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Abstract: Evidence-based health care (EBHC) has given rise to expectations that 
decision-making be tethered to more high-quality information. As health information 
technologies (HITs) acquire an increasingly vital role in the information processes 
involved in EBHC, a more mature understanding is needed of the relationship between 
HITs and the EBHC activities they serve. In this paper, we conceptualize HITs and 
EBHC activities on a common foundation of distributed cognition that treats humans, 
technology, and the environment as interwoven parts of a whole, dynamic system. From 
that common foundation, we articulate a basis for achieving a contextually sensitive fit 
between HITs and EBHC activities by providing a framework (DETECT) of 20 
properties that can be used to systematically characterize the fit between HITs and 
EBHC activities. Designers, deployers, and evaluators of HITs can use DETECT to 
better anticipate, locate, and diagnose the issues that arise when HITs are used to 
achieve diverse EBHC commitments. 
 
Keywords: health information technology, evidence-based medicine, distributed 
cognition, integration, health-care activities.  
 

 
 
©2017 Kamran Sedig, Anthony Naimi & Nicole Haggerty, and the Open Science 

Centre, University of Jyväskylä  
DOI: http://dx.doi.org/10.17011/ht/urn.201711104211 

 

 
  This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  

Kamran Sedig 
Department of Computer Science  

Faculty of Information and Media Studies 
Western University 
London, Ontario 

Canada 

Anthony Naimi 
Faculty of Information and Media Studies 

Western University 
London, Ontario 

Canada 

Nicole Haggerty 
Richard Ivey School of Business 

Western University 
London, Ontario 

Canada 

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Aligning HITs and Evidence-based Activities 

181 

INTRODUCTION 
 
Health-care practice is fed by more information from a wider range of sources than ever before. 
Although this presents a great opportunity, the task of better integrating this information into 
the diversity of activities that make up health care can be a difficult one (Straus, Tetroe, & 
Graham, 2013). Researchers in evidence-based health care (EBHC), perhaps the most 
influential force reshaping the use of knowledge and information in contemporary health care 
(Mykhalovskiy & Weir, 2004), aim to facilitate the use of the best available scientific 
information to ensure the most appropriate decision-making. EBHC stakeholders (e.g., health 
practitioners/workers, policy-makers, public health managers) aim to improve health-care 
outcomes, clinical practices, and efficiency and effectiveness in health-care delivery. Toward 
this end, EBHC research concerns a range of issues, including (a) summarizing the methods 
and criteria to rank research (Glasziou, Vandenbroucke, & Chalmers, 2004; Woolf, 
Schünemann, Eccles, Grimshaw, & Shekelle, 2012), (b) training stakeholders in the skills 
required to appraise and employ the evidence (Greenhalgh, 2014), (c) developing and updating 
infrastructures for evidence-based guidelines (Hill, Bullock & Alderson, 2011), (d) clarifying 
the nature and scope of evidence (Charon, 2006; Goldenberg, 2006), and (e) explicating the 
relationship of evidence to its context of use (McNutt & Livingston, 2010; Weiner, 2004).  

In recent years, researchers contributing to a growing body of health information 
technology (HIT) literature also have begun to explore how technological advances can be 
leveraged to contribute to the EBHC agenda (Rodrigues, 2000; Timsina, El-Gayar, & Nawar, 
2014). Because HITs provide the means to acquire, appraise, and apply the evidence central 
to EBHC, they play a pivotal role. Thus, HIT researchers occupy themselves with a wide 
range of concerns, including:   

 The use of automated tools for evidence generation, distillation, or synthesis 
(Cohen et al., 2010; Kim, Martinez, Cavedon, & Yencken, 2011),  

 The integration of evidence across multiple computational sources (O’Sullivan, 
Wilk, Michalowski, & Farion, 2010),  

 Decision support for incorporating evidence-based protocols into clinical 
workflow (El-Kareh, Hasan, & Schiff, 2013; Sim et al., 2001),  

 Standard clinical vocabularies to ensure understanding among systems (Sim, 
Sanders, & McDonald, 2002),  

 Web-based platforms to facilitate physician-patient communication (Swan, 2012), and  
 The technological bases for institutional learning and improvement (Abernethy et 

al., 2010; Bigus et al., 2011).  
Despite the shared interests between the EBHC and HIT communities, there is a fundamental 

disconnect between the two. On the one hand, the dominant conception of EBHC activities 
assumes that these activities can be defined and understood without reference to the constitutive 
role that HITs play. For example, models of evidence utilization (Graham & Tetroe, 2007; Green, 
2006) tend to portray the generation, synthesis, and tailoring of evidence as an exclusively 
human-driven activity, without regard for how HITs filter, process, and display that evidence. On 
the other hand, HIT researchers seek to address EBHC issues by focusing on technical 
considerations, dealing with the fundamental nature of information and evidence primarily as a 
peripheral issue. For example, the efforts toward creating contextually sensitive decision-support 
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systems rely on overly simplistic algorithmic aspects of clinical reasoning and workflow, while 
the need to support clinical decisions within a dynamic information ecology remains an 
underdeveloped area of study. We contend that, in order to truly seize the opportunity of better 
integrating information into EBHC activities, this disconnect must be overcome and greater 
movement towards harmonization must be made by both researchers and practitioners. 
Specifically, more must be done to understand the dynamic and distributed context within which 
stakeholders and HITs interact and cooperate with one another to create and utilize evidence. 
Parallel with the growth of health-care knowledge, there is a proliferation of HITs (particularly 
health informatics tools) in the health-care industry. EBHC activities are becoming increasingly 
dependent on both knowledge as well as HITs. A more nuanced understanding of the relationship 
between HITs and EBHC activities is becoming increasingly vital. Without a clear understanding 
of how to conceptualize the relationship between HITs and EBHC activities, a design and 
evaluation gap exists that limits the effectiveness of HITs in supporting these activities. The 
purpose of this paper is to contribute to the bridging of this gap. 

In this paper, we propose a framework, DETECT (Design and Evaluation of HITs for 
EBHC AcTivities), to help with the systematic design and evaluation of HITs to better support 
the relationship between health-care stakeholders and HITs in the execution of EBHC 
activities. Three assertions lay at the foundation of our approach. Firstly, while it is increasingly 
common to see dynamic, relational, and contextually sensitive approaches to knowledge in 
health care (Nicolini, Powell, Conville, & Martinez-Solano, 2008), these approaches are less 
common in research conducted from information and cognitive lenses. Rather, dynamic and 
contextual approaches tend to be sociological, political, or ethical in outlook, while cognitive 
approaches often retain the individualism, rationalism, and determinism of more traditional 
research (Hutchins, 1995; Patel, Kaufman, & Arocha, 2002). In this paper, we are committed to 
exploring cognitive and information phenomena in a dynamic, contextual way. Secondly, the 
lack of use of cognitive and information-processing perspectives in understanding the human 
and relational aspects of HITs in EBHC has its ultimate root in the tendency of cognitive 
science to strip away the body and environment from any active role in information processing 
(Clark, 2008). In this paper, we discard the traditional dichotomies among mind, body, and 
environment and, using the theory of distributed cognition, foreground how relationships 
among these components enable and support the information processing that underlies dynamic 
EBHC activities. Thirdly, while many researchers have explored empirically the utility of HITs 
in diverse health-care settings (e.g., evidence-based health informatics; Ammenwerth & Rigby, 
2016), a paucity of research remains regarding attempts to contextualize those findings within 
rigorous theoretical frameworks that encourage systematic analysis of HIT–stakeholder 
relationships. In summary, the use of HITs to serve the goals of EBHC remains theoretically 
underdeveloped and lacking in generalizable principles that would allow researchers, designers, 
and evaluators of HITs to systematically analyze and implement HITs with optimal support for 
EBHC activities. In this paper, we lay out the DETECT framework of factors to assist those 
who design, deploy, or evaluate the integration of HITs into EBHC activities and settings. 

The balance of the paper is laid out as follows. We begin by investigating the conception 
of activities found in the EBHC literature by reevaluating the emphasis placed on behaviorist 
and traditional cognitive conceptions of EBHC activities and recasting them in light of their 
reliance upon distributed, dynamic, contextual, and emergent cognition. After discussing the 
characteristics of EBHC activities, we turn our attention to examining HITs, specifically the 
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difficulties associated with integrating HITs into EBHC activities, partly because of conceptions 
that obscure their relationships to their environment. This work allows us to articulate a basis for 
systematic conceptualization of the relationships that bind HITs to stakeholders in EBHC 
activities. In the last section of this paper, we present DETECT, a framework of general factors 
that researchers, designers, and evaluators of HITs can use to systematically analyze HIT-
stakeholder relationships in the service of seamlessly integrating HITs into EBHC activities. 
 
 

EBHC ACTIVITIES 
 
EBHC activities rarely are the result of a single stakeholder thinking and acting in seclusion 
from others or without the aid of external artifacts. Most EBHC activities are dynamic, 
contextually sensitive, and achieved through the stakeholders and artifacts working in unison. 
In this situation, information moves back and forth between various stakeholders and 
artifacts, in different places, and through a variety of media. Consider a team of emergency 
room practitioners performing a targeted assessment to stabilize a heart attack patient upon 
her admission. The team will need to obtain vital signs, a medical history, a complete 
physical exam, several test results, information derived from a variety of sources, including 
the patient or family, the hospital medical record database, an x-ray machine, and the clinical 
lab. The information used to stabilize the patient is diverse and variable. The patient 
assessment and treatment are the result of the coming together of all of these sources of 
information. To look at each of these information sources as independent entities obscures the 
dynamic interdependence of the information and the necessary relationships that bind them 
together in enabling the best decision at the right time. 

