derived carbon for the investigated aquatic invertebrates, we expect to see positive relationships between the δ^{13} C values of the studied invertebrate groups and DI-TP and Fe: Mn in Lake De Waay.

119

120

121

122

123

124

125

126

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

Methods

Current conditions in the lake

To assess the current range of δ^{13} C values of chironomids, *Daphnia*, floating *Daphnia* ephippia, and suspended particulate organic matter (POM) in the water column of Lake De Waay, field sampling was conducted on September 3 and November 30 2009, and March 1 and June 1 2010. Living organisms were collected using plankton nets, kicknets and inspection of submerged wood and rope. In the lab, organisms were sorted and transferred to

tin cups and water was filtered for δ^{13} C analysis (see supplementary material for details on sampling and processing).

On September 3 2009, nine sediment cores were taken using a gravity corer (UWITEC, Austria): five at 14.5 m water depth and four at 5 m water depth. The top 2 cm of sediment were sampled in the field. Sediment was treated with 10% KOH for 2 hours at room temperature and sieved (200 μ m). From the sieve residue approximately 50 subfossil *Daphnia* ephippia and head capsules of chironomids of the tribe Chironomini were cleaned with a forceps and placed in pre-weighed tin cups for isotope analysis, resulting in one sample for δ^{13} C analysis of *Daphnia* ephippia from 14.5 m and two from 5 m water depth, and two samples of Chironomini head capsules from 5 m water depth.

On August 9 2011, water samples were collected to characterize CH_4 concentration in the lake water during late summer stratification, and for analysis of $\delta^{13}C$ values of CH_4 as a basis for isotope mixing models (see [36] and the supplementary material for full details). In addition, we retrieved more surface sediments (0-2 cm) from 2.5, 8, and 14.5 m depth as described above which were sent to the Netherlands Institute of Ecology (NIOO) for quantitative polymerase chain reaction (qPCR) analysis to assess the presence and abundance of methanogens and MOB (see supplementary material for details on the methods).

Down-core study

On November 30 2009, a 68 cm long core (WAY09) was taken at 8 m water depth (just beneath the summer thermocline) using a gravity corer, and sampled on site at 2 cm intervals. 17 samples were prepared for gamma spectrometric determination of ¹³⁷Cs (see supplementary material). A subsample from the same sampling depths (~12 mg dry weight) was treated with 2.5 % HCl to remove carbonates [35], then freeze dried and subsequently

loaded into tin cups for bulk sediment $\delta^{13}C$ analysis. Further subsamples were used to reconstruct diatom-inferred total phosphorus concentrations (DI-TP) following Kirilova et al. [33,34] (see supplementary material).

Sediment cores taken by Kirilova et al. [34] from Lake De Waay (WAY05) were previously analyzed using a XRF core scanner (Avaatech, the Netherlands). Here we use the ratio between Fe and Mn as an indication of past changes in the oxygen regime of the lake. Higher values in this ratio are indicative for lower oxygen availability [37,38]. Cores WAY09 (this study) and WAY05 were correlated by comparing their 137 Cs profiles (see supplementary material). Invertebrate remains were sorted from 17 samples and analysed for their δ^{13} C values, following the same procedure as for subfossil remains in the surface sediment samples (see above and supplementary material). Relationships and lags between records were quantified by cross-correlation analysis, after linear detrending of the time series (see supplementary material).

To assess how much carbon in the diet of Chironomini and *Daphnia* could derive from CH₄, and how strongly this contribution may have varied in the past, we applied a two-source mixing model [39] to the modern and down-core invertebrate δ^{13} C data. As end-members, δ^{13} C values of POM (average) and a CH₄ sample from the sediment pore space were chosen, the latter modified by -6 ‰ to account for fractionation by MOB [10] (see supplementary material for further details). For the mixing model we assumed no change in baseline δ^{13} C of CH₄ and POM over time because δ^{13} C values of bulk sedimentary organic matter remained very stable within our record (-30.5 ± 0.5 ‰).

Results

Current conditions in the lake

POM δ^{13} C values (both 0-60 and 0-250 µm fractions were analysed) were around -36 % in 175 late fall and late winter, and -30 % in late spring and late summer (Figure 2A). The δ^{13} C 176 value of bulk sedimentary organic matter in the top sediment layer at the coring site was -31.3 177 % and the atomic C: N ratio was 13.1, suggesting a predominantly lacustrine origin of 178 organic material with some terrestrial contributions [35]. Chironomids of the tribe 179 Chironomini (Figure 2B) had an average δ^{13} C value of -32.5 ‰ (n = 31, standard deviation 180 $(SD) \pm 1.95 \%$), which agrees well with values of Chironomini head capsules from the 181 surface sediment samples (-33.0 and -33.4 %). Only three individual chironomid larvae had 182 lower δ^{13} C values than the POM, all belonging to Glyptotendipes barbipes-type and collected 183 in late fall (-37.8, -39.0 and -39.0 ‰). Daphnia δ^{13} C values were highly variable (average -184 36.6 ± 6.8 %, n = 6; Figure 2C). In late winter they were much lower than the POM (-44.2 185 and -44.3 %) as opposed to late summer (-26.5 %) and late spring (-35.0, -34.6 and -34.8 %). 186 187 Insufficient *Daphnia* were collected in late fall for a measurement. Floating *Daphnia* ephippia δ^{13} C values were lower (average -41.7 ± 4.8 %, n = 9; Figure 2C) than POM throughout the 188 year and the values were in agreement with those found in ephippia from surface sediments (-189 38.6, -39.3 and -39.6 %). Most notably, in late fall the floating ephippia reached δ^{13} C values 190 as low as -49.4 %... 191 δ¹³C values of six CH₄ samples from anoxic waters and sediments ranged from -69.0 192

