Student-generated instructional videos facilitate learning through positive emotions

Pirhonen, Juhani; Rasi, Päivi

Title: Student-generated instructional videos facilitate learning through positive emotions

Year: 2017

Please cite the original version:

Student-generated Instructional Videos Facilitate Learning through Positive Emotions

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of Biological Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>RJBE-2015-0117.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Research</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Academic emotions, Learner-generated instructional video, Learning journal, Literature review, Multimodal pedagogy</td>
</tr>
</tbody>
</table>

URL: http://mc.manuscriptcentral.com/rjbe
Student-generated Instructional Videos Facilitate Learning through Positive Emotions

The central focus of this study is a learning method in which university students produce instructional videos about the content matter as part of their learning process, combined with other learning assignments. The rationale for this is to promote a more multimodal pedagogy, and to provide students opportunities for a more learner-centered, motivating, active, engaging and productive role in their learning process. As such we designed a “video course” where the students needed to produce an instructional video which could be used for university teaching. In addition to producing the video the students needed to write a literature review of the topic of the video and a learning journal. At the end of the course the students filled a questionnaire regarding their learning and emotions during the project. Based on the students’ subjective answers it appeared that producing a video, combined with writing the literature review can be an efficient way of learning. Most students found the project emotionally very positive and regarded it motivating to work on a video which they knew will have use in the future. This research suggests that a multimodal video project in a higher education setting enhances learning through increased motivation and positive emotions.

Keywords
Academic emotions; Learner-generated instructional video; Learning journal; Literature review; Multimodal pedagogy

Introduction
The central focus of this study is a learning method in which university students
produce instructional videos as part of their learning process, combined with other
learning assignments. The rationale for this is that when producing videos about the
subject matter they are studying, students will learn content as well as transferable skills
such as collaboration and problem-solving, and the skills needed in video production
(Verran 1992; Jonassen 2000; Jonassen et al. 2003; Shewbridge and Berge 2004;
Hakkarainen 2007, 2009). The method is based on the understanding that a more
“multimodal pedagogy” (Deacon, Morrison, and Stadler 2005, 75, 83), that is,
combining and integrating several representational modes (e.g. text, video, images,
voice) into learning materials and assignments may contribute to a more effective
learning process (e.g. Peters 2000).

Another central rationale for engaging university students in the production of
instructional videos is providing them with opportunities for a more learner-centered,
motivating, active, engaging and productive role in their learning process. Students can
no longer be viewed as only passive consumers of knowledge, but also producers and
“prosumers” (Lee and McLoughlin 2007; Multisilta 2014). Students’ life-worlds are
highly multimodal, and their use of social media in their leisure time is pervasive. The
multimodal communication and content creation practices and preferences of these
students create challenges for higher education teachers to respond to their life-worlds.
An important factor in motivating students is the notion of yielding products which
involve a sense of purpose and ownership of what was produced, to cite Bonk and Khoo
"learners are driven to complete some high-quality, tangible product for others to see, share, use, comment upon, or remix."

Very often, as in the case of the present research, the pedagogical rationale for student-generated videos is that the videos will later be re-used as instructional materials (learner-generated content) by their peers (Ellis, Lee, and Tham 2004; Willmott 2014). As such, student-generated videos may serve multiple purposes - they have value to students individually, to peers, as well as possibly to the wider community (Lee and McLoughlin, 2007). Some case studies indicate that student-generated instructional videos have played a supportive role in their peers’ learning processes (e.g. Hakkarainen and Vapalahti 2011; Nordstrom and Korpelainen 2011). Nordstrom and Korpelainen (2011) noted that student-produced videos were often enacted with humour and were therefore less authoritative than typical instructional materials. On the other hand, some research shows that additional guidance is needed for students to take full advantage of the content produced by their peers (van Dijk and Lazonder 2013).

In higher education settings, in fields other than art, media studies, and communication sciences (see Shewbridge and Berge 2004) students’ own video productions are not yet a commonly used learning method. However, a growing number of teachers are motivated to develop and experiment with more innovative assignment types than, for example, the traditional essay (Leedham 2009). Case studies have indicated that
integrating university students’ video productions into project-based learning (Hung, Keppell, and Jong 2004), case-based teaching (Hakkarainen, Saarelainen, and Ruokamo 2007), and drama pedagogy (Hakkarainen and Vapalahti 2011) has supported students’ meaningful learning, and especially its’ active, collaborative, contextual, and creative characteristics (see Hakkarainen and Vapalahti 2011). In engineering education it has been demonstrated that allowing students to use non-conventional tools, such as video for preparing their assignments, can promote deep learning of scientific facts, as well as creativity and motivation (Nordstrom and Korpelainen 2011).

