
269
J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

On UML Modeling Tool
Evaluation, Use and Training

Mervi Koivulahti-Ojala

JYVÄSKYLÄ STUDIES IN COMPUTING 269

Mervi Koivulahti-Ojala

On UML Modeling Tool
Evaluation, Use and Training

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen Delta-salissa

joulukuun 8. päivänä 2017 kello 16.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in building Agora, Delta hall, on December 8, 2017 at 16 o’clock.

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2017

On UML Modeling Tool
Evaluation, Use and Training

JYVÄSKYLÄ STUDIES IN COMPUTING 269

Mervi Koivulahti-Ojala

On UML Modeling Tool
Evaluation, Use and Training

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2017

Editors
Marja-Leena Rantalainen
Faculty of Information Technology, University of Jyväskylä
Pekka Olsbo, Ville Korkiakangas
Publishing Unit, University Library of Jyväskylä

Permanent link to this publication: http://urn.fi/URN:ISBN:978-951-39-7273-8

URN:ISBN:978-951-39-7273-8
ISBN 978-951-39-7273-8 (PDF)

ISBN 978-951-39-7272-1 (nid.)
ISSN 1456-5390

Copyright © 2017, by University of Jyväskylä

Jyväskylä University Printing House, Jyväskylä 2017

ABSTRACT

Koivulahti-Ojala, Mervi
On UML modeling tool evaluation, use and training
Jyväskylä: University of Jyväskylä, 2011, 86 p. (+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 269)
ISBN 978-951-39-7272-1 (nid.)
ISBN 978-951-39-7273-8 (PDF)

Unified Modeling Language™ (UML) is an international standard for systems
modeling. UML is used for modeling requirements, architecture, detailed
design, and software code generation. UML modeling tools offer graphical
editors for UML model development, generating software from UML models,
creating UML models from the software, and supporting collaborative model
development. This thesis offers new knowledge about UML modeling tool use,
evaluation, and training. The main research question is: How can a globally
distributed product company where UML modeling activities are scattered
across different locations and countries implement a UML modeling tool? Five
studies comprise the research process. The first study provided new
information concerning how UML and UML modeling tools can be used in the
context of product requirements and release management process. In the
second study, version management capabilities of the UML modeling tool were
evaluated. The main contribution of this study was the creation and evaluation
a set of evaluation criteria. A virtual meeting tool (VMT)-based training method
for teaching UML and the features of a UML modeling tool was designed and
evaluated in the third study. According to the study, the VMT-based training
positively impacted learners’ skills, knowledge, and motivation and they were
satisfied with the training. The training cost decreased in the case company by
88% compared to traditional classroom training. In the fourth study, a new
instrument was developed for measuring users’ satisfaction with the UML
modeling tool and service. A longitudinal case study was conducted to evaluate
several classes of e-teaching tools supporting the teaching of UML and the UML
modeling tool during the fifth study. E-teaching tools facilitate learning both
asynchronously (e.g., Wikis) and synchronously (e.g., video-conferencing).
According to this study intranet and virtual meeting tool (VMT) were used to
support UML and UML modeling tool training in terms of application
knowledge covering commands and tools embedded in the information system;
business context knowledge covering the use of information systems to
effectively perform business tasks; and collaborative task knowledge covering
how others use the information system in their tasks.

Keywords: UML, UML tool, training, learning, teaching, e-teaching, e-learning

Author Mervi Koivulahti-Ojala
 Faculty of Information Technology
 University of Jyväskylä

Finland

Supervisors Lecturer Timo Käkölä
 Faculty of Information Technology
 University of Jyväskylä

Finland

Professor Emeritus Pertti Järvinen
School of Information Sciences
University of Tampere
Finland

Reviewers Research Professor Minna Isomursu
 Centre for Health and Technology
 University of Oulu
 Finland

 Professor Peter Axel Nielsen
 Department of Computer Science
 University of Aalborg
 Denmark

Opponent Professor Tommi Mikkonen
 Department of Computer Science
 University of Helsinki
 Finland

ACKNOWLEDGEMENTS

The story of this thesis dates to the beginning of the 1990’s when I started work-
ing in a department responsible for developing and supporting information
systems used by the company’s research and development organization. At the
time, I was still attending university and completed a master’s thesis in 1998.
Since then, I have been studying. My motivation has been to deepen my under-
standing in the area of information systems management. I wish to thank my
former and present superiors for their support and encouragement in my ef-
forts to balance learning new things with managing daily tasks, as well as cur-
rent and former colleagues who believed this thesis would be completed some-
day.

This thesis and related papers have been written under the supervision of
Timo Käkölä. I am greatly indebted to Minna Isomursu and Peter Axel Nielsen
for their constructive criticism of the manuscript and their valuable suggestions
for improving the text.

I gratefully acknowledge Professor Emeritus Pertti Järvinen for his com-
ments on my study plans, papers, and this manuscript. Discussions in his semi-
nars with students and researchers over the years have been both inspiring and
relevant. I also wish to thank my student peers for their valuable feedback over
the years. Thanks to Marja-Leena Rantalainen, Sami Kollanus, and Rebekah
Rousi who assisted me in finalizing this manuscript.

I want to thank my parents and sisters for giving me the support needed
to pursue my interests. Last, but not least, thanks belong to my husband Pasi
who has shared both the intellectual interest and the homework, which have
made completing this thesis possible. Finally, this thesis is dedicated to my sons
Joni and Pauli who have taught me a lot about priorities in life. I love you all.

Kaarina, 14.10.2017
Mervi Koivulahti-Ojala

LIST OF INCLUDED ARTICLES

I Käkölä, T., Koivulahti-Ojala, M. & Liimatainen, J. 2011. An Information
Systems Design Product Theory for the Class of Integrated Requirements
and Release Management Systems, Journal of Software Maintenance and
Evolution: Research and Practice 23 (6), 443-463.

II Koivulahti-Ojala, M. & Käkölä, T. 2009. Framework for Evaluating the

Version Management Capabilities of a Class of UML Modeling Tools from
the Viewpoint of Multi-site, Multi-partner Product Line Organizations, in
Proceedings of the 43rd Hawaii International Conference on Systems Sci-
ences, IEEE Computer Society, Hawaii, USA.

III Koivulahti-Ojala, M. & Käkölä, T. 2012. Design, implementation, and

evaluation of a Virtual Meeting Tool-based innovation for UML technolo-
gy training in global organizations, in Proceedings of the 45rd Hawaii In-
ternational Conference on Systems Sciences, IEEE Computer Society, Ha-
waii, USA.

IV Islam, A. K. M. N., Koivulahti-Ojala, M. & Käkölä, T. 2010. A light-weight,

industrially-validated instrument to measure user satisfaction and service
quality experienced by the users of a UML modeling tool. In Proceedings
of the AMCIS 2010.

V Koivulahti-Ojala, M. & Käkölä, T. 2014. Training people to master com-
plex technologies through e-Learning: Case of UML technology training
in a global organization, in Proceedings of the AMCIS 2014.

FIGURES

FIGURE 1 Product development process (Ulrich, 1995). 15
FIGURE 2 Relationships between the articles. .. 20
FIGURE 3 Research approaches (Järvinen, 2012, p. 10). .. 24
FIGURE 4 Information model of the meta-design of the design product

theory for the class of RRMS (Käkölä et al., 2011). 28
FIGURE 5 The project structure. ... 54
FIGURE 6 The schedule of the studies. .. 64
FIGURE 7 Proposed stage model for UML modeling tool selection. 72

TABLES

TABLE 1 Research approaches and research methods applied in each

study. .. 25
TABLE 2 My roles in the case company. .. 41
TABLE 3 The stages in UML modeling tool implementation project. 56
TABLE 4 E-teaching tools the virtual team applied for e-teaching in the

case company (Article V). .. 62
TABLE 5 The key results, related evidence and implications for science. 66
TABLE 6 Methodology for selection of the software packages by Jadhav

and Sonar (2011) compared with results from this study. 69
TABLE 7 The key findings and their contribution for science. 74
TABLE 8 The key implications for practice. .. 78
TABLE 9 The key implications for science and suggested domain for

generalization of the results. ... 80

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF INCLUDED ARTICLES
FIGURES AND TABLES

1 INTRODUCTION .. 13
1.1 Research questions ... 14

1.1.1 Research questions for requirements and release
management system (RRMS) (Article I) 15

1.1.2 Research questions for a set of evaluation criteria for UML
(Unified Modeling Language) tool version management
(Article II) ... 16

1.1.3 Research questions for a new training method to support
training of UML and UML modeling tool (Article III) 17

1.1.4 Research question for a new measurement instrument
(Article IV) .. 18

1.1.5 Research question for a longitudinal study about UML
and UML modeling tool training (Article V) 19

1.2 Authors’ contribution to the included articles 21
1.3 Structure of the thesis ... 21

2 SUMMARY OF ARTICLES ... 23
2.1 An Information Systems Design Product Theory for the Class

of Integrated Requirements and Release Management Systems
(Article I) .. 26
2.1.1 Research problem and research strategy 26
2.1.2 Research process.. 27
2.1.3 Research results and contribution to this thesis 27
2.1.4 Limitations and future research .. 29

2.2 A Framework for Evaluating the Version Management
Capabilities of a Class of UML Modeling Tools from the
Viewpoint of Multi-site, Multi-partner Product Line
Organizations (Article II) ... 29
2.2.1 Research problem and research strategy 29
2.2.2 Research process.. 30
2.2.3 Research results and contribution to this thesis 31
2.2.4 Limitations and future research .. 31

2.3 Design, implementation, and evaluation of a Virtual Meeting
Tool-based innovation for UML technology training in global
organizations (Article III) .. 31
2.3.1 Research problem .. 31
2.3.2 Research process.. 32

2.3.3 Research results and contribution to this thesis 33
2.3.4 Limitations and future research .. 34

2.4 A lightweight, industrially-validated instrument to measure
user satisfaction and service quality experienced by the users of
a UML modeling tool (Article IV) .. 34
2.4.1 Research problem and research strategy 34
2.4.2 Research process.. 35
2.4.3 Research results and contribution to this thesis 36
2.4.4 Limitations and future research .. 37

2.5 Training people to master complex technologies through
e-Learning: A case study of UML technology training in a
global organization (Article V) ... 37
2.5.1 Research problem .. 37
2.5.2 Research strategy and process .. 38
2.5.3 Research results and contribution to this thesis 39
2.5.4 Limitations and future research .. 39

2.6 The case company and my role in the case company 40

3 POST-EVALUATION OF STUDIES .. 42
3.1 An Information Systems Design Product Theory for the Class

of Integrated Requirements and Release Management Systems
(Article I) .. 42
3.1.1 Relevance of research results for the case company 42
3.1.2 Relevance of research results for science 43
3.1.3 Methodological Rigor ... 43

3.2 A Framework for Evaluating the Version Management
Capabilities of a Class of UML Modeling Tools from the
Viewpoint of Multi-site, Multi-partner Product Line
Organizations (Article II) ... 44
3.2.1 Relevance of research results for the case company 44
3.2.2 Relevance of research results for science 45
3.2.3 Methodological rigor .. 45

3.3 Design, implementation, and evaluation of a Virtual Meeting
Tool-based innovation for UML technology training in global
organizations (Article III) .. 46
3.3.1 Relevance of research results for the case company 46
3.3.2 Relevance of research results for science 47
3.3.3 Methodological rigor .. 47

3.4 A lightweight, industrially-validated instrument to measure
user satisfaction and service quality experienced by the users of
a UML modeling tool (Article IV) .. 49
3.4.1 Relevance of research results for the case company 49
3.4.2 Relevance of research results for science 50
3.4.3 Methodological rigor .. 51

3.5 Training people to master complex technologies through
e-Learning: Case of UML technology training in a global
organization (Article V) ... 51
3.5.1 Relevance of research results for the case company 51
3.5.2 Relevance of research results for science 52
3.5.3 Methodological rigor .. 52

4 THE STUDY: UML MODELING TOOL IMPLEMENTATION IN
A GLOBALLY DISTRIBUTED PRODUCT ORGANIZATION 53
4.1 UML modeling tool implementation in the case company 53

4.1.1 Requirements management ... 58
4.1.2 Training .. 60
4.1.3 User satisfaction measurement ... 62

4.2 Overview to the study .. 63
4.2.1 Schedule .. 64
4.2.2 The main study results ... 65

4.3 Software package implementation stage model: Comparison
and a new model ... 67

5 DISCUSSION .. 73
5.1 Implications of results to science .. 73

5.1.1 An Information System Design Theory (ISDT) for the class
of requirements and release management systems (RRMS) ... 73

5.1.2 A set of evaluation criteria for UML modeling tool version
management ... 75

5.1.3 A new training method to support training of UML and
UML modeling tool .. 75

5.1.4 A lightweight measurement instrument, which can be
 applied to user and service satisfaction analysis for users
of a UML modeling tool ... 76

5.1.5 UML and UML modeling tool training through e-teaching
tools: A longitudinal study .. 76

5.2 Implications of results to practice... 77
5.2.1 An Information System Design Theory (ISDT) for the

class of requirements and release management systems
(RRMS) .. 77

5.2.2 A set of evaluation criteria for UML modeling tool version
management ... 77

5.2.3 A new training method to support training of UML and
UML modeling tool .. 78

5.2.4 A lightweight measurement instrument, which can be
applied to user and service satisfaction analysis for users
of a UML modeling tool ... 79

5.2.5 UML and UML modeling tool training through e-teaching
tools: A longitudinal study .. 79

5.3 Limitations and future research ... 79

YHTEENVETO (FINNISH SUMMARY) .. 82

REFERENCES ... 83

1 INTRODUCTION

Unified Modeling Language™ (UML) is an international standard for systems
modeling. UML can be used for specifying, visualizing, and documenting sys-
tems. UML was originally developed to provide a unified notation over three
object-oriented software development methodologies: the Booch method
(Booch, 1994), the object-modeling technique (OMT) developed by Rumbaugh
et al. (1991), and object-oriented software engineering (OOSE) developed by
Jacobsen et al. (1992). Since 1997, the Object Management Group (OMG) has
been developing UML as a standard language and it has gone through several
revisions. In its current version UML can be used not only for software systems
modeling but also for business process modeling, organization structures mod-
eling, and embedded and real-time systems modeling. In 2005, the UML stand-
ard was also published by the International Organization for Standardization
(ISO).

The central terms in the UML are models and diagrams. For the purposes
of this summary, I adopt the terminology defined by ISO standard (ISO/EIC,
2012) as follows:

• A model captures a view of the physical system, with a certain purpose.
• Diagrams are graphical representations of parts of the UML model. UML

diagrams contain graphical elements that represent elements in the UML
model.

The UML diagrams represent behavioral and static views of the system.
Behavioral diagrams represent the dynamic behavior of the system by visually
representing collaboration among the objects or changes to the internal states of
the objects. Static diagrams represent structural aspects of the system such as
components. The current UML standard version is UML 2.4 and has 14 diagram
types: seven diagram types represent static application structure; three repre-
sent general types of behavior; and four represent different aspects of interac-
tions. However, according to empirical studies, some of the diagram types are
reportedly unused by practitioners (Petre, 2013; Fitsilis et al, 2014). Additional-
ly, practitioners have criticized UML for its complexity, lack of formal seman-
tics, and inconsistency (e.g., Lange et al., 2006; Petre, 2013).

14

Even though practitioners have raised several concerns regarding UML,
an entire industry has emerged to support UML modeling. There are several
UML modeling tools (also known as CASE tools) on the market used, according
to their vendors, in hundreds of companies for UML modeling. UML modeling
tools offer graphical editors to help architects and developers model require-
ments, architectures, data structures, dynamic behaviors, and other characteris-
tics of systems with UML. Furthermore, these modeling tools can assist with
automatization tasks, thus providing opportunities that the UML as a language
cannot provide. With the aid of the modeling tools, UML can be used for soft-
ware code generation and testing. The modeling tools may also be used for re-
verse engineering, i.e., to generate UML models based on source code. Some
modeling tools have a built-in knowledge of UML rules so they can automati-
cally validate the correctness of UML models.

Despite the emerge of an entirely new industry for UML modeling tools
there is limited empirical research published in the academic literature regard-
ing using and adopting UML and UML modeling tools; most published studies
on UML are individual case studies or surveys. Therefore, no sound estimation
for the total number of users using UML or UML modeling tools can be made.
The one available literature review related to UML use and adoption is by
Budgen et al. (2011) who conducted a systematic literature review to determine
how widely the UML’s notations and their usefulness had been studied empiri-
cally by the end of 2008. They found 49 papers altogether with two rounds of
snowballing, of which 11 studies were conducted in industrial settings. Of these
11 studies, only two were related to adopting UML or UML modeling tools.
Budgen et al. (2011) concluded there are few field studies and identified UML
adoption as a topic needing further investigation.

Despite its 20-year existence, UML adoption is still a relevant research top-
ic. According to a recent study by Fitsilis et al. (2014) about UML usage among
IT practitioners in Greece, it was used in nearly half of the projects included in
the study. In addition, users declared that they will use UML again in their fu-
ture projects, and they expect UML usage will increase further during the next
several years.

1.1 Research questions

The research objective is providing new knowledge concerning how UML
modeling tools are used and evaluated as well as how people are trained to use
them. The main research question is: How can a globally distributed product
company where UML modeling activities are scattered across different loca-
tions and countries implement a UML modeling tool? The answer to the re-
search question was constructed from the five studies.

This thesis’ contribution is new knowledge in the IS research community.
In particular, the contribution of this summary is the provision of novel insight
into: 1) the study process and how the studies related to each other; and 2) the

15

ways in which new knowledge gained through the studies was used in both the
case company and by the IS research community.

All studies were conducted in a global high-technology corporation in the
business of developing products in multiple sites with multiple partners. Busi-
ness units in the company develop one or more products for customers in specif-
ic market segments. Thus, product development processes were running simul-
taneously for several products. A product development process is the process
whereby products are developed. It consists of four phases: concept develop-
ment, system-level design, detailed design, and product testing and refinement
(Ulrich, 1995) (Figure 1). Concept development phase activities include selecting
technological working principles and choosing functional elements, features, and
performance targets to best meet the customer’s needs. The system design phase
includes developing the product architecture and assigning component devel-
opment teams to the overall product development team. The detailed design
phase is concerned with component design, testing, and production process
planning. The product testing and refinement phase involves testing prototypes
and implementing any required changes to the component designs.

FIGURE 1 Product development process (Ulrich, 1995).

The detailed research questions are described in the following. "Case
company" is the term used to reflect that all studies were conducted in the con-
text of one company, and it does not refer to any research approach or method.

1.1.1 Research questions for requirements and release management system
(RRMS) (Article I)

In the case company, a new platform organization was established which was
responsible for developing common components utilized by different business
units in the products they develop. To enhance communication during the re-
quirement and release management process, a new information system was
developed. It served all product development phases from concept develop-
ment (needs, analysis of needs), system level design (features, assignment to
teams), detailed design (component and component level release planning) and
product test and refinement (releasing of components, test results). The new
information system was developed in-house.

Over the years, development of the system has resulted in a complicated
information model containing more than twenty different information ele-
ments. This study was initiated to better understand which parts of the infor-
mation system are critical for the success of the system and to develop it fur-
ther. In sum, the case company’s business need was to understand the existing

16

system’s most important properties. The business need was relevant because
the product development process was heavily dependent on this information
system. The case company considered any system downtime as problematic
because it would directly impact sales since no new products could be released
without this system. Thus, the information system was considered a critical
need by the company. It was used by more than 6000 people in the case compa-
ny and updated by more than 2000 people in 2008 (Käkölä et al., 2010). By the
end of 2008, it contained more than 100 000 active data entities (Käkölä et al.,
2010).

The main research question was: “What are the necessary and sufficient
properties for an information system which supports an integrated requirement
and release management process in a globally distributed product development
organization?”

The research sub-questions were:
1) What are the requirements for an integrated requirements and re-

lease management system?
2) What is the design for an integrated requirements and release man-

agement system?
3) How does the design fulfil the requirements for an integrated re-

quirements and release management system?
The answer to the first research question consists of requirements devel-

oped based on the literature and empirical research conducted in the case com-
pany. Requirements consist of detailed requirements related to communication,
control, change, platform development, and process integration. The answer to
the second research question consists of the information model and attributes
for the elements presented in the information model. The design was developed
based on the empirical research conducted in the case company. The answer to
the third research question consists of the results obtained while evaluating the
design against the requirements. The design was evaluated against these re-
quirements by analyzing how each requirement was supported by the design.

This study contributed to the main research question by providing new
knowledge regarding how UML models were used. According to the study,
UML modeling was conducted only when necessary by different tools and dia-
grams imported or linked to the RRMS. The priorities, schedules, and other in-
formation stored in the RRMS were used to focus UML modeling efforts. Thus,
this study provided new information about the UML and UML modeling tool
usage in the context of the requirement and release management process. Later
in the study, it was decided to implement one UML modeling tool globally in
the case organization. The UML modeling tool implementation was further
studied in Articles II, III, IV, and V.

1.1.2 Research questions for a set of evaluation criteria for UML (Unified
Modeling Language) tool version management (Article II)

In the case company, several UML modeling tools were evaluated. During UML
modeling tool evaluation, I learned the UML modeling tools did have consider-

17

able differences regarding version management. Thus, I became interested in
identifying the critical features of version management to serve globally dis-
tributed product development.

In globally distributed product development modeling activities are scat-
tered across multiple sites and involve multiple teams in different countries.
Therefore, proper version management is critical for managing parallel and ge-
ographically distributed modeling activities. According to Koivulahti-Ojala and
Käkölä (2009), literature does not provide a comprehensive set of evaluation
criteria which could be applied in industrial settings to evaluate the version
management capabilities of UML modeling tools in the context of globally dis-
tributed product development.

The main research question was: “What are the necessary and sufficient
properties for version management to support UML modeling in globally dis-
tributed product development?”

The research sub-questions were:
1) What is the set of evaluation criteria for version management capabili-

ties of UML modeling tools?
2) How can the set of evaluation criteria be used for evaluating UML

modeling tools?
The answer to the first research question is a set of evaluation criteria. The

evaluation criteria were developed based on relevant literature and the author’s
experience while evaluating and adopting a UML modeling tool in the case
company.

The answer to the second research question consists of the results of a la-
boratory test. During laboratory testing, two modeling tools were installed, and
features of both tools evaluated and the evaluation results were documented.

This study contributed to the main research question by providing a new
set of evaluation criteria which can be used during the evaluation of UML mod-
eling tool version management capabilities to support UML modeling in global-
ly distributed product development.

1.1.3 Research questions for a new training method to support training of
UML and UML modeling tool (Article III)

End-user training is complicated to implement in a globally distributed product
development company where activities are scattered across multiple sites. Dur-
ing UML modeling tool implementation in the case company, a survey was im-
plemented to verify user satisfaction with the tool and the service (Article IV).
Based on the survey results, the support team decided to implement a new
training method. To be successful, the training should positively impact learn-
ers’ skills, knowledge, and motivation and learners should be satisfied with the
training. A virtual meeting tool (VMT) was chosen to support delivery of train-
ing because it was already in use for meetings.

The research question was: Can the UML and UML modeling tool training
be organized and delivered through a VMT so that learners are satisfied with

18

the training and the training positively impacts their skills, knowledge, and mo-
tivation?

The research sub-questions were:
1) What is the design for a UML modeling language and UML modeling

tool training organized and delivered through a virtual meeting tool?
2) How does the design fulfil the target of learners’ satisfaction with the

training and the training positively impacting their skills, knowledge,
and motivation?

The answer to the first research sub-question is a method as described by
March and Smith (1995). The training method was described in terms of con-
tent, organization of training, training materials, and trainers’ skills and
knowledge. The training method was described based on the case study con-
ducted in the case company.

The answer to the second research sub-question consists of case study re-
sults. According to the study, users’ skills, knowledge, and motivation were
improved and learners were satisfied with the training organized through a
VMT (Koivulahti-Ojala and Käkölä, 2012).

This study contributed to the main research question by providing new
knowledge regarding how UML and UML modeling tool training can be orga-
nized through a VMT.

1.1.4 Research question for a new measurement instrument (Article IV)

There was a target to routinely measure both user satisfaction and service quali-
ty for the tools utilized by users in the case company. It was most appropriate to
measure the user satisfaction and service quality variables after the UML mod-
eling tool was adopted. There were three requirements for a new measurement
instrument: 1) it should measure both the service quality and the user satisfac-
tion with respect to the tool; 2) there should be no more than 10 questions (in-
cluding two standard questions of location and frequency of usage), 3) the in-
strument should be applicable to further develop the service and the tool. The
IS research community has delivered many comprehensive instruments to
measure user satisfaction and service quality (e.g., Petter et al., 2008). However,
the first and the second requirement limited the choice of instrument to an ex-
isting instrument because there was none available to cover both the service
quality and the tool related satisfaction while utilizing only eight questions.

The research question was: “Is it possible to create a new adequately relia-
ble and valid measurement instrument with eight items to measure both user
satisfaction and service quality?”

The main contribution of this research was the design, implementation, and
evaluation of a new 8-item instrument to evaluate users’ satisfaction with the tool
and the services supporting its use. The results detained from analyzing the two
surveys conducted in the case company to measure user and service satisfaction
with a UML modeling tool indicated the instrument has adequate reliability and
validity. Furthermore, it was used successfully to improve the service. It is short,
easy to use, and appropriate for both practical and research purposes.

19

During the study, two rounds of surveys were conducted amongst users
in the case company. When the results of the first survey were analyzed, it was
concluded that users are not satisfied with the existing training and the decision
was made to implement a new training method. This new training method was
the subject of the study in Article III.

This study contributed to the main research question by providing new
knowledge regarding how to evaluate users’ satisfaction with the UML tool and
the services supporting the tool.

1.1.5 Research question for a longitudinal study about UML and UML mod-
eling tool training (Article V)

E-teaching tools facilitate asynchronous (e.g., Wikis) and synchronous (e.g.,
video-conferencing) learning. In the case company, different e-teaching tools
had been used routinely during meetings for several years. Later on, these tools
were deployed for UML and UML modeling tool training. The case company
was interested in understanding which e-teaching tools were most applicable to
UML and UML modeling tool training. It was especially unclear whether e-
teaching tools can be deployed to teach the following categories of knowledge:
application, business context, and collaborative task knowledge. Application
knowledge covers commands and tools embedded in the information system;
business context knowledge covers the use of information systems to effectively
perform business tasks; and, collaborative task knowledge covers how others
use the information system in their tasks.

The research question was: Which classes of e-teaching tools are most ap-
plicable for organizing and delivering technology training allowing large num-
bers of learners to become trained in application, business context, and collabo-
rative task knowledge needed to master the UML and UML modeling tool?

According to this longitudinal case study, an intranet and a virtual meet-
ing tool (VMT) were used to support UML and UML modeling tool training in
application knowledge, business context knowledge, and collaborative task
knowledge. In addition, Wikis, discussion forums and e-mail were used to sup-
port UML and UML modeling tool training but not for all three types of
knowledge.

This study contributed to the main research question by providing new
knowledge concerning which tools have been used to support delivering of
UML and UML modeling tool training in a globally distributed product com-
pany.

The five articles are interrelated (Figure 2). Article I provided insight into
how UML modeling tools were used during the product development process.
Furthermore, for the case company, it provided new information that UML dia-
grams are created but employees are using different UML modeling tools to do
so. Thus, it established a common need for the UML modeling tool implementa-
tion. UML modeling tool evaluation, use, and training was discussed in Articles
II, III, IV and V.

20

FIGURE 2 Relationships between the articles.

In Article II the evaluation criteria for UML modeling tool version man-
agement in the context of globally distributed product development were in-
troduced. According to my experience, UML modeling tools did differ in terms
of features’ capability of supporting globally distributed product development.
According to Koivulahti-Ojala and Käkölä (2009), literature does not provide a
comprehensive set of evaluation criteria which could be applied in industrial
settings to evaluate the version management capabilities of UML modeling
tools in the context of globally distributed product development. Thus, both
research and practice were triggers for this study.

When a new UML modeling tool was implemented in the case company, it
was relevant to measure users’ satisfaction with the tool and the service (Article
IV). This article provided new information for the research community related
to how users’ satisfaction with the tool and service can be measured. Moreover,
when the first survey’s results were analyzed in the case company, it was con-
cluded the users were not satisfied with the training and a new training method
using a virtual meeting tool (VMT) was implemented. This new training meth-
od was the subject of Article III’s study. Finally, Article V provided new infor-
mation as a longitudinal study on how the new training method through VMT
among other training methods evolved over time. Thus, Article V extended the
study in Article III in two respects: several e-teaching tools were studied instead
of one and the study was longitudinal.

21

1.2 Authors’ contribution to the included articles

This thesis consists of one journal article and four conference articles presented
in the following:
I Käkölä, T., Koivulahti-Ojala, M. & Liimatainen, J. 2011. An Information

Systems Design Product Theory for the Class of Integrated Requirements
and Release Management Systems

II Koivulahti-Ojala, M. & Käkölä, T. 2009. Framework for Evaluating the

Version Management Capabilities of a Class of UML Modeling Tools from
the Viewpoint of Multi-site, Multi-partner Product Line Organizations

III Koivulahti-Ojala, M. & Käkölä, T. 2012. Design, implementation, and

evaluation of a Virtual Meeting Tool-based innovation for UML technolo-
gy training in global organizations

IV Islam, A. K. M. N., Koivulahti-Ojala, M. & Käkölä, T. 2010. A light-weight,

industrially-validated instrument to measure user satisfaction and service
quality experienced by the users of a UML modeling tool

V Koivulahti-Ojala, M. & Käkölä, T. 2014. Training people to master com-

plex technologies through e-Learning: Case of UML technology training
in a global organization

I was the main author of Articles II, III, and V. I was responsible for research
planning, writing the article, conducting the literature review, creating the
evaluation framework, and analyzing the modeling tools for Article II. The sec-
ond author contributed to writing and evaluation framework creation. I was
responsible for research planning, writing the article, conducting the literature
review, and conducting and analyzing interviews for Article III. The second
author contributed to writing and analyzing interviews. I was responsible for
research planning, writing the article, and collecting and analyzing data for Ar-
ticle V. The second author contributed to writing and analyzing research re-
sults. I contributed to research planning, writing, requirements and design crea-
tion and evaluation, and analyzing interviews in Article I. I contributed to re-
search planning and writing, as well as implementing and developing the in-
strument and interpreting the statistical analysis results in Article IV.

1.3 Structure of the thesis

This thesis is organized as follows. In Chapter 1, I present the research objective
and the research questions. In Chapter 2, I describe the five articles included in
this thesis, related research methods, the case company and my role in the case

22

company. In Chapter 3, I evaluate the relevance and rigor of each study in three
respects. First, I evaluate the relevance of each study from the perspective of the
case company after the study was conducted. Then, I evaluate the relevance of
each study based on how results were used in IS research. Finally, I evaluate the
rigor of each study. In Chapter 4, I summarize contribution of each study to-
wards answering the main research question. In Chapter 5, I summarize theo-
retical and practical contributions, limitations, and the implications for further
research.

2 SUMMARY OF ARTICLES

In this chapter, I present the five articles, the research approach, research meth-
ods applied in these articles, and the case company, as well as describe my role
in the case company. The term "case company" is used to reflect all studies were
conducted in the context of one company. The term "case company" does not
refer to any research approach or method. The description of each article con-
tains the research problem of the article, the research approach and process, the
results that I emphasize in the article, limitations of the research, and contribu-
tion to this thesis.

Each study’s research question originated from work experience and their
research approaches and methods were chosen prior to beginning the research
process for each study. Therefore, the research approach and methods are de-
scribed in the context of each article. My studies represent a mathematical re-
search approach, research approach where is studied what is reality, and re-
search stressing utility of innovations (Järvinen, 2012, p. 10). Järvinen (2012, p.
10) introduced a taxonomy to help select the most suitable research approach
for a research problem (Figure 3). He first differentiates research stressing what
is reality from mathematical research approaches. In mathematical studies, a
certain theorem, lemma, or assertion is proved. He further distinguishes re-
search stressing what is reality and research approaches stressing utility of in-
novations. Research approaches studying utility of innovations he further dis-
tinguishes into innovation building approaches and innovation evaluation ap-
proaches. He divides the research approaches studying what is reality into con-
ceptual analytical approaches (i.e. research methods for theoretical develop-
ment) and empirical research approaches.

24

FIGURE 3 Research approaches (Järvinen, 2012, p. 10).

Järvinen (2012) distinguishes research approach and research methods.
Research methods may support different research approaches. Theory-creating
research approaches include case studies (Yin, 1989). Additionally, Lee (1989)
presented a specific version of the case study which should be classified as a
theory-testing approach. Thus, case research methods may be applied in the
context of different research approaches. In conceptual-analytical research,
basic assumptions behind constructs are analyzed; theories, models and
frameworks used in previous studies are identified, and logical reasoning is
thereafter applied; then, a new tentative theory, model or framework describing
a certain part of the reality is developed. Theory-testing research methods in-
clude laboratory experiments, surveys, field studies, and field tests.

My studies represent different research approaches (Table 1). Article I rep-
resents a research approach where the utility of innovation is studied, i.e., the
utility of a requirements and release management system (RRMS) is analyzed.
We followed a design method developed by Walls et al. (1992). In Article II,
new evaluation criteria are conceptual-theoretically derived from identified us-
er needs in the context of globally distributed product development and meas-
ured in natural settings. Article III describes the design and re-design of train-
ing arrangements, and therefore represents a longitudinal design project. In
Article IV, a new measurement instrument was created for a reflective construct
that could not be measured as such, following instructions presented by
Churchill (1979). This study represents a mathematical research approach. In
Article V, a tentative list of the e-learning tools most suitable for UML modeling

25

and UML modeling tool training is created, thereby representing a theory crea-
tion approach. This study is a longitudinal case study.