 δ^{13} C values of six CH₄ samples from anoxic waters and sediments ranged from -69.0 to -67.5 ‰, whereas values for two samples from oxygen-rich waters were -51.3 and -50.6 ‰ (Figure 2D). CH₄ concentrations in the surface and bottom waters were 1.1 and 479 μ M, respectively. QPCR analyses revealed that gene copy numbers of methanotrophic bacteria as well as of methanogenic archaea in sediment samples increased with water depth (supplementary Table 1). At 2.5 m water depth the numbers of methanotrophs in the sediments were below detection limit (~ 10^3 gene copies gram sediment⁻¹). However, a nested PCR approach indicated that MOB were present but below detection of qPCR assays. Type Ia MOB dominated the methanotrophic community while type II MOB could not be detected.

193

194

195

196

197

198

199

Down-core study

Trophic history and oxygen availability

Fossil diatom assemblages (presented in the supplementary material) indicate clear shifts in TP in Lake De Waay in the past ca. 100 years. The DI-TP values for Lake De Waay suggest hypertrophic conditions (>100 µg TP I⁻¹, Figure 3) in the lower section of the core. This is followed by a phase until ca. 1955 with a drop in DI-TP to around 35 µg I⁻¹ which is related to hydrological changes in the lake's catchment as a result of surface water management [34]. DI-TP increases again gradually between ca. 1955 and 1975 to 100 µg I⁻¹ as the lake underwent a distinct re-eutrophication. From thereon, the lake reverted back to hypertrophic conditions as DI-TP exceeds 100 µg I⁻¹, which is confirmed by water column TP measurements in 2011 (Figure 1; [36]).

The oligotrophication during the early 20th century is associated with a distinct lowering of the Fe: Mn ratio from 15 to 7 in core WAY05 (Figure 3). This suggests an increase in oxygen availability at the sediment-water interface in the centre of the lake [37,38]. The last part of the 20th century is then characterized by increasing Fe: Mn to values around 15 indicating more anoxic conditions at the sediment-water interface. Both trends in Fe: Mn follow the oligo- and eutrophication of the lake as inferred by diatoms. Cross-correlation analysis revealed maximum correlations between DI-TP and Fe: Mn, if the records are shifted by 1-2 sample steps (ca. 5 - 10 years; correlation coefficients 0.55 and 0.56, respectively), suggesting that the response of lake oxygenation lags ca. 10 years behind the changes in trophic state (supplementary Figure 3).

Bulk organic matter in the sediments had an average δ^{13} C value of -30.5 ‰, with little change (SD ± 0.5 ‰) throughout core WAY09 (Figure 4). Before ca. 1940 and after ca. 2000 head capsules of the Chironomini had low δ^{13} C values (-35 ‰ and lower). Clearly higher values are recorded between ca. 1940 and 2000 (-33.8 to -31.2 ‰). *Daphnia* ephippia δ^{13} C values rise gradually from -40.0 to -33.7 ‰ between ca. 1920 and ca. 1970, after which a strong opposite trend is apparent, with *Daphnia* δ^{13} C reaching values as low as -41.5 ‰ just below the sediment surface. Cross correlation indicates strong negative correlations between Fe : Mn and invertebrate δ^{13} C values at lags of 0 - 2 sample steps (ca. 0-10 years; correlation coefficients -0.52 to -0.80) for *Daphnia* and 1-2 sample steps (ca. 5 - 10 years; correlation coefficients -0.58 to -0.70) for Chironomini (supplementary Figure 3). The strongest negative relationships were found for both invertebrate groups for a lag of 2 sample steps (ca. 10 years).

Discussion

Current conditions in the lake

Stable carbon isotope analysis of the different organisms and sedimentary remains in Lake De Waay provided evidence for both photosynthetically produced and CH₄-derived carbon contributing to the aquatic food web. POM δ^{13} C values in Lake De Waay (-36 to -30 %) were in the range of POM collected in small, eutrophic and/or high DIC lakes and characteristic for algal biomass (-39 to -18 % [13,40,41]). δ^{13} C values of *Daphnia* in late winter (-44.3 %) and floating *Daphnia* ephippia in late fall (-49.4 %) in Lake De Waay were clearly lower than reported for photoautotrophic biomass in small eutrophic lakes, and distinctly lower than the δ^{13} C values of water column POM we observed. Low δ^{13} C values of zooplankton, and *Daphnia* in particular, have been linked to the uptake of CH₄-derived carbon [18,42]. The pronounced difference in δ^{13} C values (~ -19 %) between CH₄ sampled in the sediment and in

the oxic surface waters is an indication of MOB activity within the lake, as preferential uptake of $^{12}\text{CH}_4$ by MOB [10] leads to higher $\delta^{13}\text{C}$ values of the CH₄ pool. This is supported by the qPCR analysis that indicated presence of DNA of MOB type I in the surface sediments. The low $\delta^{13}\text{C}$ values we found in *Daphnia* and their ephippia confirm that these organisms incorporate MOB-derived carbon in Lake De Waay.