At its heart, EBHC is intended to help various stakeholders perform activities aimed at 
making the right decision at the right time. EBHC relies on the deliberate, conscientious, and 
systematic use of available evidence in diverse activities and settings to improve health care. 
Evidence in this context can refer to knowledge and information in a variety of forms: the 
current best scientific research evidence, practitioner expertise and judgment, patient 
narratives (Charon, 2006), and/or other contextual factors (such as cultural or traditional 
knowledge; Brownson, Baker, Leet, Gillespie, & True, 2010). Writ broadly in this way, 
EBHC activities encompass all practices, behaviors, and skills that rely explicitly on 
information and knowledge across all areas of health care (Gray, 2010).   

In today’s EBHC climate, activities are more information- and knowledge-intensive than 
ever before. The characteristics of the information that those activities rely on (e.g., its scope, 
its quality, and its inherent subjective or objective properties) are, in themselves, factors in 
shaping those activities. Hence, whether an activity is evidence-based will depend partly on 
the characteristics of the information that it relies on. For example, the process of safely 
administering some vaccines, while a relatively simple practice, can require extensive 
knowledge about the factors that may predispose a patient to an adverse reaction, the 
characteristics of the infectious disease, and social and demographic information about its 
spread. Making an evidence-based decision to vaccinate or not must be done within a context 
that integrates these different sources of information into an apt solution, a process that rarely 
follows a linear formula. In short, EBHC activities increasingly rely on the appropriate and 
effective use of high-quality information and knowledge, and assessing whether a decision is 
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evidence-based requires evaluating it in the context of the characteristics of the information 
used to support it. Because of this, EBHC activities and the information on which they rely 
are best understood as connected and associated, rather than analytically separate.  

Supporting EBHC activities, then, calls for an understanding of how the characteristics of 
information shape activities in dynamic EBHC contexts. Until now, however, the EBHC 
community has not been centrally concerned with considering the characteristics of information 
and the relationships that bind information to its environment. Rather, implementation of 
EBHC has tended to focus on the categories or types of information needed for health care, the 
methodological rigor with which that knowledge is produced, or the skills and practices that 
allow stakeholders to access it (Sedig, Parsons, Naimi & Willoughby, 2015). Alternately, some 
attention in the EBHC community has been directed toward the cultural, ethical, or political 
issues involved in using evidence (Holmes, Murray, Perron, & Rail, 2006). Although these are 
important factors in successfully employing EBHC, they do not represent the full reality. These 
approaches stop short of spelling out the implications for how information is integrated and 
used in dynamic EBHC activities. This failing results in the treatment of EBHC activities in the 
literature as sterile and lacking nuance. Thus, the presentation here of our survey of some of the 
common conceptions of EBHC activities provides a useful tool in advancing the goal of closely 
integrating the human, experiential, medical, technological, and contextual components 
contained in EBHC activities.  

Perhaps the most common misconception is that EBHC activities are primarily a 
behavioristic enterprise, that is, rooted in tasks. EBHC activities typically are seen as 
observable or measurable skills and practices, such as teaching physicians the skills to 
conduct evidence-based inquiry or decision-based interventions aimed at supporting clinical 
workflow (Greenhalgh, 2014). Associated with this, EBHC activities often are conceptualized 
in functional, utilitarian, or goal-centered ways, that is, what users do, rather than what users 
know or should know. As a result, the approach to these activities bypasses the role of 
information or cognitive dynamics. Thus, this view tends to take a post hoc view of tasks 
built upon assumptions that the steps to task completion can largely be specified a priori. 
Here, the ends supplant the means, and analytical primacy is given to the outward and 
observable aspects of task execution. For example, the labels “decision-making tasks,” 
“diagnosis tasks,” or “data collection tasks” do not describe the inner workings of how those 
activities are accomplished, but rather the outcome or product of task accomplishment.  

Moreover, even when information and cognition are figured into the analysis of EBHC 
activities, they tend to be derived from traditional psychological and economic models of 
decision-making (Bucknall, 2007) that misrepresent cognition as individualistic, rationalistic, 
and objective (Hazlehurst, Gorman, & McMullen, 2008; Patel et al., 2002; Sedig et al., 2015). 
Researchers working from the perspective of traditional cognition tend to treat information 
processing as a purely mental phenomenon and overemphasize the normative, universal, and 
systematic aspects of human thought. In EBHC, this view directs the attention of those 
implementing and supporting EBHC activities to the predictable, context-independent, and 
mechanistic aspects of information use, which are assumed to be executed in much the same 
manner regardless of the activities they serve, where they are carried out, or the stakeholders 
engaged in the activity. For example, the tendency to reduce EBHC activities to the mere 
access of explicit and precodified medical evidence assumes that the cognition used to process 
that information is itself linear and predictable (Sedig et al., 2015). 
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Beyond the purely theoretical problems associated with existing conceptions of EBHC 
activities, there also lies the practical mismatch between those conceptions and the information 
needs of the modern health-care system; that is, despite the prevailing emphasis in EBHC on 
information processing that is linear, objective, rational, and predictable, many health-care 
situations are unpredictable, ill-structured, or defy standardization (May & Ellis, 2001; 
Timmermans & Berg, 2003). In these cases, evidence, guidelines, or protocols may be 
unavailable, only indirectly relevant, and/or require extrapolation or other transformations to be 
useful, leaving the stakeholders to rely heavily on their own unaided judgment (Bohmer, 2009; 
Green, 2006). For example, in formulating public health policy to address the rising tide of 
childhood obesity, where little research exists, policy makers may need to use information and 
evidence whose import does not bear directly on the present problem. Then they will need to 
make nuanced judgments and interpolations, with no prespecified rule or guideline to guide the 
process, in order to extend evidence from other policy situations to the current problem. 

Ultimately, the problems associated with conceptualizing EBHC activities can be traced to 
the philosophical orientation of brain–body dualism (Clark, 2008) built upon the assumption 
that cognitive activities can be understood and supported without a holistic understanding of 
how the brain, environment, and body work together. Conceptualizations of EBHC activities 
borne of this position tend to be linear and rationalist because it is assumed that the information 
and knowledge required to perform any EBHC task can be accounted for with reference to the 
mental states of the stakeholder(s) in isolation from the context or environment. In contrast, in 
this paper we suggest that the execution of EBHC activities relies on information processing 
achieved through a reciprocal relationship among mental, behavioral, and environmental 
phenomena. In the next section, we elaborate on the theory of distributed cognition as a 
platform from which to dissolve the underlying linearity of traditional approaches to EBHC 
activities and systematically investigate the holistic relationships among the brain, body, and 
environment. This process serves as a precursor to proposing the conceptual framework, 
DETECT, for better aligning EBHC practice with HITs.  
 
 

EBHC ACTIVITIES WITHIN DYNAMIC AND  
DISTRIBUTED COGNITIVE SYSTEMS 

 
Distributed Cognition 
 
The theory of distributed cognition allows for investigating how information and knowledge 
are used in real-world settings (Hutchins, 1995). Two fundamental assumptions in the theory 
are that no division exists among the brain, body, and environment and that cognition results 
from several information sources and channels working together. In health care, distributed 
cognition has been used to understand the cognitive dynamics underlying medical 
communication and collaboration (Hazlehurst, McMullen & Gorman, 2007; Hazlehurst, 
McMullen, Gorman & Sittig, 2003; Nemeth, Nunnally, O’Connor, Klock & Cook, 2005), the 
various issues related to medical tools and technologies (Horsky, Kaufman, Oppenheim & 
Patel, 2003; Nemeth et al., 2005, Xiao, Schenkel, Faraj, Mackenzie & Moss, 2007), medical 
education (Bleakley, 2006; 2010), and medical decision-making (Patel et al., 2002).  
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Cognition as Distributed and Contextual 
 

Real-world cognition is not the exclusive product of processes internal to an individual’s brain, 
but rather the result of dialectical interaction, coordination, and alignment of the multiple 
information resources embodied in the body, brain, physical and social environments, and time. 
As such, the relevant unit of analysis for cognition is not the individual, but rather the “activity 
system” that comprises the human beings, the artifacts, and the objects in the environment that 
contribute to the performance of a cognitive activity (Hazlehurst et al., 2008). Cognitive activity, 
comprising of subactivities, tasks, subtasks, and lower level actions, is an emergent phenomenon, 
resulting from a number of ongoing relationships between information-bearing structures and 
processes working harmoniously within an activity system, and thus cognition cannot be 
understood by examining any one of these pieces in isolation (Sedig & Parsons, 2013). 
 

Cognition as Emergent 
 

Cognitive activities can be described as either simple or complex. Simple cognitive activities 
are typically elementary processes, such as perception and memory, which can be carried out 
independent of any specific environment or context (Funke, 2010) and tend to follow a linear, 
predictable progression. For example, a physician typically can recall many basic medical facts 
from her1 long-term memory in response to a situation requiring such information (Ericsson & 
Kintsch, 1995). Complex cognitive activities, on the other hand, are the emergent product of 
multiple instances of simple cognitive processes, such as sensemaking, decision-making, 
learning, planning, and problem solving (Sedig & Parsons, 2013). Knauff and Wolf (2010) 
identified two characteristics of complex cognitive activities. Firstly, such activities rely on 
other cognitive processes, such as perception or memory, for their execution. Secondly, they 
occur in complex conditions. Cognition is complex when it is generally unstable, unpredictable, 
or impossible to understand without a sense of the broader conditions of its execution. For 
example, sensemaking may be complex when the information being used is intractable, the 
activity difficult to initiate and comprising many other tasks and subtasks, or the other variables 
involved exhibit a high degree of interdependence (Funke, 2010; Knauff & Wolf, 2010; Sedig 
& Parsons, 2013).  
 