TABLE 1 Research approaches and research methods applied in each study.

Article Research question Research approaches
mapped according to
taxonomy by Järvinen
(2012, p. 10)

Research
method

Article
I

What are the meta-requirements
and meta-design of Information
System Design Theory for the
class of integrated requirements
and release management system
(RRMS) in a globally distributed
product development or-
ganization?

Innovation building
and innovation evalu-
ation

Design method
developed by
Walls et al.
(1992)

Article
II

What are the necessary and suf-
ficient properties for UML mod-
eling tool version management
to support UML modeling in
globally distributed product de-
velopment?

Innovation evaluation A controlled
test to evaluate
the set of eval-
uation criteria
in a laboratory
test

Article
III

Can the UML and UML model-
ing tool training be organized
and delivered through a VMT so
that learners are satisfied with
the training and the training posi-
tively impacts their skills,
knowledge, and motivation?

Innovation building
and innovation evalu-
ation

Design method
developed by
Peffers et al.
(2007)

Article
IV

Is it possible to create a new ad-
equately reliable and valid meas-
urement instrument with eight
items to measure both user satis-
faction and service quality?

Mathematical ap-
proach

Churchill
(1979)

Article
V

Which classes of e-teaching
tools are most applicable for
organizing and delivering tech-
nology training allowing large
numbers of learners to become
trained in application, business
context, and collaborative task
knowledge needed to master the
UML modeling language and
UML modeling tool?

Theory creating Case study
Yin, 2003

26

2.1 An Information Systems Design Product Theory for the Class
of Integrated Requirements and Release Management Sys-
tems (Article I)

2.1.1 Research problem and research strategy

Distributed product development organizations need to collect, analyze, and
utilize requirements. Well-defined requirements are prerequisites for assigning
appropriately scoped projects to internal units and service providers for im-
plementation (Carmel and Agarwal, 2002; Adelson and Soloway, 1985). Release
management is concerned with the identification, packaging, and delivery of
product’s elements (ISO/IEC TR 19759, 2010). Salo and Käkölä (2005) devel-
oped an Information System Design Theory (ISDT) for the class of Require-
ments Management Systems (RMS) to help IT practitioners build RMS for creat-
ing, prioritizing, and storing requirements. Methodologically, their work was
based on Walls et al. (1992) who articulated how to construct and test an ISDT
capable of guiding the design of a specific class of information systems. They
argue that the information systems "field has now matured to the point where
there is a need for theory development based on paradigms endogenous to the
area itself" and call for Information System Design Theories to fill this need. An
ISDT is "a prescriptive theory based on theoretical underpinnings which says
how a design process can be carried out in a way which is both effective and
feasible". According to Salo and Käkölä (2005), the RMS’s benefits were limited
when the instances were not integrated with the systems used in the down-
stream phases to provide transparent end-to-end support throughout the prod-
uct development. For example, customer representatives responsible for enter-
ing requirements were not able to use the RMS instances to follow-up concern-
ing when the requirements would be implemented. The Information System
Design Theory’s scope should thus be broadened to design systems supporting
the whole life cycle more comprehensively.

In this study, knowledge in the case company and existing research
knowledge were used to create a new Information System Design Theory. Ac-
cording to Walls et al. (1992) ISDT prescribes both the design product and pro-
cess aspects of a class of IS, that is, what are (1) the value propositions to be ful-
filled by implementing an instance of the class, (2) meta-requirements describ-
ing the problem(s) to be solved by the class, (3) the meta-design prescribing the
solution for the problem(s), and (4) applicable kernel theories from social and
natural sciences for understanding and/or solving the problem(s) shared across
all products within the class, and how the products should be built. In this
study, the research focused on meta-requirements and meta-design. Therefore,
in terms of Information System Design Theory, the research question was as
follows:

• What are the meta-requirements and meta-design of Information
System Design Theory for the class of an integrated requirements

27

and release management system (RRMS) in a globally distributed
product development organization?

And the research sub-questions were:
1) What are the meta-requirements for the class of integrated require-

ments and release management system (RRMS)?
2) What is the meta-design for the class of integrated requirements and

release management system (RRMS)?
3) How does the meta-design fulfil the meta-requirements for the class of

an integrated requirements and release management system (RRMS)?

2.1.2 Research process

The research began by conducting a literature review to develop preliminary
meta-requirements. Afterwards, interviews and other data gathering methods
were used to gain a comprehensive understanding of RRMS features and usage
in the case company. Two of the paper’s authors had access to all relevant in-
formation and could interact with people who were involved with the RRMS
design. We observed use of the RRMS, analyzed documentation, held informal
discussions with various stakeholders, and conducted six semi-structured in-
terviews with middle-level managers who were involved with the design and
use of the RRMS for process improvement. Based on the interviews, meta-
requirements were modified and the information model and attributes for the
elements created. Finally, the design was evaluated against the meta-
requirements by analyzing how each meta-requirement is supported by the me-
ta-design. The evaluation was documented as part of the paper.

I contributed to this study through research planning, writing, meta-
requirements and meta-design creation and evaluation, and planning and ana-
lyzing interviews. Because I was working as a System Specialist in the case
company and responsible for this information system, we decided interviews
should be conducted by another research team member.

2.1.3 Research results and contribution to this thesis

The main contributions of the article were the meta-requirements of the Infor-
mation System Design Theory and a meta-design that meets the meta-
requirements. Meta-requirements were developed based on the literature and
empirical research conducted in the case company. Meta-requirements consist
of fifteen requirements related to communication, control, change, platform de-
velopment, and process integration. Meta-design consists of an information
model and attributes for the elements presented in the information model. In
their work, Salo and Käkölä (2005) did not propose an information model. Their
approach was based on a two-level document structure. In our work, a new
information model was proposed (Figure 4). The meta-design was validated
against meta-requirements by analyzing how each meta-requirement was sup-
ported by the meta-design.

28

FIGURE 4 Information model of the meta-design of the design product theory for the
class of RRMS (Käkölä et al., 2011).

Research results are relevant for IS researchers whose research interests
are related to requirement or release management process development, infor-
mation systems supporting the requirement or release management process,
process integration, or integration of information systems. Information System
Design Theory for the class of RRMS facilitates theory development in the con-
text of RRMS. This may include, but is not limited to, theory development in the
context of 1) requirements management systems, 2) release management sys-
tems, 3) integrated requirements and release management systems (RRMS), and
4) integration of requirements and release managements processes.

Research results are relevant for R&D managers who can take advantage
of the results when planning, evaluating, implementing, or deploying infor-
mation systems to support requirement and release management. IT practition-
ers benefit from the results when planning, implementing, or evaluating such
systems.

This study contributes to this thesis by providing information about UML
and UML modeling tool usage in the context of the requirement and release
management process. According to the study, if requirements in the RRMS
needed specific product UML models to make them understandable to execu-
tives, managers, service providers, or other critical stakeholders, the models
were crafted in appropriate modeling environments as necessary and hyper-
linked or, sometimes, imported into the RRMS. The priorities, schedules, and
other information stored in RRMS were used to focus UML modeling efforts.
UML models where thus created but they did not cover the whole system. This
result complements Nugroho and Chaudron’s (2008) work. According to their
survey of 80 software professionals who use UML, they found that most of the
UML models were not complete, meaning they did not cover all elements of the
system. Results of our study are thus in line with their study.

29

2.1.4 Limitations and future research

The main limitation of this research is the theory’s design product effectiveness
hypotheses (clarifying the expected organizational benefits from using an
RRMS instance derived from the class of RRMS) are missing. The hypotheses
are needed for the empirical validation and possible revision of the theory in
future research. From a methodical perspective, the Information System Design
Theory is applied here regarding Walls et al.’s (2004) “level 2 use” where In-
formation System Design Theory is used as a common language and frame-
work for determining the meta-requirements. Walls et al. (2004) propose the
application of Information System Design Theory is more advanced when ker-
nel theories are used to create new insights or even further to propose ad-
vancements for Information System Design Theory.

One limitation of this study is the meta-requirements and meta-design
were created in the context of one company and therefore may not be suitable
for other companies’ use. Because the case company has successfully used the
application for several years with different products, inter-organizational set-
ups, and partners, and due to substantial effort made during the research pro-
cess to study the literature we were, however, confident RRMS is also suitable
for purposes other than in the case company.

In the original paper, the research method was described as a case study.
Case study in the original paper reflected the data gathering methods.

2.2 A Framework for Evaluating the Version Management Capa-
bilities of a Class of UML Modeling Tools from the View-
point of Multi-site, Multi-partner Product Line Organizations
(Article II)

2.2.1 Research problem and research strategy

Unified Modeling Language™ (UML) is used in globally distributed product
development organizations for modeling the architecture, detailed design, and
automation of software code generation and testing. In such organizations,
modeling activities are typically scattered across multiple sites and involve
multiple teams in different countries. UML modeling tools utilizing version
management are critical for managing parallel and geographically distributed
modeling activities. According to (Koivulahti-Ojala and Käkölä, 2010), the liter-
ature does not provide a comprehensive set of evaluation criteria which could
be applied in industrial settings to evaluate the version management capabili-
ties of UML modeling tools.

In the second research paper we built and evaluated a framework for
evaluating the version management capabilities of UML modeling tools. The
research problem of the second research paper was:

30

• What are the necessary and sufficient properties for version man-
agement to support UML modeling in globally distributed product
development?

The sub-research questions were:
1) What is the set of evaluation criteria for version management capabili-

ties of UML modeling tools?
2) How can the set of evaluation criteria be used for evaluating UML

modeling tools?
This research represented the evaluation phase of design science research

(Peffers et al., 2007). Peffers et al. (2007) proposed a six-phase method based on
Nunamaker et al. (1990), Walls et al. (1992, 2004), Hevner et al. (2004), March
and Smith (1995), and Rossi and Sein (2003) in the design research discipline.
Their method consists of problem identification and motivation, definition of
the objectives for a solution, design and development, demonstration, evalua-
tion, and communication. This research represents evaluation phase of the de-
sign science research, i.e., evaluation of existing UML modeling tools. The re-
search approach was conceptual-analytical in the sense a new set of evaluation
criteria was created based on an analysis of existing research in SW version
management and documented requirements for assets needing to be managed
in product line organization based on the author’s experience during the evalu-
ation and adoption of a UML modeling tool in the case company (research sub-
question 1). However, a controlled test approach was applied when the set of
evaluation criteria was evaluated in a laboratory test (research sub-question 2).
During laboratory testing, I was responsible for installing the version manage-
ment tool, two UML modeling tools (client and servers), analyzing their fea-
tures against the set of evaluation criteria, and reporting of the results.

2.2.2 Research process

The set of evaluation criteria was developed based on the literature and experi-
ences reported in the paper. Evaluation criteria were applied in laboratory tests
for testing two UML modeling tools. Laboratory tests included installing the
tools, analyzing each feature, and documenting the results. According to the
results, it was possible to differentiate these two UML modeling tools according
to their version management capabilities. The case company representatives
used and were more favorable for the version management capabilities of the
UML modeling tool that, according to laboratory testing, got better scores. This
indicated the tool receiving the highest scores is likely to be more capable of
supporting version management of UML models in a globally distributed
product development organization.

In this study, I was responsible for research planning and writing the arti-
cle, as well as evaluation framework creation and analyzing the modeling tools.
The second author contributed to writing and evaluation framework creation.

31

2.2.3 Research results and contribution to this thesis

The main contribution of this research was the set of validated evaluation crite-
ria for the version management capabilities of UML modeling tools. The labora-
tory tests indicated the set of evaluation criteria is feasible for laboratory testing,
which means it can be applied by organizations to evaluate the version man-
agement capabilities, and the UML modeling tool receiving the highest scores is
more likely to meet the requirements of a distributed product development or-
ganization.

This study contributes to this thesis by providing new knowledge about
UML modeling tool evaluation. Research results are relevant to IS researchers
whose research interests are related to UML modeling tools. Research topics
may include, but is not limited to, theory development in the context of UML
modeling tool evaluation.

Research results are relevant to R&D management and IT practitioners
who can take advantage of the results when evaluating the UML modeling
tool’s version management capabilities. Global R&D organizations evaluating a
UML modeling tool benefit from the framework as they can use it during the
evaluation or the evaluation results of these two modeling tools. This is highly
beneficial as it requires substantial effort to install the tools as well as complete
the evaluation, especially for medium size companies. The total effort required
for both installation and evaluation was several man-months.

2.2.4 Limitations and future research

The main limitation of this study is the evaluation was conducted only in labor-
atory settings. More comprehensive results could possibly be obtained by ex-
tending testing from the laboratory to case organizations where, for example,
successful deployment of UML modeling tool version management capabilities
can be evaluated. Furthermore, a set of evaluation criteria can be extended to
include other features of UML modeling tools. In this article, a generic UML
modeling tool feature list was proposed and by creating a set of evaluation cri-
teria for all features relevant to the research target group could be extended to,
for example, IT practitioners when evaluating and deploying UML modeling
tools.

2.3 Design, implementation, and evaluation of a Virtual Meeting
Tool-based innovation for UML technology training in global
organizations (Article III)

2.3.1 Research problem

End-user training is complicated to implement in globally distributed product
development organizations where its business activities are scattered across

32

multiple sites. Virtual meeting tools (VMT) enable synchronous communication
globally through interactive audio, online chats, video, and sharing presenta-
tions. VMT provides a potentially cost-effective way to deliver training in even
complex topics to large numbers of people in global settings.

In this paper, a case study was conducted in a globally distributed R&D
company to describe the design, implementation, and evaluation of a method
for teaching skills and knowledge needed to use UML and UML modeling tool.
The UML was used in the case company for modeling architecture and detailed
design. The UML modeling tool was used to create and maintain models and
diagrams, the version management of models, and reverse engineering of code.
In the case company, the target was learners’ satisfaction with the training and
it should positively impact learners’ skills, knowledge, and motivation regard-
ing application, business context, and collaborative tasks.

The research problem of the third research paper was:
• Can the UML and UML modeling tool training be organized and

delivered through a VMT so that learners are satisfied with the
training and the training positively impacts their skills, knowledge,
and motivation?

The sub-research questions were:
1) What is the design for a UML and UML modeling tool training orga-

nized and delivered through a virtual meeting tool?
2) How does the design fulfil the target of learners’ satisfaction with the

training and the training positively impacting their skills, knowledge,
and motivation?

The answer to the first sub-research question is a method described by March
and Smith (1995). The training method was described regarding content, organ-
ization of training, training materials, and trainers’ skills and knowledge. The
training method was depicted based on a case study conducted in a case com-
pany. The answer to the second sub-research question consists of evaluation
results obtained from the case company. According to the study, users’ skills,
knowledge, and motivation were improved and learners were satisfied with the
training organized through VMT (Koivulahti-Ojala and Käkölä, 2012). The re-
search approach was constructive considering a new training method was built
and evaluated. Evaluation was based on interviews to verify the impacts on
learners’ skills, knowledge, and motivation, and perceived learner satisfaction
with the new training method. Evaluation of the training method was conduct-
ed from the individual learner’s perspective.

2.3.2 Research process

To answer the research questions, the six-phased design research methodology
presented by Peffers et al. (2007) was utilized and four of the six steps were fo-
cused on during the research process. First, Problem Identification and Motivation
revealed the UML training-related research did not provide any insights into
the design and implementation of VMT innovations for UML training. A de-
tailed literature review is included in the paper. Second, Objectives for an Innova-

33

tion were defined to resolve the problem based on the case company’s experi-
ences. The objective for the research was: “Can the UML modeling and model-
ing tool training be organized and delivered through a virtual meeting tool in
ways that learners are satisfied with the training and the training positively im-
pacts their skills, knowledge and motivations?”. Third, the new training meth-
od’s key components such as content, organization of training, training materi-
als, and trainers’ skills and knowledge were Designed and Developed. Fourth,
learner satisfaction and improvements in skills, knowledge, and motivation
were Evaluated. Evaluation was based on interviews to verify the innovation’s
impacts on skills, knowledge, and motivation and perceived learner satisfaction
regarding the new training method. Based on results from the interviews, the
training method proved successful in improving skills, knowledge, and motiva-
tion in the case company and learners were satisfied with it. As the method was
already in use when the study was started, instead of the demonstration phase
it was focused on evaluating the existing method. Therefore, the demonstration
phase was not documented. The final phase of communication was not possible
to complete fully because at the time of the study, the case company was not
willing to divulge any information related to the training costs.

In this study, I was responsible for research planning, writing of the arti-
cle, and conducting and analyzing interviews. The second author contributed to
writing and analysis of interviews.

2.3.3 Research results and contribution to this thesis

The main contribution of this research was the design, implementation, and
evaluation of a VMT-based training method for teaching the UML and UML
modeling tool. Design and implementation of training was specified in terms of
content, organization of training, training materials, and trainers’ skills and
knowledge. Based on the evaluation, VMT was applied in the case company for
UML training successfully in terms of learner satisfaction, and improved skills,
knowledge and motivation.

IT practitioners benefit from the new training method when planning, im-
plementing, and evaluating the UML and UML modeling tool training. R&D
management can take advantage of the results when planning, implementing,
and evaluating the UML and UML modeling tool training. IT practitioners and
R&D management can take advantage of the results when making decisions
about VMT usage in UML and UML modeling tool training.

This study contributes to this thesis by providing new knowledge about
UML and UML modeling tool teaching. Research results are relevant for IS re-
searchers whose research interests are related to UML modeling, UML model-
ing tools, or end-user training. Research topics may include, but is not limited
to, new method development and evaluation in the context of UML modeling
language training, UML modeling tool training, and VMT-based training.

34

2.3.4 Limitations and future research

Subjective opinions of interviewees do not necessarily correlate with real im-
provements in skills and knowledge or learner satisfaction. However, other da-
ta sources within the company support the interview results. First, a user satis-
faction survey completed in the company indicated after the UML and UML
modeling tool training sessions were provided, user satisfaction was increased
(see details in Article III). Second, the case company attempted other ways of
supporting end-users’ efforts to learn UML technology but they were unsuc-
cessful in terms of popularity amongst the end-users.

In the original paper, the research method was described as a case study.
Case study in the original paper reflects the data gathering methods.

2.4 A lightweight, industrially-validated instrument to measure
user satisfaction and service quality experienced by the users
of a UML modeling tool (Article IV)

2.4.1 Research problem and research strategy

Existing research in information systems evaluation considers user satisfaction
and service quality as central constructs and has produced comprehensive ap-
proaches using multidimensional instruments (DeLone and McLean,1992; De-
lone, 2003; Doll and Torkzadeh, 1988, 1991; Ives et al., 1983; Petter et al., 2008;
Pitt et al. 1995; Smithson and Hirschheim, 1998; Symons, 1991). From a distrib-
uted product development organization’s viewpoint, there are two main limita-
tions in the current research. First, based on experiences in the case company,
when collecting data with several surveys or using each with a large set of
questions, response rate was low. Secondly, the case company’s representatives
were not satisfied with the current IS ZOT SERVQUAL instrument as the users
may not be able to meet the support personnel face-to-face to evaluate physical
facilities, equipment, or personnel-related tangibles and therefore cannot relia-
bly answer the related questions. IS ZOT SERVQUAL (Kettinger and Lee, 2005)
deploys 54 questions to be answered for IS service quality.

In the case company, there was a target to periodically measure both user
satisfaction and service quality for the tools used. This was a mandatory action
because the case company was committed to fulfil the criteria set in ISO 9000
certification to maintain customer satisfaction. Some existing instruments were
presented (for SERVQUAL, Kettinger and Lee, 2005; Jiang et al., 2002; Pitt et al.,
1995, for UIS Ives et al., 1983, for EUCS, Doll and Torkzadeh, 1988), but accord-
ing to the case company representatives, they were not suitable for its purposes.
Therefore, requirements were set for the new measurement instruments as fol-
lows: 1) it should measure both the service quality and user satisfaction regard-
ing the UML tool; 2) there should be no more than 10 questions (including two

35

standard questions of location and usage frequency), 3) the instrument should
be applicable to further develop the service and the tool.

In the fourth research paper, we created and evaluated a lightweight 8-
item instrument to measure user satisfaction and the quality of service experi-
enced by the users of a UML modeling tool in the case company. The research
problem of the fourth research paper was:

• Is it possible to create a new adequately reliable and valid meas-
urement instrument with eight items to measure both user satisfac-
tion and service quality?

The research approach was constructive considering a new instrument
was created and evaluated. However, a theory testing approach was applied
when the instrument was evaluated.

2.4.2 Research process

The research process followed instructions presented by Churchill (1979) focus-
ing not on individual measures but the overall validity of the new measurement
instrument:

1. Specify the domain of the construct.
Domain of the construct was specified as user satisfaction measurement and
service quality measurement for an information system.

2. Generate a sample of items
A sample of items was generated based on existing measurement instruments
and reviewed by case company representatives.

3. Collect the data
Data was collected via survey.

4. Purify measure
Instead of purification, this phase’s focus was on central tendency computation,
regression analysis, item to criterion correlation, and item to total correlation.
Item to total correlation was analyzed to ensure higher model reliability. As a
part of this analysis it was noticed that overall satisfaction was not explained by
Item 6 (How satisfied are you with training available?) featured in the first sur-
vey. However, the survey item was not removed or changed as the users were,
according to the first survey’s results, not satisfied with the training. Based on
the first survey conducted in the case company, it was concluded the communi-
cation and training practices had to be improved because the means of ques-
tions related to instructions, user guides, and training were lower than the
mean of all questions. Information sharing with the users was improved in sev-
eral ways and a new training method was implemented.

5. Collect the data
Data were collected via survey.

36

6. Assess reliability with new data.
To ensure higher model reliability, the correlation of each item’s score with the
total of all items’ scores was computed. A threshold of 0.45 was used for this
validity check. The correlation values were well above the threshold except the
result of Q6 in the 1st survey (see the explanation in Purify measure). Therefore,
we concluded the instrument has adequate reliability.

7. Assess construct validity.
To ensure statistical conclusion validity (Straub et al., 2004), we performed a
regression analysis. According to the results, all the questions had at least a
modest fit when following rules described by Bryman & Cramer (1999).

In this study, I contributed to research planning, writing, implementation,
and deployment of the instrument, as well as statistical analysis and interpret-
ing statistical analysis results.

2.4.3 Research results and contribution to this thesis

The main contribution of this research was the design, implementation, and
evaluation of a new measurement instrument to evaluate users’ satisfaction
with the UML tool and services supporting tool. The list of items in the instru-
ment is given in the Appendix of Article IV.

From an IS researcher’s viewpoint, an analysis of the results of two sur-
veys conducted in a case company indicates the new measurement instrument
had adequate reliability and validity. Compared to the available existing in-
struments, the number of questions was significantly smaller and therefore
provides IT practitioners with a new measurement instrument that can be ap-
plied instead of those currently used for similar purposes, specifically to evalu-
ate satisfaction and service quality experienced by users of an information sys-
tem. Furthermore, in the case company it was proven easy to use and appropri-
ate for further improving the service and tool.

IT practitioners benefit from the proposed instrument when measuring
user satisfaction and service quality for information systems. IS researchers can
benefit from the results including, but not limited to, theory development in the
context of information systems-related service quality measurement and user
satisfaction measurement. Research results are thus relevant for IS researchers
whose research interests are related to measurement of user satisfaction or ser-
vice quality for information systems.

This study contributes to this thesis by providing new knowledge about
user satisfaction and service quality experienced by users of the UML modeling
tool. According to the results, by providing new training methods and improv-
ing communication, overall satisfaction with the UML modeling tool and relat-
ed services were improved in the case company.

37

2.4.4 Limitations and future research

The main limitation of this study is the new measurement instrument was test-
ed only in the context of one application and organization. Future research is
needed to validate the instrument in the context of other organizations and oth-
er classes of information systems. However, the instrument was designed to be
generally applicable for evaluating a variety of systems and services.

2.5 Training people to master complex technologies through e-
Learning: A case study of UML technology training in a glob-
al organization (Article V)

2.5.1 Research problem

E-teaching tools facilitate asynchronous and synchronous collaboration. Exam-
ples of e-teaching tools include Wikis, intranet, internet, e-mail, discussion fo-
rums, and virtual meeting tools (VMT) which enable real-time interactions
through features such as chat tools, audio, video, and user interfaces for screen
sharing. E-teaching tools may provide a cost-effective way to train many people
simultaneously in global settings to leverage complex technologies such as the
UML modeling language and UML modeling tool. We consider the UML mod-
eling language and UML modeling tool training a complex technology to teach
for the following reasons. First, there is a high number of diagrams and symbols
with which learners should become familiar. Second, modeling requires both
the understanding of UML and the ability to use the UML modeling tool. Third,
using UML requires long-term training and learning efforts (Dori, 2002;
Kobryn, 2002).

According to a literature review conducted by Koivulahti-Ojala and
Käkölä (2014), there are no longitudinal studies concerning UML or UML mod-
eling tool training through e-teaching tools in industrial settings. It is unclear
whether e-teaching tools can be deployed to learn three types of knowledge
needed as a user in the context of applications supporting collaboration: appli-
cation, business context, and collaborative task knowledge (Kang and Santha-
nam, 2003). Kang and Santhanam (2003) identified three knowledge domains
user training should deliver in the context of information systems supporting
collaboration: application knowledge covering commands and tools embedded
in the information system; business context knowledge covering the use of in-
formation systems to effectively perform business tasks; and collaborative task
knowledge covering how others use the information system in their tasks.

In this paper, a longitudinal case study was conducted in a globally dis-
tributed R&D organization to evaluate several classes of e-teaching tools uti-
lized in supporting the teaching of application, business context, and collabora-
tive task knowledge required for UML modeling language and UML modeling

38

tool implementation. The UML modeling language was used in the case com-
pany for modeling architecture and detailed design. The UML modeling tool
was used to create and maintain models, to create and maintain diagrams, ver-
sion management of models, and reverse engineering of code. The research
problem of the fifth research paper was:

• Which classes of e-teaching tools are most applicable for organizing
and delivering technology training allowing large numbers of
learners to become trained in application, business context, and col-
laborative task knowledge needed to master the UML modeling
language and UML modeling tool?

E-teaching tools included Wikis, intranet, e-mail, discussion forum and
virtual meeting tools (VMT) which enable real-time interactions through fea-
tures such as chat tools, audio, video, and user interfaces for screen sharing.

2.5.2 Research strategy and process

In case studies, IS researchers find out conditions in the target organization by
making observations, interviewing, archiving, and recording (Yin, 2003, p. 83).
Benbasat et al. (1987) state three reasons why case studies are suitable for IS re-
search:

• The IS researcher can study the information system in a natural set-
ting.

• The IS researcher can answer "how" and "why" questions.
• Case study is an appropriate way to research an area in which few

previous studies have been carried out.
All three reasons were valid in this research. According to the literature

review conducted and reported as a part of the paper, the extant research on e-
teaching for UML modeling language and UML modeling tool training consists
of a few papers covering only a few e-teaching tools. Longitudinal studies are
missing. Therefore, conducting a study in a natural setting brings new infor-
mation about the usage of several e-teaching tools as well as about long-term
usage of e-teaching tools.

During the case study, each e-teaching tool used for UML and UML mod-
eling tool training were listed, and the content of the training analyzed and
mapped to the application, business context, and collaborative task knowledge
(Kang and Santhanam, 2003). To provide a longitudinal view, each e-teaching
tool’s usage was described in detail during the years 2008, 2010, and 2013, and
finally, an overview of each e-teaching tool’s usage over time was created.
Sources for the information were interviews, documents, meeting memos, in-
tranet and e-mails.

Evaluating the success of e-teaching tools in the case company was con-
ducted based on the usage of the tools. In 2013, intranet, email, and VMT were
the only e-teaching tools in use. Additionally, VMT tool usage in on-line train-
ing sessions covering the UML modeling language and UML modeling tool was
evaluated as a separate study (Koivulahti-Ojala and Käkölä, 2012). According to

39

the study, skills, knowledge, and motivation of users were improved and learn-
ers were satisfied with the training (Koivulahti-Ojala and Käkölä, 2012).

In this study, I was responsible for research planning, writing the article,
and collecting and analyzing data. The second author contributed to writing
and analyzing research results.

2.5.3 Research results and contribution to this thesis

Based on the case study, face-to-face training and support were accompanied
by a wide variety of e-teaching tools including Wikis, discussion forums, intra-
net, e-mail, and a VMT. The application of e-teaching tools for software applica-
tion training focused first on application knowledge training but extended over
time to include business context knowledge and collaborative task knowledge.
In the beginning, the UML tool vendor and the virtual team responsible for the
UML modeling tool’s global deployment produced most of the learning content
but over time the community using the technology also became a contributor.

The main contribution of this research was that several classes of e-
teaching tools were used to support UML and UML modeling tool training but
intranet and virtual meeting tool (VMT) were used to support UML and UML
modeling tool training regarding all three types of knowledge (application
knowledge, business context knowledge, and collaborative task knowledge).
VMT was the most crucial class of tools because it not only contributed to the
sharing of all three types of knowledge in the case company but also improved
the users’ motivation to use UML technology.

This study contributes to this thesis by providing new knowledge about
UML modeling language and UML modeling tool teaching. Research results are
relevant for IS researchers whose research interests are related to UML model-
ing, UML modeling tools, or e-teaching tools. Research topics may include, but
are not limited to, research in the context of complex technology training, UML
modeling language and UML modeling tool training, and e-teaching tools us-
age in information systems training. IT practitioners benefit from the results
when they plan and deploy UML modeling language and UML modeling tools
training.

2.5.4 Limitations and future research

The main limitation of this study is the study was conducted in only one organ-
ization. Future research is needed to confirm the results in the context of other
organizations. Another limitation is only training organized through VMT was
directly evaluated; specifically, skills, knowledge, and trainees’ motivation were
evaluated at the individual level. Other e-teaching tools’ impact on trainees’
skills, knowledge, and motivation were evaluated secondarily through measur-
ing the popularity of each e-teaching tool. Therefore, research is needed to de-
termine which e-teaching tools are the most effective at supporting learning of
the UML modeling language and UML modeling tool in ways resulting in

40

learners satisfied with the training and the training positively impacts the skills,
knowledge, and motivation of the learners.

The use of e-teaching tools evolved over time in the case company regard-
ing the number of tools deployed and the coverage of not only the application
knowledge training but also the business context knowledge and collaborative
task knowledge training. The usage of various classes of e-teaching tools should
be studied in future longitudinal studies to understand these phenomena bet-
ter.

2.6 The case company and my role in the case company

All the studies presented were conducted in a global high-technology corpora-
tion in the business of developing products in multiple sites with multiple part-
ners. Business units in the case company ran one or more product lines in
which product programs produced product releases under the guidance of
product roadmaps and release plans for customers in specific market segments.
Product programs deployed software and hardware platform releases devel-
oped by internal platform units, inter-organizational consortiums, and external
providers. Product programs were run either by the case company or its part-
ners. The platform releases integrated hardware and/or software component
releases developed internally or by partners or purchased off-the-shelf from
external providers. Partners included OEMs, consortiums, outsourced software
and hardware development, research centers, and open source communities.
Requirements were collected from markets, service providers, and other inter-
nal and external sources.

IT support and development for applications used by R&D was organized
by virtual teams consisting of personnel from the global IT department and the
department responsible for process and information systems development and
support for R&D as well as outsourced resources working for both the global IT
department and the department responsible for process and information sys-
tems development.

For the duration of the studies, I was working in several roles within the
case company (Table 2) in the department responsible for process and infor-
mation systems development and support for R&D.

Because I had an official role in the case company, especially close atten-
tion was paid to verifying the results to ensure their reliability. In all the papers,
there was at least one additional author who reviewed the same material and
results, therefore ensuring conclusions were valid. As a part of this process, for
example, content of the interviews was crosschecked and when needed more
information was obtained if possible. More details of such actions taken are in-
cluded in the papers.

41

TABLE 2 My roles in the case company.

2009-2012 Senior Manager responsible for architecture & system design
process and operational development including process devel-
opment, IT support and running process and development pro-
jects. Both direct line reports and outsourced resources.

2007-2008

System Specialist for UML modeling tool during global evalu-
ation and deployment in the case company. Managing virtual
team.

2006 Maternity leave
2004-2005 System Specialist for an information system which support

integrated Requirements Management and Release Manage-
ment System. Managing virtual team.

2003 Maternity leave
2000-2002

Line Manager for a team which was responsible for develop-
ment, deployment and support of information systems used
globally in R&D in the data warehouse, groupware, and portal
technologies areas. Both direct line reports and outsourced re-
sources.

1998-2000

IT Project Manager
Planned, implemented and deployed a data warehouse solution
for R&D globally; manage internal and subcontractor resources

1996-1998

System Specialist for information systems supporting R&D
project management including deployment, development and
support of ISs. Solutions created and supported in co-operation
with process and concept owners, local support organization, IT
specialists and subcontractors.

3 POST-EVALUATION OF STUDIES

In this chapter, I evaluate the relevance and rigor of each study in three re-
spects. Firstly, I evaluate the relevance of each study from the perspective of the
case company after the study was conducted, specifically, how the case compa-
ny could utilize the results of the study. Second, I evaluate the relevance of each
study based on how results were used in IS research. Third, I evaluate the rigor
of the study from the perspective of methodological choices made during the
study.

3.1 An Information Systems Design Product Theory for the Class
of Integrated Requirements and Release Management Sys-
tems (Article I)

3.1.1 Relevance of research results for the case company

The research results of this study were the design product theory for the class of
integrated requirements and release management systems (RRMS), including
the requirements for RRMS instances and the design meeting the requirements.
The design consists of an information model and the attributes for the elements
presented in the information model.