Temperature, starvation and lipid content can influence invertebrate δ^{13} C values, but these effects are typically small (\pm 0 to 2 % [11,25,43,44]) compared to the shifts we observed, indicating that seasonal variations in δ^{13} C values of *Daphnia* in De Waay mainly reflect changing availability and δ^{13} C values of available food sources. Based on the two-source mixing model, we estimate a contribution of CH₄-derived carbon to the diet of *Daphnia* ranging from 0 % (in late spring and summer) to 27 % (based on body tissue) and 39 % (based on ephippia) in late fall and winter. This is in agreement with findings by Taipale et al. [20], who found the strongest contribution of CH₄-derived carbon to the diet of *Daphnia* in a polyhumic boreal lake in Finland in fall. Similarly, Harrod and Grey [45] and Morlock et al. [46] reported Cladoceran δ^{13} C values 10-20 % lower in fall and winter than in summer in eutrophic lakes in Germany and Switzerland, respectively. These results indicate that these invertebrates can utilise a CH₄-derived carbon source when the preferred food sources are less readily available.

The Chironomini larvae were sampled in the littoral zone, whereas MOB-feeding chironomids are mostly found in sediment exposed to low oxygen concentrations [47–49]. The sampling location may explain why the majority of the living Chironomini we sampled did not exhibit as low δ^{13} C values as in some studies (e.g. [47]), even though CH₄ and MOB appear to play a major role in the lake food web. Nevertheless, several individuals had δ^{13} C values distinctly lower than observed for POM and the other Chironomini larvae, suggesting that CH₄-derived carbon may have contributed to their diet even in littoral habitats (12 to 15

% based on the mixing model). Agasild et al. [49] also reported at least 40 % CH₄-derived carbon in the diet of *Chironomus plumosus* found in the littoral, macrophyte-covered zone of a shallow lake.

Chironomini head capsules and Daphnia ephippia in the uppermost analysed sample in core WAY09 were also characterized by low δ^{13} C values (-38.5 % for Chironomini and -41.5 % for Daphnia ephippia), values which are again well below the average of modern water column POM and the sedimentary organic matter in the surface sediments. This suggests that the imprint of CH₄-derived carbon on the δ^{13} C values of the organisms is registered in the fossil record, even though this record integrates seasonal and spatial variability in Daphnia and chironomid δ^{13} C values.

Carbon sources during changing nutrient levels

The DI-TP reconstruction confirms, with higher temporal resolution, the conclusions by Kirilova et al. [33,34] that the lake went from eutrophic conditions at the beginning of the 20^{th} century to more mesotrophic conditions between ca. 1925 and 1955, followed by a trend to the current, hypertrophic conditions (Figure 3). The Fe: Mn record indicates lower availability of oxygen at the sediment-water interface during the eutrophic and hypertrophic phases (Figure 3), conditions that promote methanogenesis [50], although the variations in oxygen availability take place more gradually and lag those in nutrient concentrations by ca. 5-10 years. This lag may reflect the time needed to accumulate organic rich, oxygen-demanding sediments during eutrophication and the lingering oxygen demand of such sediments after oligotrophication [51]. The oldest and the most recent sediments, representing the highest nutrient levels and lowest oxygen availability, featured δ^{13} C values in chitinous remains of *Daphnia* and Chironomini that resemble the low values we found during the field survey (Figure 2; Figure 3). As discussed above, this suggests a contribution of CH₄-derived

carbon to the diet of *Daphnia* (up to 20 % based on the mixing model, Figure 3) and Chironomini (up to 12 %). In intermediate sections of the record, the analyzed invertebrate remains had distinctly higher δ^{13} C values, which may indicate a lower (or even a lack of) contribution of CH₄-derived carbon to the diets of *Daphnia* (less than 10 %) and Chironomini (less than 2 %) during this period. Variations in δ^{13} C values of *Daphnia* were more gradual than variations in Chironomini δ^{13} C values. However, the maxima in both curves closely followed the observed minimum in Fe: Mn values, with the strongest negative relationships between the records observed for a small lag of ca. 5 - 10 years (Supplemetary Figure 3). This suggests that variations in invertebrate δ^{13} C values were related to changes in oxygen availability in the hypolimnion resulting from changes in lake productivity.