The emotions which higher education students experience during their learning processes play a central role in their motivation to learn and academic achievement (Pekrun et al. 2002; Op’t Eynde and Turner 2006). It has been shown that higher education students’ video production can facilitate learning through positive emotions such as interest, feelings of challenge, and enthusiasm (Hakkarainen 2009; Hakkarainen and Vapalahti 2011; Willmot, Bramhall, and Radley 2011). The so called “academic emotions”, that is, emotions that students experience in school or university settings, are linked to academic learning and achievement so that positive emotions predict high achievement, and negative emotions low achievement (Pekrun et al. 2002).

However, the existing research on higher education students’ video productions is comprised of single case studies. Albeit the results are mostly encouraging, they can
only be considered as tentative, and clearly more research is needed, for example about
the possibility of novelty effect (see also Mayberry et al. 2012).

The aim of this study was to evaluate whether students’ video production could be used
to promote learning and understanding of the content matter. The study is based on self-
reports of university biology students who participated in the “video course”. Even
though the main focus of the course was to teach video production, the deeper learning
of the subject matter was also of equally high importance. The research questions were:

1. How did the combination of learning assignments, i.e. literature review, video
production and learning journal, work in terms of student performance and learning
experiences?
2. According to the students, what kind of a learning experience was the
video production?
3. According to the students, what kind of an emotional experience
was the video production?

Methods

The course

This study is based on a 2 ECTS (1 ECTS = 27 h of work) graduate course named
“Producing, editing and publishing a video” in the Department of Biological and
Environmental Science, University of Jyväskylä, Finland, and the main results are
extracted from the questionnaire for the students at the end of the course. The course
was organized during the spring semesters of 2011 and 2014, and the first author of this
article acted as the responsible teacher.

Both course implementations lasted for five weeks, and they were managed through a learning management system named Optima, widely used in the Finnish universities. The course started with initial lectures of about 3 h during which the ideas and procedures of the course were explained to the students who were given general introduction to shooting a video, covering also copyright issues. This latter part was given by video production specialist from the University IT-support. Before the lecture the students were asked to fill in a short three-item questionnaire in Optima, where we asked the reasons for participation, previous experience of shooting videos and suitability of the time of the course. On the first lecture all students signed an agreement where we asked for permission to use the questionnaire, videos and learning journals for the purpose of writing a scientific article. During the initial lecture we also proposed possible topics for videos but the students were also allowed to choose any kind of relevant topic of their own interest. However, it was highlighted that it should be suitable as instructional video in the university.

The course consisted of three learning assignments: 1) literature review of the topic of the video (max 3 pages) and storyboard, 2) learning journals and 3) the video. At the end of the course the three components were graded on the scale 0-5, and the average of them was the grade of the course. Both literature review and storyboard had to be
accepted by the responsible teacher before starting filming the video. The
recommendation was to return the review and storyboard within two weeks, and the
documents were screened for possible plagiarism with URKUND; this system was
available only in 2014.

We also wanted to see the learning process through learning journals. The idea was to
improve student’s learning by forcing them to think and reflect their own learning
process in the journals. As such the students were instructed to write the journals at least
once a week, and in addition to writing what they have learned also to include any kinds
of emotions felt during the process. The journals were graded based on the regularity of
writing and also on their contents: how well the students were able to express the
learning process.

Most videos were made in groups of two students but in both years there was one group
of three students, and three students wanted to make the video alone (Table 1). The
university borrowed video cameras if needed. In 2014 we also allowed students to use
their mobile devices for capturing the footage but all students wanted to use the “real”
video camera. The recommendation for the length of the video was no more than 5
minutes. The students were given four weeks for independent work (i.e. literature
review, storyboard, filming). After this the students were given a lecture by the
university’s IT specialist about Adobe Premiere Elements 11 as editing software.
Participation to the editing lecture was not obligatory because the students were also allowed to use any other editing software if they wanted. The computer class was reserved for editing for 20 hours, and the teacher was available by phone or e-mail, as he was not with the students all the time.