Cognition as Dynamic and Ongoing 
 

Another important implication of distributed cognition is that complex cognition is dynamic 
and ongoing. Evidence is not a fixed trait, capability, or resource, but rather an ongoing 
accomplishment that must be constantly reconfigured in light of changing conditions 
(Orlikowski, 2002; Sedig et al., 2015). Because the interactions among all the factors that bear 
upon cognition are unpredictable, the cognition underlying EBHC activity is nonlinear and 
unpredictable, and its outcome or performance can never be specified beforehand (McClelland, 
2010). From the perspective of distributed cognition, EBHC activities are contextually realized 
accomplishments that involve the alignment or coordination of various sources of information 
brought together in the context of an activity system to accomplish specific EBHC goals and 
tasks. These sources of information undergo iterative transformations through processes carried 
out via diverse media, including stakeholders and HITs.  
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In summary, there exists a clearly dynamic, distributed, and emergent character of EBHC 
activities and, because HITs nowadays play such a vital role in EBHC executions, our 
concern here is to understand how HITs can be properly aligned with and seamlessly 
integrated into EBHC activities. Before we discuss how HITs and stakeholders can be 
understood to work together in the context of EBHC activities, we briefly address the various 
conceptualizations of HITs that act as barriers to fully understanding how they participate in 
dynamic EBHC activities. 
 
 

CONCEPTUALIZING HEALTH INFORMATION TECHNOLOGY 
 

HITs have not received sufficient attention in the EBHC literature. Despite the different 
origins and distinct concerns of the two research communities, today the situation is such that 
the goals of EBHC cannot be adequately discharged without the assistance of HITs. HITs 
mediate EBHC activities at every turn, yet the mainstream EBHC community remains content 
to leave HITs as an invisible and unacknowledged substrate upon which EBHC activities rely. 
In this context, fostering alignment between HITs and EBHC activities is rife with difficulties, 
as evidenced by the varying degree of success that accompany programs of HIT 
implementation. For example, the use of HITs in health care often has been characterized by 
low adoption rates (DesRoches et al., 2008; Jha et al., 2009), misuses, and unexpected failures 
(Ash, Sittig, Dykstra, Campbell & Guappone, 2009; Karsh, Weinger, Abbott & Wears, 2010). 
Incongruous use of HITs also can lead to a decline in the quality and safety of health care 
(Linder, Ma, Bates, Middleton & Stafford, 2007; Zhou et al., 2009), enable faulty decision-
making and miscommunication (Niazkhani, Pirnejad, Berg & Aarts, 2009), and give rise to 
new potential for medical errors (Koppel et al., 2005). In the remainder of this section, we 
discuss the limitations of four common conceptualizations of HITs and, in the following 
section, highlight the active information-processing role that HITs play within EBHC activities.  

Confusion abounds in the literature about how to conceptualize and define HITs. The 
problem, although applicable to all HITs, is well illustrated through efforts to define the 
electronic health record (EHR). Consider, for example, the following statements: “According 
to the literature, the meaning of EHR is unstable. An EHR has many functions and includes 
many kinds of data, and it is obvious that there is a need to determine explicitly what EHR 
means” (Häyrinen, Saranto & Nykänen, 2008, p. 292). Adler-Milstein and Bates (2010) 
agreed: “There has historically been little agreement on what type of IT system meets this 
definition [of EHR]” (p. 122). Attempts to define EHRs are generally either too vague to be 
meaningfully distinguished from other tools or rely on decomposing the system into its 
functional components, offloading the burden of definitional clarity onto the tools or systems 
of which they are composed (Jha et al., 2009; Tang & McDonald, 2006). The same problem 
exists in relation to other HIT systems (Tang & McDonald, 2006), including all new and 
emerging health informatics tools for the age of big data (Andreu-Perez, Poom, Merrifield, 
Wong, & Yang, 2015; Fang, Pouyanfar, Yang, Chen, & Iyengar, 2016; Tresp et al., 2016). As 
a result of this lack of clarity surrounding HITs, it is naturally difficult to understand exactly 
in what sense HITs can support or improve the quality of EBHC activities. 
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In general, there are four ways in which HITs are understood to contribute to health-care 
activities. Firstly, HITs can be categorized in a system-centered way. For example, they can be 
classified in terms of the system specifications, hardware, or software. Secondly, HITs can be 
categorized according to the operational or disciplinary context in which they are used. For 
example, they may be understood from the perspective of clinical informatics, public health 
informatics, nursing informatics, imaging informatics, or consumer health informatics (Barrett, 
Liaw, & de Lusignan, 2014; Demiris, 2016; Hersh, 2009; Moen & Knudsen, 2013; Shortliffe & 
Cimino, 2006). Although these sorts of classifications serve to highlight the unique disciplinary 
differences in the application of technology, they fail to highlight the aspects of HITs that 
transcend disciplinary boundaries and the role they play in supporting the actual information flow 
that underlies EBHC activities. Thirdly, HITs have been categorized in terms of their functional 
capabilities (Faraj & Azad, 2012). Functionality-centered definitions treat HITs in terms of the 
type of operational goals or tasks that they intend to support (Adler-Milstein & Bates, 2010; Tang 
& McDonald, 2006). For example, EHRs are defined as such because they support clinical 
documentation and results management, computer-order entry systems are labeled as such 
because they support order-entry management, and so on. Looking at HITs in terms of their 
taken-for-granted features fails to account for the diverse ways they are actually used (Leonardi & 
Barley, 2010; Orlikowski & Iacono, 2001), pays inadequate attention to the role that HITs play in 
the dynamic use of information, and provides an insufficient foundation for the design of HITs 
(Woods, 1998). The result of this misalignment between the actual necessities of EBHC activities 
and individuo-centric cognition is that HITs are bound to fail, or at least unleash a host of 
unintended consequences (Ash, Berg & Coiera, 2004; Campbell, Sittig, Ash, Guappone & 
Dykstra, 2006; Koppel et al., 2005), because the assumptions of the psychology of work inscribed 
in HITs clash too much with the actual nature of real-world EBHC activities (Berg, 2004; Li, 
2010; Niazkhani et al, 2009; Wears & Berg, 2005). Fourthly, and finally, knowledge-centered 
definitions classify HITs according to the knowledge processes they support (Newell, Robertson, 
Scarborough & Swan, 2009). For example, Alavi and Tiwana (2003) categorized information 
systems in terms of whether they support knowledge creation, storage, transfer, or application. 
This framing of HITs would classify, for example, EHRs as knowledge-storage devices, decision-
support systems in terms of knowledge application, and order-entry systems in terms of 
knowledge transfer. Although this approach is a step in the right direction in that it focuses on the 
role that technologies play in the information flow, it too conceptualizes cognition in a static, 
context-insensitive way by assigning to HITs a single information role and viewing knowledge as 
a static and explicit resource. Once again, the situated, emergent, and dynamic role that HITs play 
in EBHC activities is lost.  

The upshot here is that HITs cannot be defined and designed independent of the 
environments in which they are used. The real limits of extant definitions of HITs lie in the way 
they obscure, rather than highlight, the complex relationship that binds them to their real-life 
environments (Ash et al., 2009). Conceptualizations of HITs that preclude the possibility of 
seeing HITs as one part of a whole context miss the mark and will inevitably foster 
misalignments between HITs and the activities they support. In the next section we delineate a 
contextually sensitive conceptualization of HITs that can support systematic investigation of 
the dynamic relationships that bind HITs to the EBHC stakeholders who use them. 

 



Aligning HITs and Evidence-based Activities 

189 

DEVELOPING A JOINT COGNITIVE-SYSTEMS APPROACH TO SUPPORTING 
EBHC ACTIVITIES WITH HITS 

 
Rather than introducing a definition of HITs as such, our point of departure is to articulate the 
most fundamental role of HITs, which is to “…maintain, display, or operate upon information 
in order to serve a representational function” (Norman, 1991, p. 1). This serves as the common 
context or map to help interested parties assess the effectiveness of HITs and through which 
more specific aspects of HITs can be investigated. In this regard, the flow of information 
becomes the mark of a well-functioning HIT. To assess this flow, key questions to pursue 
include (a) Does the HIT store the right information for the activity? (b) Does it process and 
analyze the information in ways that support the stakeholder and her activity? (c) Does it 
represent and display the information appropriately to serve the activities at hand? and (d) Does 
it provide the right types of interaction to enable the stakeholder to work with the information? 

To support EBHC activities, we argue that HITs should be conceptualized not in isolation 
but as joint cognitive systems (JCSs), a unit of analysis consisting of (a) an HIT and its properties 
and characteristics; (b) the EBHC stakeholder(s) and their characteristics and needs; and (c) the 
relationship between the two subsystems from which EBHC tasks and activities emerge. Figure 1 
diagrams the components of the JCS. A JCS is the environment or context in which information, 
HITs, and stakeholders can be understood in light of one another, serving and giving emergence 
to EBHC activities. In a JCS, the HIT and the stakeholder(s) become coupled in a dynamically 
coordinated cognitive system, and EBHC activities emerge from the shared pattern of 
information processing and discourse between them. Within the context of a JCS, HITs go 
beyond the mere support of stakeholder cognition in that they act as independent participants in 
the information processing required for EBHC activities. Because of this, a holistic understanding 
of how to support EBHC activities requires reference to both the HIT(s) and the stakeholder(s) in 
combination (Ash et al., 2004). Conceptualizing HITs as subsystems or components of a JCS 
respects the principle that no information-processing device can be defined independent of the 

 

 
Figure 1.  The Joint Cognitive System as a unit of analysis includes the health information technology, 

stakeholders, and the relationship that binds them. 
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context or purpose it serves. This perspective bypasses rigid and overly abstract definitions that 
can fetter analysis and dismisses historical assumptions that cognition is isolated within either the 
HITs or stakeholders themselves. 