This study provided relevant information for the company in which fea-
tures of the information system provide critical support for the integrated re-
quirement and release management process. After the study was completed,
the case company decided to invest in a commercial system which would re-
place the existing in-house system. The commercial system evaluation, configu-
ration and deployment was a large-scale migration project with a total invest-
ment of 10 million euros over five years. The requirements and design were re-
used during the evaluation, configuration, and deployment of the commercial
system. The decision in support of replacement was made to enable usage of a
commercial system instead of in-house development.

43

During the evaluation, configuration and deployment of the commercial
system the information model was further developed. For the purposes of shar-
ing and agreeing overall enterprise level architecture, the level of granularity in
the information model was suitable. However, for the purposes of planning and
implementing the information model through configuration of the commercial
system, a more detailed information model was needed. Thus, the study’s re-
sulting information model was more suitable for the enterprise level architec-
ture planning in the case company.

Interestingly, even if a new commercial system replaced the existing re-
quirement and release management tool, UML modeling tool(s) continued to be
used in the same ways. UML models were linked and imported into the system
supporting the requirements and release management system. However, none
of the business units or teams completed end-to-end models; specifically, they
did not create complete models of the system. Thus, providing a new UML
modeling tool and commercial system to replace the existing requirement and
release management tool did not impact the way UML modeling was used in
this regard.

3.1.2 Relevance of research results for science

Documented requirements and design represent the conceptual design IT arti-
fact as described by Rossi and Sein (2003). According to March and Smith
(1995), when building the first artifact, the research contribution lies in the nov-
elty of the artifact and in the persuasiveness of the claims that it is effective. Ac-
cording to Käkölä et al. (2010), there are no requirements or design depicted for
an information system supporting a requirement and release process. There-
fore, the research can be considered novel. Additionally, the design was evalu-
ated against the requirements and it fulfills the requirements. Therefore, the
design artifact can be considered effective.

As the original paper was published several years ago, it is possible to
evaluate how the study’s results have been further developed. To find related
studies, the following research portals were searched: Scopus, ACM Digital Li-
brary, IEEE Xplore Digital Library, Google Scholar, and ABI/INFORM
(Proquest). Eleven studies containing references to the article were found. In
two studies, the study’s results were further developed. Tang and Liu (2010)
proposed the definition and elements of a meta-requirement. Lu (2015) has ex-
tended the information model to cover test management. Thus, IS researchers
have further developed the results provided.

3.1.3 Methodological Rigor

In the first paper, the design science research approach proposed by Walls et al.
(1992) was applied. Our research question in this study was: “What are the me-
ta-requirements and meta-design of Information System Design Theory for the
class of integrated requirements and release management system (RRMS) in a
globally distributed product development organization?” The main contribu-

44

tion in terms of Walls was the partial design product theory (ISDT) for the class
of RRMS, including the meta-requirements for RRMS product instances and the
meta-design that meets the meta-requirements. As there already existed partial
ISDT provided relevant input for the study (i.e., ISDT for an information system
supporting requirements management) continuation of the already existing
ISDT development was relevant and therefore design research was conducted
following Walls et al. (1992).

During the research process, some limitations during research implemen-
tation were found: 1) During the research process no evidence could be found
regarding kernel theories availability in the context of the RRMS design. Thus,
immature or missing kernel theories within the context of requirements and
release management limited the creation of ISDT within this context. 2) The
ISDT creation process was not very well phrased in the original paper and
therefore required substantial effort to learn during the research process and
explain later during the reporting phase. The second challenge is backed by
Walls et al. (2004) who conducted a literature review and concluded the re-
search method’s usability and ease of use needs to be improved. In their study,
Walls et al. (2004) concluded that there were only 26 papers applying their pro-
posed research approach published during a 12-year period from the time that
their original paper was published. Thus, this study represented a research ap-
proach which very few IS researchers have applied.

3.2 A Framework for Evaluating the Version Management Capa-
bilities of a Class of UML Modeling Tools from the View-
point of Multi-site, Multi-partner Product Line Organizations
(Article II)

3.2.1 Relevance of research results for the case company

The main contribution of this research was the set of validated evaluation crite-
ria for the version management capabilities of UML modeling tools. The set of
evaluation criteria and the evaluation results were used by the case company.
These results provided relevant information for the case company regarding the
differences that the UML modeling tools had in terms of version management.
Additionally, the set of evaluation criteria was shared with the UML modeling
tool vendor. The aim was the UML modeling tool vendor would develop the
tool so that it supports all the evaluation criteria. At the time the original paper
was written, the following evaluation criteria were not fulfilled by the UML
modeling tool that was used in the case company:

- Availability of element level history (i.e., which modifications were done
and who did them)

- Diagram and Element level branching (at the time of the writing branch-
ing was possible at the package and model levels only)

45

- Check in / Check out for diagrams and elements (at the time of writing
Check in/ Check out was possible on model and package levels only).

Since 2015, the product has supported the availability of element level his-
tory. Thus, the tool has been developed to better fulfill the evaluation criteria
and benefitted other people than just those at the case company.

3.2.2 Relevance of research results for science

According to Koivulahti-Ojala and Käkölä (2010), the literature does not pro-
vide a comprehensive set of evaluation criteria which could be applied in in-
dustrial settings to evaluate the version management capabilities of UML mod-
eling tools in a globally distributed product development organization. There-
fore, it can be claimed the set of evaluation criteria is novel. Furthermore, the set
of evaluation criteria was successfully used for the evaluation of two UML
modeling tools. According to the laboratory tests, it was possible to differentiate
two UML modeling tools according to their version management capabilities.

Because the original paper was published several years ago, it is possible
to evaluate how the study results have been further developed. To find related
studies, the following research portals were searched: Scopus, ACM Digital Li-
brary, IEEE Xplore Digital Library, Google Scholar, and ABI/INFORM
(Proquest). According to the search, eight studies were found with references to
the article. However, none of these studies further developed or applied the
evaluation criteria.

3.2.3 Methodological rigor

This study represented the evaluation phase of design science research (i.e.
evaluation of existing UML modeling tools). According to March and Smith
(1995), design science research consists of two basic activities: build and evalu-
ate. Evaluation is the process of determining how well an artifact performs; it
refers to the development of criteria and the assessment of artifact performance
against those criteria.

The research approach was conceptual-analytical considering a new set of
evaluation criteria was created. During the concept-analytical phase, relevant
literature related to version management was analyzed, the requirements in the
case company documented, and each criterion created and documented accord-
ingly. The limitation is no literature review was conducted in the domain of
version management during this phase. This decision was made based on my
experience with several version management tools and knowledge that, at the
time of writing, the version management capabilities of the tools were similar
with each other. Thus, a literature review would not provide additional infor-
mation.

However, a controlled test approach was applied when the set of evaluation
criteria was assessed in a laboratory test. During laboratory testing, I installed all
the needed software and tested the features. The rigor of the laboratory test was
ensured by repeating the tests with two different versions of the tools.

46

In this study, only one domain of the UML modeling tool’s features were
studied (version management). These features were evaluated from the per-
spective of a globally distributed R&D organization where users of the UML
modeling tool are product developers. The defined evaluation criteria scale was
a binary “no” or “yes.” Thus, it represented a qualitative evaluation for a lim-
ited user group and purpose. In general, evaluation of commercial off-the-shelf
software is considered challenging. Wanyama and Far (2008) name multiple
stakeholders and multiple objectives as challenges in the evaluation of commer-
cial off-the-shelf software. Jadhav and Sonar (2009) state software evaluation is
a multiple criterion decision-making problem (MCDM) and based on their liter-
ature review, the analytic hierarchy process has been widely used for evaluat-
ing software packages. The analytic hierarchy process was first introduced by
Saaty (1999) and provides a comprehensive approach for software package
evaluation. With multiple criteria or several stakeholders, I recommend consid-
ering such a process.

3.3 Design, implementation, and evaluation of a Virtual Meeting
Tool-based innovation for UML technology training in global
organizations (Article III)

3.3.1 Relevance of research results for the case company

The main contribution of this research was the design, implementation, and
evaluation of a VMT-based training method for teaching UML modeling and
UML modeling tool. Design and implementation of training was specified re-
garding content, organization of training, training materials, and trainers’ skills
and knowledge. Based on the evaluation, VMT was applied successfully in the
case company for UML training regarding improved learner satisfaction, skills,
knowledge, and motivation. At the time of the study, the case company was not
committed to divulging information related to exact travel or training instructor
costs due to contractual reasons where an outside travel agency and training
provider were involved. However, the decrease in training costs can be meas-
ured by comparison. One set of on-line training organized for 20 participants
cost 12% compared to face-to-face training with similar content. This only in-
cludes costs related to the training itself. Additionally, no traveling costs were
assigned for on-line training for participants or instructors. Therefore, the total
decrease in cost was even greater, although we do not know the detailed travel-
ing costs due to contractual reasons. The cost decrease of 88% was significant
for the case company as the training sessions were organized on a regular basis.
During a six-month period (June 2010 - November 2010), 29 sessions were or-
ganized, and each lasted 1-2 hours. After three years, VMT was still extensively
used for training. During a six-month period (June 2013 - November 2013), 29
sessions were organized, and each lasted 1-2 hours.

47

An ongoing need for training sessions was, according to the virtual team
supporting the UML modeling tool, due to at least two reasons: 1) training ses-
sions were organized in a way that they supported both novice and advanced
learners and, therefore, even if novice users became more knowledgeable, they
still find beneficial to join training sessions; and 2) there was an ongoing need
for training because when users joined a new project, team or organization
which used UML, they typically needed to learn additional information they
were not already familiar with such as new types of diagrams.

As users gained more knowledge about the tool’s capabilities, they did not
request such features they now knew already exist. Before the training was in-
troduced, users sometimes requested features the tool already had. Further-
more, they gained additional knowledge about the templates and other meth-
ods they can use to configure the tool’s output and input. Thus, they did not
need additional configurations to be implemented by a support team or the
vendor. For example, during the training, users were trained how to publish
their models in the intranet. As a result, there were fewer requests sent to the
support team and tool vendor for new publishing capabilities. Users were also
able to better formulate new requirements to improve the tool. For example, as
a part of the training, they learned how to use version management. However,
as they become more familiar with version management they can suggest new
requirements for it.

3.3.2 Relevance of research results for science

According to a literature review conducted by (Koivulahti-Ojala and Käkölä,
2012), until 2012, there was only one paper published where the adoption of
UML modeling training in industrial settings via e-teaching tool was studied,
which was by Bunse et al. (2006). The limitation of that study is the training
method was not described and the training did not cover UML modeling tool
training. Therefore, I can claim that the training method is novel for the IS re-
search community. Furthermore, the training method was successful regarding
improved skills, knowledge, and motivation of users as well as learners’ satis-
faction.

Since the original paper was published several years ago, it is possible to
evaluate how the study results have been further developed. To find related
studies, the following research portals were searched: Scopus, ACM Digital Li-
brary, IEEE Xplore Digital Library, Google Scholar, and ABI/INFORM
(Proquest). According to results from the search, one study citing this article
was found. That study is included in this thesis (Article V). This study provided
further information regarding how this training method was developed over
time.

3.3.3 Methodological rigor

In this study, a systematic literature review was conducted. It followed Kitch-
enham et al.’s (2009) approach. The literature review was used to assess the cur-

48

rent state of knowledge regarding UML and UML modeling tool training. Boell
and Cecez-Kecmanovic (2015) propose that the systematic literature review is
suitable only for a meta study summarizing the evidence from earlier research.
As our aim was to assess the current state of the research by summarizing the
earlier research, I claim that use of Kitchenham et al. (2009) was relevant.

In this study, the six-phased design research methodology presented by
Peffers et al. (2007) was deployed. The result of the study was a training meth-
od. Methods represent one type of artifact that is a possible result. By definition,
design research is about artifacts (i.e. artefacts are the final results of design re-
search process). March and Smith (1995) identify four types of IT artefacts: con-
structs, models, methods, and instantiations. They define these as follows: “As
in natural science, there is a need for a basic language of concepts (i.e., con-
structs) with which to characterize phenomena. These can be combined in high-
er order constructions, often termed models, used to describe tasks, situations,
or artifacts. Design scientists also develop methods, ways of performing goal-
directed activities.” Later, Hevner et al. (2004) adopt the same list of IT artifacts.
Specifically, Hevner et al. (2004) state, “effective design-science research must
provide clear contributions in the areas of design construction knowledge (i.e.,
foundations, system development methodologies, modeling formalisms, ontol-
ogies, problem and solution representations, design algorithms), and/or design
evaluation knowledge (i.e., methodologies, new evaluation metrics).” March
and Smith (1995) state constructs, models, and methods can be instantiated in
specific products, or physical implementations. Rossi and Sein (2003) name po-
tential products of design research conceptual designs (e.g., definition of rela-
tional model), methods (e.g., design patterns), models and systems (e.g., proto-
types and commercial applications), and better theories (e.g., relational algebra).
Hevner et al. (2004) pointed out that IT artifacts constructed in design science
research are rarely full-grown information systems used in practice. System de-
velopment methodologies, design tools, and prototype systems (e.g., GDSS,
expert systems) are examples of such artifacts. For this study, the definition pre-
sented by March and Smith (1995) of methods as ways of performing goal-
directed activities was adopted.

The value of an artifact lies in its utility (March & Smith, 1995; Hevner et
al., 2004). The utility of the method was mainly evaluated from the perspective
of the individual learner - are the learners satisfied with the training and are
their knowledge, skills, and motivation improved. Moreover, this information is
also relevant to trainers, R&D management, and IT management for decision
making regarding training. However, the main target was evaluating the utility
of the new training method from the perspective of the learner.

In this study, learning considered a transformative process where, through
learning, the initial state in the learner's mind is transformed to the new state
which is different from the initial state if learning has occurred (Järvinen, 1999,
p.3; Aulin, 1982, p. 15). Thus, we assumed it is possible to evaluate learners’
skills, knowledge, and motivation after the training and learning may improve
them. However, our focus has been on transformation in knowledge, skills, and

49

motivation through learning only. Kang and Santhanam (2003) identified three
knowledge domains IS training programs should cover: application knowledge
covering commands and tools embedded in IS applications; business context
knowledge covering the use of IS applications to effectively perform business
tasks; and collaborative task knowledge covering task interdependencies be-
tween various actors and how the IS application coordinates and mediates these
interdependencies. According to Kraiger et al. (1993), training can positively
affect individuals’ motivation and therefore improvement in motivation was
considered relevant to the study. However, this view can be considered too nar-
row and there are studies aimed at a more comprehensive approach for under-
standing and evaluating e-learning (e.g., Koponen, 2008). Learning is closely
related to the understanding of data, knowledge, and information (Hälinen,
2011, p. 6). Despite its limitations, this study provided new information for both
researchers and practitioners.

3.4 A lightweight, industrially-validated instrument to measure
user satisfaction and service quality experienced by the users
of a UML modeling tool (Article IV)

3.4.1 Relevance of research results for the case company

The main contribution of this research was the design, implementation, and
evaluation of a new measurement instrument to evaluate users’ satisfaction
with the tool and services supporting the tool. Continuous user satisfaction
measurement was relevant for the case company since in the case company
there was a target to periodically measure both user satisfaction and service
quality of the tools used in the case company. This was a mandatory action be-
cause the case company was committed to fulfill criteria set in ISO 9000 to
maintain customer satisfaction. User satisfaction surveys were conducted six
times between 2009 and 2013 but the same instrument was not used each time.
Instead, the guidelines and instructions given inside the company were fol-
lowed. Questions were slightly different each time and the results were not ful-
ly comparable with previously conducted surveys. However, the questions rep-
resented system and service quality-related questions. The number of questions
decreased during a five-year period, however, the same instrument was also
used for systems other than the UML modeling tool. The potential number in
the target group was hundreds of users during the period of 2009 - 2013.

One open question was included in the survey. The results of the surveys
as well as answers to the open questions were source for feedback for the tool
vendor as well as for the continuous development of the service. Action plans
were created after each time the survey was conducted and contained new ini-
tiatives such as new requirements for the vendor or any tasks aiming at devel-
oping the service.

50

3.4.2 Relevance of research results for science

Analysis results from the two surveys, conducted in a case company, indicate
the new measurement instrument has adequate reliability and validity. There
are existing instruments to measure end user computing satisfaction (EUCS)
and service quality. I compare the new instrument to the two most widely used
existing instruments from the perspective of using those on a regular basis for a
considerable number of applications and users. The most widely used instru-
ments for user satisfaction measurement are EUCS and UIS and for service
quality measurement, SERVQUAL (Petter et al., 2008). As the EUCS instrument
(Doll and Torkzadeh, 1988) contains fewer items compared to the UIS, even its
short form (Ives et al, 1983; Baroudi & Orlikowski, 1988). I used the EUCS in-
strument for comparison purposes as it contains fewer items. EUCS deploys 12
questions to measure user satisfaction. IS ZOT SERVQUAL (Kettinger and Lee,
2005) deploys 54 additional questions to be answered for IS service quality. In
total, if using both these instruments, there are 66 questions users need to an-
swer. Thus, one user for one application using the new instrument answers 8
questions rather than 66 questions using the existing instrument. In the case
company, the number of R&D users was 6 000 during 2008 (Käkölä et al, 2010).
If we assume a user uses the same amount of time to answer to each question,
the time used for answering questions using the new instrument is 88% lower
compared to time spent answering questions using the existing instrument. If
each user uses 5 seconds to answer each question and the response rate is 20%
(number of users that answer to the survey), the total time spent in the user
population using the new instrument is 13 hours and with the existing instru-
ment it is 110 hours. Moreover, one user typically uses several systems, thereby
multiplying the number of surveys he or she would have to complete. Addi-
tionally, the case company collected this information twice a year. Thus, the
estimated time savings is in the hundreds of hours. Thus, for the research com-
munity, this instrument provides new information about an instrument which
is more feasible for long term use from the perspective of the industry and
saves a considerable amount of time in regular use compared to the most wide-
ly used existing instruments. For the case company, the difference was consid-
ered so relevant they chose not to use these existing instruments at all even
though they were introduced for the case company.

As the original paper was published several years ago, it is possible to
evaluate how the study results have been further developed. To find related
studies, the following research portals were searched: Scopus, ACM Digital Li-
brary, IEEE Xplore Digital Library, Google Scholar, and ABI/INFORM
(Proquest). According to the search, six studies contained references to the arti-
cle. Metrailler and Estier (2014) referred to this study as evidence it is in busi-
ness management’s best interests to understand users' satisfaction and service
quality during tool deployment. Islam (2011) referred to this study as one of the
recent studies regarding user satisfaction. Gahalaut and Käkölä (2010) referred
to this study to show tools supporting their assertion that software product

51

lines should provide adequate speed and be easy to use. Thus, this study repre-
sented empirical evidence of why and how user satisfaction and service quality
are measured. Other studies (Koivulahti-Ojala and Käkölä, 2012; 2014) focused
on the results from the case company’s perspective.

3.4.3 Methodological rigor

The main contribution of this research was the design, implementation, and
evaluation of a new measurement instrument to evaluate users’ satisfaction
with the tool and services supporting tool. This new measurement instrument
represented a multi-item measurement instrument with two reflective con-
structs and these were user's satisfaction with the tool and services supporting
the tool. According to Petter et al. (2007), a reflective relationship exists between
a construct and measurement items when items are a reflection of the construct.
They also name examples such as perceived ease of use, perceived usefulness,
and satisfaction. According to Petter et al. (2007), formative constructs occur
when the items describe and define the construct. One of their examples is that
of organizational performance and how it is operationalized through three
measures: productivity, profitability, and market share.

In this study, the research process followed instructions presented by
Churchill (1979) for new instrument creation. Later, MacKenzie et al. (2011)
proposed a 10-step process for the development of valid scales which guides
both the instrument development and construct validation.

3.5 Training people to master complex technologies through e-
Learning: Case of UML technology training in a global organ-
ization (Article V)

3.5.1 Relevance of research results for the case company

In the case company, different e-teaching tools had been used routinely in meet-
ings for several years. Later, those tools were deployed for UML and UML
modeling tool training. Based on this case study, face-to-face training and sup-
port were accompanied by a wide variety of e-teaching tools including Wikis,
discussion forums, intranet, e-mail, and a virtual meeting tool. The application
of e-teaching tools for software application training focused first on application
knowledge training but extended over time to include business context
knowledge and collaborative task knowledge.

The main results for the case company were that 1) e-teaching tools are
suitable for teaching complex technologies and 2) tools routinely used for meet-
ing purposes are also suitable for e-teaching. The company has used the same
tools for teaching not only UML modeling and UML modeling tool technology
but also for other complex technologies such as use of product lifecycle man-

52

agement (PLM) or enterprise resource planning (ERP) systems. Specifically, in
the case company, project management was not previously supporting the use
of VMT for teaching complex technology as there were concerns that teaching
application knowledge concerning command level skills is not possible using
VMT (i.e. commands/keystrokes needed). However, based on the study, users
have different strategies to learn command level skills such as writing their own
notes. Therefore, there were fewer concerns concerning implementing VMT for
teaching complex technology.

3.5.2 Relevance of research results for science

According to the literature review conducted by Koivulahti-Ojala and Käkölä
(2014), there are no longitudinal studies on UML and UML modeling tool train-
ing. According to this longitudinal case study, intranet and virtual meeting tool
were used to support UML and UML modeling tool training regarding applica-
tion knowledge covering commands and tools embedded in the information
system, business context knowledge covering the use of information systems to
effectively perform business tasks, and collaborative task knowledge covering
how others use the information system in their tasks.

This paper was recently published. No studies referring to this paper were
found when Scopus, ACM Digital Library, IEEE Xplore Digital Library, Google
Scholar, and ABI/INFORM (Proquest) were searched.

3.5.3 Methodological rigor

This study was a case study following guidelines given by Yin (2003). In this
study, it was important to prepare a case study database as I hold a managerial
position within the company. The second author reviewed the case study data-
base and ensured there is no bias due to the involvement of the first author in
the daily activities of the case company. Additionally, members of the support
team also reviewed and commented on the analysis results.

In the original paper, the term e-learning tool was used instead of e-
teaching tool which has been used in this summary. At the time of writing, the
most commonly used term was selected to ensure the paper is easy to read. E-
learning tool is a commonly used word and there are several books published
which include the word e-learning tool in the title. However, I agree with the
studies where learning is considered a phenomenon which can be facilitated by
teaching - it is the human being who has the capability to learn and teaching or
training is considered a way to facilitate learning (Järvinen, 1999, p.3; Aulin,
1982, p. 15). Therefore, in this summary, the term e-teaching tool is used instead
of e-learning tool. The e-teaching tool term is utilized to describe tools capable
of being used to deliver training electronically such as a virtual meeting tool
(VMT), Wikis, and e-mail.

4 THE STUDY: UML MODELING TOOL IMPLEMEN-
TATION IN A GLOBALLY DISTRIBUTED PROD-
UCT ORGANIZATION

In this Chapter, I describe how each study contributes to answering the main
research question: How can a globally distributed product company where
UML modeling activities are scattered across different locations and countries
implement a UML modeling tool? A detailed description of each study can be
found in Chapter 2 where each study is presented.

I start by presenting the stages of implementing the UML modeling tool in
the case company, and this provides background information for the entire
study. Next, I present the schedule of the studies and summarize the main re-
sults. Finally, I compare the stages of the UML modeling tool implementation in
the case company to those introduced by Jadhav and Sonar (2011) and propose
a new stage model in the context of UML modeling tool implementation.

4.1 UML modeling tool implementation in the case company

In this Subsection 4.1, I describe how the UML modeling tool was implemented
in the case company and how each study was related to the UML modeling tool
implementation. The description covers both the UML modeling tool imple-
mentation project and use phase.

The UML modeling tool implementation has been documented based on
the internal material (steering group meeting memos, project team meeting
memos, requirement documents, training materials, and e-mails); studies re-
ported in the five articles as referred to by article number; and in Chapter 3,
documented experiences in the case company after the study was completed.
This chapter has been reviewed together with two project team members to en-
sure it depicts the UML modeling tool implementation accurately.

54

The case company was a global distributed high-technology corporation
developing products in multiple locations. During the project, a commercial
UML modeling tool was evaluated and implemented globally. The project was
initiated due to management’s desire for one globally available tool to enable
modeling with standard notation because the UML modeling tool mainly used
for UML modeling purposes did not support UML2 and SysML notations, and
it was in the end of its lifecycle (e.g. the development of the tool was stopped
and it had compatibility problems). Also, users were utilizing different tools for
UML modeling (Article I). Potential UML tool users in the case company were
considered architects and engineers. They were in different countries and work-
ing in several time zones and business units.

When the project was initiated, the case company had experienced failed
software package implementation projects. Project failures included overrun of
costs, delays in project deployment, or software not possible to implement at all
due to technical problems. For these reasons, there were previous projects
stopped without completion of the software package implementation.

The project was organized as follows (Figure 5). The project steering
group was the architecture management team where the architecture decisions
over different business units were made; they approved the scope, schedule,
resourcing, and main deliverables. The project team consists of the global IT
department, the department responsible for the process and tool development
and support for R&D, and subcontractors working for these departments. Ad-
ditionally, at least one architect was involved from each business unit for differ-
ent tasks such as trial, pilot, and requirement management during the project.
Architects joining the project contributed in different ways to the work. Some
architects discussed the topic inside their business unit and actively sought fur-
ther information within their business unit such as current tools used. Some
architects considered themselves as experts and were actively looking for in-
formation outside the company without involving the potential users within
their business unit. Thus, the potential users of the tool in different business
units were treated differently. The project organized trainings and business unit
representatives were asked to provide information regarding which users
should be involved in the training. From some business units there were several
representatives and from some there were very few or none.

FIGURE 5 The project structure.

55

Details of UML modeling tool vendor liability, tool architecture, and fi-
nancial evaluations are not provided in this thesis because the case company
and tool vendors have agreed that the evaluation results are confidential.

Among members of the project team, there was discussion about past fail-
ures with software package implementation and therefore some guidelines
were agreed upon. User participation was considered important and nominat-
ing a representative from each business unit was set as a target. It was consid-
ered a risk for the vendor to be involved the presentations to the steering group
as they might try to sell the product. In this company, the new versions were
called “promiseware” which indicated the new version is not real until it is
available. In the past, a project had failed due to the vendor agreeing to provide
new features but failed and the entire project was stopped due to a several
months delay and the new release was not realized. Another important princi-
ple was the tools should be installed and used as early as possible so user feed-
back can be gathered before global implementation. In the past, there was a pro-
ject where several months delay was realized when there were technical prob-
lems with installation. The project progressed following the case company’s
guideline for IT projects where the IT project is divided into five stages. The
guidelines for IT projects followed a waterfall model, and therefore, the project
manager together with project team tailored the IT guidelines. As a result, the
project’s stages were identified and steering group meetings held after the stag-
es, but the content of the stages was tailored by the project team.

Each stage in the project lasted from weeks to several months (Table 3).
Even though it was conducted in stages, the project did not follow a waterfall
model where requirements are frozen in early stages of the project. Rather, re-
quirements were managed in an iterative way. The project was initiated in Oc-
tober 2007 and it officially started in November 2007. Evaluation of the tool was
completed in three stages. In Stage 1, the environment was created for trialing,
the first set of requirements was created, and the list of potential UML model-
ing tools created. Based on this information, the decision was made by the steer-
ing group regarding which tools will continue to be installed during this stage.
This was a conscious decision, and a risk was taken because after the next stage,
there may be another tool under consideration. However, this approach ena-
bled progress with hands-on activities. The selected tools for trial were installed
(i.e. trial environment was created) and provided for users in the project team to
use. Feedback based on usage of the tool was collected. During this stage, real
data was entered (i.e. pilot environment was set up). In Stage 2, the pilot envi-
ronment was provided for users on the project team to use. Again, feedback
based on usage was collected. During Stage 1 and Stage 2, the list of require-
ments was revisited and update based on user feedback. Evaluation of the tools
was completed and a decision about the UML modeling tool was made in May
2008 (Stage 3), and global implementation started for new teams during August
2008 (Stage 5).

In the case company, the project was considered successful because it was
completed within the planned schedule and budget, and the UML modeling

56

tool can be used for the planned purposes by the user group. Three UML mod-
eling tools used in the case company were replaced by this tool during the use
phase. The case company was committed to continuous development of the tool
and service.

TABLE 3 The stages in UML modeling tool implementation project.

Stage Main Tasks Timeline
Stage 1 Decision about those UML modeling

tools which will be installed for trial
purposes
Environment setup for trial environ-
ment
Initial list of requirements
Initial list of potential UML Modeling
Tools
Demonstrating - the selected UML
modeling tools demonstrated for users
and feedback collected
Pilot environment creation

Nov 2007 – Feb
2008

Stage 2 Piloting - the selected UML modeling
tools demonstrated for users with real
data and feedback collected
Decision about the tool
Service creation initiated

March 2007 -
April 2008

Stage 3 Service creation continued May 2008
Stage 4 Service creation finalized (documenta-

tion, administrative personnel training)
End-user training
Decision about the deployment

June 2008

Stage 5 Deployment including training and
support

August 2008

Post-
implementation

Continuous development of the tool
together with vendor
Continuous development of the service
Continuous requirement management
Evaluation of new features and new
versions
Integration of the tool to source code
management and other systems
Continuous training and support for
the teams taking the tool into use, tak-
ing new features into use or extending
their usage

September
 2008 - 2013

57

The UML modeling tool use was supported after Stage 5 by a virtual team
consisting of personnel from the global IT department, the department respon-
sible for process and tool development and support for R&D, and subcontrac-
tors working for these departments. This team supported all the business units.
No IT costs were assigned for individual users or business units (i.e. any li-
cense, server or other cost were managed centrally). The number of resources
involved in support was three to five experts during the years 2009 - 2013 but
not all of them were working full-time. The role of support personnel included:
1) a UML modeling and UML modeling tool expert from the tool vendor, tech-
nical support person(s) (1-2); 2) the person responsible for requirement man-
agement, user satisfaction survey, testing, business unit stakeholder manage-
ment and training coordination; 3) a service manager; and 4) the team leader.
The number of users was 1700 by the end of 2010 and 700 by the end of 2013
after major organizational changes. After 2013, due to company merger, usage
of the selected UML modeling tool continued in two different companies and
therefore are not reported as part of this study.

Modeling tool usage was voluntary as each business unit could decide on
its own whether the UML modeling tool will be used. Additionally, in some
business units it was agreed that teams and individuals themselves can make
the decision. This lead in practice into a situation where there were individual
users, teams, and business unit level evaluation on a continuous basis after the
selection was made. Evaluation was realized in different teams and business
units in different ways. The most comprehensive evaluation case included
proof of concept creation during several meetings and evaluation of the tool
capabilities to support modeling needs in the specific business unit. An initial
meeting was held to review the modeling tool requirements. These require-
ments were related mainly to UML modeling (i.e. what is the best way to apply
UML modeling). Experts from the vendor who know both the UML modeling
tool and UML joined this meeting. During the meeting, the first version of the
model was created and other requirements discussed. In the following meet-
ings, the model was further developed, implementation of the UML modeling
tool was planned, and any open issues in relation to the UML modeling tool or
service related requirements were reviewed. Between the meetings, the model
was further refined by a modeling expert, the support team prepared for train-
ing and deployment, and business users collected more input. The business unit
representatives made a decision to begin using the UML modeling for model-
ing.

According to the study presented in Article I, UML models were created
and used in the context of the requirement management and release manage-
ment process. This approach to tool usage continued. During the use phase, the
existing system to support requirement and release management was replaced,
but the selected UML modeling tool continued to be used. Thus, approach us-
ing UML models that were linked and imported into the system supporting
requirements and release management system was flexible in the sense it ena-
bled changing the requirements and release management system without a

58

need to change the UML modeling tool. Additionally, for drafting purposes,
other tools such as PowerPoint were still used. Diagrams were used to depict
overall high-level architecture, subsystems, or components for relevant parts of
the system. None of the business units or teams targeted for end-to-end model-
ing. Reverse engineering to create diagrams from code or headers of the code
files was used in some of the business units and teams. Code generation or test
automation was not used by any of the teams.

It required substantial effort from the support team to support those teams
evaluating and adopting the tool into use. Typical adoption planning tasks in-
cluded reviewing the needs for UML modeling, number of the users in the
team, and previous experience with UML modeling and UML modeling tool.
Typical adoption support included training, support for UML modeling (by
vendor expert), user account creation, and modeling project setup. Because the
company had very few people with extensive UML modeling knowledge at this
phase, it was decided to pay for an expert from the tool vendor to support pro-
vide in case support was needed for UML modeling or UML modeling tool im-
plementation.

In the case company, one full-time person was allocated to a role titled
global concept owner during UML modeling tool evaluation, implementation,
and support. This person was responsible for collecting user feedback and
training, planning, and implementation during the project requirements man-
agement phase. After the deployment, this person was responsible for require-
ments management, conducting the user satisfaction surveys, and planning and
implementing various training activities. I further elaborate how each of these
tasks were conducted in the context of the UML modeling tool implementation
in the following sections.

4.1.1 Requirements management

During the project, the requirements were collected and UML modeling tools
evaluated against the documented requirements. Requirement management
was facilitated by one person titled global concept owner. There were several
sources of the requirements including relevant research and literature, standard
requirements in the case company, requirements collected for other software
packages in other software package implementation projects, and in-house sys-
tems within the case company as well as the project team. Interestingly, the
source of the requirements were associated with a project team member or oth-
er individual rather than a specific document or web-page. Thus, the original
references for literature or internet are not available. When the project was pro-
ceeding, the experiences gained during the trial and pilot phases were used as
input for requirement management.