At the final meeting (2 h) all students were first asked to fill in the research questionnaire (Table 2) and they were given about 30 minutes to do it. After this all participating students and the teachers watched the produced videos and after each video we discussed it. First the students were given the possibility to express their opinions and then the teachers gave their feedback. After watching the videos the students were given some more time to finalize the questionnaire if needed. The videos were downloaded into the University password protected video repository after the course.

Participants

In total 19 students participated the course, 10 students in 2011 and 9 in 2014 (Table 1). The age of the students ranged between 20 and 42 years (mean ± SD 27.1 ± 6.1 years). Most students were from the Department of Biological and Environmental Science but three students came from the Department of Physics and one from the Faculty of ICT. Fourteen participants were postgraduate students, four were undergraduate students and one was doctoral student. In 2011 the course was given in Finnish and in 2014 in
English as four of the students were exchange students from other countries.

The questionnaire

The final 71-item questionnaire consisted of 4 major themes: i) personal details, ii) teaching, studying and learning in the project, iii) emotions related to studying during the project iv) videos produced during the project (Table 2). The questionnaire was largely based on a questionnaire originally designed to test the pedagogical model for teaching and meaningful learning (Hakkarainen et al. 2007; Hakkarainen 2009, 2011). The model defines teaching and meaningful learning in terms of 17 process characteristics (e.g. activeness, creativeness, emotional involvement), and their expected outcomes (for a description of the design process of the questionnaire and its previous uses, see Hakkarainen et al. 2007; Hakkarainen 2009, 2011).

Under ii we made 37 statements about teaching and studying during the course on the scale 1 = totally disagree … 5 = totally agree, and number 3 was “I do not know”. In iii we presented 20 statements related to emotions during the project. These had to be answered on the scale 0 = not at all … 4 = very much, and number 2 was “I do not know”. After each statement the student could describe the most important reason(s) for the emotion or to the absence of it. In iv we asked six open ended questions about producing an instructional video, and here we also gave the possibility for any kinds of comments of the course.
Data analyses

For the statements in ii and iii we tested the possible statistical difference in the yearly (2011, n=10 and 2014 n=9) averages for each statement by independent samples \(t \)-test using SPSS Statistics 20 software. There were no statistical differences (\(p>0.05 \)) in any statement and consequently the data from these two years were combined (n=19). For each statement we calculated the average and SD. We used also independent samples \(t \)-test to compare the average values from the statements in ii and iii for the students who had no earlier experience in video production (n=7) and those who had (n=12), and \(p<0.05 \) was taken as the level of significance. Depending whether Levene’s test indicated significant difference in variances, the p-value was selected accordingly (“equal variances assumed / not assumed”).

We also classified the statements of emotions in iii into positive and negative ones. The following eight emotions were regarded positive: confidence, enthusiasm, relaxation, joy, interest of the subject matter, relief, sense of community and satisfaction. Eleven negative emotions were tension, frustration, anxiety, disappointment, stress, uncertainty, annoyance, feeling of giving up, insufficiency, shame and fatigue/boredom. “Challenge” could be regarded as positive or negative and thus it was left out of this comparison. By using the average values of both positive and negative feeling statements during the project we calculated an overall average value for these two types of feelings and compared them using \(t \)-test.
In addition, coefficient of variation for each feeling was calculated as

\[CV = \frac{SD}{\text{average}} \times 100 \]

(1)

Logarithmic regression line was fitted for correlation between CV and the average of each feeling.

Results and discussion

Combining literature review, video production and learning journal

The literature review is an indispensable part of most academic projects. As such the idea for making the students write a literature review prior to producing the videos was above all to make the students properly familiar with the topic, and to create a sturdy ground for the knowledge (Webster and Watson 2002). There was wide variability in the way how the students performed in writing the literature review. The quality of the review was in many cases better with the more advanced students (postgraduate and PhD students) than in the groups with undergraduate students. This kind of result was quite expected as the students are trained to search and find relevant literature and write scientific reports typically from the beginning of the second academic year, and at the masters’ level the students should have been quite familiar with this procedure. The review was done in groups and as such all members of the group got the same grade from this part. In the groups where group members were from different study levels, the
younger (in academic years) students apparently got advantage of the more advanced
students.