To understand how to better facilitate information flow within a JCS, the system could be 
conceived in terms of five subsystems, or spaces, each of which operates upon information in 
distinct yet interdependent ways. Collectively and in concert, they give emergence to and distribute 
the load of EBHC activities. The five subsystems are the information space, the computation space, 
the representation space, the interaction space, and the mental space (Parsons & Sedig, 2013; Sedig 
& Parsons, 2013; Sedig, Parsons & Babanski, 2012). Figure 2 displays each of these spaces 
separately, as well as the information processes that occur within them. Decomposing a JCS into 
subspaces facilitates analysis of the characteristics of the JCS while keeping sight of the whole 
system that contributes to robust EBHC activities. We discuss these spaces next. 

 
The Information Space  
 
In the information space, an area of containment serves as the repository of the information used 
by stakeholders to perform EBHC activities (Sedig & Parsons, 2013). The contents within an 
information space may be actual or possible, that is, it may already be there or may be generated 
 

 
Figure 2.  The five spaces that comprise a joint cognitive system and the major functions that characterize each 
space. The first three spaces represent health information technologies, the last reflects the individual capacities 

in the stakeholder(s), and the fourth encapsulates the interaction between the technologies and the humans. 
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on an ongoing basis, as in the case of algorithms or other computational processes. Information 
spaces can combine and maintain information from many different sources or environments 
within a single repository, allowing the stakeholder (through the mediation of other spaces in the 
JCS) to utilize them. Within an information space, many diverse types of data or knowledge (e.g., 
quantitative or qualitative) can be stored at different levels of abstraction, structure, and 
elaboration. In this sense, data and knowledge within an information space can be complex and 
multilayered or simple, atomic, and single layered. To illustrate, if a public health analyst requires 
community information to make better decisions about the advisability of a regional policy 
implementation, she may consult a geographic information system database and may store data 
and knowledge from a wide range of types: demographics, health status indicators, community 
public health resources, cultural information, and/or community narratives. Although information 
spaces combine and store information within a single repository, this data and knowledge is 
inaccessible to stakeholders without the mediation of the other spaces, to which we turn below. 
 
The Computing Space  
 
In the computing space, data from the information space is processed in ways that can render 
it useful for particular EBHC activities. Although the degree of sophistication of the 
computational processes depends on the capabilities of the HITs themselves, as well as the 
needs of the environment, the commonality among the processes within the computing space 
is that they operate on the data stored within the information space in order to transform it in 
some way and make it available for EBHC activities. These computational processes can 
perform functions that range from data cleaning and preprocessing (turning raw data into 
usable databases) to the computational inferences that have a direct influence on the content 
of medical decision-making. For example, through text and data mining techniques, HITs can 
uncover patterns within patient drug response data and integrate them with genomic data to 
draw pharmacogenetic inferences that might be impossible to make through unaided human 
cognition. Through subsequent or alternative computational processes, these insights might 
be made available at the point of care through computational decision procedures, which 
assist practitioners in targeting drug therapy with the aim of decreasing variability of 
response. However, data and information will remain latent within the computing space 
unless made access through representations encoded in the representation space. 
 
The Representation Space  
 
In the representation space, contents from the information space and processed through the 
computing space are encoded into forms that are sensible to the stakeholder. Because data and 
knowledge from the information and computation spaces are never directly accessible to the 
stakeholder, the representation space plays the crucial role of bridging the gap between them 
through encoding information into diagrams, maps, images, text, videos, sounds, or other 
representations (Sedig & Parsons, 2016). A representation is “something that stands for 
something else” (Zhang, 2002, p. 18) and different representations of the same information can 
have significantly different cognitive effects (Zhang & Norman, 1994). How well the 
representations signify the information they encode will depend partly on the purpose for which 
those representations are intended. No representation will be equally suitable for all purposes, 
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and, because of this, choices about the form and content of representations must be made 
carefully, bearing in mind the EBHC activities for which the data are intended. For example, 
global health data can be represented in many different ways (Ola & Sedig, 2016, 2017). The 
same is true of patient data contained within an EHR, which can be displayed in many different 
ways (Monroe, Lan, Lee, Plaisant, & Shneiderman, 2013; Rind, 2013; Rind et al., 2011). 
Among the most common approaches to representing patient information are problem-oriented 
or source-oriented displays. In problem-oriented displays, clinical data are arranged by the 
clinical problem, which supports goal-oriented decision-making. On the hand, clinical data in 
source-oriented displays are arranged according to the location of care, which supports 
information search and retrieval (Coiera, 2000). 
 
The Interaction Space  
 
Embedded in the interaction space are all actions and the range of subsequent reactions that are 
possible within an HIT. As stakeholders act upon the possibilities afforded in the interaction 
space, subsequent reaction, or feedback, occurs within the representation or computing spaces 
that allow the stakeholder to dynamically explore, transform, and better use the information 
within the information space. The interaction (action and reaction) possibilities that exist within 
a JCS are the foundation for rich, multifaceted, continuous stakeholder discourse with the 
information, which in turn allows for the discovery of new applications of and perspectives on 
the information. Some interaction possibilities will serve to support strong discourse between 
the information and the stakeholder (enabling clear and relevant inferences), while others may 
confuse, distract, or overwhelm thinking. Interaction possibilities should be encoded into the 
technology while keeping in mind the context and activity they are intended to support. For 
example, consider a physician who encounters a patient with a little known genetic condition. 
If the disease is unknown to the physician, she may search for a diagnosis in a medical 
research databases by correlating aspects of the clinical case with those detailed in the 
research findings she collects (Demelo, Parsons, & Sedig, 2017; Parsons et al., 2015). 
Interaction possibilities encoded into the HIT can allow the physician to highlight various 
aspects or features of the research findings to check for convergences or divergences between 
the source and target data. Interaction techniques that allow the patient to filter out extraneous 
details, hone in on certain aspects of the clinical manifestation, and flexibly group the 
symptoms together in useful ways will help the thought processes of the physician because 
they support focus, attention to detail, and concentration (Sedig & Parsons, 2013).  
 
The Mental Space 
 
Finally, mental space refers to the mind of the stakeholders, which is the location of internal 
cognitive processes that contribute to emergent EBHC activities. The mental space is what 
individual stakeholders bring to EBHC activities, as well as the various mental processes 
required, depending on the content and form that information takes on within the spaces internal 
to the HIT. Even though the mental space is vital to understanding the role that HITs play in 
EBHC activities, because we are concerned primarily with HITs, elaboration on the human 
dimension of this relationship is beyond the scope of this paper. 
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Taken together, these spaces form the JCS across which information processing is distributed 
within EBHC activities (Sedig & Parsons, 2013). Because each space contributes an essential 
presentation, representation, or process in the transformation of raw data and knowledge into 
usable and appropriately applied outcomes, the spaces do not exist or operate in isolation from 
one another; each contributes indispensably to the information flow required for EBHC 
activities. In order to contribute effectively to the unique needs of any particular EBHC activity, 
each space must be designed to fulfill its specific role and to work in concert with the others, 
allowing information to flow freely among them for well-defined goals.  

At times, the spaces within a JCS may not be designed sufficiently so that they are 
consonant with one another or with the nature of the EBHC activities being carried out. This 
can be regarded as a weakly coupled system (see Brey, 2005, for the concept of weak and 
strong coupling), where the HIT is configured in a way that disrupts, diverts, or undermines the 
flow of information needed for an EBHC activity. At other times, HITs are well designed to 
support the needs of the stakeholders and the EBHC activities they carry out. This can be 
regarded as a strongly coupled system, where the HIT is responsive to its stakeholders’ needs, 
where the information flow is fluid, and the overall experience of getting the information one 
needs is coherent and satisfying.  

JCSs widen the scope of factors to which interested parties can direct their attention when 
trying to understand how to design and evaluate an HIT in fulfilling its role to support EBHC 
activities. Furthermore, by analytically foregrounding the relationships that the HIT has with 
entities outside of itself, the JCS reminds interested parties that HITs are not static or isolated 
from their environment but are open and permeable systems, giving information to and 
receiving it from the environment and co-components. In the next section, we direct attention to 
the relational properties of an HIT that can influence the effectiveness of a JCS in specific 
EBHC activities. We present the DETECT framework that can assist designers, deployers, and 
evaluators of HITs to systematically analyze how characteristics of the HIT influence the 
coupling and healthy information flow within a JCS. As the number of characteristics and 
factors that affect human-technology relationships are many and these can be presented from 
different dimensional perspectives, the framework’s factors are not intended to be 
comprehensive or exhaustive; rather, these provide a starting point for analyzing, designing, 
and evaluating human–technology relationships that serve dynamic EBHC activities. 
 