Some of the user representatives had used different UML modeling tools
and had knowledge of the UML modeling language. Therefore, they primarily
provided such requirements related to their experience when using UML or its
modeling tool. Representatives from the support organization (from IT depart-
ment and department responsible for the R&D process and tool development)

59

had experience from other evaluation projects and were aware of the standard
requirements in the case company. Therefore, they mainly concentrated on rel-
evant requirements based on their own experience or originated from other
projects or standard requirements.

All the requirements were reviewed by the project team. In this way, all
the project team members could contribute to the content. Requirements were
managed in several iterations. After Stage 1, the number of requirements was
81. For each requirement, a priority was set by the project team. This prioritiza-
tion included setting priorities to low, medium, or high from the users’ perspec-
tive. This priority was considered specific for business and may conflict with
the priority of other stakeholders such as the vendor or IT department. If busi-
ness representatives had a different understanding of the priority during the
project, the priority was negotiated and finally agreed upon one common prior-
ity. A target schedule was set for each requirement evaluation. Before making
decisions about the tool, the project steering group reviewed the evaluation re-
sults.

In addition to the UML modeling tool-related requirements, there were 43
standard requirements. Standard requirements represented non-functional re-
quirements related to technology, security, reporting, performance, and mobili-
ty. These were grounded on either known requirements in the globally distrib-
uted organization (e.g., network latency) or the case company’s IT strategy (e.g.,
mobility). Interestingly, it was expected that a numeric result was possible for
these standard requirements.

Requirements from other projects represented functional requirements
from the perspective of globally distributed R&D. Examples of requirements
from other projects were the meta-requirements and information model which
had been reported for integrated requirements and release management system
phases (Article I). Meta-requirements traceability, version management, and
release management were considered relevant in this project. From the infor-
mation model, the fields of history, origin, and workflow were seen appropriate
to include.

Requirement management did not stop once the tool implementation pro-
ject was completed. Already during the evaluation, all the requirements were
provided for the vendor. Some were not fulfilled and therefore the follow-up of
these continued. Additionally, new requirements were documented. Sources for
the requirements included direct input from users, user satisfaction surveys,
relevant literature, and IT’s vision and strategy. Users’ input for requirements
included, but was not limited to, feedback send to support personnel by e-mail,
user satisfaction surveys (Article IV), and sessions organized for local support
persons where each local support person was asked to provide feedback re-
garding the tool and service. For the vendor, 70 requirements were reported
during the years 2008-2012. These represented requirements for tool develop-
ment or the service the vendor was providing. Furthermore, other input was
given to the vendor including longer term IT strategies and visions when rele-
vant as well as any plans related to UML and UML modeling tool usage when

60

appropriate. The main topic for further requirements was version management
(Article II). During evaluation, project version management was considered as
one requirement where the availability of version management capability in
general was a requirement. No detailed requirements or evaluation criteria ap-
plicable to this context for version management were found in the literature.
Once the tool was implemented, the support team became more experienced
and individual teams in the case company started making use of version man-
agement. Therefore, more detailed evaluation criteria were developed (Article
II) and shared with the vendor.

Additionally, requirements gathered during evaluation and deployment
phases were re-used after the project ended. The UML modeling tool evaluated
and deployed globally on a voluntary basis was later implemented for users
that had previously used three other modeling tools, thereby replacing them.
The requirements were re-used to provide evidence for the users of the existing
tool regarding which requirements the tool can support. This reduced the re-
sistance from users of the existing tools and saved time for the support team
members as they could use the existing requirements.

4.1.2 Training

UML modeling tool training was organized as a classroom training using sev-
eral e-teaching tools. During 2008, only class room trainings were organized.
Later, a virtual meeting tool (VMT) based training was developed based on
feedback from users in the form of user satisfaction surveys. Two user satisfac-
tion surveys were conducted in 2009 (Article IV). The virtual support team ana-
lyzed the results of the surveys and concluded the instructions, user guides,
and training practices had to be improved. It initiated several improvement ac-
tivities during 2009. User satisfaction was improved after the VMT was de-
ployed for the training and internet usage was enriched (Article III). In addition
to the VMT, Wikis, intranet, discussion forums, and e-mail were used for the
training.

4.1.2.1 Standard classroom training
Classroom trainings were organized by a tool vendor expert who had lengthy
experience both in training and use of the UML modeling and UML modeling
tool. The content of the training covered UML and UML modeling tool skills
and knowledge. Classroom training sessions were either open for any potential
user to join from any team or organized for a team planning to begin using the
UML modeling tool. During 2009, a VMT-based training was developed and
afterwards, classroom training sessions were organized only when a team was
planning to deploy the UML modeling tool. However, only a few sessions were
organized after 2009 when a VMT-based training was developed.

61

4.1.2.2 E-teaching
In addition to classroom training sessions, a variety of e-teaching tools includ-
ing Wikis, discussion forums, intranet, e-mail, and a VMT were used in the case
company (Article V, Table 4).

According to the study, the chosen tools were popular in the case compa-
ny and improved user satisfaction with the UML tool. The case company used
mostly e-teaching tools to support the application, collaborative task, and busi-
ness context knowledge learning and sharing as called for by Kang and Santha-
nam (2003). According to the study, the VMT was the most crucial tool because
it not only contributed to the sharing of all three types of knowledge but also
improved the users’ motivation to use to use the UML tool. VMT-based training
sessions were organized using standard conference calls and a VMT. Most users
had several years of experience in using both conference calls and VMT tools.
During a six-month period (June 2010-November 2010), 29 sessions were orga-
nized, each lasting 1-2 hours. After three years, VMT was still used extensively
for training. During a six-month period (June 2013 - November 2013), 29 ses-
sions were organized, each lasting 1-2 hours.

Continuous need for trainings was, according to the virtual team support-
ing the UML modeling tool, caused by at least two reasons: 1) training sessions
were organized in ways supporting both novice and advanced learners and
therefore, even if novice users became more knowledgeable, they still find join-
ing training sessions beneficial, 2) there was a continuous need for training be-
cause when users joined a new project, team, or organization which used UML,
they typically needed to learn new information they were not already familiar
with like new types of diagrams.

As users gained more knowledge about the capabilities of the tool they did
not request features they know already exist. Before the training was introduced,
users requested features the tool already had. In addition, they gained more
knowledge about the templates and other methods they can use to configure the
tool’s output and input. Thus, they did not need additional configurations to be
implemented by the support team or vendor. For example, during the training,
users were trained how to publish their models on the intranet. As a result, fewer
requests were sent to the support team and tool vendor for new publishing capa-
bilities. Users were also able to better formulate new requirements to improve the
tool. For example, as part of the training, they learned how to use version man-
agement. However, as they become more familiar with version management,
they can suggest new requirements for version management.

Collaborative task and business context knowledge were mainly shared in
sessions organized for local support persons who were responsible for support-
ing their teams in UML tool usage. As an example of business context
knowledge sharing, local support persons shared their team’s best practices
using the UML modeling tool. Typically, 2-4 set of sessions were organized in a
year. In addition, application knowledge was shared during these sessions cov-
ering new features, the tools’ release schedules, new services, or planned
changes in services such as the virtual team’s contact information.

62

TABLE 4 E-teaching tools the virtual team applied for e-teaching in the case com-
pany (Article V).

E-teaching tool Knowledge Content
Wikis Application knowledge

Sharing commercial plug-ins and related
installation instructions/training materials

Wikis Collaborative task
knowledge

Sharing plug-ins made by users and related
installation instructions/training materials

Intranet Application knowledge

Self-study training materials
Frequently Asked Questions
New features of each UML modeling tool
release
Installation instructions
How to apply to use the tool
Recorded training sessions
Material from other sessions

Intranet Collaborative task
knowledge

List of contact persons for teams using the
UML tool
Contact information for tool support team
Recorded training sessions
Material from other sessions

Intranet Business context
knowledge

Best practices in the form of business tar-
gets, way of using, UML modeling conven-
tions, and deployment activities
Recorded training sessions
Material from other sessions

Discussion forum Application knowledge Share application knowledge with each
other

Discussion forum Collaborative task
knowledge

Solving problems collaboratively

E-mail Application knowledge Informing all users about maintenance
breaks, new features, training and other
sessions to be organized

Virtual Meeting
tools

Application knowledge

Training sessions
Sessions where active users share best
practices and application knowledge with
other teams about applying the UML tool
for modeling

Virtual Meeting
tools

Collaborative task
knowledge

Training sessions
Sessions where active users share best
practices with other teams about applying
the UML tool for modeling including col-
laborative task knowledge

Virtual Meeting
tools

Business context
knowledge

Training sessions
Sessions where active users share best
practices with other teams about applying
the UML tool for modeling including busi-
ness context knowledge

4.1.3 User satisfaction measurement

In the case company, there was a target to periodically measure both user satis-
faction and service quality regarding the tools used in the case company. This
was a mandatory action as the case company was committed to fulfill the crite-
ria set in ISO 9000 certification to maintain customer satisfaction. For the pur-

63

poses of measuring user satisfaction with the UML modeling tool and service, a
new instrument was developed in 2009 (Article IV). There were three require-
ments for the instrument to be used as a measurement in the case company: 1) it
should measure both the service quality and the user satisfaction regarding the
tool; 2) there should be no more than 10 questions (including two standard
questions of location and frequent of usage); and 3) the instrument should be
applicable to further develop the service and the tool. The IS research communi-
ty has delivered many comprehensive instruments to measure user satisfaction
and service quality. However, the first requirement limited the choice to using
an existing instrument as there was no instrument available to cover both the
service quality and the tool-related satisfaction. Thus, a new instrument was
created.

The new instrument was used two times in 2009. The virtual team sup-
porting the UML Modeling tool analyzed the results. The team made decisions
based on the means of all questions and the total mean of all questions. Based
on the first survey, communication and training practices were improved be-
cause the means of questions related to instructions, user guides, and training
were lower than the mean of all questions. Informative letters were emailed to
the users, new guides were created, and the intranet pages providing infor-
mation about the tool and related support were improved. The main improve-
ment task was developing a new training method utilizing VMT (virtual meet-
ing tool) (Article III). The results of the second survey revealed the improve-
ments related to information sharing and training had raised user satisfaction
and the availability and speed of the tool would be the next areas to improve
(Article IV).

Later, user satisfaction surveys were conducted five times during the
years 2009-2013 but not using the same instrument. Instead, the guidelines and
instructions given inside the company were followed. Each time questions were
different, and the results were not comparable with surveys conducted before.
However, the questions represented system and service quality-related ques-
tions.

One open question was included in the survey. The results of the surveys
as well as answers to the open questions were sources for feedback for the tool
vendor as well as the continuous development of the service. Action plans were
created after each survey was conducted. Action plans contained new initia-
tives such as new requirements for the vendor or any tasks aimed at developing
the service. The main initiative during 2009-2013 based on user satisfaction sur-
vey results was the development of the VMT-based training (Article III).

4.2 Overview to the study

In this Subsection 4.2, I present the schedule of the studies and summarize the
main results.

64

4.2.1 Schedule

The study process was comprised of five studies in which each research ques-
tion comes from practice and provides new knowledge about UML modeling
tool use, evaluation, or training (Figure 6). In Figure 6, each rectangle represents
different studies. The left side of each rectangle marks the earliest point in time
the data reported in the study covers and the right side of the rectangle marks
the latest point in time the data reported in the study covers.

Article I provided insight regarding use of several UML modeling tools
but the models were not complete. Specifically, it informed the case company
that UML diagrams are created but employees are using different UML model-
ing tools. Thus, it provided a common need for the UML modeling tool imple-
mentation. During the five-year follow-up period reported in Chapter 3, no
complete UML models covering all aspects of the system were created.

UML modeling tool evaluation, use, and training was studied in Articles
II, III, IV, and V. In Article II the evaluation criteria for UML modeling tool ver-
sion management in context of a globally distributed product development
company were introduced. When a new UML modeling tool was implemented
in the case company, it was relevant to measure users’ satisfaction with the tool
and the service (Article IV). This article provided new information for the re-
search community regarding how users’ satisfaction with the tool and service
can be measured. Furthermore, when the results of the first survey were ana-
lyzed in the case company, it was concluded users are not satisfied with the
training and the decision was made to implement a new training method utiliz-
ing a virtual meeting tool (VMT). This new training method was the subject of
the study in Article III. Finally, Article V provided new information in the form
of a longitudinal study regarding how the new training method utilizing VMT
and other training methods evolved over time. Thus, Article V extended the
study in Article III in two respects: several e-teaching tools were studied instead
of one and the research period was extended to several years.

FIGURE 6 The schedule of the studies.

65

4.2.2 The main study results

In the following paragraphs, the main results are summarized based on the ar-
ticles and summary of this thesis. The main results are presented in Table 5 with
implications for practice and science as well as related evidence.

UML models were not complete according to the study which was con-
ducted before UML modeling tool implementation evaluation, selection, and
implementation started (Article I). UML modeling tool implementation did not
change this. During implementation and post-implementation, no complete
UML models were created and code generation was not in the scope of use.
This result is complementary with Nugroho and Chaudron’s (2008). According
to their survey of 80 software professionals who use UML, they found most
UML models did not cover all elements of the system.

In the case company, UML modeling tools’ version management capabili-
ties were evaluated and ranked to have the highest priority. Version manage-
ment capabilities were implemented during the project and utilized by several
teams in the use phase. Thus, version management capabilities can be consid-
ered vital in order to support modeling in a globally distributed product organ-
ization. After the tool was implemented, the support team became interested in
regards to the most critical capabilities of version management. Therefore, more
detailed evaluation criteria were developed (Article II). The extant literature
does not provide a comprehensive set of evaluation criteria which can be ap-
plied in industrial settings to evaluate the version management capabilities of
UML tools. The main contribution of this study was creating and evaluating a
set of evaluation criteria.

When a new UML modeling tool was implemented in the case company, it
was relevant to measure users’ satisfaction with the tool and the service (Article
IV). This article provided new information for the research community regard-
ing how users’ satisfaction with the UML modeling tool and service can be
measured. Additionally, when the first survey’s results were analyzed in the
case company, it was concluded users were not satisfied with the training and it
was decided to implement a new training method using virtual meeting tool
(VMT). This new training method was the subject of the study in the Article III.

As UML is a complex language and users tend to begin using it gradually,
continuous support and training was considered beneficial. Training and sup-
port were organized by a virtual team together with a UML modeling and UML
modeling tool expert from a UML modeling tool vendor. Practitioners in global-
ly distributed product companies may consider establishing a similar relation-
ship to support UML modeling and UML modeling tool usage. Furthermore,
according to the study reported in Article V, intranet and virtual meeting tools
(VMT) were used to support UML modeling and UML modeling tool training
in terms of application, business context, and collaborative task knowledge.
Thus, intranet and virtual meeting tools (VMT) can be considered feasible for
implementing e-teaching as they can be used to support teaching all three types
of knowledge (application, business context, and collaborative task knowledge).

66

TABLE 5 The key results, related evidence and implications for science.

Related evi-
dence

Implications for practice Implication for science

Article I and
follow-up
during five
years (Chap-
ter 3)

UML models were created but
they were not complete.

UML models were created but
they were not complete. A com-
plementary finding with Nugroho
and Chaudron (2008).

Article II Version management capabilities
are required to support UML
modeling in a globally distribut-
ed product organization. A set of
evaluation criteria of the evalua-
tion of the version management
capabilities of the UML model-
ing tools.

A set of evaluation criteria for the
evaluation of the version man-
agement capabilities of the UML
modeling tools.

Article III
and post-
evaluation in
Chapter 3

UML and UML modeling tool
training can be organized
through VMT cost efficiently so
that users are motivated and their
knowledge and skills are im-
proved. According to the post-
evaluation presented in this
summary the training cost de-
creased in the case company by
88% per training session.

A training method to support
UML and UML modeling tool
training. The training method was
described in terms of content, or-
ganization of training, training
materials, and trainers’ skills and
knowledge.

Article IV A lightweight measurement in-
strument, which can be applied
to user and service satisfaction
analysis for a UML modeling
tool.

A lightweight measurement in-
strument, which can be applied to
user and service satisfaction anal-
ysis.

Article V Continuous support and training
is beneficial as usage of the
UML modeling tool evolves
over time. Intranet and virtual
meeting tool (VMT) can be used
to support UML modelling and
UML modeling tool training in
terms of application, business
context, and collaborative task
knowledge.

Intranet and virtual meeting tool
(VMT) were used to support
UML modelling and UML model-
ing tool training in terms of appli-
cation, business context, and col-
laborative task knowledge.

During the implementation of the UML modeling tool a new training

method to support UML and UML modeling tool training was implemented.
The training method was described regarding content, organization of training,
training materials, and trainers’ skills and knowledge in Article III. According
to the post-evaluation presented in this summary in Chapter 3, the training cost

67

decreased in the case company by 88% per training session. Thus, it provided a
significant decrease in the training costs. Moreover, due to a continuous need
for training, practitioners in globally distributed product companies may con-
sider establishing similar training.

4.3 Software package implementation stage model: Comparison
and a new model

Software packages are vendor-developed software with the capability of being
adopted by one or more customer organizations. Organizations have evaluated,
selected, and used software packages since the 1990s when first software packag-
es were introduced for the market. According to Gartner’s IT Key Metrics Data
(2012), 20% of companies’ IT spending is on software. Thus, software package-
related costs are a significant cost factor in companies’ IT budgets. Evaluation
and selection of a software package is considered a complicated and time-
consuming decision-making process. There is a large body of research develop-
ing sophisticated methods and processes to help practitioners complete the eval-
uation, selection, and purchase processes. In this Subsection 4.3, I will compare
the stages of the UML modeling tool implementation project presented in the
Subsection 4.1 to the current body of software package implementation literature
as summarized by Jadhav and Sonar (2011). Based on the results of a literature
review, they present a methodology for selecting software. This methodology
was chosen for comparison for two reasons. Jadhav and Sonar (2011) created the
method based on existing literature and thus provides an overview rather than
one more methodology; and, in the case company, it was expected the evalua-
tion, selection, and purchase phases could be completed sequentially and it is
possible to measure each attribute thereby reflecting similar thinking as Jadhav
and Sonar (2011). Based on a literature review, Jadhav and Sonar (2011) identified
six stages in the methodology: requirement definition, preliminary investigation
of availability of software packages, short listing packages, establishing criteria
for evaluation, evaluating software packages, and selecting the software package.
They are presented in the following paragraphs and compared to the results of
the stages presented in the Subsection 4.1.

1. Requirement definition
Identify functional and non-functional requirements of the software. According
to Jadhav and Sonar (2011), the list of requirements must be accurate, complete
and detailed.

2. Preliminary investigation of availability of software packages
Preliminary investigation of the availability of software packages that may be
suitable candidates including investigation of major functionalities and fea-
tures. Deliverable of this stage is a list of candidates.

68

3. Short listing packages
Candidate software packages identified in the second stage identified as not
providing essential functionalities and features or does not work with existing
hardware, operating systems, data management software, or network are elim-
inated.

4. Establishing criteria for evaluation
In this stage, criteria to be used for evaluating the software packages are identi-
fied and arranged in a hierarchical tree structure format. Each branch in the hi-
erarchy ends in a well-defined and measurable basic attribute. The deliverable
of this stage is a set of criteria arranged in hierarchical tree structure format.

5. Evaluating software packages
In this stage, metrics are defined and weights are assigned to each basic attrib-
ute in the criteria hierarchy. Rating is done against each basic criterion in the
hierarchy for each software considered for detailed evaluation. An aggregate
score is then calculated for each software package.

6. Selecting software package
The final stage is to rank the available alternatives in descending order by score
and select the best software. They note the aggregate scores only give an idea
about which software package is better over the other. Selecting the best soft-
ware package is always a human-dependent process.

In the following paragraph, the methodology for selecting the software
packages presented by Jadhav and Sonar (2011) is compared with the stages of
the UML modeling tool evaluation and selection in the case company presented
in Table 3. According to the study, requirement management was a continuous
process. As more information was gained through usage of the different UML
modeling tools or new information was gained, requirements were updated
and new requirements may be added. Additionally, the candidates were elimi-
nated as soon as there was enough information available regarding any suffi-
cient reason to reject the tool rather than waiting for a comprehensive list of re-
quirements to develop. Reasons for rejection were not limited to technical rea-
sons. Thus, some tests were completed simultaneously rather than sequentially
or continuously.

There were two documents corresponding to those described by Jadhav
and Sonar (2011). These were the list of requirements and the list of available
software packages. The list of potential software packages was created during
the project and contained potential software packages available for UML mod-
eling. The list of requirements was created in the first stage of the project but it
continued evolving over time and not considered complete in any stage. Addi-
tionally, even though the aim was an exact numeric value representing the re-
sult of the evaluation, the project team concluded it is not possible to assign
numerical values to some attributes. The priority was assigned in a manner
which can be considered to resemble ranking using a scale of low, medium or

69

high. Thus, it was not possible to calculate aggregate values. Priority was con-
sidered specific for business and might conflict with the priority of other stake-
holders such as the vendor or IT department. If business representatives had
different understandings of the priority during the project, the priority was ne-
gotiated and finally agreed upon common priority. This was a limitation from
the project perspective as it was not possible to show the different views of dif-
ferent stakeholders regarding the requirements. Using the analytic hierarchy
process introduced by Saaty (1999) for analyzing better visibility for different
stakeholder requirements could have been provided.

Based on the case study, the differences were considered positive, nega-
tive, or neutral compared to the stages proposed by Jadhav and Sonar (2011)
(Table 6).

TABLE 6 Methodology for selection of the software packages by Jadhav and Sonar
(2011) compared with results from this study.

Stage ac-
cording to
Jadhav and
Sonar
(2011)

Tasks in the stage according
to Jadhav and Sonar (2011)

Results of this study (differences and
considered impact for the selection of the
tool)

Require-
ment defi-
nition

Identify functional and non-
functional requirements of the
software. According to Jadhav
and Sonar, the list of require-
ments must be accurate, com-
plete and detailed.

First list of requirements was generated
in the first stage of the project but as new
information and more experienced
through usage was gained more details
were added to existing requirements and
new requirements added.
Requirements were reviewed before the
selection. Continuous development of
the requirements was considered as posi-
tive as it enables more accurate and de-
tailed requirements once more infor-
mation was gained.

Prelimi-
nary inves-
tigation of
availability
of soft-
ware
packages

Preliminary investigation of
availability of software pack-
ages that might be suitable
candidates including investi-
gation of major functionalities
and features. Deliverable of
this stage is a list of candi-
dates.

Preliminary investigation of availability
of software packages was completed at
the same time as the first round of re-
quirements gathering. The list of candi-
dates was one of the results at this stage.
Creating the short list as soon as possible
was considered positive as it enables
running activities in parallel.

 (continues)

70

(TABLE 6 continues)
Short list-
ing pack-
ages

Candidate software packages
identified in the second stage
that does not provide essential
functionalities and features or
does not work with existing
hardware, operating system,
data management software, or
network are eliminated.

As the number of packages was high and
substantial effort needed to gather in-
formation, in each stage those were elim-
inated, of which there was enough in-
formation for elimination to ensure pro-
gress in the project rather than waiting
that all information is gathered for deci-
sion making. Elimination of the software
packages which did not meet the re-
quirements as soon as possible was con-
sidered positive as it enable running ac-
tivities in parallel.

Establish-
ing criteria
for evalua-
tion

In this stage criteria to be used
for evaluation of the software
packages are identified and
arranged in hierarchical tree
structure format. Each branch
in the hierarchy ends into
well-defined and measurable
basic attribute. Deliverable of
this stage is set of criteria ar-
ranged in hierarchical tree
structure format.

Requirements were arranged into fea-
tures and requirements. Each require-
ment had business priority which was
negotiated result between the business
representatives in the project team and
the stage in the project that this require-
ment is planned to be reviewed. No
measurable basic attribute was defined
neither different stakeholders managed
which was a limitation. Different stake-
holder views were to some extent com-
municated to the steering group verbally.
Considered as negative as not possible to
provide different stakeholder views.

Evaluating
software
packages

In this stage metrics are de-
fined and weights are assigned
to each basic attribute in the
criteria hierarchy. Rating is
done against each basic crite-
rion in hierarchy for each
software considered for de-
tailed evaluation. Aggregate
score is then calculated for
each software package.

Business priority of the requirement was
considered as the weight (High, Medi-
um, Low). Rating was done by written
results based on usage of the tool during
the project. No aggregate results were
calculated. Considered as negative as not
possible to provide different stakeholder
views.

Selecting
software
package

The final stage is to rank the
available alternatives in de-
scending order of the score
and select the best software.
They note that aggregate
scores only give an idea about
which software package is
better over the other. Decision
of selecting best software
package is always human de-
pendable.

Requirements updated based on feed-
back were provided with business priori-
ty for the steering group as one input for
final decision making. Neutral.

71

I further propose a new stage model (Figure 7) wherein the aim is making
modifications to the stage model which will allow retaining changes considered
positive during the case study. Due to these changes, some activities can be run
in parallel.

4.3.1.1 Requirement definition
Identify the functional and non-functional requirements of the software. The list
of requirements can be modified based on new information gained during in-
stallation and use of the software packages and on the preliminary investigation
of availability of software packages. The list of requirements should be relative-
ly mature before beginning to establish the criteria for and evaluation of soft-
ware packages.

4.3.1.2 Preliminary investigation of availability of software packages
Preliminary investigation of availability of software packages that may be suit-
able candidates including investigation of major functionalities and features.
Deliverable of this stage is a list of candidates. Can be conducted in parallel
with requirement definition.

4.3.1.3 Selecting software package
As soon as there is enough information to eliminate a candidate from a short
list, it can be done. This may include reasons such as the software package does
not provide essential functionalities and features or does not work with existing
hardware, operating systems, data management software, or networks. Input
for decision making can come from the literature, vendor presentations, or in-
stallation and use of the software package. The final stage may include ranking
the available alternatives in descending order based on the score and selecting
the best software.

4.3.1.4 Establishing criteria for evaluation
In this stage criteria to be used for evaluation of the software packages are
identified and arranged in hierarchical tree structure format. Each branch in
the hierarchy ends in a well-defined and measurable basic attribute. The de-
liverable of this stage is a set of criteria arranged in hierarchical tree structure
format.

4.3.1.5 Evaluating software packages
In this stage, metrics are defined and weights are assigned to each basic attrib-
ute in the criteria hierarchy. Rating is done against each basic criterion in the
hierarchy for each software considered for detailed evaluation. An aggregate
score is then calculated for each software package.

4.3.1.6 Installation and use of software packages
Installing software packages within the same environment it is going to be
used in provides more information about the maintenance and use of the tool
which can provide input for requirement definition, establishing criteria for
evaluation, and evaluation software packages. If installation and use of the

72

software packages is not possible, experiences from existing users can be re-
quested and collected, or the vendor can provide presentations and demon-
strations.

FIGURE 7 Proposed stage model for UML modeling tool selection.

5 DISCUSSION

This thesis offers new knowledge about UML modeling tool use, evaluation,
and training. The main research question was: How can a globally distributed
product company where UML modeling activities are scattered across different
locations and countries implement a UML modeling tool? The research process
was comprised of five studies wherein each research question comes from prac-
tice and provides new knowledge about UML modeling tool use, evaluation, or
training in a globally distributed product company. In this chapter, I present
these studies’ most important implications for science and practice. Additional-
ly, I present the limitations as well as some suggestions for future research.

5.1 Implications of results to science

In Subsection 5.1, I present each study, describe the scientifically novel findings,
the findings that support the earlier results, and those that contradict earlier
results. The summary of implications for science is listed in Table 7.

5.1.1 An Information System Design Theory (ISDT) for the class of re-
quirements and release management systems (RRMS)

Globally distributed product development companies need to collect, analyze,
and utilize requirements. Well-defined requirements are prerequisites for effec-
tively scoping the product development projects and assigning them to internal
units and partners. Integration of requirements and release management facili-
tates the end-to-end traceability of the distributed product development process
from requirements to implementation. The research question was: “What are
the necessary and sufficient properties for an IS which supports integrated re-
quirement and release management processes in globally distributed product
development?” The main contribution of this study is the design product theory
for the class of RRMS, including the requirements for RRMS instances and the
design that meets the requirements. The design consists of an information mod-

74

el and the attributes for the elements presented in the information model. Ac-
cording to Käkölä et al. (2010), there are no requirements or design depicted for
an information system supporting the requirement and release process. There-
fore, I claim the research was novel.

Moreover, our study provides additional information regarding how UML
modeling was focused. According to our study, priorities, schedules, and other
information stored concerning requirements, features, and releases were used
to focus UML modeling efforts. Thus, this study provided new information
about the UML and UML modeling tool usage in the context of the requirement
and release management process.

TABLE 7 The key findings and their contribution for science.

Article Implications for science Contribution
Article I A partial Information System Design Theory for the

class of RRMS (requirements and release management
systems), including the requirements for RRMS in-
stances and the design that meets the requirements.
The priorities, schedules, and other information stored
in RRMS were used to prioritize the UML modeling
efforts.

A novel find-
ing

Article I UML models were created but they were not complete. A complemen-
tary finding
with Nugroho
and Chaudron
(2008)

Article II A set of evaluation criteria for the evaluation of the
version management capabilities of the UML modeling
tools.

A novel find-
ing

Article III A training method to support UML and UML model-
ing tool training. The training method was described in
terms of content, organization of training, training ma-
terials, and trainers’ skills and knowledge.

A novel find-
ing

Article IV A lightweight measurement instrument, which can be
applied to user and service satisfaction analysis

A complemen-
tary finding

Article V Intranet and virtual meeting tool (VMT) were used to
support UML modelling and UML modeling tool
training in terms of application, business context, and
collaborative task knowledge.

A novel find-
ing

According to the study, some UML models were created in the context of

a requirement and release management process but they did not cover the
whole system. This result complements Nugroho and Chaudron’s (2008) study.

75

According to their survey of 80 software professionals using UML they found
most of the UML models did not cover all elements of the system. Results of our
study are thus in line with their study. According to our study, even though
UML models were created, they were not complete.

5.1.2 A set of evaluation criteria for UML modeling tool version manage-
ment

UML modeling tools’ version management capabilities are critical when paral-
lel and geographically distributed modeling activities need to be managed. The
extant literature does not provide a comprehensive set of evaluation criteria
capable of being applied in industrial settings to evaluate the version manage-
ment capabilities of UML tools. The research question was: “What are the nec-
essary and sufficient properties for version management to support UML mod-
eling in globally distributed product development?” The main contribution of
this study was creating and evaluating a set of evaluation criteria. According to
Koivulahti-Ojala and Käkölä (2009), the literature does not provide a compre-
hensive set of evaluation criteria capable of being applied in industrial settings
to evaluate the version management capabilities of UML modeling tools in the
context of globally distributed product development. Therefore, I claim this set
of evaluation criteria is novel.

5.1.3 A new training method to support training of UML and UML model-
ing tool

End-user training is complicated to implement in a globally distributed product
development company where activities are scattered across multiple sites. Vir-
tual meeting tools (VMT) enable synchronous communication globally through
audio, chats, video, and sharing presentations. They provide a potentially cost-
effective way to train large numbers of people in global settings. The research
question was: “Can the UML and UML modeling tool training be organized
and delivered through a VMT so that learners are satisfied with the training
and the training positively impacts their skills, knowledge, and motivation?”
The main contribution of this research was the design, implementation, and
evaluation of a VMT-based training method for teaching UML and the features
of a UML modeling tool. The training method was described regarding content,
organization of training, training materials, and trainers’ skills and knowledge.

According to the research, the VMT-based training positively impacted
learners ‘skills, knowledge, and motivation, and they were satisfied with the
training. The training costs decreased in the case company by 88% per training
session. Therefore, VMT-based training provided a cost-effective way to train
users in using UML and the UML modeling tool. According to a literature re-
view conducted by (Koivulahti-Ojala and Käkölä, 2012), there was, until 2012,
only one paper published addressing adoption of UML modeling training in
industrial settings via e-teaching tool, which was Bunse et al.’s (2006) study.
The limitation of Bunse et al.’s (2006) study is that the training method was not

76

described and the training did not cover UML modeling tool training. There-
fore, I claim the current study’s training method is novel for the IS research
community as it was described regarding training content, organization of
training, training materials, and trainers’ skills and knowledge, and it covered
both UML and UML modeling tool training.

5.1.4 A lightweight measurement instrument, which can be applied to user
and service satisfaction analysis for users of a UML modeling tool

The IS research community has delivered many comprehensive instruments to
measure user satisfaction and service quality. However, they are tedious to de-
ploy in industrial settings, possibly leading to low response rates. The research
question was: “Is it possible to create a new adequately reliable and valid
measurement instrument with eight items to measure both user satisfaction and
service quality?” The main contribution of this research was the design, imple-
mentation, and evaluation of a new eight-item instrument to evaluate users’
satisfaction with the tool and the services supporting its use. Analyzing the re-
sults of two surveys conducted in a globally distributed product development
organization to measure user and service satisfaction of users using a UML
modeling tool indicated the instrument has adequate reliability and validity.

This new survey instrument was compared to existing instruments. Ac-
cording to Petter et al. (2008), the most widely used instruments for measuring
user satisfaction are EUCS and UIS and SERVQUAL for measuring service
quality. For comparison purposes, I used the EUCS instrument as it contains
fewer items compared to the UIS. If we assume a user takes the same amount of
time to answer each question, the total time used for answering questions with
the new instrument is 88% shorter compared to time spent answering the exist-
ing UIS and SERVQUAL instruments. Thus, for the IS research community, this
study provides new information about a measurement instrument which is fea-
sible from the industry’s perspective in regular use for several applications as
significantly less time is needed from users to answer the questions compared
to existing instruments.