There are alternative explanations for changes in invertebrate δ^{13} C values in lake sediment records. However, these cannot explain the full range of invertebrate δ^{13} C values observed for lake De Waay. δ^{13} C values of autochthonous photoautotrophic primary production may vary in lakes, due to changing 12 C-preference of algae during carbon uptake, and/or shifts in baseline δ^{13} C values of DIC. Lower algal growth rates under lower nutrient availability lead to higher discrimination against 13 C during photosynthesis and therefore more 13 C-depleted algal biomass (e.g. [52]). Therefore, this mechanism would have caused lower δ^{13} C values of algal biomass and correspondingly lower *Daphnia* δ^{13} C values during the mesotrophic conditions reconstructed for the lake ca. 1925-1955. This implies that a major increase in baseline δ^{13} C values of DIC would have been necessary to explain the increase in *Daphnia* δ^{13} C values, even exceeding the 8 % shift observed in *Daphnia* ephippia.

Considering the present DIC δ^{13} C values of -9.1 % [28] this would only be possible if DIC reached unrealistically high δ^{13} C values of ~ 0 %, which excede the range of DIC δ^{13} C values reported in a wide range of lakes (-31.1 to -2.1 %, [53]).

Heterotrophic respiration of DOC can also lead to 13 C-depletion of DIC available to algae and consequently of organisms that feed on them, a process often reported for lakes with high DOC concentrations [54]. Since Lake De Waay is presently characterized by relatively low DOC concentrations (0.5 mmol 1^{-1} ; [55]), a strong increase in heterotrophic respiration of DOC during the second half of the 20^{th} century is unlikely. Moreover, we would expect that major variations in δ^{13} C values of of algal production in Lake De Waay would have led to distinct variations in δ^{13} C values of bulk organic matter in the sediments of Lake De Waay.

As indicated above, factors such as starvation, temperature and lipid composition have only minor effects on δ^{13} C values of aquatic invertebrates (\pm 0 - 2 ‰) [11,25,43,44]. These factors therefore cannot (fully) explain the major changes in fossil invertebrate δ^{13} C values observed in De Waay. Finally, changes in the timing of *Daphnia* ephippia production may potentially have some effect on the δ^{13} C values of the fossil assemblage. However, given the supporting evidence of changes in trophic state and oxygenation regime, as well as the similar trends in Chironomini δ^{13} C values we consider it highly unlikely that this is the primary cause for changes in ephippia δ^{13} C values in the sediments of Lake de Waay.

Conclusions

We have shown that in the currently hypertrophic Lake De Waay CH_4 -derived carbon plays a relevant role in the pelagic food web and most likely also in parts of the benthic food web, based on the very low $\delta^{13}C$ values of *Daphnia*, floating *Daphnia* ephippia and some chironomids in comparison to POM values and sedimentary organic matter. This is clearest in fall (Figure 2), when photosynthetic primary productivity as food source is declining, and stored hypolimnetic CH_4 is mixed with oxygen-rich water layers, providing favourable conditions for MOB. Our down-core study revealed that during the beginning of the 20^{th}

century higher nutrient levels and relatively lower oxygen availability occurred, comparable to the modern situation (Figure 3). Under these conditions δ^{13} C values of remains of *Daphnia* and Chironomini were very low, and lower than may be expected from feeding on photoautotrophic biomass only [11–15]. This suggests a significant contribution of CH₄-derived carbon to the lake's food web, comparable to the modern situation. In contrast, the more mesotrophic phase between ca. 1925 and 1955, which was associated with higher oxygen availability at the sediment-water interface, was associated with distinctly (up to 8 ‰) higher δ^{13} C values in the investigated invertebrate remains (Figure 3).

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

We conclude that the eutrophication of the lake resulted in an increase in primary productivity and an increase in strength and duration of hypoxic conditions, which allow for both increased CH₄ production in the sediment and increased build-up of dissolved CH₄ in the hypolimnion [4–6]. MOB can be expected to thrive under these conditions and can therefore provide a more readily available food source for *Daphnia* in the water column and Chironomini living in sediments near the oxycline. This implies that even though eutrophication can lead to a higher availability of algal organic matter in lakes, some invertebrate taxa may benefit from the higher availability of CH₄-derived carbon as an alternative food source, leading to an increased role of CH₄-derived carbon for at least some sections of the lake food webs, and that oligotrophication can have the opposite effect. It is likely that the increased CH₄-derived carbon utilisation is due to higher CH₄ production (in addition to a longer build-up of hypolimnetic CH₄)[6], which implies that CH₄ emissions by lakes are potentially higher after eutrophication events and that (re-)oligotrophication may lower CH₄ emissions. This is also confirmed by experiments that revealed increased methanogenesis in sediments after addition of both P and N [56]. Based on our record there may be multiannual to decadal-scale lags between variations in nutrient concentrations and changes in CH₄-derived carbon entering lake food webs.

Data

The down-core stable isotope data as well as the DI-TP reconstruction can be found in the supplementary material in comma-delimited text format.

Competing interests

We have no competing interests.

Author's contributions

The study was designed by JS, MvH and OH. The field work was carried out by JS and MvH. Processing samples for isotope analysis was done by JS. PB performed the microbiological analyses; EK performed the diatom analysis; AL was responsible for the dating of sediments and ML for stable isotope analysis of the gas samples. All authors helped draft the MS and gave final approval for publication.