 

DETECT: A FRAMEWORK FOR DESIGNING, DEPLOYING AND  
EVALUATING HITS FOR EBHC 

 
A framework is a map or structure that helps to identify the elements relevant to a challenge or 
opportunity and anticipate its systemic outcomes. The spaces of the JCS outlined above have 
characteristics that influence HIT–stakeholder couplings and the emerging evidence-based 
activity within a JCS. In this section, we identify characteristics of the four spaces that pertain to 
an HIT and organize them within the DETECT framework to aid systematic thinking in the 
context of design, analysis, and implementation of HITs for EBHC activities. The DETECT 
framework comprises the four levels of factors that correspond with the technological spaces 
within a JCS (and described more fully above): information, computation, representation, and 
interaction. Informational factors describe the properties of the data/information used in EBHC 
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activities; computational factors describe the way information processing within the HIT prepares 
and transforms information; representational factors qualify how information is encoded and 
displayed in output structures; and interactional factors are those that describe the action 
possibilities the HIT provides and the reactions from the HIT. We then show how the design, 
analysis, and implementation of HITs for EBHC can be improved through systematic thinking 
afforded by the DETECT framework. 
 
Information 
 
The information space is a repository of the data and materials used by stakeholders to perform 
EBHC activities. Here we present four characteristics of the information space of a JCS: volume, 
velocity, variety, and veracity (Chen, Mao, & Liu, 2014). 
 

Volume  
 

Volume denotes how much information or data is contained within an information space 
(Hurwitz, Nugent, Halper, & Kaufman, 2013). This can pertain to the number of separate data 
items, as well as to the number of relationships between and among them. Higher volume 
information spaces, having more data items and interconnections, tend to require more 
complex cognition for successful EBHC activities; consequently, these situations can be 
difficult for unaided human cognition to utilize. For example, a public health professional 
responsible for a program aimed at preventing cardiovascular disease in a large geographical 
region will require high volumes of epidemiological and other data, at several levels of 
aggregation–including demographic and geographical information, public health resources, 
disease prevalence, risk factors (including tobacco smoking, diabetes, elevated cholesterol, 
obesity, and low physical activity)–and an inventory of past and ongoing public health 
policies, programs, and interventions (Howe, et al., 2008; Ola & Sedig, 2014; Sedig et al., 
2012). Because high-volume information sources can be onerous or impossible to process by 
the unaided cognition of health practitioners, other spaces within a JCS can assist by filtering, 
organizing, or presenting data in ways that facilitate program goals. 
 

Velocity 
 

Velocity characterizes the rate at which information is processed and may be conceptualized in 
terms of the throughput and latency of information processing (Sathi, 2012). Throughput may be 
thought of as the channel capacity or the amount of mobile information that enters and moves 
through a JCS, while latency is the rate at which that information is transmitted from one 
component of a JCS to another. A high latency condition suggests a poor transmission level. Both 
the throughput and latency of an information space can be vital to the success of EBHC activities. 
Consider, for example, the monitoring and surveillance activities involved in response 
preparedness to a potential outbreak of infectious diseases. Because traditional surveillance 
methods, such as routine hospital or laboratory reports, rely on patient visits, they can be slow as 
a method of collecting information. High latency methods can be supplemented or replaced by 
lower latency inputs, such as disease-related content crowd sourced from social media or Web 
engine searches (Brownstein, Freifield & Madoff, 2009). Ultimately such technological solutions 
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can serve to increase the rapidity of public health response to disease spread and mitigate its 
negative impact.  
 

Variety 
 

Variety is the diversity of sources from which information enters an information space. High 
variety information spaces refer to those that draw on several forms of heterogeneous data. 
Demands for more complex human cognition increase with high variety information spaces 
because the diversity of information inputs require correlation and extrapolation among sources 
whose content may bear differently on the relevant EBHC activities. Take, for example, the 
variety of forms of data that physicians use in making decisions at the point of clinical care: 
unstructured medical histories and notes; laboratory test results; hospital admission and 
discharge records; medication records; MRI, CT and other images; and email or voice message 
communications from other providers in the clinical team (Raghupathi & Raghupathi, 2014). 
The tremendous variety inherent in the information used by clinicians at the point of care 
demands cognitive work to integrate, synthesize, and streamline into a coherent decision. 
Hence information characterized by high variety should be used to support cognitive activities 
where synthesis and integration needs are not time-sensitive or pressing.   
 

Veracity 
 

Veracity refers to the assurance that information within an information space is error free (Sathi, 
2012). Information spaces may exhibit low veracity when the origins of their inputs are unknown 
or the data processes on which they rely are unreliable, noisy, or imprecise. For example, 
program planning in public health that draws on data mined from social media generally exhibits 
lower veracity than data drawn from more traditional formal techniques, such as experts or 
routine surveys (Herland, Khoshgoftaar & Wald, 2014). When brought to bear on a particular 
point of interest in public health planning, social media data can be inflated, exaggerated, or 
biased by external factors; they may betray a high noise-to-signal ratio; or such information may 
incorporate a set of premises that render them irrelevant and misleading. By contrast, data from 
routine surveys that are preformatted to address well-defined public health planning issues and 
administered to qualified respondents present inherently more reliable and precise information. 
Because of the added processing associated with compensating for low veracity information 
spaces, EBHC stakeholders may have a difficult time deriving clear conclusions from them.  
 
Computation 
 
A computing space is where a set of computing models and algorithms operate on 
information. Six properties of the computation space are reasoning, complexity, input, noise, 
autonomy, and temporality. 
 

Reasoning 
 

Every computation space employs various reasoning techniques or genres, such as clustering 
algorithms (e.g., k-means or density-based spatial clustering of applications with noise) or rule-



Sedig, Naimi, & Haggerty 

196 

based models (e.g., decision trees), among others (Silva & Zhao, 2016). Variations in the 
reasoning capabilities of the computation space can radically change the kind of support offered 
by an HIT. For example, some health informatics tools function by tapping the collective EHR 
knowledge of the thousands of providers that utilize them within a country and/or internationally. 
Thus, when a dermatologist encounters a rare skin disease that reveals an immediate gap in her 
knowledge, a computation space with clustering capabilities can enable her to access the 
knowledge from other providers about similar patient visits. When the computation space has the 
algorithmic capacity to dynamically cluster together patients with similar medical profiles or 
clinically similar situations, the care provided by the dermatologist can be better informed, more 
relevant, and more effective. 
 

Complexity 
  

The multifaceted property of complexity refers to the degree of inherent difficulty within the 
problem or tasks that the computation space can solve, as well as the structural (i.e., number of 
algorithmic components and their interrelatedness), temporal (i.e., amount of time), and spatial 
(i.e., storage and computational components) resources that are needed to deal with such 
problems or tasks. Computation spaces that exhibit a high degree of complexity are able to 
handle stakeholder tasks that involve high degrees of computation, time, or storage capacity 
and the rising complexity of HITs open new horizons for clinical practice. For example, 
advances in computational complexity have recently given rise to the possibility of assembling 
and sequencing billions of DNA fragments that compose the human genome. These, in turn, 
give rise to the possibility for personalized medicine, which seeks to tailor preventative or 
therapeutic interventions to specific groups or individuals. Computation spaces that exhibit a 
high complexity can assist stakeholders in undertaking EBHC activities that would be 
impossible with human cognition alone.   
 

Input 
 

Input refers to the data types that the computation space can handle. For instance, some 
algorithmic models require labeled data (e.g., support vector machines and decision trees need 
data points with a categorical attribute known as the class attribute or the dependent attribute). 
Others can work with unlabeled data (e.g., k-Means needs no class attribute in the data), while 
others may need a specific dependency in the data (e.g., time series data; Silva & Zhao, 2016). 
For example, deciding the plan of care for a terminally ill intensive care patient may involve 
reasoning with several inputs of different types, including biometric data, test results, patient 
preferences and directives, clinical narratives, and chart notes on the patient’s history. 
Depending on the condition and preferences of the patient, the way the attending physician 
integrates these different types of information can radically alter the framing of and approach to 
care. A computation space that has the capacity to utilize diverse data types in decision support 
can be a powerful aid to the physician and improve the quality of treatment offered. 
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Noise 
 

Computing spaces vary in the degree of tolerance in handling noise, error, and/or unknown 
attribute values in the data. Noisy data may have spurious omissions or additions, be 
characterized by systematic measurement errors, affected by the context or background, or 
compromised in some other way. Some computation spaces are sufficiently equipped to 
effectively assist EBHC activities through more and better utilized data. For example, a chief 
public health officer can better understand the factors causing domestic violence in a region 
by relying on the data collected through the region’s hospital system. Using this data, which 
is often characterized by noise and spurious inputs, will only be possible if the computation 
space is capable of performing operations upon and deriving value from noisy data.  
 

Autonomy 
 

The degree to which a computation space can act without stakeholder supervision, steering, 
input, and/or oversight represents its autonomy. While having fully autonomous computing 
systems is challenging, computation spaces can require varying degrees of human intervention 
in their operation. For instance, in the case of machine learning, which is becoming an integral 
part of today’s health informatics tools, algorithms may be supervised (e.g., support vector 
machines and regression), requiring humans to train algorithms with given data to produce 
viable models; semisupervised (e.g., active learning), requiring less human intervention than 
the supervised ones; or unsupervised (e.g., k-means), requiring no humans to train algorithms 
(Fang et al., 2016; Rubens, Elahi, Sugiyama, & Kaplan, 2016; Silva & Zhao, 2016). Naturally, 
specific types of EBHC activities will benefit from different levels of computational autonomy. 
Consider two cases requiring different degrees of computational autonomy: detecting brain 
tumors versus assessing risk of readmission of congestive heart failure patients. The first case 
involves analysis of brain images and CT scans. For this, a supervised support vector machine 
algorithm can be used to classify whether or not a patient has tumor. The second case requires a 
clustering of different patients. For this an unsupervised k-means machine learning algorithm 
can be used to partition the space of different patients. 
 