In some groups the subject matter was too well known by the group members, and no
real learning was achieved at this stage. This was the case when the topic was the
subject of the PhD or master thesis. On the other hand in one group the students picked
a topic which they knew nothing about and the unawareness of the topic was seen as
mistakes and misunderstandings in the review. In the questionnaire the statements
related to learning at this stage (“9. Learning about the topic of my video was supported
by c) literature review, d) the storyboard”) were usually highly agreed (mean 3.89 SD
1.05 and 3.73 SD 1.09, respectively, Table 2). Only one student totally disagreed about
the literature review in this respect and the reason was that he had selected a topic of his
thesis and he was very familiar with it.

For producing an instructional video we regard it important that the students finish the
literature review and storyboard before starting to film the video. This serves as type of
quality control and also forces the students to think about the topic deeply and makes
them more confident about the subject matter to be presented on the video. Previous
research on higher education students as video producers has indicated that when
producing videos about a chosen phenomenon, students may skip reading the relevant
scientific literature and resort only to their existing knowledge and practical experiences
(Hakkarainen 2009; Hakkarainen and Vapalahti 2011). Therefore, combining more traditional academic assignments with video production is a feasible option for facilitation learning of the subject matter. This would also prevent the pitfall of concentrating too much on the technical rather than conceptual aspects of the video (Schuck and Kearney 2006; Kearney 2011).

While the literature review was regarded as a base for conceptual and scientific content of the video, storyboard was regarded as a base for content fluency and technical quality of the video, and the importance of storyboard has also been stressed in earlier research (Kearney 2011). Despite the fact that this point was highlighted for the students it seemed to be difficult for some groups or individuals to get the review and storyboard finished before starting to shoot the video. In three cases the review and storyboard were returned only after the course, and in such cases these did not fulfill their goals of improving the quality of the video’s content. As such, it seems that there need to be strict deadlines for returning the review and storyboard if this methodology is being used.

The third assignment of the course was to write a learning journal every week, and to enhance students’ writing motivation it was graded with the similar weight as the other course assignments. However, this part of the course appeared to be the most difficult for the students. Most students wrote only very little and used the learning journal as a
diary: they just reported very briefly what they had done during that specific day or week but very little or nothing about their learning, thoughts or emotions. The responsible teacher (JP) commented the journals personally for each student after the second week by trying to direct the writing away from just listing what has been done but however the quality of the journals did not really improve.

The questionnaire answers indicated wide variability in the usefulness of learning journals in this process. “9. Learning about the topic of my video was supported by learning journals” got an average value of 3.05 (SD 1.22; Table 2) and only one student had graded this statement as 5 (totally agree), but three students had graded this as 1 (totally disagree). Also the statement “14. Learning journals helped to understand my own learning” was answered in a quite similar manner (3.11 SD 1.33). In this statement two students totally agreed but four students totally disagreed. One student also mentioned in iii that the reason for the feeling of stress was the learning journal.

Learning journal has previously been indicated to be a very powerful tool for increasing biology students’ cognitive processes and also performance in exam when compared to traditional writing of scientific reports (McCrindle and Christensen 1995). In that research the writing of learning journals greatly increased students’ understanding of the purpose and process of learning, and consequently also the performance in the final exam. The students of the present study were perhaps too concentrated just on
producing their video, and several simultaneous learning assignments possibly
decreased their motivation to write the journal while their focus was in the video. Also,
as writing of learning journals is not a common assignment in biology courses the
students were not familiar with writing the journal and as such they were unable to see
the usefulness and purpose of it in the learning process. As such, the students should
have been instructed more in detail in writing their journals.

From learning point of view this kind of multimodal project can actually improve
learning much more than separate assignments. For example Stice (1987) reported how
different learning methods affected the retention of information: if the learning method
is reading, retention is only 10%, for hearing 26%, for seeing 30%, for seeing and
hearing 50%, for saying 70%, and for saying while doing 90%. As such, a video
documentary with narration can increase the retention of information drastically instead
of, for example, just reading of a textbook. However it must be noted that there are
several types of learning styles (Stice 1987), and also each teacher has his/her own
preferable learning style. This may be problematic from the student's point of view if
the preferred learning style differs greatly from the one that the teacher has.

The number of students (19) who participated this research was relatively low.
However, the average values of the responses in the questionnaire in ii and iii did not
deriffer significantly between 2011 and 2014. This similarity of responses suggests
reliability of our data. However, the small number and wide age range of participants in
the present research does not allow for discussing the potential effect of age on students'
performance.