Acknowledgements

This research was supported by the European Research Council (ERC) (Starting Grant Project RECONMET Nr. 239858) and the Darwin Center for Biogeosciences. The Swiss National Science Foundation partly financed the equipment used for some of the analyses through R'equip grant Nr. 051620. We thank Staatsbosbeheer for permission to access the lake and two anonymous reviewers for their constructive feedback.

396 References

- 397 1. Smith, V. H. 2003 Eutrophication of freshwater and coastal marine ecosystems: a global problem. *Environ. Sci. Pollut. Res. Int.* **10**, 126–39.
- 2. Cornett, R. J. & Rigler, F. H. 1979 Hypolimnetic oxygen deficits: Their prediction and interpretation. *Science (80-.).* **205**, 580–581.
- Pettersson, K. 1998 Mechanisms for internal loading of phosphorus in lakes. *Hydrobiologia* 373/374, 21–25.
- 403 4. Juutinen, S., Rantakari, M., Kortelainen, P., Huttunen, J. T., Larmola, T., Alm, J., Silvola, J. &
 404 Martikainen, P. J. 2009 Methane dynamics in different boreal lake types. *Biogeosciences* 6,
 405 209–223. (doi:10.5194/bg-6-209-2009)
- Clayer, F., Gobeil, C. & Tessier, A. 2016 Rates and pathways of sedimentary organic matter
 mineralization in two basins of a boreal lake: Emphasis on methanogenesis and
 methanotrophy. *Limnol. Oceanogr.* 61, S131–S149. (doi:10.1002/Ino.10323)
- DelSontro, T., Boutet, L., St-Pierre, A., del Giorgio, P. A. & Prairie, Y. T. 2016 Methane
 ebullition and diffusion from northern ponds and lakes regulated by the interaction between
 temperature and system productivity. *Limnol. Oceanogr.* 61, S62–S77.
- 412 (doi:10.1002/lno.10335)
- 413 7. Bastviken, D., Ejlertsson, J. & Tranvik, L. 2002 Measurement of methane oxidation in lakes: a 414 comparison of methods. *Environ. Sci. Technol.* **36**, 3354–61.
- 415 8. Jedrysek, M. O. 2005 S–O–C isotopic picture of sulphate–methane–carbonate system in 416 freshwater lakes from Poland. A review. *Environ. Chem. Lett.* **3**, 100–112. 417 (doi:10.1007/s10311-005-0008-z)
- 418 9. Whiticar, M. J., Faber, E. & Schoel, M. L. 1986 Biogenic methane formation in marine and

- freshwater environments: CO₂ reduction vs. acetate fermentation-Isotope evidence.
- 420 *Geochim. Cosmochim. Acta* **50**, 693–709.
- 421 10. Templeton, A. S., Chu, K.-H., Alvarez-Cohen, L. & Conrad, M. E. 2006 Variable carbon isotope
- fractionation expressed by aerobic CH₄-oxidizing bacteria. *Geochim. Cosmochim. Acta* **70**,
- 423 1739–1752. (doi:10.1016/j.gca.2005.12.002)
- 424 11. Peterson, B. J. & Fry, B. 1987 Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18,
- 425 293–320.
- 426 12. LaZerte, B. D. & Szalados, J. E. 1982 Stable carbon isotope ratio of submerged freshwater
- 427 macrophytes. Limnol. Oceanogr. 27, 413–418.
- 428 13. Vuorio, K., Meili, M. & Sarvala, J. 2006 Taxon-specific variation in the stable isotopic
- signatures (δ^{13} C and δ^{15} N) of lake phytoplankton. *Freshw. Biol.* **51**, 807–822.
- 430 (doi:10.1111/j.1365-2427.2006.01529.x)
- 431 14. France, R. L. 1995 Stable isotopic survey of the role of macrophytes in the carbon flow of
- aguatic foodwebs. *Vegetatio* **124**, 67–72.
- 433 15. France, R. L. 1995 Carbon-13 enrichment in benthic compared to planktonic algae: foodweb
- 434 implications. *Mar. Ecol. Prog. Ser.* **124**, 307–312.
- 435 16. Grey, J., Kelly, A. & Jones, R. I. 2004 High intraspecific variability in carbon and nitrogen stable
- isotope ratios of lake chironomid larvae. *Limnol. Oceanogr.* **49**, 239–244.
- 437 17. Deines, P., Bodelier, P. L. E. & Eller, G. 2007 Methane-derived carbon flows through methane-
- 438 oxidizing bacteria to higher trophic levels in aquatic systems. *Environ. Microbiol.* **9**, 1126–34.
- 439 (doi:10.1111/j.1462-2920.2006.01235.x)
- 440 18. Kankaala, P., Taipale, S., Grey, J., Sonninen, E., Arvola, L. & Jones, R. I. 2006 Experimental δ^{13} C
- evidence for a contribution of methane to pelagic food webs in lakes. *Limnol. Oceanogr.* **51**,