Temporality 
 

The degree to which the computation space can handle time-based data and, if so, how often 
(i.e., at what time intervals) it can receive incoming data defines the temporality of the space. A 
computation space can work on existing datasets, accept new data at regularly scheduled time 
points, or deal with instantaneous real-time data. For instance, in a computer-assisted surgical 
procedure for prostate cancer, the surgeon relies on visualizations and other biometric data 
current to the second. By contrast, during public health surveillance efforts, the temporality of 
the computation space can be less frequent, sampling data every day or two. Achieving the 
right temporality of data sampling is an important characteristic of a properly tailored 
computation space to the EBHC activities, as is achieving a strong coupling between the HIT 
and the stakeholder.  
 
 



Sedig, Naimi, & Haggerty 

198 

Representation 
 
In the representation space, contents of the information space are encoded into representations 
and made visible to the user. We identify five characteristics of representations that can be 
manipulated to support a strong coupling within a JCS: complexity, interiority, configuration, 
type, and density (Parsons & Sedig, 2014).  
 

Complexity 
 

Complexity refers to the degree to which the representations displayed in an HIT are detailed 
in the number of items, encoded properties, and relationships. Complexity can range in value 
from low (e.g., a single item with no presented relationships) to high (many items within an 
elaborate network of relations in the representation space—i.e., the display). When the 
complexity of representations in an HIT is not commensurate with the EBHC activities for 
which they are used, human cognitive overload and errors may result (Norman, 2013). 
Representations that are too simplistic cannot store or display the information necessary for 
complex tasks, while representations that are too complex can overly tax the perception, 
attention, working memory, or other cognitive processes of the stakeholder. For example, 
consider a psychiatrist working on the medication regime of a patient. The task in this case 
will depend on whether the psychiatrist is devising the drug regime for the first time or 
merely updating a routine drug regime. In the former case, when the psychiatrist is devising 
the drug regime from scratch, a more complex representation highlighting many aspects of 
the problem will help advance the activity smoothly. For instance, patient characteristics, 
potential drugs to prescribe—including their respective mode, frequency and time of intake, 
and dosage options—and whether the drugs are name brand or generic may all be 
immediately relevant. In the case where the psychiatrist is merely updating an already 
formulated plan, too many irrelevant or redundant details may interfere with the progress of 
the task, which largely consists of verifying preset measures. 
 

Interiority 
 

Interiority is the degree to which unencoded data items lie latent within the representations, not 
explicitly encoded, while still being potentially accessible. Values in interiority range from low, 
such as when all the information is encoded into the representation and accessible on the 
immediate level to the stakeholder, to high, where most of the information resides below the 
surface of a representation, yet to be encoded explicitly. A balance must be struck in how much 
information to encode for a particular task: Too much extraneous information in a 
representational scheme can be distracting, while too little will force stakeholders to fill in the 
gap themselves, or seek the information elsewhere. For example, the main menu of hospital 
EHR systems often provides a balance between the horizontally (which encodes information at 
the same level) and vertically nested (which embeds information within superordinate 
classifications) structures. When a practitioner requires more than summary details of the plan 
of care being executed, she will need to drill down into the vertically nested categories to 
retrieve the desired details. The way and extent to which information is interiorized can have a 
significant effect on the speed of access, as well as the interpretive processes of the practitioner.  
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Configuration 
 

Configuration concerns the principles behind the ordering and arrangement of the information 
items in the representation space of an HIT. Encoded information can be configured through a 
number of approaches, including by attributes of the information (e.g., nominal, ordinal, 
cardinal), perceptual characteristics of the representations (e.g., size, color, font, formatting), 
or by some principle specified by the designer (e.g., alphabetical vs. chronological). Variations 
in the representational configurations of an HIT can have a pronounced influence on EBHC 
activities, obscuring some attributes of the information and highlighting others. For example, 
in a comprehensive drug information resource, arranging the drugs by their alphabetic name 
can aid searchability, while obscuring information about potential side effects, possible drug 
interactions, or the precautions the patient must take in using the drug that could be more 
visible in a different categorization strategy. In many cases, allowing the stakeholders to 
control the configuration of the information can assist them to detect easily any patterns, 
trends, or relationships in the data, bypass irrelevant information, or reorder data to fit a 
specific activity or need.  
 

Type 
 

The forms in which information is encoded—which may include, among others, plots, charts, 
images, diagrams, symbols, and text—reflect the type. Different types of representations offer 
various drawbacks and benefits in use by stakeholders (Larkin & Simon, 1987; Parsons & Sedig, 
2014). For example, in reasoning about the influence of long-term eating behavior on chronic 
illness, charts and diagrams encoding this data can assist medical researchers to identify patterns 
and discontinuities at a glance and to visually compare different data sets to easily draw insights 
or conclusions. Although some types of representations, such as charts, plots, and diagrams, help 
researchers to understand continuous data, other discrete representations, such as symbols or 
text, are better for precise, detail-oriented EBHC activities. Furthermore, being able to transform 
one type of representation to another can facilitate the performance of EBHC activities. 
 

Density 
 

Density is a measure of how much information is within a given representation space. Diffuse 
representations take much space to encode and communicate little, while dense representations 
express their information compactly. However, if a representation is too dense, it requires a 
high degree of accuracy and precision and, as a result, can encourage errors. Meanwhile, 
diffuse representations can undermine the efficiency and speed of EBHC tasks. For example, 
EHRs used for inpatient care often have to communicate several types of complex, layered, and 
interrelated information at the push of a button: administrative and billing data, patient 
demographic and history, progress notes, vital signs, diagnoses, medication lists, and 
radiological images. If the representational scheme used to assist stakeholders in locating and 
interpreting the information contained therein is too dense, the stakeholders’ attention can 
become overwhelmed or miss some representations. Density should be used according to the 
needs of the EBHC activity as well as the experience of the EBHC stakeholders. 
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Interaction 
 
The interaction space contains all the action and reaction possibilities that are available to the 
user. We identify five aspects of the interaction space that can be manipulated to strengthen 
the couplings within a JCS: visibility, flexibility, diversity, complementarity, and directness 
(Sedig et al., 2012). 
 

Visibility  
 

Visibility concerns the extent to which an HIT makes its interaction possibilities and behavior 
perceptible to the stakeholder. This includes awareness of the interaction possibilities that an 
HIT supports, as well as the encoding of a perceptible response when an action or reaction 
takes place. When interaction possibilities and the actions and reactions that are carried out 
with them are explicit, stakeholders will often have an easier time using the HIT and will be 
able to keep better track of the effect of their actions on the HIT. Keeping track of one’s 
actions and their effects is a core task in using HITs effectively. For example, Nemeth and 
colleagues (2005) studied the use of infusion pumps by stakeholders in medication delivery 
and concluded that interfaces should provide more explicit information about their past, 
present, and future states. They found that the substantial programming required, and the array 
of layered and nested menus with complex branching options, served to confound even the 
most experienced operators. Stakeholders using the infusion pumps frequently became 
confused, had difficulty tracking their state of operation, and had to work through several 
misinterpretations before correctly setting the device. Most clinicians developed coping 
strategies that were effective but vulnerable to failure. Allowing more conscious control over 
the visibility of certain interaction possibilities and the state and consequences of interactions 
can assist stakeholders in better interpreting the HIT, thus laying the foundation for stronger, 
more coherent relationships within the JCS. 
 

Flexibility 
 

The availability and range of adjustability options that allow stakeholders to manipulate the 
values of several characteristics of the HIT to suit their needs, circumstances, or goals reflects a 
technology’s flexibility. For example, an HIT that allows the stakeholder to adjust the visibility of 
its interaction possibilities, rendering some invisible and others visible, is more flexible than one 
that does not. Highly flexible HITs can allow the stakeholders to adjust a range of characteristics, 
from those dealing with information, computation, and representation to the interaction 
possibilities themselves. To further illustrate, consider an HIT that provides decision support to 
stakeholders in the form of computerized alerts and reference information. Depending on the 
stakeholders, the work environment, and other contextual factors, it may be useful to manipulate 
some of the features of the decision support, including the onset, frequency, detail, kinds of 
information offered, or level of inference carried out by the HIT. Although highly flexible HITs 
can prove very helpful in some cases, flexibility can sometimes place tremendous responsibility 
on the stakeholders, requiring them to think through and consciously adjust factors for which they 
may have little preference. Therefore, at times, rigid structure and predictability are preferable, 
especially when the EBHC activity is linear or unambiguous.  
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Diversity 
 

Diversity concerns the number and range of interaction possibilities available to stakeholders. 
Different forms of interaction will enable stakeholders to gain diverse perspectives on the 
information and to apply it in multiple ways. Therefore, a high diversity in interaction 
possibilities can assist stakeholders in their ability to perform autonomous, well-rounded EBHC 
activities. For example, when a pharmacist seeks to update a patient’s drug regime, she will 
need to investigate, among other things, the relationship between an indicated drug and any 
potential drug interactions with the patient’s existing medications. Diversity in interaction 
possibilities in an HIT can help the pharmacist perform a range of operations to understand the 
drug interactions more holistically. An interaction that allows the pharmacist to place drug 
properties side by side can highlight common properties and side effects, while another 
interaction that allows the pharmacist to investigate several drugs in terms of a single property 
can portray the drugs as a common set, highlighting different characteristics. Further, an 
interaction that allows the pharmacist to translate the form of information presentation from 
linguistic to animated display to show the mechanism of action can illustrate clearly 
information that is difficult to grasp with text alone. In this way, diverse interaction possibilities 
can serve diverse cognitive needs of EBHC activities. Still, too much diversity can be 
counterproductive. As a rule, HITs should offer a number and range of interactions that are 
commensurate with the needs of the EBHC activities and the external environment, offering no 
more nor less variety than is needed for the complexity of the tasks it is used for (see law of 
requisite variety, Weick, 1979). 
 