Video production as a learning experience

Filming and editing the video appear good ways of learning as the answers for the
statements “9. Learning about the topic of my video was supported by e) shooting the
video and f) editing the video” were well agreed, 3.94 (SD 1.25) and 4.0 (1.15),
respectively (Table 2), and these values were even slightly higher than those related to
learning through literature review and storyboard (see above). The statements “21.
Making the video helped me to understand different aspects related to the topic of the
video” and “25. Producing videos made creative thinking possible” were also strongly
agreed (4.11 SD 0.94 and 4.58 SD 0.61, respectively, Table 2).

There appeared some significant (p<0.05) differences in responses between the students
who had prior experience in producing videos and those who produced videos for the
first time. The students who had no prior experience in producing video gave
significantly higher scores than the students who had experience for the following
statements: “8. During the project I learned new issues about producing and publishing
a video” (mean±SD, 5.0±0.0 vs. 4.25±0.62), “9. Learning about the topic of my video
was supported by shooting the video” (4.67±0.82 vs. 3.55±1.30), “22. To produce a
video was challenging” (4.43±0.54 vs. 3.17±1.12) and “23. Studying improved my
skills for cooperation and communication” (4.57±0.54 vs. 3.75±1.1). On the other hand
the statement “19. The course improved my skills and competences needed in my future
employment” got significantly higher scores from students with prior experience in
producing videos (4.25±0.87) than when the students had no prior experience in video
production (3.43±0.54).

The question whether the video production brought added value to studying and
learning when compared to a more traditional way of learning (reading, writing,
discussion) was answered “yes” in 18 cases. Only one student disagreed and his reason
was that “if the point is to study the subject matter then making a video takes just extra
time and as such does not have added value”. The question “28. How did you feel about
producing a video for instructional material?” got mainly very positive answers such as
meaningful, sensible, innovative, (very) fun, interesting, challenging but meaningful,
and nice. One student regarded this as a challenge (she did the video alone) and another
said that “it was similar to any routine school work”.

Important point here is that most students felt that what they were doing was something
meaningful as the videos can be used for instructional purposes in university teaching,
and will not be buried unused as would happen with written reports. It is also well
known that teaching is one of the best ways of learning (e.g. Niess and Walker 2010). In
order to be able teach something one must first master the topic (Kugel 1993), and
“learning through teaching” has also been regarded important by students in another
video production project (Mayberry et al. 2012). In addition, creating videos can be
regarded as a divergent form of knowledge expression (Bull and Bell 2010). The
students have also been reported to be motivated by knowing that the target audience is
their peers (Kearney 2011; Bonk and Choo 2014). Taken together, the students of the
present video course were highly motivated to study also the subject matter: first, they
knew that the material will have further use and second, they were able to show and
express their knowledge in the form of a video. Both inspiration and motivation in a
video project have been shown to enhance learning (Willmot, Bramhall, and Radley
2011).

The quality of the videos was mainly very good, when it comes to their use as
instructional videos. Several of the videos could be regarded as mini-documentaries (a
day at a fish farm, fish parasites, freshwater pearl mussel, Newton’s laws of motion) as
they give a general introduction to the topic. Other type of videos were instructional
“how to” videos (fish respirometry, sampling of benthic invertebrates, induced breeding
of African catfish, measurement of feed intake in fish). The length of the videos varied
between c. 2 and 6 minutes. From the technical point of view the students regarded
their videos quite successful, e.g. “To be honest, it was not perfect but still it was good”.
One student who did the video alone was disappointed with the result and finally did not
even consider her video suitable for university teaching (question 27, Table 2). Most
students regarded the current format of the course good without needs for changes.

Emotions reported by students

In general, the students found the video production emotionally very positive. The
average score of the positive emotions 2.93 (SD 0.57) was significantly higher
(p<0.001) than for the negative ones 1.00 (0.48), on the scale 0 to 4. All positive
emotions except “relief” got an average score over two (Figure 1). On the other hand,
all emotions which were regarded negative got an average score below 2, and only four
of the 11 negative emotions got an average score above 1 (Figure 1). Interestingly, we
found a strong negative correlation between the average score of the feeling and average
coefficient of variation of each feeling, and the relationship fitted best to a logarithmic
regression (R^2=0.98; Figure 2). This indicates, that the smaller the score the bigger is the
variability in the emotion in question. For example, in the cases where almost all
students felt no negative emotion about the statement in question, totally different
responses from just one or two students increase the SD and consequently CV. This
result indicates that during the project negative emotions were experienced only seldom
while positive emotions were experienced at least to some extent practically with every
student.