5.1.5 UML and UML modeling tool training through e-teaching tools: A
longitudinal study

E-teaching tools facilitate asynchronous (e.g., Wikis) and synchronous (e.g.,
video-conferencing) learning. According to a literature review conducted by
Koivulahti-Ojala and Käkölä (2014), there are no longitudinal studies on UML
or UML modeling tool training via e-teaching tools in industrial settings. Ac-
cording to this longitudinal case study, an intranet and virtual meeting tool
(VMT) were used to support UML and UML modeling tool training regarding
application knowledge covering commands and tools embedded in the infor-
mation system, business context knowledge covering the use of information
systems to effectively perform business tasks, and collaborative task knowledge
covering how others use the information system in their tasks. Furthermore,

77

Wikis, discussion forums, and e-mail were used to support UML and UML
modeling tool training but not for all three types of knowledge. This research
result is novel considering, according to our literature review, there are no lon-
gitudinal studies on UML modelling and UML modeling tool training.

5.2 Implications of results to practice

In this Subsection 5.2, I describe the studies’ implications for practice. Each re-
search question comes from practice and therefore many implications are com-
parable with the implications for science. However, the results are presented
from the perspective of industry. For each study, I do not repeat the research
questions as those were described in Subsection 5.1. The summary of the impli-
cations to practice is listed in Table 8.

5.2.1 An Information System Design Theory (ISDT) for the class of re-
quirements and release management systems (RRMS)

The main contribution of this study is the design product theory for the class of
RRMS, including the requirements for RRMS instances and the design meeting
the requirements. The design consists of an information model and the attrib-
utes for the elements presented in the information model. Additionally, this
study provided new information about the UML and UML modeling tool usage
in the context of requirement and release management process.

Research results are relevant for R&D management who can take ad-
vantage of the results when planning, evaluating, implementing or deploying
information systems to support the requirement or release management process
together with the UML modeling tool. IT practitioners benefit from the results
when planning, implementing, evaluating or deploying such systems.

5.2.2 A set of evaluation criteria for UML modeling tool version manage-
ment

The main contribution of this research was the set of validated evaluation crite-
ria for the version management capabilities of the UML modeling tools. Re-
search results are relevant for R&D management and IT practitioners who can
take advantage of the results when evaluating UML modeling tools’ version
management capabilities.

Global R&D organizations evaluating a UML modeling tool benefit from
the framework as they can use it during the evaluation process or on the evalu-
ation results of these two modeling tools. Especially for medium size compa-
nies, this is highly beneficial as it requires substantial effort to install the tools as
well as complete the evaluation. The total effort required for both installation
and evaluation was several man-months.

78

TABLE 8 The key implications for practice.

Article Research results Implication Target group
Article
I

A partial Information System
Design Theory for the class of
RRMS (requirements and re-
lease management systems),
including the requirements for
RRMS instances and the design
that meets the requirements.
Design includes information
model and attributes for the
elements presented in the in-
formation model.

Planning, implementing,
evaluating or deploying
an information system
supporting requirement or
release management pro-
cess together with UML
modeling tool.

R&D man-
agement,
IT practi-
tioners

Article
II

A set of evaluation criteria for
the evaluation of the version
management capabilities of the
UML modeling tools.

A set of evaluation crite-
ria and results of evalua-
tion can be used during
the evaluation of UML
modeling tool version
management capabilities.

R&D man-
agement,
IT practi-
tioners

Article
III

A training method to support
UML and UML modeling tool
training.

Planning, implementing,
and evaluating UML
modeling language and
UML modeling tool train-
ing.

R&D man-
agement,
IT practi-
tioners

Article
IV

A lightweight measurement
instrument, which can be ap-
plied to user and service satis-
faction analysis.

The measurement instru-
ment can be applied to
user and service satisfac-
tion analysis.

IT practi-
tioners

Article
V

Intranet and virtual meeting
tool (VMT) were used to sup-
port UML and UML modeling
tool training in terms of appli-
cation, business context, and
collaborative task knowledge.

Intranet and virtual meet-
ing tool (VMT) are suita-
ble for teaching UML
modeling and UML mod-
eling tool.

R&D man-
agement, IT
practitioners

5.2.3 A new training method to support training of UML and UML model-
ing tool

The main contribution of this research was the design, implementation,
and evaluation of a VMT-based training method for teaching UML modeling
language and UML modeling tool. Design and implementation of training was
specified in terms of content, organization of training, training materials, and
trainers’ skills and knowledge. IT practitioners benefit from the new training
method when planning, implementing, and evaluating UML modeling lan-
guage and UML modeling tool training. R&D management can take advantage
of the results when planning, implementing, and evaluating UML modeling

79

language and UML modeling tool training. IT practitioners and R&D manage-
ment can take advantage of the results when making decisions about VMT us-
age in UML modeling language and UML modeling tool training.

5.2.4 A lightweight measurement instrument, which can be applied to user
and service satisfaction analysis for users of a UML modeling tool

The main contribution of this research was the design, implementation, and
evaluation of a new measurement instrument to evaluate users’ satisfaction
with the tool and services supporting tool. IT practitioners benefit from the
proposed instrument when measuring user satisfaction and service quality for
information systems. The measurement instrument is short and easy to use.

5.2.5 UML and UML modeling tool training through e-teaching tools: A
longitudinal study

According to this longitudinal case study, an intranet and a virtual meeting tool
(VMT) were used to support UML and UML modeling tool training regarding
application knowledge covering commands and tools embedded in the infor-
mation system, business context knowledge covering the use of information
systems to effectively perform business tasks, and collaborative task knowledge
covering how others use the information system in their tasks. The main result
from the practitioners’ perspective is that these tools are suitable for e-teaching
of UML and UML modeling tool usage for three types of knowledge. IT practi-
tioners benefit from the results when they plan and deploy training for UML
and UML modeling tools.

5.3 Limitations and future research

The main limitation is the empirical evidence was collected only in one organi-
zation in all five studies. Empirical evidence was collected in a global high-
technology corporation, developing products in multiple sites with multiple
partners. Future research is needed to validate the results of those studies in
other types of organizations.

Different strategies were applied to enable better generalization of the re-
sults (Table 9). In Article I, a literature review was conducted before the case
study started to develop preliminary meta-requirements and meta-design. As
the case company had already successfully used the application for several
years with different products, inter-organizational setups, and partners, and
due to the literature review conducted before starting the study, we felt confi-
dent the information model is suitable for other globally distributed product
companies. In Article III, the target group of the informants represented differ-
ent backgrounds (novice and experienced users), different roles (architect, pro-
grammer), different functions (IT and product development) and different con-

80

tinents (Asia and Europe). In Article IV, the measurement instrument was de-
signed to be generally applicable for evaluating a variety of systems and ser-
vices and was tested two times.

TABLE 9 The key implications for science and suggested domain for generaliza-
tion of the results.

Article Implications for science Means used to
enhance general-
ization of results

Suggested domain

Article
I

A novel Information System De-
sign Theory for the class of
RRMS, including the require-
ments for RRMS instances and
the design that meets the re-
quirements.
The priorities, schedules, and
other information stored in
RRMS were used to focus UML
modeling efforts.

Literature review
and a case study
in a globally
distributed prod-
uct organization

Globally distribut-
ed product devel-
opment companies

Article
III

A novel training method to sup-
port UML and UML modeling
tool training.

Case study UML modeling
language and UML
modeling tool
training for differ-
ent roles and with
different
knowledge and
skills (novice and
experienced users)

Article
IV

A lightweight measurement in-
strument, which can be applied to
user and service satisfaction anal-
ysis.

Two surveys
conducted in the
case company
for users of a
UML modeling
tool

All information
systems and related
services

Another limitation is no cost data could be collected for use in any of the

studies due to demands by the case company not to divulge any internal or
third-party related costs such as travel. Availability of cost data would offer
better possibilities to more deeply analyze the data and could enrich the re-
search results in all studies. This limitation was applicable to all five studies.

For Article II, the limitation is due to basing the new set of evaluation cri-
teria on analysis of existing research in SW version management and docu-
mented requirements for assets requiring management in product line organi-
zation based on the experiences in the case company. A suggestion for further
research is developing a set of evaluation criteria theoretically based on product
development company mission and control parameters.

81

For Article IV, the research process followed instructions presented by
Churchill (1979) to create a new instrument. A suggestion for further research is
to apply more recently published processes such as those described by Mac-
Kenzie et al. (2011) for the construct validation.

For Article V, the limitation is conducting the longitudinal study in only
one organization. The usage of various classes of e-teaching tools should be
studied in longitudinal studies within different organizations to better under-
stand which e-teaching tools are used and why for UML modeling and UML
modeling tool training.

82

YHTEENVETO (FINNISH SUMMARY)

Unified Modeling Language™ (UML) on kansainvälinen standardi mallinnus-
kielelle. UML-mallinnuskieltä voidaan käyttää ohjelmiston vaatimusten, arkki-
tehtuurin ja rakenteen kuvaukseen, ohjelmakoodin generointiin sekä testauksen
automatisointiin. UML-mallinnusohjelman avulla voidaan tukea UML-mallin-
tamista. UML-mallinnusohjelmalla käyttäjät voivat luoda ja ylläpitää UML-
malleja, generoida koodia sekä luoda UML-malleja koodin perusteella. UML-
mallinnusohjelmia käytetään tuhansissa tuotekehitys- ja ohjelmistoalan yrityk-
sissä ympäri maailman.

Tämä väitöskirja sisältää viisi tutkimusta UML-mallinnusohjelman käytös-
tä, evaluoinnista ja koulutuksesta. Kaikki tutkimukset toteutettiin tuotekehi-
tysyrityksessä, jossa UML-mallinnusohjelmaa käytettiin useilla paikkakunnilla
eri maissa. Tutkimuksen päätutkimuskysymys on: ”Miten useilla paikkakunnil-
la toimiva tuotekehitysyritys voi ottaa käyttöön UML-mallinnuskielen ja UML-
mallinnusohjelman?”.

Ensimmäisen tutkimuksen tulosten mukaan UML-malleja laadittiin osana
vaatimustenhallinta- ja paketointiprosessia, mutta UML-mallit eivät kattaneet
koko suunniteltavaa järjestelmää. Toisessa tutkimuksessa arvioitiin, mitkä ovat
välttämättömät mutta riittävät ominaisuudet UML-mallinnusohjelman version-
hallinnalle maantieteellisesti hajautuneessa tuotekehitysorganisaatiossa. Tämän
tutkimuksen tärkein tulos on kriteeristö UML-mallinnusohjelman versionhal-
lintaominaisuuksien arviointiin.

Kolmannessa tutkimuksessa selvitettiin, voidaanko UML-mallinnusohjel-
man ja UML-mallinnuskielen koulutus toteuttaa sähköisen kokousjärjestelmän
avulla niin että koulutus vaikuttaa positiivisesti oppijoiden tietoihin, taitoihin ja
motivaatioon ja oppijat ovat tyytyväisiä koulutukseen. Tutkimustulosten mu-
kaan oppijat olivat tyytyväisiä koulutukseen ja oppijoiden tiedot, taidot ja mo-
tivaatio käyttää UML-mallinnusta ja UML-mallinnusohjelmaa paranivat koulu-
tuksen avulla. Sähköisen kokousjärjestelmän avulla toteutetun koulutuksen
kustannukset olivat 88% pienemmät kuin perinteisen luokkakoulutuksen.

 Neljännessä tutkimuksessa kehitettiin mittari UML-mallinnusohjelman
käyttäjän tyytyväisyyden mittaamiseen. Viides tutkimus oli pitkittäistapaustut-
kimus, jossa tutkittiin, mitkä e-oppimista tukevat järjestelmät sopivat parhaiten
käyttöön UML-mallinnuskielen ja UML-mallinnusohjelman opetuksessa niin
että suuri määrä oppijoita oppivat käytössä vaadittavat tiedot ja taidot. Tutki-
muksen mukaan intranet ja sähköinen kokousjärjestelmä tukivat ohjelman käyt-
tötaitojen, siihen liittyvien prosessien sekä ohjelman välityksellä tapahtuvan
yhteistyön oppimisessa. Yritykset voivat hyödyntää tutkimusten tuloksia
suunnitellessaan ja toteuttaessaan UML-mallinnuskielen ja UML-mallinnus-
ohjelman käyttöönottoa.

83

REFERENCES

Adelson, B. & Soloway, E. 1985. The role of domain experience in software
design. IEEE Transactions on Software Engineering 11 (11), 1351–1360.

Aulin, A. 1982. The cybernetic laws of social progress. Oxford: Pergamon Press.
Baroudi, J. J. & Orlikowski, W. J. 1988. A short-form measure of user

information satisfaction: a psychometric evaluation and notes on use.
Journal of Management Information Systems 4 (4), 44–59.

Benbasat, I., Goldstein, D. K. & Mead, M. 1987. The case research strategy in
studies of information systems. MIS Quarterly 11 (3), 369–386.

Boell, S. K. & Cecez-Kecmanovic, D. 2015. On being ‘systematic’in literature
reviews in IS. Journal of Information Technology 30 (2), 161–173.

Booch, G. 1994. Object-oriented analysis and design with applications (2nd
edition). Redwood city, CA, USA: Benjamin/Cummings.

Bryman, A. & Cramer, D. 1999. Quantitative data analysis with SPSS release 8.0
for Windows: For Social Scientists. New York: Routledge.

Budgen, D., Burn, A. J., Brereton, O. P., Kitchenham, B. A. & Pretorius, R. 2011.
Empirical evidence about the UML: a systematic literature review.
Software: Practice and Experience, 41 (4), 363–392.

Bunse, C., Grutzner, I., Peper, C., Steinbach-Nordmann, S. & Vollmers, C. 2006.
Coaching professional software developers - an experience report. In
Proceedings of the 19th Conference of Software Engineering Education
and Training, IEEE.

Carmel, E. & Agarwal, R. 2002. The maturation of offshore sourcing of
information technology work. MIS Quarterly Executive 1 (2), 65–78.

Churchill, G. A. 1979. A Paradigm for Developing Better Measures of Marketing
Constructs. Journal of Marketing Research 16 (1), 64–73.

Delone, W. H. 2003. The DeLone and McLean model of information systems
success: a ten-year update. Journal of management information systems 19
(4), 9–30.

DeLone, W. & McLean, E. 1992. Information systems success: the quest for the
dependent variable. Information systems research 3(1), 60-95.

Doll, W. & Torkzadeh, G. 1988. The measurement of end-user computing
satisfaction. MIS Quarterly 12 (2), 259–274.

Doll, W. & Torkzadeh, G. 1991. The measurement of end-user computing
satisfaction: theoretical and methodological issues. MIS Quarterly 15 (1),
5–10.

Dori, D. 2002. Why significant UML change is unlikely. Communications of the
ACM 45 (11), 82–85.

Fitsilis, P., Gerogiannis, V. C. & Anthopoulos, L. 2014. Role of Unified
Modelling Language in software development in Greece - results from an
exploratory study. IET Software 8 (4), 143–153.

Gahalaut, G. & Käkölä, T. 2010. Evaluation of Frame-and Feature-based
Software Product Line Tools from the Viewpoint of Mass Customization
by End Users. In Proceedings of the AMCIS 2010.

84

Hevner, A., March, S., Park, J. & Ram, S. 2004. Design science in information
systems research. MIS Quarterly 28 (1), 75–105.

Hälinen, R. 2011. An Evaluation Method for Virtual Learning Applications.
Ph.D. Thesis, University of Tampere, Finland.

Islam, A. K. M. N. 2011. Information systems Post-adoption satisfaction and
dissatisfaction: A study in the e-learning context. In Proceedings of 15th
Pacific Asia Conference on Information Systems (PACIS).

Islam, A. K. M. N., Koivulahti-Ojala, M. & Käkölä, T. 2010. A light-weight,
industrially-validated instrument to measure user satisfaction and service
quality experienced by the users of a UML modeling tool. In Proceedings
of the AMCIS 2010.

ISO. 2010. ISO/IEC TR 19759:2005 - Software Engineering - Guide to the
Software Engineering Body of Knowledge (SWEBOK), Geneva,
Switzerland: International Organization for Standardization.

ISO. 2012. ISO/IEC 19505-2:2012 - Information technology - Object
Management Group Unified Modeling Language (OMG UML) - Part 2:
Superstructure, Geneva, Switzerland: International Organization for
Standardization.

Ives, B., Olson, M. H. & Baroudi, J. J. 1983. The measurement of user
information satisfaction. Communications of the ACM 26(10), 785-793.

Jadhav, A. S. & Sonar, R. M. 2011. Framework for evaluation and selection of
the software packages: A hybrid knowledge based system approach.
Journal of Systems and Software 84 (8), 1394-1407.

Jiang, J. J., Klein, G. & Carr, C. L. 2002. Measuring information system service
quality: SERVQUAL from the other side. MIS Quarterly 26 (2), 145–166.

Järvinen, P. 1999. Oman työn analyysi ja kehittäminen. Tampere: Opinpaja Oy.
Järvinen P. 2012. On research methods. Tampere: Opinpaja Oy.
Kang, D. & Santhanam, R. 2003. A longitudinal field study of training practices

in a collaborative application environment. Journal of Management
Information Systems 20 (3), 257–281.

Kettinger, W. & Lee, C. 2005. Zones of tolerance: Alternative scales for
measuring information systems service quality. MIS Quarterly 29 (4), 607–
623.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J. & Linkman, S.
(2009). Systematic literature reviews in software engineering–a systematic
literature review. Information and software technology, 51(1), 7–15.

Kobryn, C. 2002. Will UML 2.0 be agile or awkward? Communications of the
ACM 45 (1), 107–110.

Koivulahti-Ojala, M. & Käkölä, T. 2009. Framework for Evaluating the Version
Management Capabilities of a Class of UML Modeling Tools from the
Viewpoint of Multi-site, Multi-partner Product Line Organizations. In
Proceedings of the 43rd Hawaii International Conference on Systems
Sciences, IEEE Computer Society, Hawaii, USA.

Koivulahti-Ojala, M. & Käkölä, T. 2012. Design, implementation, and evaluation
of a Virtual Meeting Tool-based innovation for UML technology training

85

in global organizations. In Proceedings of the 45rd Hawaii International
Conference on Systems Sciences, IEEE Computer Society, Hawaii, USA.

Koivulahti-Ojala, M. & Käkölä, T. 2014. Training people to master complex
technologies through e-Learning: Case of UML technology training in a
global organization. In Proceedings of the AMCIS 2014.

Koponen, E. 2008. The development, implementation and use of e-learning:
critical realism and design science perspectives. Ph.D. Thesis, University
of Tampere, Finland.

Kraiger, K., Ford, J. K. & Salas, E. 1993. Application of cognitive, skill-based,
and affective theories of learning outcomes to new methods of training
evaluation. Journal of Applied Psychology 78 (2), 311–328.

Käkölä, T., Koivulahti-Ojala, M. & Liimatainen, J. 2011. An Information Systems
Design Product Theory for the Class of Integrated Requirements and
Release Management Systems. Journal of Software Maintenance and
Evolution: Research and Practice 23 (6), 443–463.

Lange, C. F., Chaudron, M. R. & Muskens, J. 2006. In practice: UML software
architecture and design description. IEEE Software 23 (2), 40–46.

Lee, A. S. 1989. A scientific methodology for MIS case studies. MIS Quarterly 13
(1), 33–50.

Lu, Y. 2015. An information system design product theory for the class of
eSourcing requirements, delivery and completion management systems
for eSourcing service providers. Ph.D. Thesis, University of Jyväskylä,
Finland.

MacKenzie, S. B., Podsakoff, Ph. M. & Podsakoff, N. P. 2011. Construct
Measurement and Validation Procedures in MIS and Behavioral Research:
Integrating New and Existing Techniques. MIS Quarterly 35 (2), 293–334.

March, S. & Smith, G. 1995. Design and natural science research on information
technology. Decision Support Systems 15 (4), 251–266.

Metrailler, A. & Estier, T. 2014. EVOLIS Framework: A Method to Study
Information Systems Evolution Records. In Proceedings of the 47th
Hawaii International Conference on Systems Sciences, IEEE Computer
Society, Hawaii, USA.

Nugroho, A. & Chaudron, M. R. 2008. A survey into the rigor of UML use and
its perceived impact on quality and productivity. In Proceedings of the
Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM.

Peffers, K., Tuunanen, T., Rothenberger, M. & Chatterjee, S. 2007. A design
science research methodology for information systems research. Journal of
Management Information Systems 24 (3), 45–77.

Petre, M. 2013. UML in practice. In Proceedings of the 35th International
Conference on Software Engineering. IEEE.

Petter, S., DeLone, W. & McLean, E. 2008. Measuring information systems
success: Models, dimensions, measures and relationships. European
Journal of Information Systems 17 (3), 236–263.

86

Petter, S., Straub, D. & Rai, A. 2007. Specifying formative constructs in
information systems research. MIS Quarterly 31 (4), 623–656.

Pitt, L. F., Watson, R. T. & Kavan, C. B. 1995. Service quality: A measure of
information systems effectiveness. MIS Quarterly 19(2), 173–187.

Nunamaker Jr, J. F., Chen, M. & Purdin, T. D. 1990. Systems development in
Information Systems Research. Journal of Management Information
Systems 7(3), 89–106.

Rossi, M. & Sein, M. 2003. Design Research Workshop: A Proactive Research
Approach. Presentation delivered at IRIS 26, August 9 – 12, 2003.
http://tiesrv.hkkk.fi/iris26/presentation/workshop_designRes.pdf last
accessed January 16, 2004.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorenson, W. 1991. Object-
Oriented Modeling and Design. Englewoord Cliffs, NJ: Prentice-Hall.

Saaty, T. L. 1999. Fundamentals of the Analytic Network Process. In
Proceedings of the 5th International Symposium on the Analytic
Hierarchy Process (ISAHP).

Salo, A. & Käkölä T. 2005. Groupware support for requirements management in
new product development. Journal of Organizational Computing and
Electronic Commerce 15 (4), 253 – 284.

Smithson, S. & Hirschheim, R. 1998. Analyzing information systems evaluation:
another look at the old problem. European Journal of Information Systems
7(3), 158–174.

Straub, D., Boudreau, M. C. & Gefen, D. 2004. Validation guidelines for IS
positivist research. The Communications of the Association for
Information Systems 13 (1), Article II4.

Symons, V. J. 1991. A review of information systems evaluation: content,
context and process. European Journal of Information Systems 1 (3), 205–
212.

Tang, Z., & Liu, S. 2010. The Constructing Method of Meta-requirement
Analysis Model. In Proceedings of the 3rd International Conference on
Business Intelligence and Financial Engineering (BIFE). IEEE.

Ulrich, K.T. 1995. The role of product architecture in the manufacturing firm.
Research Policy 24 (3), 419–440.

Walls, J., Widmeyer, G. & El Sawy, O. 1992. Building an information system
design theory for vigilant EIS. Information Systems Research 3 (1), 36–59.

Walls, J., Widmeyer, G. & El Sawy, O. 2004. Assessing information system
design theory in perspective: how useful was our 1992 initial rendition.
Journal of Information Technology Theory and Application 6 (2), 43–58.

Wanyama, T. & Far, B. 2008. An empirical study to compare three methods for
selecting COTS software components. International Journal of Computing
and ICT Research 2 (1), 34–46.

Yin, R. K. 2003. Case study research: Design and methods (3rd edition).
Thousand Oaks: Sage Publications.

Yin, R. K. 1989. Case study research: Design and methods. Thousand Oaks:
Sage Publications.

ORIGINAL PAPERS

I

AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY FOR
THE CLASS OF INTEGRATED REQUIREMENTS AND RELEASE

MANAGEMENT SYSTEMS

by

Timo Käkölä, Mervi Koivulahti-Ojala & Jani Liimatainen, 2011

Journal of Software Maintenance and Evolution: Research and Practice vol 23, 443-
463

©2010 John Wiley & Sons, Ltd. Reprinted with permission.

JOURNAL OF SOFTWAREMAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. (2010)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/smr.492
SOFTWARE PROCESS IMPROVEMENTAND PRACTICE ARTICLE

Research

An information systems design
product theory for the class of
integrated requirements and
release management systems

Timo Käkölä1,∗,†, Mervi Koivulahti-Ojala1 and
Jani Liimatainen2

1University of Jyväskylä, 40014 Jyväskylä, Finland
2Accenture, 00101 Helsinki, Finland

SUMMARY

High-tech companies conducting product development need to collect and analyze requirements effectively,
plan and implement releases, and allocate requirements to appropriate releases. Requirements and release
management are complicated because development activities typically are scattered across multiple sites,
involve multiple partners in different countries, leverage various development methods and tools, and are
realized through various organizational arrangements such as release projects in organizations structured
around products and permanent release teams in organizations responsible for the long-term development
and maintenance of strategic software and hardware assets. Flexible, scalable, and secure groupware-
based support for the activities provides substantial payoffs. Yet, the extant literature provides little
theoretical guidance for designing and using requirements and release management systems (RRMS) in
multi-site, multi-partner environments. This article develops the meta-requirements and a meta-design of
an Information Systems Design Product Theory for the class of RRMS based on a case study in a global
company and a literature review. The theory is scalable to meet the needs of global companies but simple
enough so that small and medium-sized companies can also leverage it to implement requirements and
release management solutions. Copyright © 2010 John Wiley & Sons, Ltd.

Received 27 November 2008; Revised 30 October 2009; Accepted 6 November 2009

KEY WORDS: global software product development; information systems design theory; knowledge management;
release management; requirements management; software process improvement

∗Correspondence to: Timo Käkölä, University of Jyväskylä, 40014 Jyväskylä, Finland.
†E-mail: timokk@jyu.fi

Copyright � 2010 John Wiley & Sons, Ltd.

T. KÄKÖLÄ, M. KOIVULAHTI-OJALA AND J. LIIMATAINEN

1. INTRODUCTION

To succeed in the global markets of software-intensive products, high-tech companies need to
shorten the cycle time of new product development while improving the product quality and service
delivery and maintaining or reducing the total resources required [1,2]. This concern can be dealt
through (1) internal strategies such as global software development, where development resources
are distributed globally to reap cost benefits, leverage specialized competencies, and address the
specific needs of geographically defined markets [3–5], and software product line engineering and
management, that is, the strategic acquisition, creation, and reuse of software assets [6–8] or (2)
external strategies such as acquiring commercial off-the-shelf components and outsourcing software
development, maintenance, and related services to best-in-class service providers [9,10].
All the strategies require companies to effectively collect, analyze, and utilize requirements

[11–16]. This is particularly true during the earliest phases of product development in which
different stakeholders need to integrate their knowledge into product concepts that direct the internal
personnel and the service providers during the downstream phases of product development [17–19].
A well-defined product concept is necessary to establish a viable product line architecture that
can be shared across the products within the product line to enable strategic reuse. Well-defined
requirements, architectural interfaces, and product architectures are prerequisites for assigning
appropriately scoped projects to internal units and service providers for implementation [9,10].
The achievement of such integration is complicated by several factors [20]. Numerous require-

ments ranging from abstract wishes to detailed technical solution proposals are created continuously.
Development activities are scattered across many sites and partners in different countries, limiting
the possibilities for setting up face-to-face meetings [14]. Organizational changes, differences in
organizational cultures, and divergent perceptions about the prospective product’s mission may
make it difficult to reach an agreement about the product definition [21].
A commonly enacted software product line governance model and a strategic product line

roadmapping process should be instituted to ensure that the organization is ready for multi-site
development [8,22]. All sites should use compatible processes, methodologies, tools, and termi-
nology as much as possible to enact the governance model [4]. Each product roadmap outlines the
respective product line at a given point in time, explicates (from the market viewpoint) the major
common and variable features of all foreseeable products of the product line, and schedules the
deliveries of the products to markets [7, Chapters 2, 9]. For every product, a release plan should
be made that allocates the features to scheduled product releases and responsible development
organizations and documents the allocations.
Release planning must be conducted carefully and systematically by the stakeholders respon-

sible for the requirements and the product strategy and by the internal and external stakeholders
responsible for implementing the requirements in releases and the resulting release plans must be
communicated clearly and in time to the stakeholders [23]. Otherwise, it is difficult for the providers
to commit resources for scheduling and synchronization of their production activities to meet the
requirements specified in the release plans. For example, the scopes of software releases cannot be
measured in terms of the functional size [24,25] if the requirements are not linked to the releases
implementing them because functional size measurement is solely based on the requirements.
A critical component of the governance model is that all requirements are (1) captured in a

repository to ensure that they are neither missed nor overlooked and (2) subjected to effective

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY

filtering in order to prevent information overload [16,23,26]. The remaining requirements are then
refined, specified, estimated in terms of cost and resource implications, prioritized, and allocated
to product releases and development units.
Flexible, scalable, and secure communication, coordination, and collaboration systems are needed

to support the enactment of the governance model. Little theory-based guidance is available to
help companies to design and use such systems to achieve the goals of cycle time reduction and
improved product quality, service delivery, and overall effectiveness.
Design theories, unlike other theories, support the achievement of goals [27–32]. Walls et al.

[30, p. 37] argue that the information systems (IS) ‘field has now matured to the point where
there is a need for theory development based on paradigms endogenous to the area itself’ and call
for IS design theories to fulfill that need. An IS design theory is ‘a prescriptive theory based on
theoretical underpinnings which says how a design process can be carried out in a way which is
both effective and feasible’ (ibid, p. 37). It prescribes both the design product and process aspects
of a class of IS, that is, what are (1) the value propositions to be fulfilled by implementing an
instance of the class, (2) meta-requirements describing the problem(s) to be solved by the class,
(3) the meta-design prescribing the solution for the problem(s), and (4) applicable kernel theories
from social and natural sciences for understanding and/or solving the problem(s) shared across all
products within the class, and how the products should be built [30,31].
Salo and Käkölä [16] found that groupware-based requirements management systems (RMS)

need to be designed and used to redesign and enact the earliest phases of product development
effectively in multi-site, cross-functional organizations. They developed an IS design theory for the
class of RMS in order to (1) facilitate the endogenous theory development in the context of RMS
research, (2) to help RMS designers build successful RM systems for creating, prioritizing, refining,
storing, and managing requirements, and (3) to guide organizations in evaluating and deploying
RMS. However, the benefits afforded by RMS were hampered if the RMS instances prescribed
by the IS design theory were not integrated with the systems used in the downstream phases in
order to provide transparent end-to-end support throughout the product development life cycle [16].
For example, customer representatives responsible for entering requirements could not use RMS
instances to follow-up if and when the requirements would be implemented, lowering their interests
in entering the requirements. The scope of the IS design theory should thus be broadened to design
systems that support the life cycle more comprehensively.
This research focuses on integrating requirements management with release management that is

concerned with the identification, packaging, and delivery of product’s elements [33]. Releases can
be realized through various organizational arrangements such as release projects in organizations
structured around products [34] and permanent release teams in organizations responsible for the
long-term development and maintenance of strategic software and hardware assets. An illustrative
scenario of release management practices for software product businesses is presented next. Each
product identified during product line roadmapping is developed incrementally in release projects
that follow the release plan and typically last from a few months to a year. Each release project
is executed in a number of iterative cycles in which new features are added and the product
quality is improved so that every cycle yields a tested and stable product version. During each
cycle, feedback is collected from key stakeholders and used to plan and execute the next cycle(s).
In addition to the traditional project management activities, release management determines how
many cycles and internal releases are needed (for testing purposes) in a release project, refines the

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

T. KÄKÖLÄ, M. KOIVULAHTI-OJALA AND J. LIIMATAINEN

requirements identified during product line roadmapping, allocates the requirements to the most
appropriate cycles, and schedules the cycles. It thus ensures that internal and external releases meet
the (specified and managed subset of) requirements identified and agreed upon in the front end of
product development.
Based on our extensive industrial experience and the review of academic literature, we hypothesize

that the theoretical validity and practical relevance of the IS design theory for the class of RMS can
be enhanced most effectively by extending the theory to provide integrated support for requirements
and release management. The extant literature provides little guidance for designing and deploying
integrated requirements and release management systems (RRMS). This article develops the design
product theory (i.e., the product aspects of the IS design theory) for the class of RRMS (cf. [32]).
It addresses the following research question:

• What are the necessary and sufficient properties for the class of RRMS in a multi-site and
multi-partner environment?

The main contributions of the article are the meta-requirements of the design product theory
and a meta-design that partially meets the meta-requirements. They are crystallized and validated
based on (1) a case study in a global organization that deploys an RRMS instance organization-
wide for effective requirements and release management and (2) a literature review in the areas of
requirements management, release management, and process integration.
The design product theory for the class of RRMS can be useful and generic only, if the two

key concepts requirement management and release management and the scope of the theory are
clearly defined. In this article, the two concepts refer to generic requirements and release-related
actions, information entities, and roles, which can be adopted throughout the multi-site and multi-
partner organization regardless of (1) the organizational design, (2) the product characteristics,
and (3) the selected software and/or hardware development methods. As a result, the theory is
independent of issues such as: how product lines and platforms are organized, which types of
customers exist, and how much the efforts and times needed to develop different types of products
vary. We have determined the scope of the theory by analyzing the RRMS instance in the case
organization. The instance has been successfully used for years without any major design changes
whereas the case organization has instituted numerous major organizational changes. The RRMS
design invariance has been possible because the organization has scoped the design effectively
by (1) determining the generic requirements and the release-related actions, information entities,
and roles that always need to be supported by the RRMS instance and (2) interfacing the generic
design to various (A) project management practices and systems deployed to plan and monitor the
project resources and costs, (B) release planning practices deploying different heuristics, methods,
and systems on a case-by-case basis to plan one or more releases based on only a limited set
of instances of information entities (e.g., some features and a limited number of releases), and
(C) product portfolio management practices (where the portfolio of products is agreed). In sum,
requirements and release management processes and enabling RRMS instances, respectively, need
to be interfaced with project management, release planning, and product portfolio management
processes and enabling systems. For example, RRMS instances need to provide middle managers
responsible for requirements and release management processes with good overviews of all the
requirements, features, and releases. During release planning a subset of all the features and releases
is planned using various heuristics, methods, and systems. The RRMS instances serve as sources of
feature and release information. Release planning usually requires information about other issues

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY

(e.g., available resources) from other sources too. The resulting release plans are then made available
through the instances, so that all the teams working on the releases involved in a release plan can
see the release schedule and the middle management can monitor the development efforts.
The design product theory has been created partially based on the experiences in the global case

organization to ensure that the meta-design is flexible and scalable, that is, the RRMS instances
following the meta-design can handle large volumes of information entities and their relationships
(provided that the necessary hardware resources are available) and enable diverse organizational
designs, development methods, and types of products (including both hardware and software).
However, we have made every effort to simplify the meta-design so that even small and medium-
sized organizations can leverage it to implement RRMS solutions. The design process aspects of
the IS design theory for the class of RRMS are not elaborated because our industrial experiences
indicate that, at least in the context of the class of RRMS, it is most useful to prescribe the design
product and let the designers adopt the development methods most suitable for implementing the
design product in their socio-technical contexts.