Complementarity 
 

The harmony of relationships among interaction possibilities, and how well they work with and 
supplement each other, forms the complementarity of an HIT. A high degree of complementarity 
among the interactions allows stakeholders to conduct more coordinated and integrated EBHC 
activities. That is, although each individual interaction independently supports only one particular 
action, collectively the interactions can work together and assist stakeholders perform more 
complicated EBHC activities. Consider the case of a psychiatrist formulating a differential 
diagnosis and possible etiologies for a patient with a decreased level of consciousness. In using an 
EHR system to assess differential diagnoses (e.g., street drugs, vitamin deficiency, meningitis), 
the interaction possibilities may be embodied in such a way as to force the psychiatrist to carry 
these steps out in a linear and overly restrictive fashion. HITs that respect the organic and 
interconnected nature of the diagnostic process will make provisions for how different steps of 
the diagnostic procedure rely upon and influence one another.  
 

Directness 
 

Directness addresses the degree of straightforwardness toward a desired goal or task that is 
encompassed in the interactions within an HIT. Interactions that are direct allow stakeholders to 
act on and receive feedback from the desired information without an intermediary, while HITs 
with indirect interactions have the stakeholders operate upon secondary or ancillary information 
sources in order to access their object. Direct interactions also allow stakeholders to carry out 
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EBHC activities parsimoniously, that is, with the fewest number of steps possible. For example, 
when a community nurse practitioner attempts to understand the seriousness of a patient’s 
symptoms (e.g., abdominal distension and blackened stool), a medical reference database can 
either allow her to organize information directly through the agency of the symptom of interest 
or only through the mediation of some other medical category. In the former case, the nurse 
practitioner can directly form a coherent sense of the seriousness of the symptoms, their 
potential ramifications, parallel symptoms or conditions to watch for, and which tests may be 
relevant or irrelevant. In the latter case, however, indirect interaction possibilities force the 
nurse practitioner to extend and extrapolate her inferences through a source of indirect interest, 
thus multiplying the number of steps required to access the desired information.  
 
To summarize, the DETECT framework offers 20 factors that designers, deployers, and 
evaluators of HITs can use to characterize the fit between HITs and the EBHC activities they 
serve. Each of these factors can be modulated by other factors depending on the type of EBHC 
activity, the intended user group, or other aspects of the environment. In Table 1, we give an 
overview and visual summary of the whole framework.  
 
 

SCENARIOS 
 

This section demonstrates how the DETECT framework can assist designers, deployers, and 
evaluators to better align HITs with dynamic, real-life EBHC activities. In this section, we illustrate 
the kind of systematic analysis that DETECT facilitates and the way it can support diagnosis of 
problems in the design and use of HITs if and when they arise. We outline two scenarios, each 
illustrating a different pole on the spectrum of cognitive work (Nemeth et al., 2005).  
 
Scenario 1: Public Health Manager Organizing a Substance Abuse Prevention 
Program 
 
Our first scenario explores the utility of HITs at health-care’s blunt end (which includes health 
management, public health planning, and policy), where EBHC activities are typically more 
diffuse, broader, and contemplative, rather than fast paced and highly dynamic. Consider a public 
health manager deciding whether to fund a particular substance abuse prevention program for a 
midsized city. The main question she is assessing in making this decision is whether there is 
reason to believe that this program will actually prevent substance abuse in her city. To answer 
this question, she identifies and assesses research evidence, evaluations of the program from other 
cities and localities, and local community feedback that are presented in a public health research 
HIT. Specifically, she is interested in collating and summarizing the criteria to be used to evaluate 
the efficacy of the program and in applying these criteria to the needs of her city.   

In her HIT, the public health manager is reviewing several dozen empirical studies, a few 
government reports, privately conducted program evaluations, and one community workshop’s 
feedback compiled into a YouTube video (all imported into the HIT on a previous occasion). 
Because she finds several evaluation criteria in the resources, the public health manager’s task 
in comparing these criteria becomes more complex and subjective. To better understand and 
synthesize the results, she sifts through the resources to identify and list all the indicators used 



Aligning HITs and Evidence-based Activities 

203 

Table 1.  Properties of HITs Useful in Analyzing Their Alignment with EBHC Activities. 

Space Property Characterization 

Information Volume How much data is contained within an information space 

 Velocity The rate at which data is processed within an information space 

 Variety The diversity of sources from which information enters an information 
space  

 Veracity The assurance that information within an information space is error-free 

Computation Reasoning The reasoning techniques employed by the computation space  

 Complexity The level of difficulty of problems that the computation space can solve 

 Input The types of data that the computation space can utilize 

 Noise The computation space’s degree of tolerance to error or unknown 
attributes in the data 

 Autonomy The degree to which a computation space can act without stakeholder 
supervision, steering, input, and/or oversight 

 Temporality Whether the computation space can handle time-based data, and 
how often it should receive incoming time data 

Representation Complexity The degree to which representations are detailed in the number of 
items, properties, and relationships they encode 

 Interiority The degree to which unencoded data items lie below the surface of 
the representations 

 Configuration The ordering, arrangement, and organization of information items in 
the representation space 

 Type The forms in which information is encoded (e.g., plots, charts, images, 
diagrams, symbols, text) 

 Density How much information is within a given representation 

Interaction Visibility The extent to which an HIT makes its interaction possibilities perceptible 
to the stakeholder 

 Flexibility The availability and range of options allowed the stakeholder to adjust 
the characteristics of the HIT 

 Diversity The number and range of interaction possibilities that are available to 
the stakeholder 

 Complementarity The degree of harmony of relationships among interaction possibilities 

 Directness The degree of straightforwardness of the interactions toward a desired 
goal or task 

 
 
to measure program success. Some studies measure efficacy in terms of reduction in substance 
abuse; others focus on cost evaluation, community satisfaction, or other indirect social 
outcomes measures (e.g., rates of absenteeism in the community or family violence). The 
public health manager identifies and compiles the results of the available evaluation criteria to 
see what conclusions she can draw about the program’s efficacy elsewhere. Beyond this, she 
weighs the conclusions presented in each study in light of the strength of that particular 
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research methodology: the study design, reliability of the measures, and the strength of the 
effect. The HIT allows the public health manager to access and display the resources, but it also 
has some functionality to assist her in comparing the resources along key points of interest. 
Taken together, the research HIT and public health manager form the JCS that carries out the 
EBHC activity needed to answer her question. For the benefit of our research aims, examining 
how each of the constituent spaces of Scenario 1’s JCS contributes to the activity will help us 
assess how these spaces work together to achieve the EBHC activity goal.  

The information space in this case exhibits a high volume of information. It also contains 
a high degree of variety, with surfaced studies containing narrative, qualitative, and statistical 
evaluation criteria. The data in the studies concern issues as diverse as the rates of substance 
abuse, which substances are abused, the possible causes of substance abuse, the effect that the 
substance abuse prevention program had on a range of factors, and the influence of some 
confounding variables. Because the studies dealing with this particular substance abuse 
program are few in number, the velocity of the information space is low; however, the 
veracity is high because the sources provide primarily peer-reviewed information.   

To assist the public health manager digest the relevant information, a computation space is 
designed with the characteristics of the information space in mind. The computation space 
should be equipped to process diverse data input types, that is, to integrate video, numerical, 
and text formats. If program evaluation criteria can automatically be culled from different 
sources, this will assist significantly the manager’s decision making. Although a high degree of 
inputs are needed, the computation space need only possess a low degree of noise tolerance 
because the data is relatively clean. Additionally, a low complexity of operations on the data 
will likely suffice the manager’s needs. That is, because the public health manager is looking 
for summaries of existing studies, the HIT will only need to provide simple correlations, trends, 
or summaries of the information. Because the decision on a program is not fully formalized 
(i.e., the decision still involves subjective elements), the process of deciding whether to fund 
this public health initiative will benefit from a computation space that carries out activities in 
close collaboration with the demands of the public health manager, rather than an autonomous 
or independent computational space; hence, a low degree of autonomy is desirable. Figure 3 
shows each factor of the DETECT framework for this case and categorizes it as high or low.  