- 442 2821–2827.
- 19. Devlin, S. P., Saarenheimo, J., Syväranta, J. & Jones, R. I. 2015 Top consumer abundance
- influences lake methane efflux. *Nat. Commun.* **6**, 8787. (doi:10.1038/ncomms9787)
- 445 20. Taipale, S., Kankaala, P. & Jones, R. I. 2007 Contributions of different organic carbon sources
- to Daphnia in the pelagic foodweb of a small polyhumic lake: results from mesocosm DI¹³C-
- 447 additions. *Ecosystems* **10**, 757–772. (doi:10.1007/s10021-007-9056-5)
- 448 21. Deines, P., Grey, J., Richnow, H. & Eller, G. 2007 Linking larval chironomids to methane:
- seasonal variation of the microbial methane cycle and chironomid δ^{13} C. Aquat. Microb. Ecol.
- **45**0 **46**, 273–282.
- 451 22. Frossard, V., Belle, S., Verneaux, V., Millet, L. & Magny, M. 2013 A study of the δ^{13} C offset
- between chironomid larvae and their exuvial head capsules: implications for palaeoecology. J.
- 453 *Paleolimnol.* **50**, 379–386. (doi:10.1007/s10933-013-9732-8)
- 454 23. Heiri, O., Schilder, J. & Hardenbroek, M. van 2012 Stable isotopic analysis of fossil chironomids
- as an approach to environmental reconstruction: state of development and future challenges.
- 456 Fauna Nor. **31**, 7–18. (doi:10.5324/fn.v31i0.1436.)
- 457 24. Perga, M.-E. 2011 Taphonomic and early diagenetic effects on the C and N stable isotope
- 458 composition of cladoceran remains: implications for paleoecological studies. *J. Paleolimnol.*
- **46**, 203–213. (doi:10.1007/s10933-011-9532-y)
- 460 25. Schilder, J., Tellenbach, C., Möst, M., Spaak, P., van Hardenbroek, M., Wooller, M. J. & Heiri,
- 461 O. 2015 The stable isotopic composition of *Daphnia* ephippia reflects changes in δ^{13} C and δ^{18} O
- 462 values of food and water. *Biogeosciences* **12**, 3819–3830. (doi:10.5194/bg-12-3819-2015)
- 463 26. Belle, S., Parent, C., Frossard, V., Verneaux, V., Millet, L., Chronopoulou, P.-M., Sabatier, P. &
- Magny, M. 2014 Temporal changes in the contribution of methane-oxidizing bacteria to the
- 465 biomass of chironomid larvae determined using stable carbon isotopes and ancient DNA. J.

- 466 *Paleolimnol.* **52**, 215–228. (doi:10.1007/s10933-014-9789-z)
- 467 27. Frossard, V., Verneaux, V., Millet, L., Jenny, J.-P., Arnaud, F., Magny, M. & Perga, M.-E. 2014
- 468 Reconstructing long-term changes (150 years) in the carbon cycle of a clear-water lake based
- on the stable carbon isotope composition (δ^{13} C) of chironomid and cladoceran subfossil
- 470 remains. Freshw. Biol. **59**, 789–802. (doi:10.1111/fwb.12304)
- 471 28. Schilder, J., Bastviken, D., van Hardenbroek, M., Leuenberger, M., Rinta, P., Stötter, T. & Heiri,
- O. 2015 The stable carbon isotopic composition of *Daphnia* ephippia in small, temperate lakes
- 473 reflects in-lake methane availability. *Limnol. Oceanogr.* **60**, 1064–1075.
- 474 (doi:10.1002/lno.10079)
- 475 29. van Hardenbroek, M., Heiri, O., Parmentier, F. J. W., Bastviken, D., Ilyashuk, B. P., Wiklund, J.
- 476 A., Hall, R. I. & Lotter, A. F. 2013 Evidence for past variations in methane availability in a
- Siberian thermokarst lake based on δ^{13} C of chitinous invertebrate remains. *Quat. Sci. Rev.* **66**,
- 478 74–84. (doi:10.1016/j.quascirev.2012.04.009)
- 479 30. Wooller, M. J., Pohlman, J. W., Gaglioti, B. V, Langdon, P., Jones, M., Walter Anthony, K. M.,
- 480 Becker, K. W., Hinrichs, K.-U. & Elvert, M. 2012 Reconstruction of past methane availability in
- 481 an Arctic Alaska wetland indicates climate influenced methane release during the past
- 482 ~12,000 years. *J. Paleolimnol.* **48**, 27–42. (doi:10.1007/s10933-012-9591-8)
- 483 31. Rinta, P., Van Hardenbroek, M., Jones, R. I., Kankaala, P., Rey, F., Szidat, S., Wooller, M. J. &
- Heiri, O. 2016 Land use affects carbon sources to the pelagic food web in a small boreal lake.
- 485 *PLoS One* **11**, 1–18. (doi:10.1371/journal.pone.0159900)
- 486 32. Wooller, M., Wang, Y. & Axford, Y. 2008 A multiple stable isotope record of Late Quaternary
- limnological changes and chironomid paleoecology from northeastern Iceland. J. Paleolimnol.
- 488 **40**, 63–77. (doi:10.1007/s10933-007-9144-8)
- 489 33. Kirilova, E. P., Cremer, H., Heiri, O. & Lotter, A. F. 2010 Eutrophication of moderately deep