2. DESCRIPTION OF THE CASE ORGANIZATION AND THE RESEARCH
METHOD

A literature review was performed to develop preliminary meta-requirements and meta-design
elements before the case study started. Later on, it was complemented by a review of the commer-
cially available RRMS. The review was essential to reduce bias induced by the single case study
and ensures the generalizability of the meta-requirements and the meta-design to the maximum
possible extent [35]. Potential meta-design elements that according to the review were peculiar to
the organization or its RRMS instance (hereafter, the RRMS) were eliminated. For example, the
RRMS consisted of numerous information entities but many of them were peculiar to it because
they reflected the same underlying concepts in different abstraction levels to facilitate the technical
implementation of the RRMS.
The RRMS-enabled requirements and release management process had been institutionalized

across the organization by the time the study was started. Business units ran product lines in
which product programs produced product releases under the guidance of product roadmaps and
release plans for customers in specific market segments. Product programs deployed software and
hardware platform releases developed by internal platform units, inter-organizational consortiums,
and external providers. The platform releases integrated hardware and/or software component
releases that were developed internally or by partners or purchased off-the-shelf from external
providers. Requirements were collected from markets, service providers, and other internal and
external sources. Requirements triage was then conducted to eliminate requirements that did not
warrant further actions. Acceptable requirements were allocated to the appropriate units and compo-
nent providers using the RRMS and iteratively refined into increasingly detailed product, platform,
and/or component features that could be scheduled, implemented, and released by the individual
development teams. The process typically involved complex negotiations between stakeholders.
Product lines and platform units produced a diverse set of products that were in the different

stages of the product life cycles, targeted different markets, and had different component vendors.
They could thus vary their RRMS-enabled requirements and release management processes within

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

T. KÄKÖLÄ, M. KOIVULAHTI-OJALA AND J. LIIMATAINEN

the boundaries agreed upon at the organizational level. For example, product, software platform,
and software component releases could be planned months in advance whereas features, releases,
and release dependencies of hardware platforms could be planned even one or two years in advance
depending on how accurately the providers could estimate their release plans and schedules for new
hardware components. Product programs that needed to develop and deliver new products quickly
could utilize the RRMS (1) to know which critical new features the platforms were planning to
release and when and (2) to link their requirements to the features.
The RRMS was a proprietary Lotus Domino-based application developed in the organization. An

organization-wide Lotus Domino infrastructure had been institutionalized before the development
started and the organization was competent in developing and deploying Domino applications.
The RRMS had been productized, that is, one RRMS design and repository was used. Different
organizational units had been closely involved in designing the RRMS from the beginning and had
become committed to using and further developing it. They considered the RRMS highly malleable
to the changing business needs partly because the organization controlled it and business units did
not need to negotiate with external vendors when changes were needed.
Requirements, features, and releases were the key information entities to be managed throughout

their life cycles using the RRMS. Most importantly, the RRMS was used to continuously manage
dependencies within and between the information entities and enable traceability between the
entities and all the organizational units responsible for creating and updating the entities during their
life cycles. Requirement, feature, and release managers were responsible for managing the respective
entities. Product line managers coordinated product programs and the associated platforms. For
example, product line requirement managers received requirements from sources such as product
marketing. If the requirements could not be addressed within the product programs because they
belonged to the scope of the product platforms, product line requirement managers allocated them
to the appropriate platforms and later on followed their progress using the RRMS. Release managers
in the various levels used the RRMS to scope and schedule releases and to create and analyze
dependencies between releases. Line managers used the RRMS to ensure the availability of the
appropriate resources when needed. The RRMS also enabled release teams to search and locate
reusable assets quickly, substantially increasing the perceived productivity.
However, while using the RRMS for achieving these objectives, some problems prevailed. Orches-

tration of complex parallel development programs, involving multiple internal and external develop-
ment units across multiple sites, was challenging and coordination breakdowns sometimes occurred.
For example, product releases depended on platform releases, which, in turn, could depend on
other platform releases and/or component releases. Component providers ran their own businesses
and product platforms were not necessarily their most important customers. Component providers
sometimes had to change their commitments to meet the emerging business needs, resulting in
issues such as delayed releases. The RRMSwas critical for managing these dependencies and recov-
ering from breakdowns. For example, if a release was unexpectedly delayed, the release manager
updated the release schedule and the information about the delay was immediately available to all
stakeholders. The schedules and scopes of the releases dependent on the delayed release could then
be revised as necessary.
Indeed, the ability of the RRMS to support efficient routines and the recovery from complex

breakdowns was a major reason for the successful organization-wide institutionalization of the
RRMS-enabled requirements and release management process. After institutionalization, the use

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY

of the RRMS has been relatively stable with respect to measures such as the number of active
users and the number of documents created. For example, the personnel of all product programs
have entered into the RRMS the requirements for the platforms that the programs deploy. During
a 3-month period in 2008, the RRMS was used in read-only mode by more than 6000 people and
updated by more than 2000 people within the organization. In addition, around one hundred people
used the RRMS in external service providers’ sites. By the end of 2008, it contained about 22 000
active requirements, more than 50 000 active features, and 23 000 active releases. The documents
that were no longer active had been automatically archived.
The RRMS was critically important for the top and middle management because it was the

primary organization-wide IS containing real-time information about all the releases and associ-
ated requirements and responsible stakeholders. While there were many reasons contributing to the
success of the RRMS within the organization, it is crucial, from the viewpoint of creating an IS
design theory for the class of RRMS, that the RRMS-enabled real-time transparency and manage-
ment of product development within the entire organization. Other significant factors contributing
to the success of the RRMS were: it imposed the appropriate amount of control on the people
using it, its information model included mostly textual descriptions of information and minimized
redundancy of information between the RRMS and related IS, and it was easy for users to add
information to it. In addition, since the RRMS focused on release management, it did not replace
higher-level product portfolio management and product line roadmapping systems, which require
advanced algorithmic models (e.g., what if-analyses, cost and effort estimation, optimization of
inter-dependent releases) and visualization techniques. But all the results (e.g., feature priorities,
allocations of features to releases, and release schedules) from using such systems had to be stored
in the RRMS because (1) they guided the planning and implementation of releases and (2) the
middle management based its product development decision making largely on the information
available in the RRMS.
The software and hardware development processes and the supporting IS were not significantly

affected either, because they were beyond the scope of the RRMS. Software development efforts
increasingly leveraged agile development practices. The RRMS thus could not impose unnecessarily
stringent control mechanisms on them. Only the inputs to and the deliverables of management and
the software and hardware development processes and systems were dealt with by the RRMS. For
example, if requirements in the RRMS needed specific product or organizational models to make
them understandable to executives, managers of service providers, or other critical stakeholders,
the models were crafted in appropriate modeling environments as necessary and hyperlinked or,
sometimes, imported to the RRMS. Unified Modeling Language (UML) was deployed [36] but
thorough UML modeling was conducted only when necessary because the organization managed
tens of thousands of requirements and features through the RRMS. The priorities, schedules, and
other information stored in the RRMS could be used to prioritize the modeling efforts. The models
were created, modified, and managed throughout their life cycles using the modeling environ-
ments instead of the RRMS. The analysis of RRMS-enabled processes and interfacing IS has thus
helped us to scope the design product theory for RRMS appropriately. More details concerning the
organization and the RRMS and related IS are beyond the scope of the article.
Two of this article’s authors, a doctoral student and a master’s student in IS research, worked

full time in the organization during a 6-month study period. The RRMS had become increasingly
complex over the years when its designers had tried to meet the ongoing influx of new requirements.

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

T. KÄKÖLÄ, M. KOIVULAHTI-OJALA AND J. LIIMATAINEN

While its functionality had been documented well, the organization was keen to further develop it.
A current state analysis of the RRMS was thus deemed necessary to better understand its limitations
and possibilities. Major design changes were not realized during the study. The authors had access
to all the relevant information and could interact with all people who had been involved with the
RRMS design. They observed the use of the RRMS, analyzed documentation, discussed infor-
mally with various stakeholders, and conducted six semi-structured interviews with middle-level
managers who had been involved with the design and use of the RRMS for process improvement.
After interviews were completed, the interviewees were provided with interview transcripts and
summaries. Interviewees reviewed the meta-requirements and proposed new ones that were added
to the original set if all the interviewees considered the proposed meta-requirements critical for the
class of RRMS. The proposed meta-requirements and meta-design were used in the organization
for further development of the RRMS. The authors retained access to the organization and peri-
odically observed the successful co-evolution of the RRMS and the organization until the time of
completing this article.
Walls et al. [30,31] argue that kernel theories from natural and/or social sciences need to be

identified and used to derive and govern meta-requirements of IS design theories. Interestingly, the
people the authors interviewed or otherwise interacted with could not specify academic articles or
theories influential during the RRMS design. Theywere experts with long organizational tenures and
relied on theories-in-use [37] developed primarily through social interactions (cf. [38]), experiences
from earlier projects, and agile development practices instead of academic articles, kernel theories,
or design theories. The authors thus became increasingly intrigued with how to build such a simple
but scalable and effective IS design theory for the class of RRMS based on the case study that IS
designers and managers in other organizations would be willing to use the theory in addition to
trial and error mechanisms and long-reinforced theories-in-use. Kernel theories were determined
to be out of the scope of the design product theory because no empirical evidence could be found
about their usefulness in the context of the RRMS design.

3. META-REQUIREMENTS OF THE IS DESIGN PRODUCT THEORY FOR THE
CLASS OF RRMS

This section presents the meta-requirements for the design product theory for the class of RRMS.
They are introduced by revising a framework of Salo and Käkölä [16]. The framework considered
meta-requirements in relation to three categories of services that RMS have to offer: (1) commu-
nication, (2) control, and (3) change. Communication refers to the ability of RMS to disseminate
requirements information within an organization, including information about the rationale for RM
and its relationships to the external environment. Support for control ensures that requirements
are dealt with in accordance with the approved principles and procedures. Support for change is
needed because products, technologies, and customers change and RMS must remain amenable to
adjustments at all levels of the RM activity.
The three categories are valid for the class of RRMS but two new ones are needed: (4) Platform-

based product development and (5) Process integration. Platform is the physical implementation of
the baseline entity that contains the common business requirements for all the derivative products

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY

Table I. A framework for categorizing the meta-requirements of the design product
theory for the class of RRMS.

Platform Process
Communication Control Change development integration

• Prioritization
and valuation of
requirements and
the allocation of
requirements into
releases
• Traceability
• Single capture
of information

• Content ownership
and accountability
• Management and
coordination
• Creating and
sharing of metrics
information
• Access rights and
information security

• Version
management of
requirement
documents
• Release
re-planning
• Change
management and
impact analysis
• Defining and
maintaining the
requirements
baseline

• Creation and
reuse of reusable
assets

• Process transparency
• Providing
high-quality
information
• Providing
information at the
right and consistent
level of detail

that the platform has been designed to support (cf. [2,7,39–41]). Market-driven product development
occurs on top of the platform. End-to-end process integration is necessary to ensure that all require-
ment and release managers have all the high-quality information they need to be available at the
right level of detail when they need it. Process integration also helps to ensure that all the release
level information is available in a repository so that the managers can analyze it and take deci-
sions by means of other IS (which are beyond the scope of the design product theory presented in
this article) that aggregate the requirement, feature, and release level information and link it with
product portfolios and roadmaps, release plans, and other information related to strategic business
management. Table I classifies all meta-requirements.

3.1. Meta-requirements in support of communication

3.1.1. Prioritization and valuation of requirements and the allocation of requirements into
releases

Requirements must be allocated into releases using requirement prioritization and valuationmethods
that enable the most crucial requirements to be implemented and released first [42,43]. The methods
are typically based on trade-off analysis between the economic values and implementation costs
and resource constraints associated with the requirements [42, p. 140] and [22,44]. Moreover, all
stakeholders do not have the same relative importance and each stakeholder may valuate each
requirement very differently [43,45,46].
According to the interviews, customer involvement in valuation, prioritization, and selection

adds value to these processes: ‘Requirements can be prioritized to releases by communicating with
customers and agreeing on what functionalities are wanted and on what timetable.’ RRMS instances
must provide the prioritization and valuation methods with the necessary requirement, feature, and
release information and store the resulting valuations, priorities, and allocations.

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

T. KÄKÖLÄ, M. KOIVULAHTI-OJALA AND J. LIIMATAINEN

3.1.2. Traceability

The purpose of requirement management is to achieve complete traceability from customers via
the organizational departments to delivery [12, p. 69]. Traceability improves risk assessment,
project scheduling, and change control [13, p.12]. All the interviewees agreed that traceability from
requirements elicitation to product delivery is critical for RRMS success. The interviewees also
suggested other needs for traceability (e.g., linking components, errors, and use cases). But it is
expensive to collect and manage traceability information [47, p. 129]. Based on the analysis of
the case organization, only the following traceability meta-requirements must always be imple-
mented by RRMS instances:

• Ability to trace forward from requirement sources to requirements, from requirements to
subsequent features and corresponding design elements and designs [48], and from features
to future releases defined by release plans.

• Ability to trace backward from releases to the features packaged in the releases and from the
features to the requirements implemented by the features [48].

• Ability to trace from requirements directly to design entities and backward [47].
• Ability to trace requirements dependencies [47,49] and release dependencies.

3.1.3. Single capture of information

RRMS instances must be the single capture points for requirements, features, and releases, ensuring
that there is no redundant and inconsistent requirement, feature, and release information in the
organization and that all requirements are handled appropriately in a single effective and transparent
process reducing the risks of missing or forgetting requirements. RRMS instances should thus
be (1) easy to use for occasional users in order to ensure that they enter the information, (2)
interfaced to related systems such as requirements and architecturemodeling and defect management
environments, and (3) interfaced to partners’ systems to ensure that partners can create, update, and
review information as necessary.

3.2. Meta-requirements in support of control

3.2.1. Content ownership and accountability of experts

Requirements and release management activities should have appropriate owners who establish and
reinforce appropriate norms for them [12, p.70]. Content and process ownership can be enhanced by
assigningroleswithclearlydefinedresponsibilitiestopersons.Forexample,asetofrequirementscanbe
allocated to a requirementmanagerwhile a particular release canbe assigned to a releasemanager.The
role definitions and assignments improve the accountability, enable evaluations of peoplewith respect
to their role expectations (e.g., releasemanagersmay be evaluated based on the quality of releases they
are responsible for), and can ensure that all agreed-upon-deliverables are delivered in time and meet
the defined quality criteria. Role-based management also facilitates organizational (e.g., people may
continuetheirworkintheiroldrolesinaneworganization)andindividuallevelchanges(e.g.,anewperson
takesresponsibilityofarole)[23,50].RRMSinstancesmustthusmeetthismeta-requirementtofacilitate
personnelevaluation,processexecutionandimprovement,andqualitycontrol.

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY

3.2.2. Management and coordination

RRMS instances must enable the coordination of flows of requirements and the allocation of
requirements to releases through managerial activities and decisions. For example, decisions need
to be taken concerning the acceptance of particular requirements to the development process and the
maturity levels of the requirements. To allocate requirements to specific releases and implementation
teams and track their progress, RRMS instances must enable the assignment of different statuses
to requirements. An interviewee commented that: ‘It should be possible to see from the tool who
is responsible for certain parts of the process, who makes decisions concerning those parts, what
the timetables are, and what kind of documentation should be available.’

3.2.3. Creating and sharing of metrics information

Measurement is an essential part of process management [24,50–53]. Defined and measurable
objectives are needed to evaluate the current status and develop the process. Metrics information
enables the comparison of process effectiveness across organizational units and similar releases
over time (e.g., product line management). RRMS instances must provide a balanced set of process
quality metrics (e.g., within each organizational unit) such as (1) the ratio of releases delivered
in accordance with the planned release schedule to all delivered releases, (2) the ratio of releases
delivered in accordance with the planned release scope (i.e., all requirements planned and assigned
to the release have been realized) to all delivered releases, (3) the ratio of releases delivered in
accordance with the planned work effort to all delivered releases, and (4) the ratio of cancelled
releases to all releases.

3.2.4. Access rights and information security

Access rights and information security policies are crucial in high-technology companies. Prod-
ucts and platforms are typically designed and implemented in complex networks or consortia of
companies where competitors are involved. RRMS instances must help to ensure that partners do
not access each other’s sensitive information. For example, multiple partners can co-operatively
build a platform and use an RRMS instance to share information about it. At the same time, they
may build competing products on top of the platform and the RRMS instance must not leak any
confidential information related to partners’ products and objectives.

3.3. Meta-requirements in support of change

3.3.1. Version management of requirement documents

Versions of individual requirements and requirements specifications need to be controlled [54,
p. 268]. Change management and document version management processes must be in place to
create and maintain requirement documents and their different versions. Requirement document
version management is related to the general workflow management. However, one interviewee
emphasized that it is most useful in the requirement development phase, and not in later phases
when the documents are relatively stable. Change management and version management processes

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

T. KÄKÖLÄ, M. KOIVULAHTI-OJALA AND J. LIIMATAINEN

should be aligned, agreed upon, and enabled by the RRMS instances: ‘If the change is large, a new
requirement can be created or the old one can be changed via the change management process. In
practice, we could use version management for small revisions. But if the changes are too large,
change management needs to be used.’

3.3.2. Release re-planning

When software development is market-driven [15], release planning and requirement prioritiza-
tion are parts of strategic product line roadmapping [7,42]. Especially in product programs the
stakeholders need to continuously create and share knowledge to deal with uncertainty and turbu-
lent market conditions. Release re-planning is needed when, for example, the product strategy is
changed. Release re-planning may be related to planning the scope, role, and timing of every product
release specified in the product roadmap or to release management (i.e., re-planning the length of
development, the scope of features, and the number of iteration cycles involved in a release) when,
for example, several key developers leave unexpectedly [34]. Release managers may need to re-plan
releases with the stakeholders on a weekly basis.
The RRMS instances prescribed by the RRMS design product theorymust thus enable the relevant

stakeholders to be involved in release re-planning at the right time and at low cost and provide
the stakeholders with the necessary requirement, feature, and release information for re-planning
both individual releases and all releases involved in a roadmap. Release managers can then use
appropriate release planning heuristics, methods, and systems to plan and re-plan the releases so
that the stakeholder priorities are best satisfied while the utilization of resources available to release
development is maximized [46]. To facilitate the stakeholder involvement and to reduce the burden
of re-planning, the release planning systems should generate alternative release plans when the
stakeholder priorities, available resources, and/or requirement dependencies change; let the release
managers rank the plans and take decisions together with the stakeholders; and help to store the
resulting release information in the RRMS instances.

3.3.3. Change management and impact analysis

A clearly defined change management process is needed to estimate the impacts of possible changes
and to control the changes made to the requirements and releases [23]. Change management and
impact analysis enable organizations to be aware of the influences of requirement changes on the
software and hardware components, test cases, resources, and the market situation. Change manage-
ment and impact analysis are tricky when RRMS-enabled requirements and release management
processes have not been institutionalized across the geographically distributed sites, projects, and
partners involved, because no one has adequate visibility into the detailed activities of the projects.
However, the institutionalization of these processes may dramatically improve the situation, because
the RRMS instances must (1) trace requirements to the designs and development teams respon-
sible for them, (2) trace requirements to the product releases delivering them, (3) trace requirement
dependencies and release dependencies, and (4) clarify to all stakeholders designing a system in
detail and in real-time which deliverables for that system are coming from which releases and
when. For example, when the change of a major requirement for an important component is consid-
ered, an RRMS instance makes it relatively easy to see not only how much time and money the

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY

implementation of a new design would take based on the features affected, but also which other
releases depend on those features. The relevant stakeholders can then be contacted to better under-
stand the impacts and decide about the feasibility of the requirements change.

3.3.4. Defining and maintaining the requirements baseline

RRMS instances must support requirements baselining, that is, the freezing of the current agreed
upon requirements. When the baseline decision has been made, subsequent requirements are treated
as change requests and compared with the baseline. If the requests are accepted, they will enter
product development through the change management process [23]. The requirements in a base-
line that has been incorporated into a delivered release should not be changed in the subsequent
releases. After all, the delivered release cannot be changed later on. Only a new release can be
established to replace the delivered one as necessary. Changing the requirements associated with a
release after the delivery of the release would yield to inconsistency and jeopardize the traceability.
New requirements should thus be created for the subsequent releases and linked to the baselined
requirements that have already been delivered.

3.4. Meta-requirements for platform development

3.4.1. Creation and reuse of reusable assets

Platforms are strategic organizational assets designed to be reusable and afford common features
and predefined variation mechanisms through which mass-customized products can be created
quickly and cost effectively [7]. Platforms consist of assets such as requirements, design elements,
components, and user interfaces. RRMS instances should provide a comprehensive information
model to describe and document the assets adequately. They should not only document platform
releases at the time of creation but also help link the releases to all associated requirements, features,
and releases. They should provide advanced search functionalities to help developers and other
stakeholders to easily deploy the requirement, feature, and release information in order to search,
retrieve, and leverage compatible assets in novel and possibly unforeseen ways. These issues are
clarified by two interviewees:
Requirements management involves the identification and management of baselines and products

[for strategic reuse]. For example, we could see from the [RRMS] tool that this [requirements]
baseline is good for our purposes and we just have to change it from there and there in order to
have a right configuration for our needs.’
‘One of the main purposes of the RRMS tool is to support reuse of both requirements and assets

(modules, components). . .Different knowledge search capabilities are essential.’

3.5. Meta-requirements in support of process integration

3.5.1. Process transparency

RRMS instances must help to make integrated requirements and release management processes
transparent, that is, the stakeholders involved should be able to understand the results of their

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

T. KÄKÖLÄ, M. KOIVULAHTI-OJALA AND J. LIIMATAINEN

RRMS-mediated actions (e.g., which product and platform releases would be affected and how, if a
particular release was delayed by a month) and create knowledge for dealing with unexpected errors
or coordination breakdowns as quickly and proactively as possible before expensive disruptions in
routines and flaws in deliverables occur [23,50]. One interviewee stated: ‘Process transparency is
especially important in decision making situations. Another important situation is when someone
cannot implement, for example, a requirement in a given timetable.’
Most developers in the case organization could access (in read-only mode) all documents in the

centralized RRMS database, critically improving the transparency. For example, release managers
in platform units used the RRMS instance to follow the development and testing of the components
their releases depended on and took corrective actions proactively, if the components were likely to
be delayed. Transparency was also facilitated by using the RRMS instance to standardize the most
critical information entities and the terms and forms used in them.

3.5.2. Providing high-quality information

Organizations have to be able to base their requirements and release decisions on high-quality
(i.e., accurate, specific, relevant, reliable, timely, and accessible) information [55]. Transparent
RRMS-mediated processes and committed, skillful people are crucial to ensure high quality. RRMS
instances should also help users to identify which pieces of information are the most critical in
each phase of the process, for example, by sending reminders and highlighting the required fields
of respective information entities in the different phases.

3.5.3. Providing information at the right and consistent level of detail

Appropriate and consistent granularity of information facilitates decision making and eliminates
extraneous activities required to decompose or summarize information [16,56]. The right level of
detail depends on the situation. For example, highly mature requirements and release management
processes can leverage much more detailed (quantitative) information than immature processes.
RRMS instances must incorporate and represent requirement- and release-related information in
consistent granularity levels (e.g., system requirements, subsystem requirements, and functional
requirements) that are useful for different process contexts and roles. For example, RRMS instances
may be used to generate requirements specifications for product releases. Each requirement in the
generated specification should be testable by means of a small number of tests. If some requirements
are not testable, they are probably represented on higher granularity levels than the testable ones
and there is no consistent level of detail in the specification.

4. A META-DESIGN OF THE IS DESIGN PRODUCT THEORY FOR THE CLASS OF
RRMS

This section first outlines a generic meta-design for the class of RRMS based on the analyses of
interview transcripts, the RRMS instance in the case organization, and the literature review. It covers
most meta-requirements specified in the previous section. The section concludes by explaining the

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY

Figure 1. Information model of the meta-design of the design product theory for the class of RRMS. Note: The
links that go back to themselves in each entity represent parent–child relationships.

linkages between the meta-requirements and the meta-design to validate the meta-design and to
justify its scope.

4.1. Information model for integrated requirement management and release management
process

To design an effective requirement management and release management process, the information
model for the process must be defined. We have synthesized a simple but scalable model based
on the literature review and a detailed examination of the RRMS instance. The experts of the
case organization have reviewed and accepted the model. It consists of four entities used in the
integrated process and links between and within the entities to enable the traceability, hierarchical
composition (i.e., each entity can consist of any number of the same type of entities), and the
appropriate granularity of information (Figure 1): Customer Requirement, Requirement, Feature
and Release.
Customer Requirement is used to model requirements from the external environment. Internal

and external requirements are separated to meet the meta-requirements related to platform-based
product development and information security. For example, customer requirements are business
critical and can provide competitive advantage by enabling organizations to focus on implementing
the differentiating and high-value adding requirements. Access rights for them and for internal
requirements have to be defined and enacted differently.
Requirement is used for internal requirements developed by product creation processes within

an organization or a network of companies collaborating to create a joint product and/or platform.
Requirement can thus be used for platform requirements related to the platform offering. In the
platform context, Customer Requirements can be used as the basis for developing derivative products
on top of the platform. Separation of Customer Requirement and Requirement also facilitates
change management. Requirements can be changed only through negotiations with their originators.
Negotiations with external requirement suppliers are often more challenging than with suppliers of
internal requirements, especially when the external suppliers contribute to funding the development
efforts.
Features denote the intended behaviors or properties of software-intensive systems. They

are usually created and managed as hierarchical feature structures solving the problems that

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

T. KÄKÖLÄ, M. KOIVULAHTI-OJALA AND J. LIIMATAINEN

Requirements identify [57]. The solutions may reflect, for example, business processes, organiza-
tional structures, or product architectures. Feature is the largest entity in the information model
containing the technical specification, workflow planning, and implementation. By using Feature
as a basis of implementation and technical specification, Requirements become more manageable
and there are clear traceability links to the origins of Features and to implementation phases, that
is, specifications, responsible teams, and realized pieces of software code.
Product roadmaps and the associated release plans often trigger the development of new releases

and provide themwith high-level requirements. For every new release, a release manager is typically
assigned and a Release instance is created to plan, implement, and document the resulting release.
If a previous release exists, its feature set may serve as the starting point. New functional and non-
functional requirements to be delivered in the release are identified and refined and Requirement
and Feature instances are linked to Release instances as necessary. RRMS instances can be used
to locate, reuse, and modify the existing Requirements and Features whenever possible, imple-
ment new Features as necessary, and group the implemented Features into the Release instance
documenting the release. Releases can also be organized hierarchically into, for example, platform
and product releases.
Customer Requirements are linked to one or more Requirements, which, in turn, are linked to

one or more Features. Highest-level Requirements are typically large-scale system-level definitions
of business problems. Dividing them into sub-problems (i.e., lower-level requirements) which are
linked to Features enables more accurate project cost, schedule, and effort estimation and better
workflow management. Features describe implementable partial solutions to the business prob-
lems. The highest-level releases are comprehensive, valuable solutions consisting of Releases and
Features, whereas lower-level releases can, for example, deal with components.

4.2. Generic structures of entities

This section introduces generic structures, classes, and attributes of the entities presented in the
information model. According to the design product theory, RRMS instances prescribed by the
theory should include at least these entities, structures, classes, and attributes to be effective.

4.2.1. Requirement and customer requirement

Table II presents the generic structure of Requirement and Customer Requirement by revising
and elaborating on the work of Salo and Käkölä [16]. Next, each class within the structure is
presented.
Description class describes the intent of and justification for a Requirement and a Customer

Requirement.Version attribute indicates the version number of the document.Name and ID attributes
are used for identification and traceability.
Origin class describes where the Requirement comes from and when. For Customer Requirements

the sources are external organizations. For Requirements, sources are Customer Requirements and
internal organizational units.
Categorization class describes the parts (i.e., platform, product, and responsible person) of

the product and the development organization managing the Requirement or Customer Require-
ment. Platform works as the base architecture for derivative products. Requirements and Customer

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY

Table II. Generic structure of Requirement and Customer Requirement.

Class Question Attributes

Description What is the requirement about? Name
ID
Description
Rationale
Version

Origin Where does the requirement come
from?

Author
Source
Date of creation

CategorizationWhat parts of the product and the
development organization is the
requirement related to?

Platform
Product
Responsible Person

Analysis What are the implications of the
requirement?

Status
Priority
Customer need
Deadline for the customer need
Customer value
Risks
Required work effort
Total cost

Workflow What should be done to this
requirement next? By whom?

Allocation to Requirements/Features

History What has been done to the Assignment to Requirement/Feature responsible
requirement? When? Information about all prior edits, editors, and changes

Requirements will be linked to the appropriate platforms and final products via Features and
Releases. Responsible persons update Requirements and Customer Requirements as necessary.
Analysis class is used to probe the implications of the Requirement. Priority and customer

value can be handled as one attribute, but organizations needing sophisticated valuation processes
should divide them into two. Customer need attribute is used to describe the detailed business case,
which the Requirement or Customer Requirement is trying to solve. If there is a firm deadline
by which the Requirement needs to be implemented and released for use of customer(s) (e.g.,
in their products), the deadline must be made explicit through the deadline attribute. The total
cost and required work effort need to be estimated [51,53] to determine whether the Require-
ment is feasible from the economic, personnel, and schedule viewpoints. Risks associated with
the (Customer) Requirement need to be assessed. Status attribute models the requirements life
cycle. Examples of requirement statuses include: New—Categorized—Analyzed—For Review—
Approved/Rejected/Postponed [16].
Workflow class describes what should be done next to Requirement or Customer Requirement and

by whom. Customer Requirements and Requirements are allocated, respectively, to Requirements
and Features and responsible persons are assigned.
History class is used to provide information about all prior changes and editors of requirements

documents [16]. It enables traceability and the development of organizational memory that is

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

T. KÄKÖLÄ, M. KOIVULAHTI-OJALA AND J. LIIMATAINEN

especially useful when routines break down unexpectedly and the reasons for the breakdowns must
be found and eliminated to continue the effective execution of routines [50].
4.2.2. Feature

Each class within the Feature-entity (Table III) is presented in this section.
Description class tells the intent of and justification for the Feature. Origin class indicates the

author, date of creation, and Requirements, if any, from which the Feature is allocated.
Categorization class links Features to products and/or product platforms and identifies the person

having the feature responsibility. Because Feature is an entity for managing detailed implementation,
it has a traceability links attribute containing links to technical specifications, documentations and
code. Features tend to have complex dependencies [57]. For example, a Feature may be incorporated
into a Release but its parent Feature may not be incorporated if the scope of the parent Feature is too
wide for implementation in any single release. However, the parent Feature may fulfill a particular
Requirement. A dependency link between these two Features thus provides valuable information
for decision makers.
Analysis class contains most attributes that Requirement and Customer Requirement have, with

the exception of customer value-attribute used to decide whether Requirements or Customer
Requirements should be implemented or not. The required work effort needs to be estimated to

Table III. Generic structure of Feature.

Class Question Attributes

Description What is the feature about? Name
ID
Description
Rationale
Version

Origin Where does the feature come from? Author
Source Requirements
Date of creation

Categorization What parts of the product and the
development organization is the feature
related to?

Platform
Product
Responsible Person
Traceability links (e.g., documentation, code)

Analysis What are the implications of the feature? Status
Priority
Customer need
Risks
Required work effort
Realized work effort

Workflow What should be done to this feature next?
By whom?

Task description
Assignment to teams/persons
Assignment to Release
Date when Feature is ready for Release

History What has been done to the feature? When? Information about all prior edits, editors, and
changes

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY

Table IV. Generic structure of Release.

Class Question Attributes

Description What is the release about? Name
ID
Description
Version

Origin Where does the release come from? Author
Source Features
Source Releases
Date of creation

Categorization What parts of the product and the
development organization is the release
related to?

Platform
Product
Responsible Person

Analysis What are the implications of the release? Status
Priority
Required work effort
Realized work effort

Workflow What should be done to this release next?
By whom? What should be done to
dependent releases?

Planned release date
Actual release date
Dependent Releases

History What has been done to the release? When? Information about all prior edits, editors, and
changes

assess implementation costs and help teams in their work allocation and scheduling. It is also useful
to determine Realized work effort when the feature is ready for release because estimation practices
can be systematically improved by comparing the original work effort estimates to the actually
realized work efforts.
Workflow class consists of detailed task descriptions together with traceability links to provide

the guidelines for implementation work and to enable organizational learning through, for example,
post-mortem analysis (i.e., what was planned vs realized). Before starting the work, Features are
assigned to responsible teams or persons. History class is used to provide information about all
prior changes and editors of feature documents.