The students with no prior experience in producing videos felt significantly more
enthusiasm during the project (average score 3.86 SD 0.38) than those who had prior experience (3.42 SD 0.51), which may be due to a novelty effect. This result underlines the importance of novelty and learning new skills for learning and emotional experiences, and should encourage teachers to use unconventional methods for teaching. This finding also supports the criticism against the “digital natives” -concept as those students with no prior experience of producing videos responded most positively (Helsper and Enyon 2010). Otherwise there were no differences in emotions when related to the experience in producing videos.

Students’ video projects have also previously been shown to be emotionally very positive experiences. For example, Hakkarainen and Vapalahti (2011) got almost identical results to ours, regarding college students’ emotions on a drama course. Also Willmot, Bramhall, and Radley (2011) reported that 80% of the engineering students had enjoyed producing an instructional video. However, the present study reveals an interesting finding that positive emotions are rather universal among the students but there is wide variation in negative emotions.

Conclusion

Student-generated instructional videos do not only provide a valuable teaching resource for university teachers but they also provide the students the possibility to learn through an unconventional manner. By producing instructional videos the students need to
master the subject matter before being able to shoot the video, and the conventional

literature review as well as the storyboard helps the students to form a proper ground for

shooting footage. The students were motivated to produce videos as they knew that

those would be used in the future, and the emotions felt by the students during the

project were mostly positive. In the current study we lack direct evidence of improved

learning when compared to more traditional ways of teaching and learning, but in

general, positive emotions have shown to improve learning. As such the results of this

research hopefully encourage higher education teachers to include student-generated

instructional video courses in their repertoire of stimulating teaching methods.

References

Bonk, C. J., and E. Khoo. 2014. *Adding Some Tec-variety. 100+ Activities for

Motivating and Retaining Learners Online*. Indiana, USA: Open World Books.

ISTE.

Deacon, A., A. Morrison, and J. Stadler. 2005 Designing for Learning through

Multimodal Production: Film Narrative and Spectatorship in Director’s Cut.

*International Journal of Education and Development Using Information and

Communication Technology* 1 (1): 72–89.

Ellis, G., K. S. Lee, and A. Tham. 2004. Learning engineering mechanics through video

production. *Proceedings of the 34th ASEE/IEEE Frontiers in Education

Hakkarainen, P. 2009. Designing and Implementing a PBL Course on Educational

Digital Video Production: Lessons Learned from a Design-based Research.

Educational Technology Research and Development 57(2): 211–228.

Figure captions.

Figure 1. Average score of feelings experienced during the student-generated video project. The feelings were classified as positive or negative, but “challenge” was classified as neutral. The scale for answers was from 0 (not at all) to 4 (very much). Error bars denote SD, n=19.

Figure 2. Relationship between the average of a feeling (as in Fig. 1) and the coefficient of variation (CV) of the same feeling. n=19 for each data point.
Figure 1. Average score of feelings experienced during the student-generated video project. The feelings were classified as positive or negative, but “challenge” was classified as neutral. The scale for answers was from 0 (not at all) to 4 (very much). Error bars denote SD, n=19.
Table 1. Topics of the videos chosen by students in 2011 and 2014, and the number of students in each group.

<table>
<thead>
<tr>
<th>Topics of the student-generated videos</th>
<th>Number of students</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>Fish parasites</td>
<td>2</td>
</tr>
<tr>
<td>Induced breeding of African catfish</td>
<td>2</td>
</tr>
<tr>
<td>Fish respirometry</td>
<td>2</td>
</tr>
<tr>
<td>Sampling of benthic invertebrates in rivers</td>
<td>1</td>
</tr>
<tr>
<td>Newton’s laws of motion</td>
<td>3</td>
</tr>
<tr>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>A day at a fish farm</td>
<td>2</td>
</tr>
<tr>
<td>Measurement of feed intake in fish</td>
<td>1</td>
</tr>
<tr>
<td>Fish respirometry (in English)</td>
<td>2</td>
</tr>
<tr>
<td>Parasitic stage of freshwater pearl mussel</td>
<td>3</td>
</tr>
<tr>
<td>The meaning of roots for plants</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 2. Questionnaire filled by the students at the end of the video-course. For numerical data mean, standard deviation and the number of responses are presented. For open-ended questions no data are shown. In questions 7-25 the scale for answers was 1 (totally disagree) to 5 (totally agree).