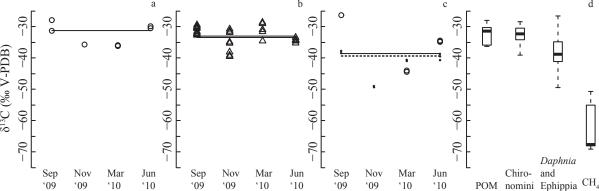
- 490 Dutch lakes during the past century: flaws in the expectations of water management?
- 491 *Hydrobiologia* **637**, 157–171. (doi:10.1007/s10750-009-9993-4)
- 492 34. Kirilova, E. P., Van Hardenbroek, M., Heiri, O., Cremer, H. & Lotter, A. F. 2010 500 years of
- 493 trophic-state history of a hypertrophic Dutch dike-breach lake. J. Paleolimnol. 43, 829–842.
- 494 (doi:10.1007/s10933-009-9371-2)
- 495 35. Meyers, P. A. & Teranes, J. L. 2001 Sediment organic matter. In *Tracking environmental*
- 496 change using lake sediments. Volume 2: Physical and geochemical methods (eds W. M. Last &
- J. P. Smol), pp. 239–269. Dordrecht: Kluwer Academic Publishers.
- 498 36. Rinta, P., Bastviken, D., van Hardenbroek, M., Kankaala, P., Leuenberger, M., Schilder, J.,
- Stötter, T. & Heiri, O. 2015 An inter-regional assessment of concentrations and δ^{13} C values of
- methane and dissolved inorganic carbon in small European lakes. *Aquat. Sci.* **77**, 667–680.
- 501 (doi:10.1007/s00027-015-0410-y)
- 502 37. Boyle, J. F. 2001 Inorganic geochemical methods in paleolimnology. In *Tracking environmental*
- 503 change using lake sediments. Volume 2: Physical and geochemical methods (eds W. M. Last &
- J. P. Smol), pp. 83–141. Dordrecht: Kluwer Academic Publishers.
- 505 38. Naeher, S., Gilli, A., North, R. P., Hamann, Y. & Schubert, C. J. 2013 Tracing bottom water
- oxygenation with sedimentary Mn/Fe ratios in Lake Zurich, Switzerland. *Chem. Geol.* **352**,
- 507 125–133. (doi:10.1016/j.chemgeo.2013.06.006)
- 508 39. Phillips, D. L. & Koch, P. L. 2002 Incorporating concentration dependence in stable isotope
- 509 mixing models. *Oecologia* **130**, 114–125. (doi:10.1007/s004420100786)
- 510 40. Beaudoin, C. P., Prepas, E. E., Tonn, W. M., Wassenaar, L. I. & Kotak, B. G. 2001 A stable
- 511 carbon and nitrogen isotope study of lake food webs in Canada's Boreal Plain. Freshw. Biol.
- **46**, 465–477. (doi:10.1046/j.1365-2427.2001.00688.x)
- 513 41. Hollander, D. J. & McKenzie, J. A. 1991 CO2 control on carbon-isotope fractionation during

- aqueous photosynthesis: A paleo-pCO2 barometer. *Geology* **19**, 929–932.
- 515 42. Bastviken, D., Ejlertsson, J., Sundh, I. & Tranvik, L. 2003 Methane as a source of carbon and
- energy for lake pelagic food webs. *Ecology* **84**, 969–981.
- 43. Haubert, D., Langel, R., Scheu, S. & Ruess, L. 2005 Effects of food quality, starvation and life
- stage on stable isotope fractionation in Collembola. *Pedobiologia (Jena).* **49**, 229–237.
- 519 (doi:10.1016/j.pedobi.2004.11.001)
- 520 44. Power, M., Guiguer, K. R. R. A. & Barton, D. R. 2003 Effects of temperature on isotopic
- enrichment in Daphnia magna: implications for aquatic food-web studies. *Rapid Commun.*
- 522 *Mass Spectrom.* **17**, 1619–25. (doi:10.1002/rcm.1094)
- 523 45. Harrod, C. & Grey, J. 2006 Isotopic variation complicates analysis of trophic relations within
- the fish comunity of Plußsee: a small, deep, stratifying lake. *Arch. für Hydrobiol.* **167**, 281–299.
- 525 46. Morlock, M. A., Schilder, J., van Hardenbroek, M., Szidat, S., Wooller, M. J. & Heiri, O. 2016
- Seasonality of cladoceran and bryozoan resting stage δ^{13} C values and implications for their
- 527 use as palaeolimnological indicators of lacustrine carbon cycle dynamics. J. Paleolimnol. 57,
- 528 141–156. (doi:10.1007/s10933-016-9936-9)
- 529 47. Jones, R. I., Carter, C. E., Kelly, A., Ward, S., Kelly, D. J. & Grey, J. 2008 Widespread
- contribution of methane-cycle bacteria to the diets of lake profundal chironomid larvae.
- 531 *Ecology* **89**, 857–64.
- 48. Yasuno, N., Shikano, S., Muraoka, A., Shimada, T., Ito, T. & Kikuchi, E. 2012 Seasonal increase
- of methane in sediment decreases δ 13C of larval chironomids in a eutrophic shallow lake.
- 534 *Limnology* **13**, 107–116. (doi:10.1007/s10201-011-0360-6)
- 49. Agasild, H. et al. 2014 Biogenic methane contributes to the food web of a large, shallow lake.
- 536 Freshw. Biol. **59**, 272–285. (doi:10.1111/fwb.12263)