4.2.3. Release

Classes within the Release-entity (Table IV) that need elaboration are explained in this
section.
Description class describes what the Release is about. For example, the Release may fix some

specific quality problems of the previous Release without providing new functionality. In Origin
class, source features and source releases attributes indicate which Features and Releases are
included in a Release. In Categorization class, a Release is related to specific product platforms
and/or products and has a responsible person.

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

T. KÄKÖLÄ, M. KOIVULAHTI-OJALA AND J. LIIMATAINEN

Analysis describes the life cycle of a Release through status attribute. Statuses include: Planned—
Ready to be Released (i.e., all Features belonging to the Release have been implemented, tested,
and found to be stable and all lower-level Releases the Release depends on have been released)—
Released. It should be noted that a Release can also be canceled but only if no other Release is
dependent on it. Dependent Releases must thus be canceled or made independent from the Release
to be canceled. The allocations of Features to a canceled Release must be removed in respective
Feature-entities.
For every source Feature, the required work effort should have been estimated when the source

Features were analyzed. When a Release has been delivered, it is useful to assess and document
(1) the work effort that was necessary to realize each Feature, (2) the total work effort realized
to implement the Release, and (3) the reasons for any major discrepancies between the estimated
and realized efforts. Impact analysis practices and the accuracy of release schedules can then be
improved in the future.
Because Releases constitute manageable and releasable entities, the only Workflow- related

attributes tell the planned and actual release dates and provide links to all Releases depending on
this Release. The release managers of dependent releases can thus be notified, for example, when
the Release has been delivered or when it will be unexpectedly delayed. This information together
with the information stored in the realized work effort attribute and History class is adequate for
organizational learning and performance monitoring.

4.3. Validating and scoping the meta-design by analyzing how it meets the
meta-requirements

This section analyzes how the meta-design satisfies the meta-requirements because ‘a design artifact
is complete and effective when it satisfies the requirements and constraints of the problem it was
meant to solve’ [27, p. 85].
4.3.1. Prioritization and valuation of requirements and the allocation of requirements into
releases

Prioritization and valuation of requirements are enabled by the entities Requirement and Customer
Requirement. Their attributes priority and customer value are used to store and access the prioritiza-
tion and valuation information in the RRMS instances. The prioritization and valuation methods are
not included in the meta-design for two reasons. First, the literature provides hardly anymethods that
are generalizable and scalable to meet the needs of complex industrial environments where multiple
interdependent releases of interdependent products and platforms are planned simultaneously [58].
Second, the product programs of the case organization used different prioritization methods and
tools because the programs differed in size, duration, and product maturity. Organizations must
decide which prioritization and valuation methods they wish to use. The meta-design ensures that
RRMS instances can provide the methods with most if not all the necessary information and store
and share the results organization-wide.
Allocation of requirements into releases is enabled transitively through features, that is, require-

ments and customer requirements are allocated to features, which are linked to releases. Releases
provide implemented functionality and are thus linked to features directly.

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY

4.3.2. Traceability

The information model enables bi-directional traceability between entities through Origin and
Workflow classes. In Customer Requirement and Requirement, source attribute is used for backward
traceability and allocation to features attribute enables forward traceability to features. Source
requirement and assignment to release attributes of Feature enable, respectively, backward and
forward traceability from features. Traceability links attribute enables the traceability from Features
to implementation specific documentation and software code.

4.3.3. Single capture of information

Based on the analysis of the RRMS instance in the case organization, the information model is
comprehensive enough so that the RRMS instances prescribed by the meta-design can be the single
capture points for requirements, features, and releases in organizations.

4.3.4. Content ownership and accountability of experts

Content ownership and accountability are determined through the responsible person attribute of
Categorization class. For example, each release has to specify who is responsible for planning,
which features are released in which release. The meta-design does not detail the metrics that
could be used for the measuring performance. However, it can be used as a basis for sophisticated
measurement systems.

4.3.5. Management and coordination

The meta-design supports management and coordination across multiple, interdependent product,
platform, and component releases, for example, by explicating the schedules imposed on various
entities, the products and organizational units the entities are related to, and the workflows the
entities are subjected to.

4.3.6. Creating and sharing of metrics information

The meta-design affords a balanced set of process quality metrics. Releases contain information
about planned and actual release dates, making it easy to measure (e.g., within an organizational
unit) issues such as what the ratio of releases delivered in accordance with the planned release
schedule to all delivered releases is. Status information is readily available, making it easy to see,
for example, what the ratio of cancelled releases to all releases is. Detailed work effort information
can be collected, making it possible to determine, for example, what the ratio of releases delivered in
accordance with the estimated work effort to all delivered releases is. It is also possible to measure
the volatility of release scopes because for each release the associated Release instance documents
(primarily through the source feature attribute) the evolution of the feature set associated with the
release from the time the release is planned to the time the release is delivered or cancelled.

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

T. KÄKÖLÄ, M. KOIVULAHTI-OJALA AND J. LIIMATAINEN

4.3.7. Version management

Description andHistory classes enable the version management of requirements, releases, and other
entities by, respectively, numbering versions and showing the actors involved with each version and
the actions taken.

4.3.8. Release re-planning

The individuals responsible for particular features and releases have to re-plan the releases when
some unexpected (coordination) breakdowns occur (e.g., Features belonging to a Release cannot
be released because their implementations are unexpectedly delayed; a platform cannot be released
because it depends on a component Release that has been canceled; a competitor releases a compet-
itive product unexpectedly and fast response is necessary). Bidirectional traceability links between
Features and Releases (stored in assignment to release and source features attributes) and between
Releases (stored in source releases and dependent releases attributes) facilitate the implementation
of the meta-requirement.
When there are numerous interdependencies between releases, between features, and between

features and releases, the appropriate data stored in an RRMS instance can be transferred into a
release re-planning and optimization system (cf. [42,43]) for analysis and creation of a new release
plan. Prescribing the features of such systems is beyond the scope of the design product theory
for the class of RRMS presented in this article because the systems are algorithmically complex,
enable cost, effort, and schedule estimation based on historical data [24] and operate on a higher
level of analysis than the RRMS instances where strategic and operational decisions (e.g., about the
common features within and across the product lines) are taken based on information in the RRMS
instance and other systems. Future research is needed to study whether it is beneficial and feasible
to extend the IS design product theory for the class of RRMS so it covers such classes of systems.

4.3.9. Change management and impact analysis

Change management is facilitated by theHistory class in all entities. Change requests can be consid-
ered as normal (Customer) Requirements, analyzed, linked to the respective existing Requirements
in the RRMS instance that are within the scope of the change, and implemented and released by
following the integrated requirements and release management process. Impact analysis is enabled
byCategorization andAnalysis classes. Platform and product attributes show the organizational enti-
ties affected by each Requirement and Release. Customer value and required work effort attributes
are used to decide the feasibility of implementing a (Customer) Requirement.

4.3.10. Creation and reuse of reusable assets

The hierarchical composition of Requirement, Feature, and Release entities provided by the infor-
mation model enables the comprehensive documentation of product and platform releases and all
associated assets. This information together with bidirectional traceability links between the entities
help organizations analyze their asset base and establish, find, and use reusable assets.

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY

5. CONCLUSIONS AND FUTURE RESEARCH

This article has focused on the RRMS-enabled multi-site and platform-based product develop-
ment. It has synthesized the meta-requirements and a meta-design of a comprehensive IS design
product theory for the class of RRMS to help practitioners in both small and large software and
software-intensive organizations to implement and evaluate scalable RRMS solutions. For example,
organizations can use the theory (1) to ensure that the key roles (e.g., requirement manager and
release manager) are established and adequately staffed in all release efforts and made responsible
for the information entities specified by the meta-design of the theory, (2) to develop requirements
management and release management tools and/or select and acquire commercial off-the-shelf
tools, and (3) to integrate the tools into RRMS instances that meet the meta-requirements and
support the information model specified in the meta-design. The validity of the theory has been
enhanced by using methods such as the analysis of the RRMS instance in a case organization
and by explicating the meta-requirements met by the meta-design. The meta-design is scalable
because its most essential elements have been abstracted from the RRMS instance that, at the time
of writing this article, has thousands of users and manages tens of thousands of documents in the
case organization alone.
Owing to space limitations, the design product effectiveness hypotheses of the theory (clarifying

the expected organizational benefits from using an RRMS instance (i.e., the design product) derived
from the class of RRMS) are beyond the scope of this article. The hypotheses are needed for the
empirical validation and possible revision of the theory in future research. The deployment of RRMS
instances can be hypothesized: to reduce the resources needed in product development (e.g., through
strategic reuse of product platforms and components); shorten time-to-market (e.g., through reuse
and by ensuring that right information is available at the right time for the right people); improve
customer satisfaction (e.g., by ensuring that requirements are transformed efficiently to product
features); and improve the process and product quality (e.g., by improving the synchronization
of work across multiple sites, projects, and partners; minimizing the number of errors during
development; and easing up error tracking). Future research is necessary to assess, extend, and
elaborate these design product effectiveness hypotheses.
Future research is also necessary to devise extensions to the design product theory such as

improved RRMS support for (1) strategic product line roadmapping and release planning processes
[7,34] that take a long-term view and thus steer release management and (2) finding and reusing
implementation level assets that meet the needs of releases. The first extension would require future
research concerning howRelease entities can be used to enable general managers, product managers,
and release managers to understand even better which individual product and platform releases
are linked with which release plans and product roadmaps and why they are linked. The second
extension would require at least the inclusion of a Component entity in the information model of
the meta-design. Our preliminary industrial experiences show that Component is useful especially
if it describes how and when Component instances have been tested.
The single case study methodology may not provide a sound basis for generalization [35].

Therefore, new case studies and action research projects are necessary to make the design product
theory more credible for IS designers and researchers. Design science research leveraging the
methods of action research [27] helps to examine the applicability of the theory by finding out to
what extent organizations that want to acquire or design and implement RRMS systems can utilize
the theory for those purposes. The theory can then be revised as necessary.

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

T. KÄKÖLÄ, M. KOIVULAHTI-OJALA AND J. LIIMATAINEN

ACKNOWLEDGEMENTS

The authors wish to thank Kirk Kandt from the Jet Propulsion Laboratory, Rick Kazman from the University of
Hawaii, and the three anonymous reviewers for their excellent comments on the earlier versions of this article.
The authors also gratefully acknowledge the support of the numerous employees of the case organization. Dr
Timo Käkölä is grateful to the Academy of Finland, whose generous grant facilitated the writing of this article
while he served as the Senior Research Scholar of the Academy of Finland in Claremont Graduate University,
California, U.S.A.

REFERENCES

1. Brown SL, Eisenhardt KM. Product development: Past research, present findings, and future directions. Academy of
Management Review 1995; 20(2):343–378.

2. Meyer MH, Selinger R. Product platforms in software development. Sloan Management Review 1998; 40(1): 61–74.
3. Carmel E, Agarwal R. Tactical approaches for alleviating distance in global software development. IEEE Software 2001;

18(2):22–29.
4. Herbsleb JD, Moitra D. Guest editors’ introduction: Global software development. IEEE Software 2001; 18(2): 16–20.
5. Ramasubbu N, Krishnan MS, Kompalli P. Leveraging global resources: A process maturity framework for managing

distributed development. IEEE Software 2005; 22(3):80–86.
6. Käkölä T, Dueñas J (eds.). Software Product Lines: Research Issues in Engineering and Management. Springer: Berlin,

2006.
7. Pohl K, Böckle G, Van der Linden F. Software Product Line Engineering: Foundations, Principles, and Techniques.

Springer: Berlin, 2005.
8. Van der Linden F, Schmid K, Rommes E. Software Product Lines in Action: The Best Industrial Practice in Product

Line Engineering. Springer: Berlin, 2007.
9. Carmel E, Agarwal R. The maturation of offshore sourcing of information technology work. MIS Quarterly Executive

2002; 1(2):65–78.
10. Käkölä T. Best practices for international eSourcing of software products and services. Proceedings of 41st Hawaii

International Conference on Systems Sciences (HICSS-41). IEEE: New York NY, 2008.
11. Adelson B, Soloway E. The role of domain experience in software design. IEEE Transactions on Software Engineering

1985; 11(11):1351–1360.
12. Grynberg A, Goldin L. Product management in Telecom Industry—Using requirements management process. Proceedings

IEEE International Conference on Software: Science, Technology and Engineering (SwSTE’03), Los Alamitos, CA,
U.S.A. IEEE Computer Society, 2003.

13. Halbleib H. Requirements management. Information Systems Management 2004; 21(1):8–14.
14. Hrones JA Jr, Jedrey BC Jr, Zaaf D. Defining global requirements with distributed QFD. Digital Technical Journal 1992;

5(4):36–46. Available at: http://www.hpl.hp.com/hpjournal/dtj/vol5num4/vol5num4art3.pdf [15 January 2010].
15. Regnell B, Höst M, Nattoch Dag J, Beremark P, Hjelm T. An industrial case study on distributed prioritization in

market-driven requirement engineering for packaged software. Requirements Engineering 2001; 6(1):51–62.
16. Salo A, Käkölä T. Groupware support for requirements management in new product development. Journal of

Organizational Computing and Electronic Commerce 2005; 15(4):253–284.
17. Akao Y. An introduction to quality function deployment. Quality Function Deployment: Integrating Customer Requirements

into Product Design, Akao Y (ed.). Productivity Press, 1990; 3–24.
18. Burchill G, Fine CH. Time versus market orientation in product concept development: Empirically-based theory generation.

Management Science 1997; 43(4):465–478.
19. Griffin AJ, Hauser JR. Patterns of communication among marketing, engineering and manufacturing—A comparison

between two new product teams. Management Science 1992; 38(3):360–372.
20. Curtis B, Krasner H, Iscoe N. A field study of the software design process for large scale systems. Communications of

the ACM 1988; 31(11):1268–1287.
21. Ciborra C. The platform organization: Recombining strategies, structures, and surprises. Organization Science 1996;

7(2):103–118.
22. Wesselius J. Strategic scenario-based valuation of product line roadmaps. Software Product Lines: Research Issues in

Engineering and Management, Käkölä T, Dueñas JC (eds.). Springer: Berlin, 2006; 53–89.
23. Käkölä T, Taalas A. Validating the information systems design theory for dual information systems. Proceedings of

the 29th International Conference on Information Systems (ICIS). Association for Information Systems: Paris, 2008.
Available at: http://www.aisnet.org [15 January 2010].

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY

24. Forselius P, Käkölä T. An information systems design product theory for software project estimation and measurement
systems. Proceedings of 42nd Hawaii International Conference on Systems Sciences (HICSS-42). IEEE: New York
NY, 2009.

25. ISO. Information technology—Software measurement—Functional size measurement—Part 6. ISO/IEC 14143,
International Organization for Standardization, 2006. Available at: http://www.iso.org [15 January 2010].

26. Van De Ven AH. Central problems in the management of innovation. Management Science 1986; 32(5):590–607.
27. Hevner AR, March ST, Park J, Ram S. Design science in information systems research. MIS Quarterly 2004; 28(1):75–105.
28. Markus ML, Majchrzak A, Gasser L. A design theory for systems that support emergent knowledge processes. MIS

Quarterly 2002; 26(3):179–212.
29. Van Aken JE. Management research based on the paradigm of the design sciences: The quest for field-tested and

grounded technological rules. Journal of Management Studies 2004; 41(2):219–246.
30. Walls JG, Widmeyer GR, El Sawy O. Building an information system design theory for vigilant EIS. Information Systems

Research 1992; 3(1):36–59.
31. Walls JG, Widmeyer GR, El Sawy O. Assessing information system design theory in perspective: How useful was our

1992 initial rendition? Journal of Information Technology Theory and Application 2004; 6(2):44–58.
32. Walsh KR, Dickey MH. Structured modeling group support systems: A product design theory. Information and

Management 2003; 41(5):655–667.
33. Software engineering—Guide to the software engineering body of knowledge (SWEBOK). ISO. ISO/IEC TR 19759,

International Organization for Standardization, 2005. Available at: http://www.iso.org [15 January 2010].
34. Rautiainen K, Lassenius C, Vähäniitty J, Pyhäjärvi M, Vanhanen J. A tentative framework for managing software product

development in small companies. Proceedings of 35th Hawaii International Conference on System Sciences (HICSS-35),
2002; 3409–3417.

35. Yin RK. Case Study Research: Design and Methods (3rd edn). Sage Publications: Beverley Hills CA, 2003.
36. Koivulahti-Ojala M, Käkölä T. Framework for evaluating the version management capabilities of a class of UML

modeling tools from the viewpoint of multi-site, multi-partner product line organizations. Proceedings of the 43rd Hawaii
International Conference on Systems Sciences (HICSS-43). IEEE: New York NY, 2010.

37. Argyris C, Schon DA. Organizational Learning II: Theory, Method, and Practice. Prentice-Hall: Englewood Cliffs
NJ, 1995.

38. Perry DE, Staudenmayer NA, Votta LG. People, organizations, and process improvement. IEEE Software 1994; 11(4):
36–45.

39. Bosch J. Maturity and evolution in software product lines: Approaches, artefacts and organization. Proceedings of
the Second Software Product Line Conference (SPLC2) (Lecture Notes in Computer Science). Springer: Berlin, 2002;
257–271.

40. McGrath ME. Product Strategy for High-Technology Companies: How to Achieve Growth, Competitive Advantage, and
Increased Profits (2nd edn). McGraw-Hill: New York NY, 2001.

41. Meyer MH, Lopez L. Technology strategy in software products company. The Journal of Product Innovation Management
1995; 12(4):294–306.

42. Carlshamre P. Release planning in market-driven software product development: Provoking an understanding. Requirements
Engineering 2002; 7(3):139–151.

43. Ruhe G, Saliu MO. The art and science of software release planning. IEEE Software 2005; 22(6):47–53.
44. Gilb T. Principles of Software Engineering Management. Addison-Wesley: Reading MA, 1998.
45. Greer D, Ruhe G. Software release planning: An evolutionary and iterative approach. Information and Software Technology

2004; 46(4):243–253.
46. Momoh J, Ruhe G. Release planning process improvement—An industrial case study. Software Process: Improvement

and Practice 2006; 11(3):295–307.
47. Kotonya G, Sommerville I. Requirement Engineering: Processes and Techniques. Wiley: England, 1998.
48. Davis A. Software Requirements: Objects, Functions, and States. Prentice-Hall: Eaglewood-Cliffs NJ, 1992.
49. Forsgren P, Daugulis A. Requirements engineering in Control Center Procurement Projects: Practical experiences from

the power industry. Proceedings of the 3rd International Conference on Requirements Engineering. IEEE: New York
NY, 1998.

50. Käkölä T, Koota K. Dual information systems: Supporting organizational working and learning by making organizational
memory transparent. Journal of Organizational Computing and Electronic Commerce 1999; 9(2 and 3):205–232.

51. Bundschuh M, Dekkers C. The IT Measurement Compendium: Estimating and Benchmarking Success with Functional
Size Measurement. Springer: Berlin, 2008.

52. Daskalantonakis MK. A practical view of software measurement and implementation experiences within Motorola. IEEE
Transactions on Software Engineering 1992; 18(11):998–1010.

53. Jones C. Applied Software Measurement (3rd edn). McGraw-Hill: New York NY, 2008.
54. Wiegers KE. Software Requirements: Practical Techniques for Gathering and Managing Requirements (2nd edn). Microsoft

Press: Washington, 2003.

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

T. KÄKÖLÄ, M. KOIVULAHTI-OJALA AND J. LIIMATAINEN

55. O’Reilly CA. Variations in decision makers’ use of information sources: The impact of quality and accessibility of
information. Academy of Management Journal 1982; 25(4):756–771.

56. Aubert BA, Vandenbosch B, Mignerat M. Towards the measurement of process integration. Proceedings of the Annual
Conference of the Administrative Sciences Association of Canada, Halifax, NS, 2003.

57. Zhang W, Mei H, Zhao H. Feature-driven requirement dependency analysis and high-level software design. Requirements
Engineering 2006; 11(3):205–220.

58. Lehtola L, Kauppinen M. Suitability of requirements prioritization methods for market-driven software product
development. Software Process Improvement and Practice 2006; 11(1):7–19.

AUTHORS’ BIOGRAPHIES

Timo K. Käkölä is a tenured associate professor of information systems and software
business research in the Department of Computer Science and Information Systems,
University of Jyväskylä, Finland. He has PhD, Ph. Licentiate., and MSc degrees in
Computer Science and Information Systems Science from the University of Turku,
Finland and an MBA in management from the Helsinki School of Economics and Business
Administration, Finland. His research interests include IT-enabled organizational designs
for effective organizational and inter-organizational creation and sharing of knowledge,
the design of information systems architectures that support the learning, enactment,
breakdown management, and redesign of knowledge-intensive work processes, and the
business models and processes of software-intensive product-oriented ventures. He has
published a number of articles in leading scientific journals and conferences such as
Journal of Management Information Systems, Journal of Organizational Computing and

Electronic Commerce, International Conference on Information Systems, and Hawaii International Conference
on Systems Sciences.

Mervi Koivulahti-Ojala received her MSc degree in Information Systems Science from
the University of Turku. She has over ten years of working experience in the IT industry as
an R&D specialist and line manager. Her doctoral research in the University of Jyväskylä
focuses on the design, evaluation, and acquisition of computer-based information systems
for supporting the R&D efforts of large global organizations in the areas of requirements
engineering, UML modeling, and systems analysis and design.

Jani Liimatainen received his MSc degree in Information Systems Science from the
University of Jyväskylä. He is currently leading the Finnish Product Innovation practice
within Accenture Management Consulting. He focuses on strategic product management,
R&D effectiveness, and product portfolio management in several industrial domains.

Copyright � 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2010)
DOI: 10.1002/smr

II

FRAMEWORK FOR EVALUATING THE VERSION MANAGE-
MENT CAPABILITIES OF A CLASS OF UML MODELING TOOLS

FROM THE VIEWPOINT OF MULTI-SITE, MULTI-PARTNER
PRODUCT LINE ORGANIZATIONS

by

Mervi Koivulahti-Ojala & Timo Käkölä, 2009

Proceedings of the 43rd Hawaii International Conference on Systems Sciences

©2009 IEEE. Reprinted with permission.
.

Framework for Evaluating the Version Management Capabilities of a Class of
UML Modeling Tools from the Viewpoint of Multi-site, Multi-partner Product

Line Organizations

Mervi Koivulahti-Ojala & Timo Käkölä
University of Jyväskylä

40014 University of Jyväskylä, Finland
 {meelheko, timokk}@jyu.fi

Abstract: UML models are widely used in software
product line engineering for activities such as modeling
the software product line reference architecture, detai-
led design, and automation of software code generation
and testing. But in high-tech companies, modeling acti-
vities are typically distributed across multiple sites and
involve multiple partners in different countries, thus
complicating model management. Today’s UML mode-
ling tools support sophisticated version management for
managing parallel and distributed modeling. However,
the literature does not provide a comprehensive set of
industrial-level criteria to evaluate the version manage-
ment capabilities of UML tools. This article’s contribu-
tion is a framework for evaluating the version manage-
ment features of UML modeling tools for multi-site,
multi-partner software product line organizations.

Keywords: Global software development, modeling
tool, software product line organization, tool evaluation,
UML modeling, version management

1. INTRODUCTION

To succeed in the global markets of software-intensive
products, high-tech companies need to shorten the cycle
time of new product development while improving
product quality and service delivery along with
maintenance or reduction of the total resources required
[6;20;25]. This concern can be dealt through internal or
external strategies. Internal strategies include global
software development, where development resources
are distributed globally to reap cost benefits, leverage
specialized competencies, and address specific needs of
geographically-defined markets [7;13;31], and software
product line engineering and management, that is, the
strategic acquisition, creation, and reuse of software
assets [19;24;30]. External strategies include acquiring
commercial off-the-shelf components and outsourcing
software development, maintenance, and related
services to best-in-class service providers [8;18].

This paper focuses on the software product line engi-
neering strategy in the context of global software deve-
lopment. Software product line engineering is an indust-
rially validated methodology for developing software
products and software-intensive systems and services
faster, at lower costs, and with better quality and higher
end-user satisfaction. It differs from single system
development in two primary ways [30]:

1. It needs two distinct development processes: do-
main engineering and application engineering. Do-
main engineering defines the commonality and
variability of the software product line, thus estab-
lishing the common software platform for develo-
ping high-quality applications rapidly within the li-
ne. Application engineering derives specific appli-
cations by strategically reusing the platform and by
exploiting the variability built into the platform.

2. It needs to explicitly define and manage variability.
During domain engineering, variability is introdu-
ced in all software product line assets such as do-
main requirements, architectural models, compo-
nents, and test cases. It is exploited during applica-
tion engineering to derive applications mass-custo-
mized to the needs of different customers and
markets.

Software product line engineering involves higher le-
vels of abstraction than single-system development met-
hods because the platforms require substantial invest-
ments, have long life cycles, and have to be generally
applicable to a wide range of products. Without appro-
priate abstractions, such platforms cannot be built and
variability cannot be managed effectively. Industrially
validated modeling approaches and commercially avai-
lable modeling tools are critically important to deal with
the abstractions. In addition to traditional system mode-
ling, variability modeling is required in product line
engineering to explicitly document how the applications
within the product line can vary.

To model the variability of a product line, two app-
roaches have been proposed in the literature. The first,
traditional approach has been to integrate variability
modeling in the systems modeling language such as
Unified Modeling Language™ (UML) [12;27] by
appropriately extending the metamodel of the language
[4]. The second approach, orthogonal variability mode-
ling, distinguishes between a variability model and a
system model [30]. Orthogonal variability models are
easier to apply in practice and scale better than integra-
ted variability models. They usually describe the varia-
bility using a graphical notation. One reason, orthogo-
nal variability modeling is not yet extensively used in
the industry, is that there are no commercially available
modeling tools to support it. Therefore, this paper will
focus on the traditional integrated modeling approach.

System models can be applied, for example, to model
static and dynamic aspects of the software product line
reference architecture, to conduct detailed domain and

1

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

978-0-7695-3869-3/10 $26.00 © 2010 IEEE

application design, and to automate software code
generation and testing. UML has become the most
widely accepted software system modeling language
[4]. It can also be used to model embedded, business,
and real-time systems.

UML modeling tools supporting sophisticated version
management are critical for managing parallel and geo-
graphically distributed modeling activities. However,
the extant literature does not provide a comprehensive
set of industrial-level criteria to evaluate the version
management capabilities of UML tools. If modeling
tools fail to support version management in multi-site,
multi-partner development environments, the modeling
process may be ineffective and modeling tools may not
be used optimally. Ineffective tool deployment is ex-
pensive since there will be substantial costs without
realizing the potential benefits.

The main contribution of this paper is a framework
consisting of a set of industrial-level criteria for evalua-
ting UML modeling tools. The framework can be used
in practice to determine whether particular UML tool
instances support collaborative modeling through ver-
sion management in multi-site and multi-partner pro-
duct line organizations. The framework has been crea-
ted based on a literature review and empirical experien-
ces of the first author during a tool evaluation project.
The goals of the project for a large global product line
organization, which leveraged multi-site, multi-partner
practices, were to identify and evaluate commercial
UML tools and to select one for global deployment.

The paper is organized as follows. In Section 2, the
basic concepts related to UML modeling and modeling
tools are introduced. In Section 3, the existing research
related to version management capabilities afforded by
UML modeling tools is evaluated. In Section 4, the re-
search method and the case organization are described.
In Section 5, the role of version management in multi-
site, multi-partner product line organizations is discus-
sed and the framework consisting of a set of evaluation
criteria is proposed. In Section 6, two commercial UML
modeling tools are evaluated using the framework. In
Section 7, the validity and usefulness of the framework
are evaluated. Section 8 concludes the paper.

2. FUNDAMENTALS OF MODELS AND UML
MODELING TOOLS

In this section, the notion of a model is explained and a
framework (Table 1) is created to depict how models
can be applied for different types of communication in
the context of product line engineering. The role of
modeling tools in supporting the shared creation and
maintenance of models is then discussed.

2.1 A framework for analyzing product line models
The interpretation of models involves the assignment

of meanings to the symbols and truth-values to the
sentences of the models [33, p.74]. Models can be used
for sharing information between humans, between
machines, and between humans and machines.

Counter-
parts in
communi-
cation

Example in
product line
modeling

Example reference related
to product line modeling

Human to
human

Modeling re-
quirements
Modeling the
software pro-
duct line refe-
rence archi-
tecture

Product line variability
modeling with UML 2.0
[4]
Software Product Line
Engineering with the UML:
Deriving Products [35]

Human to
machine

Test automa-
tion

Product Line Use Cases:
Scenario-Based Specifica-
tion and Testing of Requi-
rements [5]

Machine
to human

Reverse engi-
neering

Feature-oriented Re-engi-
neering of Legacy Systems
into Product Line Assets –
a Case Study [15]

Machine
to machine

Model trans-
formations
Code genera-
tion

Code Generation to Sup-
port Static and Dynamic
Composition of Software
Product Lines [34]

Table 1. A framework for analyzing product line
models as means of communication and information
sharing.

Human to human communication

Modeling language independent and dependent mode-
ling approaches have been proposed to support human
communication. Kruchten [17] argues that software arc-
hitectures should be depicted from five modeling lan-
guage and tool independent viewpoints: logical, pro-
cess, physical, development, and use case. The
depictions allow for the separation of the concerns of
the various architectural stakeholders (e.g., end-users,
developers, systems engineers, and project managers).
In the area of software product lines, the modeling lan-
guages need to enable the modeling of commonalities
and variabilities. For this purpose, Bayer et al. [4]
present a consolidated variability meta-model with a
unified terminology and representation that enables
variability specification during domain engineering and
variability resolution during application engineering.
The model helps stakeholders to collaborate throughout
the life cycles of software product lines and vendors to
develop interoperable commercial and open-source
modeling tools.

Human to machine communication

Models can be used (primarily during requirements
engineering) to codify human knowledge and organiza-
tional rules and resources into forms that enable compu-
terized actions. The Object Constraint Language (OCL),
being part of the UML standard, is useful in product
line engineering for (1) defining rules to which domain
model elements must conform, so application models
can be derived from the domain models, and for (2) va-
lidating the application models that reuse and possibly
modify the domain models. Models are also crucial for

2

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

validating the codified knowledge. For example, Leppä-
nen [22] has used formal methods for testing models. In
the area of product line engineering, models have been
used to test application requirements derived from do-
main requirements [5]. The models have also been used
to derive application test cases from reusable domain
test cases, which have been created to verify and
validate domain requirements [32].

Machine to human communication

Humans routinely use computer-based information
systems for decision-making and analysis. For example,
reverse engineering tools are used to automatically
create architectural and other models based on code.
This is especially useful in the context of open source
software that is seldom accompanied by detailed design
models [2]. The capabilities of reverse engineering tools
to generate product line models with explicitly defined
variability from application code are limited partly be-
cause much of the variability has typically been resol-
ved by the time the code has been created. For example,
if an application has been derived that contains no
optional features afforded by the product line, the code
related to the optional features may be entirely missing
from the application code, making it impossible to
determine based on the code which optional features
may have been available in the product line. To our
knowledge there are no reverse engineering tools,
which could interpret the code and transform the
implemented variable and configurable elements of
software product lines into variability models.

Machine to machine communication

Models can be automatically transformed into other
models or to code. Model Driven Architecture (MDA)
is a framework based on the UML and other industry
standards that promote the creation of machine-readab-
le, abstract models [16]. The models are developed in-
dependently of the technology platforms; stored in and
shared through standardized repositories; and automati-
cally transformed into database schemas, software code,
and other assets for various platforms.

Several modeling tools support platform-independent
modeling, code generation, XML, and/or database
schema generation features. For example, when a
product line consists of similar products running on
different operating systems, domain engineering can
leverage platform-independent modeling to design and
implement the common parts of the product line for the
operating systems. The platform-independent designs
can then be transformed into platform-specific ones to
create the operating system-specific products during
application engineering [9]. Code generation is also
common during application engineering [34].

2.2 UML modeling tools

UML modeling tools offer graphical editors to help
architects and developers model requirements, architec-
tures, data structures, dynamic behaviors, and other cha-
racteristics of systems. Most tools also support the

UML 2 profile mechanism, enabling the creation and
use of Domain Specific Languages (DSLs), for examp-
le, for variability modeling. Some UML tools can
generate software from UML models and UML models
from the software. Some modeling tools have a built-in
knowledge of UML rules, so they can automatically
validate the correctness of UML models. Table 2
presents typical high-level features for the class of
UML modeling tools.

UML tools often support distributed software deve-
lopment within and across teams. The traditional app-
roach has been to make model repositories available to
the teams through centralized servers. When centralized
version management is deployed together with centrali-
zed servers, specific locking mechanisms are typically
enforced to enable multiple users to simultaneously
work with a model and to completely prevent conflicts
that otherwise would result from parallel model upda-
tes. When more freedom with concurrent model editing
is desired, the merging mechanisms of centralized
version management systems enable the free concurrent
editing of a model, inform developers of possible
conflicts when they check their changes into the
centralized repository, and merge changes and resolve
conflicts automatically or based on developer input.

3. LITERATURE REVIEW

Oldevik et al. [28] propose a set of evaluation criteria
for product line modeling tools but the set does not add-
ress version management. To our knowledge, no other
papers present comprehensive evaluation criteria for
product line modeling tools. However, there are a few
papers related to the requirements for UML modeling
tools [11;23]. This section reviews those papers from
the version management point of view to find out how
features supporting collaborative work are described.