Because the information in the studies is multilayered and multidimensional, the public 
health manager can benefit from representations with a high degree of complexity and 
interiority. Public health interventions are notoriously complex (Rychetnik, Frommer, Hawe, & 
Shiell, 2002), involving many confounding factors that can increase the manager’s cognitive 
load and distract her attention. A complex representation that encodes these extraneous variables 
can preserve the rich interconnections characteristic of social health data and encourage holistic 
and rigorous evaluation. In the same way, representations with a high degree of interiority can 
assist the public health manager in pacing herself by externalizing aspects of the information 
only when demanded. This can facilitate a measured, yet in-depth, conversation with the 
information, allowing the manager to look at multiple aspects of the evaluation criteria she has 
collected. In turn, such components of the representation space can assist the public health 
manager in avoiding potential biases in causal reasoning that may attend thinking about complex 
phenomena (Sterman, 2006). Furthermore, a representation space with a flexible configuration 
will help aid the public health manager in exploring many facets of the information by arranging 
it in different ways. 
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Figure 3.  Example of a JCS characterization that supports public health cognitive activity 
 

The nature of the information used in this case analysis is social and complex, rather than 
linear and formulaic. Thus, the public health manager will most likely independently analyze 
each criterion used to measure program success, as well as how the program fared when 
considered along those criteria. Although the criteria are clear, they are numerous and distinct. 
Hence, to assess the program, the manager would most likely prefer to be able to witness her own 
operations on the data as she formulates her questions, draws inferences, and settles on 
conclusions. This will allow her to keep better track of her conclusions as she makes judgments 
relating each criterion to the wider scope of her purpose. Furthermore, because the information is 
multifaceted, the manager will benefit from having available a wide degree of diversity in the 
interaction possibilities available to her. For example, allowing the manager to measure the 
program efficacy by program cost will help her draw conclusions about its feasibility for and 
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benefit to her own city. Relatedly, perhaps she may benefit from comparing the efficacy of the 
program in relation to the characteristics of the populations involved in the research.   

As articulated in this scenario, both the HIT and the public health manager contribute to 
the ultimate decision on funding the campaign. As illustrated, using the DETECT framework to 
systematically guide decisions about the utility of technological parameters in light of the needs 
of the user and activity can help create more robust EBHC activities. A well-coupled JCS can 
assist the public health manager draw well-informed and workable conclusions from the rich 
and multifaceted information in the HIT. On the other hand, an HIT that is not suited to the 
needs of the manager can obscure the information and hinder the emergence of holistic and 
rigorous conclusions. 
 
Scenario 2: Psychiatrist Ordering Drugs through a Computer Order Entry System 
 
Our second scenario illustrates the utility of HITs at health-care’s sharp end where EBHC 
activities are more specific, direct, denser, and faster (including medical, nursing, and the 
pharmaceutical care). Because EBHC environments at health-care’s sharp end tend to be more 
responsive (where the consequences of actions accrue more quickly) and more interdependent 
(where inputs display more interdependence), the activities carried out in these environments 
tend to be more sensitive to error and require higher reliability (Nemeth et al., 2005; Weick & 
Sutcliffe, 2011). 

Consider in this instance an inpatient psychiatrist ordering drugs for a newly admitted 
patient with a bipolar disorder. To design the drug regime, the psychiatrist needs to match any 
drug to the patient’s symptoms; adjust for comorbidities, contingencies, or interactions; and set 
the administration parameters (i.e., drug type, dose, mode of delivery, onset, duration, and 
frequency). Figure 4 shows an example of a joint cognitive system that supports a medical 
cognitive activity. 

In ordering drugs for the patient, the psychiatrist typically utilizes the computer order entry 
(CPOE) system in the ward. The information space that will support this activity is characterized 
by a low volume. The HIT contains a number of preset drug parameter options (i.e., drug, dosage, 
frequency, onset, duration, form), patient-specific information about allergies and her current 
medication regime, and a list of preprogrammed drug incompatibilities. With a tentative drug 
regime in hand, the psychiatrist uses the drug administration parameters available in the HIT to 
better formulate an administration plan, seek feedback about the proposed drug regime, and 
resolve any allergy or interaction problems that the system flags. Because the information in the 
HIT concerns drug parameters and interactions, the information space is characterized by low 
variety, and because the data are revised and refreshed several times daily, or upon request, the 
velocity is relatively high. 

To assist the psychiatrist in the activity, the computation space performs certain subtasks of 
the activity that save time and the psychiatrist’s attention. When drug interactions are identified, 
the HIT can assist the psychiatrist by suggesting alternative drugs with similar profiles and, as a 
result, this HIT requires a high degree of reasoning. Despite this, the HIT need not be 
characterized by a high degree of complexity because checking the potential interactions 
between drugs is defined by a clear method and desired outcome. To support the psychiatrist 
in keeping track of administration details in an exact way, the HIT can be characterized by a 
low degree of noise tolerance. Lastly, because the required cognitive processes in order entry 
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Figure 4.  Example of a JCS characterization that supports medical cognitive activity. 
 

are narrow and clear, a high degree of autonomy is warranted in the HIT. That is, the HIT should 
complete whole processes without requiring steering by the psychiatrist because too much 
required interaction between the psychiatrist and system would interfere with clinical workflow. 

In the representation space, representations helpful in serving a robust order entry process 
will encode information with a low degree of complexity and an approach to configuration that 
highlights useful dimensions of the information. Firstly, an HIT interface with a high degree of 
complexity can serve to derail the drug ordering process by introducing unnecessary concepts 
and ideas into what should be a well-delineated, detail-oriented process. As a rule, unnecessary 
details (e.g., drug history, generic vs. name brand) should not be encoded explicitly at the level 
of the representations but should be resolved by placing information below the surface of the 
representation, to be summoned on demand, or by arranging such decisions beforehand. 
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Secondly, administration-relevant information can be communicated visually in a well-designed 
configuration. For example, dosages can be calculated according to patient weight through 
representations that use relative size; the degree of risk associated with drug interactions 
through color; and the titration of drugs according to standard dilution ratios can be facilitated 
through use of position and location. Thirdly, because drug information is a form of explicit 
knowledge—received through training and education—representations that are very dense 
often can be learned easily and serve to make the process efficient without confusing the 
practitioner or endangering patient safety.    

Lastly, in the psychiatrist’s ability to interact with the HIT, one should expect a high degree 
of directness, relatively low flexibility, and low visibility. Again, because the process of order 
entry is a restricted activity rather than open-ended, the HIT’s interaction possibilities should 
constrain and guide the psychiatrist towards her prespecified end. For example, if the 
psychiatrist seeks to order a dose of lithium for bipolar disorder, she is best served when the HIT 
guides the activity along closed channels that meet the guidelines of safe order entry practices 
(rather than, for example, assisting the psychiatrist explore the many pros and cons of lithium). 
Supporting the same goal, one can expect that the visibility of interactions be low, thus making 
outcomes of interactions (e.g., errors, omissions, or ambiguities) visible while keeping the 
process-oriented interactions invisible to the psychiatrist. Lastly, because of the constrained, 
prescriptive nature of order entry, one might expect that the flexibility of the interaction 
possibilities to be minimal in that a high degree of freedom in adjusting the parameters of order 
entry can undermine the streamlined nature of the activity.   

This case shows how the evidence-based decision of creating a medication regime is the 
product of both the psychiatrist and HIT working together. Thinking of these two partners as 
a JCS and analyzing the dimensions of their relationship helps explain whether and how they 
can work together well. A strong coupling between the psychiatrist and HIT can assist the 
psychiatrist in focusing on the important aspects of her job (e.g., reasoning about the 
manifold consequences of the proposed drug regime, and planning contingencies), rather than 
getting caught in the details of administration. 
 
 

IMPLICATIONS FOR RESEARCH AND APPLICATION 
 
In this paper, we provide designers, deployers, and/or evaluators of HITs with a coherent 
framework with which to identify the factors that mediate the relationships between HITs and 
their environments. In using the DETECT framework, interested parties will be able to better 
identify, describe, and adjust the relationships between HITs and the stakeholders performing 
EBHC activities. By foregrounding relationships and analyzing them systematically, we 
believe that our approach can assist practitioners avoid the linearity that is characteristic of 
previous approaches and, as a result, take a step toward the goals of reducing the 
misalignment gaps that currently exit between HITs and EBHC activities. This can in turn 
improve the adoption rates of such technologies, maximize their utility, and minimize the 
errors that are documented across the EBHC literature.  

The DETECT framework is not intended to be a faithful description of reality but rather a 
conceptual toolkit that can help with how HITs that permeate the world of health care should be 
conceptualized, described, analyzed, designed, and evaluated. We argue that based on the HIT 



Aligning HITs and Evidence-based Activities 

209 

literature that has yet to present any framework of factors that would allow the achievement of 
such a coherent set of considerations, this initial attempt can open a new line of research and 
theorizing, ultimately leading to useful and usable HITs for EBHC activities. The value of the 
DETECT framework lies foremost in allowing interested parties to operate in a manner that is 
holistic in attention to the range of factors at play and in the systematic modulating of those 
factors to ensure a better fit between HITs and EBHC activities. Finally, we advocate a closer 
rapprochement between EBHC activities and the HITs that are weaving themselves into the 
medical field’s daily fabric. 
 
 

CONCLUSIONS 
 
The DETECT framework is a step towards a better fit between HITs and the EBHC activities 
they serve. Yet, DETECT has some limitations. Firstly, a more comprehensive approach 
would have to take into account literature from health informatics, health information, and 
health-care knowledge management. But, such an approach would make any single paper or 
research project unwieldy. So ongoing research employing multiple sources, fields, and 
methods is advocated. Secondly, it may well be that other researchers could conceptualize a 
wider diversity of spaces or more characteristics of those spaces. However, in order to 
concisely describe the framework and some of its immediate applications and leave room for 
its future expansion, we chose to let any wider conceptualization to lie beyond the scope of 
the current paper. However, the EBHC and HIT research communities can benefit from what 
is presented as a launching point for broader and deeper exploration of the concept of using a 
JCS approach to design and implementation of HITs for successful EBHC activities.  
 
 

ENDNOTE 
 

1. For simplicity, all third-person singular pronouns are presented in a single form (feminine) but are 
intended to be gender inclusive.  
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