- 537 50. Bartlett, K. B. & Harriss, R. C. 1993 Review and assessment of methane emissions from wetlands. *Chemosphere* **26**, 261–320.
- 539 51. Müller, B., Bryant, L. D., Matzinger, A. & Wüest, A. 2012 Hypolimnetic oxygen depletion in eutrophic lakes. *Environ. Sci. Technol.* **46**, 9964–9971. (doi:10.1021/es301422r)
- 52. Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C. & Macko, S. A. 1995 Dependence of phytoplankton carbon isotopic composition on growth rate and [CO₂]_{aq}: Theoretical considerations and experimental results. *Geochim. Cosmochim. Acta* **59**, 1131–1138.
- 53. Bade, D. L., Carpenter, S. R., Cole, J. J., Hanson, P. C. & Hesslein, R. H. 2004 Controls of δ^{13} CDIC in lakes: Geochemistry, lake metabolism, and morphometry. *Limnol. Oceanogr.* **49**, 1160–
 1172.
- 547 54. Lennon, J. T., Faiia, A. M., Feng, X. & Cottingham, K. L. 2006 Relative importance of CO₂
 548 recycling and CH₄ pathways in lake food webs along a dissolved organic carbon gradient.
 549 *Limnol. Oceanogr.* 51, 1602–1613.
- 55. Van Hardenbroek, M., Heiri, O., Wilhelm, M. F. & Lotter, A. F. 2011 How representative are subfossil assemblages of Chironomidae and common benthic invertebrates for the living fauna of Lake De Waay, the Netherlands? *Aquat. Sci.* **73**, 247–259. (doi:10.1007/s00027-010-0173-4)
- 554 56. Kim, S. Y., Veraart, A. J., Meima-Franke, M. & Bodelier, P. L. E. 2015 Combined effects of
 555 carbon, nitrogen and phosphorus on CH₄ production and denitrification in wetland sediments.
 556 *Geoderma* 259–260, 354–361. (doi:10.1016/j.geoderma.2015.03.015)

557

558


Figure 1: Bathymetric map of Lake De Waay. The circles indicate the coring locations (see supplementary material): (09) core WAY09 presented in this study, (05) core WAY05 investigated by Kirilova et al. (2010b) from which we used the XRF data (see below). Asterisks (*) indicate locations of the surface sediment samples at 2.5, 5, 8 and 14.5 m depth. Lake water nutrient concentrations and pH were measured in August 2011.

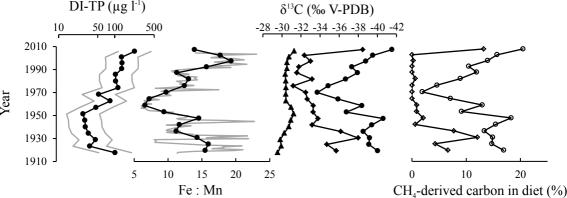

Figure 2: δ^{13} C values of (a) POM, (b) Chironomini body tissue, (c) *Daphnia* body tissue (open circles) and *Daphnia* ephippia (dots) sampled on September 1 and December 1 2009 and March 1 and June 1 2010. The lines indicate the δ^{13} C values of bulk sediment organic matter from the top sample of the core (a), δ^{13} C values of Chironomini head capsules from surface sediment at 5 m water depth (two replicates) (b), and δ^{13} C values of *Daphnia* ephippia from surface sediments at 5 m water depth (2 replicates, dashed lines) and 15 m water depth (solid line) (c). (d) Boxplot showing the range of δ^{13} C values from the field survey, as well as the δ^{13} C of CH₄ sampled in the sediment and in oxic and anoxic water. Whiskers of the boxplots encompass data points no more than 1.5 times the interquartile range from the box.

Figure 3: Diatom-inferred TP (DI-TP) for the De Waay sediment record, grey lines indicate estimated standard errors of prediction (note the log scale); Fe: Mn of the sediments (grey line: high resolution measurements (near-yearly resolution), black symbols: average values for intervals represented by fossil samples); δ^{13} C values of bulk sediment organic matter (closed triangles), Chironomini head capsules (closed diamonds) and *Daphnia* ephippia (closed circles) (note inverted scale); and the estimated contribution of CH₄-derived carbon in the diet of Chironomini (open diamonds) and *Daphnia* (open circles) based on a two-source mixing model. Fe: Mn ratios are from core WAY05 taken by Kirilova et al. [34] in the lake

centre, and DI-TP and $\delta^{13}C$ data from core WAY09 obtained from 8 m water depth (this study).