<table>
<thead>
<tr>
<th></th>
<th>PERSONAL DETAILS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Name</td>
<td>27.1</td>
<td>6.1</td>
<td>19</td>
</tr>
<tr>
<td>2. Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. When did you start studying at the University of Jyväskylä?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Do you have prior experience in producing videos?</td>
<td>Yes. Where?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Writing manuscript / storyboard</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Shooting a video</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Editing</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) About something else related to producing videos</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No prior experience</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ii TEACHING, STUDYING AND LEARNING IN THE PROJECT

5. How did you familiarize yourself on the topic of your video and writing the manuscript?
 a) I did not read anything about it | 0 |
 b) By reading from magazines, journals and/or books | 9 |
 c) From the internet | 17 |
 d) By asking from my friend(s) | 4 |
 e) By going through course materials from other courses | 5 |
 f) By asking from the teacher(s) | 5 |
 g) By some other means, how? | 4 |

6. How did you familiarize yourself on the technical aspects of producing videos?
 a) I did not read anything about it | 3 |
 b) By reading from magazines, journals and/or books | 1 |
 c) From the internet | 12 |
 d) By asking from my friend(s) | 6 |
 e) By asking from the teacher(s) | 3 |
 f) By some other means, how? | 4 |

7. Teachers considerably supported my studying and learning:
 a) by generating positive ambient | 4.58 | 0.61 | 19 |
 b) by giving personal feedback of my working | 3.79 | 1.13 | 19 |
 c) by instructing in questions related to the contents of the videos | 4.42 | 0.84 | 19 |
 d) by providing clear instructions how to complete the course | 4.58 | 0.51 | 19 |
 e) by phrasing clearly the goals of the course | 4.47 | 0.70 | 19 |
 f) by giving feedback and instructions quickly enough | 4.53 | 0.70 | 19 |
 g) by giving feedback of the essential issues of the video | 4.11 | 1.10 | 19 |

8. During the project I learned:
 a) new issues about the topic of my video | 4.16 | 1.30 | 19 |
 b) new issues about producing and publishing a video | 4.53 | 0.61 | 19 |
 c) group working methods | 3.84 | 1.34 | 19 |
 d) problem solving | 3.89 | 1.05 | 19 |

9. Learning about the topic of my video was supported by:
 a) familiarizing myself on the topic by reading | 3.89 | 1.41 | 19 |
b) familiarizing myself on the topic by other means, how?

c) literature review

d) storyboard

e) shooting the video

f) editing the video

g) learning journals

10. I had the possibility to study on my own personal way

11. When studying I was able to use my earlier knowledge of the topic of the video

12. During the course I was able to apply my earlier practical experiences

13. I had the possibility to evaluate my learning during the course

14. Learning journals helped to understand my own learning

15. Studying in this course made it possible to achieve my personal goals

16. Students were committed to work together

17. What I learned during the course can be used later in other instances

18. The course increased my understanding about what I had learned earlier

19. The course improved skills and competencies needed in my future employment

20. The role of the student was to actively search, evaluate and apply information

21. Making the video helped me to understand different aspects related to the topic of the video

22. To produce a video was challenging

23. Studying improved my skills for

24. It was possible for me to affect the contents and execution of the video

25. Producing videos made creative thinking possible

iii FEELINGS RELATED TO STUDYING DURING THE PROJECT

See Figure 1

iv VIDEOS PRODUCED DURING THE PROJECT

26. Were the videos produced during the course suitable for their purpose, that means can they be used for university teaching?

a) Yes

b) No

27. Did the video production bring added value to your studying and learning? Compare the situation e.g. to a course where the topic of the video would have been treated on a more traditional way, such as reading, writing and discussions.

a) Yes

b) No

28. How did you feel about producing a video for teaching material?

29. How would you estimate the technical success of your video?

30. Would you still be ready to produce a video as a part of your studies for teaching material?

a) Yes

b) No

31. How would you change the course or is this a good format to do it?

32. Open word (anything related to the course)