3.1 General-purpose requirements for the class of
UML modeling tools

Funes et al. [11] present a generic set of requirements
based on authors’ experiences. They provide no referen-
ces to case studies in particular organizations. They
group requirements into the following categories: Fea-
tures (that are not related to modeling), Modeling sup-
port, Customization, Installation and performance, and
Tool support. Only three of the requirements relate to
the features supporting modeling in collaborative envi-
ronments (Table 3): (1) Multiple User Support, Access
control/sharing, (2) Multiple User Support, Concurren-
cy control, and (3) Versioning. Funes et al. [11] do not
explain the requirements in more detail.

Lester & Wilkie [23] propose 15 criteria for UML tool
evaluation partially based on the feature lists of existing
products. Two of them relate to version management
but they are only described as headings and not explai-
ned in more detail. The criteria are based on experien-
ces in a software company with only two sites. Therefo-
re, other relevant evaluation criteria might be needed in
multi-site and multi-partner organizations.

3

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

Feature Purpose of the feature is to help
Modeling &
Diagramming

Create, remove, and edit model
elements; view the models from
different perspectives, and create,
remove and edit diagrams.

Hierarchy
Management

Create, update, and delete hierarchies
(i.e., packages) in which model
elements are assigned.

Collaboration
and Version
management

Multiple concurrent users to manage
different versions of assets and to
resolve conflicts; integrate the UML
tool to version control and/or change
management systems as necessary.

Publishing Compose and publish views of the se-
lected models or model elements; pro-
vide data in different formats (XMI,
HTML/ODT/PNG/JPG); create
reports and documents based on the
selected model or model elements.

Tracebility Create, remove, update, and trace
relationships between models or
model elements.

Simulation
and
Validation

Simulate dynamic behaviours of
models or interface or integrate the
tool to simulation tools; validate UML
model correctness and completeness.

Model and
Code Synch-
ronization

Generate code based on models; crea-
te models based on code (reverse engi-
neering); integrate UML tools to sour-
ce code systems or Eclipse; integrate
UML tools with MDA tools such as
oAW, AndroMDA, and BlueAge.

User
Management

Manage access and connectivity to the
organization’s directory services
(LDAP, AD).

Table 2. Common features of UML tools.

Funes et al.
[11]

Require-
ments

Multiple User Support
1. Access control/sharing
2. Concurrency control
Versioning

Lester et al.
[23]

Evaluation
criteria

Repository/Version control
support
Componentization

Oldevik et
al. [28]

Evaluation
criteria

(None)

Table 3. Version management related requirements
for the class of UML tools.

3.2 Summary

The requirements and evaluation criteria for UML
modeling tools presented in the papers analyzed in this
section do not describe features supporting collaborati-
ve modeling in such detail that UML tool evaluations
could be completed. In all the papers authors draw upon
their own experiences or the feature sets of existing
products. Thus, the version management related
requirements seem to be based more on the analysis of
existing products than on the needs of the users of UML
tools. Therefore, this paper will analyze in more depth

version management related to product line modeling in
multi-site, multi-partner organizations.

4. DESCRIPTION OF THE CASE ORGANI-
ZATION AND THE RESEARCH METHOD

An evaluation framework has been created based on the
experiences in the global case organization and the
literature review. The case organization is a large multi-
site and multi-partner high-tech company using the
software product line strategy to successfully operate in
highly diverse global markets. The UML modeling tool
evaluation project was initiated in 2006 by a department
responsible for the development and delivery of global
information management solutions and services for
R&D units within the case organization. Requirements
were gathered during the winter 2007-2008 to
understand the features necessary for applying UML
modeling tools to model system architectures together
with collaborators and partners.

The project was managed according to the internal
corporate guidelines for tool evaluation projects. The
project team consisted of a project manager, seven arc-
hitects from major user organizations, and two IT spe-
cialists/architects. The first author of this paper was res-
ponsible for requirements engineering. Each user orga-
nization representative was interviewed by phone du-
ring the first phase. Other requirements sources inclu-
ded the industrial best practices reported in journals and
in the Internet, modeling tool experts, and IT architects.
Requirements were described in writing based on the
interviews, reviewed, and prioritized by the project
team.

One of the highest priority requirements related to
version management was that the UML tools must sup-
port sophisticated locking mechanisms. The mecha-
nisms must (1) enable developers to define various parts
of a model that they can update independently and (2)
prevent conflicts from parallel model updates.

In the first phase, 15 modeling tools from 13 vendors
were evaluated. Based on the requirements, three com-
mercial products were selected for in depth evaluations,
including detailed vendor liability, financial, and tool
architecture evaluations. Details of vendor liability, tool
architecture, and financial evaluations are not provided
in this paper because the case organization and tool
vendors have agreed that the evaluations are confiden-
tial. Final evaluations of the three tools were based on
feedback from the project team, performance and other
tests of the three tool installations in the case organiza-
tion, reviews with vendors, and the available documen-
tation.

Interestingly, during the evaluation and piloting pro-
cess it was found out that the modeling tools signifi-
cantly differed with respect to their version manage-
ment capabilities. Thus, the case organization became
interested in creating a set of more detailed evaluation
criteria to enable the detailed analysis of version mana-
gement capabilities. The criteria presented in Section
5.2 reflect the high-level requirements determined du-

4

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

ring the evaluation project and can be used for evalua-
tions of version management capabilities. The detailed
questions for each evaluation criteria have been created
based on the literature review. The criteria related to the
availability of historical traceability information were
added to the framework solely based on the experiences
in the case organization because historical information
has been crucial to ensure proper version management
in the organization.

5. TOOL EVALUATION FRAMEWORK

5.1 Assets to be modeled in product line
organizations

In a product line organization, the assets the organiza-
tion creates, maintains, and manages to satisfy market
needs constitute systems composed of software and
hardware. The hardware and software assets may be
managed as products, product lines, and platforms ser-
ving several other products or product lines. Other com-
panies, organizations, or individuals may manage and
even own the software and hardware components.

Figure 1 depicts a platform shared across two product
lines. Both product lines consist of three product va-
riants that are used by markets consisting of individual
consumers and/or organizations. Platforms provide
common (mandatory) and variable (alternative or optio-
nal) features shared across products or product lines.
Complex organizational networks can be responsible
for owning and sharing the components used within
platforms and product lines. In Figure 1, the platform
contains three components, which are not managed by
the organization responsible for the platform, and
product line 1 contains two components, which are not
owned or managed by the product line 1 organization.

Figure 1. Software and hardware asset design and
maintenance responsibility.

The use of models in this network of collaborators and
partners would require seamless interactions to share
the models. For example, the company responsible for
product A may share the understanding of the architec-
ture in the form of models that the partner could further
use when planning and implementing the models rela-
ted to the design of a particular component used in the
product.

Different strategies may be implemented to enable
modeling of the assets. In this paper we consider a
strategy in which one (commercial) modeling tool is

used across the product line organization. This strategy
minimizes the need for data transfer across tools but
may require extensive effort for training and dealing
with resistance to organizational change.

5.2 Evaluation characteristics

In this section, the evaluation characteristics are
described to define a set of desired version management
properties for the class of UML tools (Table 4). The
characteristics have been derived from documented
version management (e.g., [1]) and product line
modeling (Section 5.1) practices and from the
requirements, the project team identified in the case
organization.

We adopt the following terminology defined by
Object Management Group for UML2 [27]:

• A model captures a view of a physical system. It is
an abstraction of the physical system, with a certain
purpose.

• A package is used to group elements, and provides a
namespace for the grouped elements.

• Diagrams are graphical representations of parts of
the UML model. UML diagrams contain graphical
elements that represent elements in the UML model.

• An element is a constituent of a model.
• A property is a structural feature.
The justification for each characteristic is indicated by

questions to be answered during evaluations. The output
domain of permitted answers is also defined for each
question. Some questions have Yes or No as the output
domain while others have a range of possible answers.

Two sets of characteristics are defined: one for
version management support from the viewpoint of
functionality (i.e., which features users can use) and one
from the viewpoint of client and server technology to
find out whether the technology supporting version
management is feasible for large multi-site, multi-
partner organizations. Specific questions have been
added for each set. Organizations planning to introduce
UML modeling tools should carefully consider the
questions and add or remove questions according to
their specific needs. However, Table 4 serves as a
baseline for evaluation. Section 5.2.1 discusses each
question in more detail.

Fundamental version management concepts in
distributed parallel development of software are check-
in/check-out, branching, and merge [1]. System models
need to be version controlled in the same manner as
software code. For example, when UML is adopted to
model the deployment view of software, each model
element may have a corresponding element in the
software code (see [17] and Section 2.1). As discussed
in Section 5.1, different parties may manage the
software assets up to the component level. It should
thus be possible to manage models up to the element
level that corresponds with the component in software.
For example, if there is a new version of the component
to be branched, the model should reflect this change, so
it should be possible to make a branch for the
corresponding element in a model. Another example

Platform

 denotes a
component
created and
maintained by
an external
organization
or an
individual

Product line 1 Product line 2

Product A

Product B

Product C

Product 1

Product 2

Product 3

5

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

involves the modeling of a common view of product
line architecture (see [4] and Section 2.1). When a team
is working on a common view of the architecture
through a model and a team member checks out the mo-
del, others cannot continue the work until the same per-
son has completed the check-in. During the interviews
in the case organization, interviewees reported expe-
riences of model level check-ins and check-outs, which
were seen as problematic. The case organization thus
determined that it should be possible to check-in and
check-out at the element level. Therefore, each version
management feature should support operations at the
element level.

Version
management
features

Evaluation question Evaluation answer

Check-
in/Check-out

Is there support for
Model, Package,
Diagram and Element
level check-in and
check-out for multiple
users? {Yes/No}

Model, Package, Diag-
ram, and Element level
check-in and check-out
enable teams to work
effectively with the
models. Mandatory.

History Is the Element level
history available (who
has made what
changes)?{Yes/No}

Element level history
enables tracing of all the
changes.
Optional.

Model
comparison

Is it possible to com-
pare models at the Ele-
ment level? {Yes/No}

Element level compari-
son is a prerequisite for
merging. Mandatory.

Merging Is there support for
Model, Package,
Diagram, and Element
level three-way
merge? {Yes/No}

Model, Package, Diag-
ram and Element level
three-way merging enab-
les teams to merge
models effectively and
reliably. Mandatory.

Branching Is there support for
Model, Package,
Diagram and Element
level branching?
{Yes/No}

Model, Package, Diag-
ram and Element level
branching enables teams
to work effectively with
models. Mandatory.

Technologies
for version
management

Evaluation question Evaluation answer

Server-side
technology

Are three-tier techno-
logies supported?
{Yes/No}

Three-tier technologies
enable scalable and
reliable solutions.

Client-side
technology

Are client installations
required? {Yes/No}
Are there maintenance
needs for the clients?
{Yes/No}

Client installations and
project-specific needs for
tool configurations
increase maintenance
costs and support needs.

Table 4. Evaluating the version management
features and technologies of the class of UML tools.

5.2.1 UML tool features for supporting version
management

Check-in/Check-out

Appleton [1] states that most widely used version
control tools employ the checkout-edit-checkin model
to manage the evolution of version-controlled files in a
repository or codebase. Element level check-in and
check-out enables completing the necessary tasks effec-

tively in product line modeling. Diagrams, packages,
and models could also be useful elements to be checked
in and out.

History

Version management requires thorough traceability so
users know who has done which changes to the model
and can rollback changes if needed. Knowing the histo-
ry of data helps determine the extents to which the data
is trustworthy and up-to-date. Knowing the previous
editors also gives points of contact for inquiries. To
enable tracebility, log information should be automati-
cally collected and appropriate features should be avai-
lable to see and analyze the log information. It should
be possible to trace back to the element level because
users may need to know, for example, who has made
changes to a particular component. Diagrams, packages,
or models could also be useful elements to trace.
However, this feature is optional because users can
work without comprehensive tracebility at least as long
as their routines and/or tools do not break down. When
coordination breakdowns disrupt the routines, it is
typically time consuming and expensive to find out and
fix the reasons for the breakdowns, if the traceability
information is missing [20,21].

Model comparison

Model comparison enables identifying the changes
between two models. It can take place in different le-
vels. For example, two models can be compared and
their differences can be reported on package, diagram,
element, and property levels. Most sophisticated com-
parison functionalites enable comparisons up to the pro-
perty level, so users can see the differences between dif-
ferent UML elements’ properties. Because efficient
merging requires comparisons, this feature is
mandatory.

Merging

Merging is the means by which one development line
synchronizes its contents with another development line
[1]. Merging can be implemented as a 2-way or a 3-way
merge. In a 2-way merge, two software artefacts are
merged without information about the possible common
ancestor. In a 3-way merge, the information about the
common ancestor is used. The 3-way merge is more
reliable than the 2-way merge because it can detect
conflicts better and identify actual changes more
precisely. In product line organizations, it should be
possible to merge at the element level. For example,
users may need to merge models of two branches
reflecting changes made to the code. To minimize
manual work, diagram merging should also be possible.

Branching

Branching in its most basic form allows development
to take place along more than one path for a particular
file or directory [1]. Branching can be applied to five
different software development situations [1].
Branching of (1) the system's physical configuration -

6

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

branches are created for files, components, and subsys-
tems, (2) the system's functional configuration -
branches are created for features, logical changes (bug
fixes and enhancements), and other significant units of
deliverable functionality (e.g., patches, releases, and
products), (3) the system's operating environment -
branches are created for various aspects of the build and
runtime platforms (e.g., compilers, windowing systems,
libraries, hardware, and operating systems) and/or for
the entire platform, (4) the team's work efforts -
Organizational branches are created for activities/tasks,
subprojects, roles, and groups, and (5) the team's work
behaviors - Procedural branches are created to support
various policies, processes, and states.

For each category, analogical needs for the branching
of product line related models can be identified. (1)
Physical branching of models when modeling software
for different subsystems as a basis for code generation,
(2) functional branching for different products, (3)
environmental branching for hardware, software, and
related platforms, (4) organizational branching for
different projects, and (5) procedural branching to
support different product line modeling processes. We
see that model branching is analogical to the branching
of software and thus it should be possible to branch at
least at the package level, as packages provide the
mechanism to group model elements. However, optimal
support for product line modeling requires branching at
the element level. For example, if there is a new version
of a component to be branched, it should be possible to
make a branch for the corresponding element in the
associated model.

5.2.2 Technologies for supporting version
management

Version management can be supported by two- or
three-tier technologies. Three-tier technologies are more
scalable and reliable than two-tier technologies. If client
installations are needed, the magnitude of maintenance
and support costs incurred to keep the clients updated
needs to be considered. If the clients also need to be
configured for each modeling project separately, the
maintenance and support costs will increase even more.

5.2.3 Summary

This section described a framework consisting of se-
ven criteria to support the evaluation of version mana-
gement capabilities of UML modeling tools. The crite-
ria were derived from documented version management
practices (e.g., [1]) and characteristics needed in pro-
duct line modeling (Section 5.1). The framework is
composed of two sets of characteristics: one from the
functional perspective (i.e., which features users are can
use?) and one from the technical perspective (i.e., are
technologies supporting version management feasible
for large multi-site organizations?).

6. USING THE FRAMEWORK TO EVALUATE
TWO COMMERCIAL UML MODELING TOOLS

In this section the commercial UML modeling tools
Enterprise Architect (http://www.sparxsystems.com/)
and Magicdraw (http://www.magicdraw.com/) are eva-
luated (Table 5) using the framework described in
Section 5.2. Commercial UML modeling tools have
been selected for the evaluation because global high-
tech organizations typically benefit from purchasing
commercial modeling tools [26]. Open-source UML
tools are not yet as mature as their commercial
counterparts are but they have reached a sufficient
maturity level to benefit small and medium sized
businesses [26]. We chose the two tools for evaluation
because they (1) are available for Macintosh, Linux and
Windows operating systems, (2) are not too expensive
for a large company to deploy for even thousands of
users, (3) support SysML, and (4) provide version
management features. These four criteria are adequate
to simulate a situation where a large company is
looking for a UML modeling tool for organization-wide
use by both systems and software architects, designers,
and other stakeholders.

The term “project” used in both Enterprise Architect
and MagicDraw equals to the term “model” adopted in
this paper; one project may contain any number of
packages, elements and diagrams.

6.1 Enterprise Architect

Enterpise Architect can be used in conjunction with
several version management tools such as Subversion,
CVS, ClearCase, Visual Source Safe, Accurev, and
Perforce. Each package in a model can be version-
managed separately as a XMI file, checked-in, modified
and checked-out. In addition, User Security feature
provides means for individual users or user groups to
lock, modify, and unlock package(s), diagram(s) or ele-
ment(s). It is also possible to use several version-mana-
ged packages at the same time via Get-all-latest feature.

The comparison feature under Manage Baselines
enables the comparison of models including version-
managed packages. Comparison is possible for two
models at a time up to the element level including
diagrams. Branching can be realized by making a
baseline using the Manage Baselines feature.

In Enterpise Architect, all clients communicate direct-
ly to the centralized version control system via local
version management clients. This approach puts
pressure on client maintenance because all users need
both Enterprise Architect and the version management
client installed and configured. Each version managed
project needs to be configured separately. Enterprise
Architect leverages three-tier technologies; there are
three separate processes running (user interface, version
management client, and version management server).

7

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

Version
Management
Features

Evaluation
question

Enterprise
Architect 7.5

MagicDraw
16.0

Check-
in/Check-out

Is there support
for Model, Pac-
kage, Diagram
and Element le-
vel check-in
and check-out
for multiple
users?
{Yes/No}

The Model and
Package level
check-in and
check-out and
the Element and
Diagram level
locking and
unlocking are
supported.

The Model and
Package level
check-in and
check-out and
the Element and
Diagram level
locking and un-
locking are
supported.

History Is the Element
level history
available (who
has made what
changes)?{Yes/
No}

No No.

Model
comparison

Is it possible to
compare mo-
dels at the Ele-
ment level?
{Yes/No}

Yes. Two mo-
dels can be
compared at the
Element level
including
diagrams.

Yes. Two mo-
dels can be
compared at the
Element level
including dia-
grams.

Merging Is there support
for the Model,
Package, Diag-
ram and Ele-
ment level
three-way
merge?
{Yes/No}

No. Two-way
merge is
supported.

Yes. Three-way
merge is sup-
ported.

Branching Is there support
for Model, Pac-
kage, Diagram
and Element
level
branching?
{Yes/No}

No. Only Mo-
del and Package
level branching
is supported.

No. Only Mo-
del and Package
level branching
is supported.

Version
Management
Technologies

Evaluation
question

Enterprise
Architect

MagicDraw

Server-side
technology

Are three-tier
technologies
supported?
{Yes/No}

Yes Yes

Client-side
technology

Are client ins-
tallations requi-
red? {Yes/No}
Are there main-
tenance needs
for the clients?
{Yes/No}

Yes. Yes. Ver-
sion manage-
ment tool in-
stallation and
configuration
are needed.

Yes.
No. Extra main-
tenance is nee-
ded for Team-
work servers.

Table 5. Comparing the version management
features and technologies of MagicDraw and
Enterprise Architect.

6.2 MagicDraw

The Teamwork server of MagicDraw allows the
assignment of as many developers as necessary to work
simultaneously on the same model on multiple worksta-
tions. The resulting model is saved and version-mana-
ged either on the Teamwork server or in a version
management tool connected to the Teamwork server.
Currently, MagicDraw can be used with two version

management tools: Clearcase and Subversion. Models
can be decomposed into sub-models at the package le-
vel, enabling model partitioning. Each package can be
version-managed separately and checked-in, modified
and checked-out. In addition, it is possible to lock, mo-
dify, and unlock package(s), diagram(s), and ele-
ment(s).

Branching is realized at the model level. However, as
models can consist of other models (modules),
branching can also be considered to work at the packa-
ge level. Model comparison (Analyze/Compare pro-
jects) can be used for three-way comparison and merge
up-to the element level including diagrams.

No project-specific client configurations are needed
for MagicDraw clients. Version management client
installations are not needed either. This reduces the
need for client maintenance and support. However, the
Teamwork servers require extensive maintenance and
support. MagicDraw leverages three-tier technologies;
there are three separate processes running (the user
interface of a MagicDraw client, Teamwork server, and
the version management repository server).

7. EVALUATION OF THE FRAMEWORK

Both MagicDraw and Enterprise Architect support the
package level check-in and check-out and locking and
unlocking up to the element/diagram level. However, in
both tools all the changes are saved at the model level.
From a technical point of view, check-in/check-out thus
requires lots of network traffic, increasing the time
needed for check-in/check-out. MagicDraw enables
three-way merging while Enterprise Architect provides
only two-way merging.

Both MagicDraw and Enterprise Architect enable
package level branching. Branching especially in
product line organizations should be further studied
because package level branching is not seen optimal for
product line purposes. For example, if there is a new
version of the component to be branched, it should be
possible to make a branch for the corresponding
element in the associated model. Both Enterprise
Architect and MagicDraw lack element level histories.
Availability of element level histories would help trace,
who has made which changes to a particular element at
what time. However, both tools help trace changes by
enabling the comparison of models.

From a technical point of view, Enterprise Architect
can be used in conjunction with many version mana-
gement systems, thus being potentially more cost effec-
tive. After all, many companies already have compre-
hensive version management systems. Enterprise
Architect requires more maintenance and configuration
on the client side (i.e., version management clients need
to be installed and configured) whereas MagicDraw
requires substantial Teamwork server maintenance. The
differences in technology may cause risks in availability
and performance and increase maintenance needs. It is
thus crucial for organizations to test the real perfor-

8

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

mance of the tools by experimenting with a variety of
different setups of servers and clients.

Even if the products were quite similar in terms of
features, the differences in technologies may increase
maintenance needs and pose availability and per-
formance related risks. The use of the framework thus
provides essential information to support decision
making during the evaluation projects.

Both products can be used in product line modeling
because they provide the required basic features. For
companies looking for more sophisticated version
management features, MagicDraw is the best choice.

7.1 Lessons learnt

The evaluation project in the case organization draws
attention to issues, which are general for all organiza-
tions considering the adoption of UML modeling tools.

During the project, it was noticed that the usability of
the tools’ version management features should be furt-
her studied because during the piloting phase users need
to be spesifically instructed about version management
capabilities. Organizations also need to consider the to-
tal cost of ownership separately because the possibility
to use the already existing version management systems
may reduce costs. Organizations planning to introduce
UML modeling tools should always consider the
framework and, additionally, evaluate usability,
efficiency, and the total cost of ownership.

The fact that the two products have similar features
also calls for the development of new more innovative
solutions. For example, new advances in version
management such as Distributed Version Control
Systems (DVCS) [29] should be considered.

8. CONCLUSIONS AND FUTURE RESEARCH

The main deliverable of this paper is a framework
consisting of a set of criteria for evaluating the version
management features of UML modeling tools for multi-
site, multi-partner software product line organizations.
To illustrate and validate the framework, we applied it
to evaluate two UML modeling tools. This study may
serve as a baseline to find and implement new product
development ideas for improving the UML modeling
tools through the design science research [14]. For
example, improving the usability of the tools and the
capabilities of the users is expected to increase the
benefits gained from modeling [3;10].

The results of this study serve as a basis to evaluate
features of the UML modeling tools available in the
software markets and the relationships between the fea-
tures and successful deployments. Based on the expe-
riences in the case organization, the deployment pro-
jects are more likely to fail if the modeling tools and
services do not meet the requirements set in the frame-
work. It is thus crucial to conduct further empirical
research to understand better, which tool features will
contribute most to the beneficial deployment of the
tools.

This paper has focused on evaluating version manage-
ment features of UML tools that follow the traditional
centralized client-server model. However, new tools
such as Git have appeared and the dominant ones such
as Subversion have been further developed to leverage
the Distributed Version Control Systems model challen-
ging the centralized model. These tools operate in a
peer-to-peer manner, enabling radical changes in sys-
tems development practices. Each developer using such
a tool has a copy of the project’s entire history and
metadata. Developers can share changes in any way that
suits their needs, not necessarily through a central
server [29]. Although these tools and the enabled
practices are not yet robust enough to be used
organization-wide by global multi-site, multi-partner
corporations, the tools are maturing quickly. Future re-
search is thus needed to assess the applicability of the
proposed framework for evaluating DVCS-based UML
modeling tools and to revise the framework as
necessary.

9. ACKNOWLEDGMENTS

The comments of Andrius Armonas, Erran Carmel,
Mitchell Cochran and Rick Kazman greatly improved
this paper.

10. REFERENCES

1. Appleton, B., Berczuk, S., Cabrera, R. and Orenstei, R.
(1998). Streamed Lines: Branching Patterns for Parallel
Software Development. In PLoP '98 conference. Available at:
http://www.cmcrossroads.com/bradapp/acme/branching/
2. Arciniegas, J.L., Dueñas, J.C., Ruiz, J.L., Ceron, R., Ber-
mejo, J. (2006). Architecture Reasoning for Supporting Pro-
duct Line Evolution: An Example on Security. In T. Käkölä &
J.C. Dueñas (Eds.), Software Product Lines: Research Issues
in Engineering and Management. Springer, 327-372.
3. Arisholm, E., Briand, L.C., Hove, S.E. and Labiche, Y.
(2006). The Impact of UML Documentation on Software
Maintenance: an Experimental Evaluation, IEEE Transactions
on Software Engineering, 32(6), 365 – 381.
4. Bayer, J., Gerard, S., Haugen, Ø., Mansell, J. X, Møller-
Pedersen, B., Oldevik, J., Tessier P., Thibault, J-P and Widen,
T. (2006). Consolidated Product Line Variability Modeling. In
T. Käkölä & J.C. Dueñas (Eds.), Software Product Lines:
Research Issues in Engineering and Management. Springer,
195-241.
5. Bertolino, A.., Fantechi, A., Gnesi, S. and Lami, G.
(2006). Product Line Use Cases: Scenario-Based Specification
and Testing of Requirements. In T. Käkölä & J.C. Dueñas
(Eds.), Software Product Lines: Research Issues in
Engineering and Management. Springer, 425-444.
6. Brown, S. L. and Eisenhardt, K.M. (1995). Product
Development: Past Research, Present Findings, and Future
Directions. Academy of Management Review 20(2), 343-378.
7. Carmel, E. and Agarwal, R. (2001). Tactical Approaches
for Alleviating Distance in Global Software Development.
IEEE Software, 18(2), 22-29.
8. Carmel, E. and Agarwal, R. (2002). The Maturation of
Offshore Sourcing of Information Technology Work. MIS
Quarterly Executive, 1(2), 65-78.
9. Cusumano, M. A., and Selby, R. W. (1998). Microsoft®
Secrets. Free Press, New York, NY.

9

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

III

DESIGN, IMPLEMENTATION, AND EVALUATION OF A VIRTU-
AL MEETING TOOL-BASED INNOVATION FOR UML TECHNOL-

OGY TRAINING IN GLOBAL ORGANIZATIONS

by

Mervi Koivulahti-Ojala & Timo Käkölä, 2012

Proceedings of the 45rd Hawaii International Conference on Systems Sciences

©2012 IEEE. Reprinted with permission.

Design, implementation, and evaluation of a Virtual Meeting Tool-based
innovation for UML technology training in global organizations

Mervi Koivulahti-Ojala & Timo Käkölä

University of Jyväskylä
40014 University of Jyväskylä, Finland

 {meelheko, timokk}@jyu.fi

Abstract

End-user training is complicated to implement in
global corporations whose activities are typically
scattered across multiple sites in different countries
and leverage information systems in various ways.
This is especially true in global software development
where the sites may leverage a development tool for
totally different purposes. Web-based Virtual Mee-
ting Tools (VMT) enable synchronous communication
globally through interactive audio, online chats,
video, and the sharing of presentations. They provide
potentially a cost effective way to train even complex
topics to large numbers of people in global settings.
Few industrial experiences from the design and use
of VMT-based training innovations have been repor-
ted. This paper draws upon a case study in a global
corporation to describe the design, implementation,
and evaluation of a training innovation, consisting of
a set of courses delivered by means of a VMT and
conference calls, to support the global deployment of
a Unified Modeling Language (UML) modeling tool
and to develop UML modeling skills. Evaluation is
based on interviews to verify 1) the impacts of the
innovation on skills, knowledge and motivation, 2)
perceived learner satisfaction with respect to the
innovation. The innovation proved successful in
improving skills, knowledge, and motivation in the
case organization and learners were satisfied with it.
Other organizations may benefit from using VMT to
train people to use similar complex information
systems for supporting global software development.

1. Introduction

End-user training is critical for successful
implementation of information systems (IS) (e.g. [5;
7; 26]). End-users need to acquire new knowledge to
be able to use new IS applications effectively [3;20].
Deployment of IS is typically accompanied by
substantial investments in formal and informal
training. The organization and delivery of training is
complicated in global corporations and organizational

networks. This is especially true in global software
development organizations where the development
activities are scattered across many sites in different
countries, limiting the possibilities for setting up and
delivering face-to-face training. The sites may
leverage a development tool for totally different
purposes, have varying organizational cultures, and
employ thousands of end-users with diverse
backgrounds.

Web-based Virtual Meeting Tools (VMT) enable
synchronous communication globally through
interactive audio, online chats, video, and the sharing
of presentations. They provide potentially a cost
effective way to deliver training in global settings.
However, few industrial experiences from the design
and use of VMT-based training innovations have
been reported. Moreover, prior research indicates that
learners are less satisfied with the web-based training
when the topic is unfamiliar and complex and more
satisfied when using web-based training for learning
familiar and non-complex topics like word
processing [24]. It is thus unclear whether VMT can
support the training of complex software
development tasks and tools in a way that learners are
satisfied with the training.

This research provides evidence that web-based
Virtual Meeting Tools can be designed and imple-
mented to successfully train thousands of end-users
so they can complete complex software development
tasks with the appropriate tools. The research is
expected to be novel as our review of the extant
literature did not find any similar earlier research.
This paper draws upon a case study in a global
corporation to describe the design, implementation,
and evaluation of a training innovation, consisting of
a set of courses delivered by means of a VMT and
conference calls, to support the global deployment of
a Unified Modeling Language™ (UML) modeling
tool and to develop UML modeling skills.

UML has become an international standard for
systems modeling [21]. It is a comprehensive and

complex language, requiring ample, long-term trai-
ning and learning efforts [8;17]. UML modeling
requires the use of versatile UML modeling tools that
offer, for example, graphical editors to enable
architects, developers, and engineers to model requi-
rements, architectures, data structures, dynamic beha-
viors, and other characteristics of systems [16]. UML
and the supporting modeling tools constitute a criti-
cally important technology (hereafter “UML tech-
nology”) for supporting global software develop-
ment. This technology, due to its complexity and
comprehensiveness, is a challenging domain for
training. It is thus an excellent domain of study to
determine whether VMT are adequate and scalable to
train hundreds or thousands of people to master
complex topics in global corporations.

Indeed, the use of UML and UML modeling tools
do not automatically lead to productivity improve-
ments. For example, Dzidek et al. [9] found that
UML is beneficial when developers must extend non-
trivial systems with which they are unfamiliar and
that better UML modeling tools and more experien-
ced personnel could yield even larger returns on in-
vestment. Productivity improvements from the
adoption of the UML technology may not be reached
without the cost-effective training of end-users.

The case organization had to find a cost effective
way to improve its employees’ UML technology
related skills, knowledge, and motivation globally. It
decided to use Virtual Meeting Tools for UML
technology training. However, the extant literature
provided the organization with little guidance for
designing and implementing such training.

Following the problem-centered approach of
Peffers et al. [23], this research was initiated in the
case organization to fill the identified gap in
knowledge. The research question is as follows:

• Can the UML technology training be organized
and delivered through Virtual Meeting Tools in ways
that learners are satisfied with the training and the
training positively impacts the skills, knowledge and
motivation of the learners?

To answer the research question, the four-phased
design science research methodology presented by
Peffers et al. [23] was deployed. First, Problem
Identification and Motivation revealed that the UML
technology related research did not provide any
insights into the design and implementation of VMT
innovations for UML technology training. Second,
Objectives for an Innovation were defined to resolve
the problem based on the experiences of the case
organization. Third, the key components of the
innovation such as content, organization of training,
training materials, and trainers’ skills and knowledge
were Designed and Developed. Fourth, learner

satisfaction and improvements in skills, knowledge,
and motivation were Evaluated.

The main contribution of this research is the
design, implementation, and evaluation of a VMT-
based innovation for UML technology training.
Although the design of the innovation has been
created based on the experiences in the case
organization, we have made every effort to generalize
it and to identify potential prerequisites for the
innovation, so other organizations can maximally
leverage it in UML technology training.

The paper proceeds as follows. Section “Virtual
Meeting Tools, Unified Modeling Language and
Unified Modeling Language Tools” introduces basic
concepts related to VMT, UML modeling, and
modeling tools. Section “A Systematic Literature
Review” presents research related to UML training
and VMT adoption in training. Section “Description
of the case organization and the research method”
describes the case organization; the objectives for the
innovation; the research method; and the innovation
(i.e., key features of training such as contents,
organization of training, training materials, and
trainers skills and knowledge). Section “Preliminary
evaluation of the Virtual Meeting Tool-based
innovation,” details the results of evaluation. Section
“Conclusions and Future Research” concludes the
paper, addresses the limitations of the conducted
research, and provides an outlook to further research.

2. Virtual Meeting Tools and Unified
Modeling Language Tools

This section explains the concepts of VMT and
UML Tool.

2.1. Virtual Meeting Tools

Virtual Meeting Tools enable real-time interac-
tions through features such as chat tools and audio,
video, and user interface screen sharing. They use
common browser plug-ins and connect through a
local or remote hosting service [10]. Most VMTs are
platform independent, allowing users on PCs, Macs,
and Linux machines to share identical features [10].
At the appointed times, participants log on to join the
sessions.

VMT has been used most extensively in educa-
tion [10], for example, to arrange remote lectures.
But other types of organizations are increasingly
using VMT for collaboration and training purposes.
For example, individuals can use VMT to collaborate
in geographically distributed projects. Learning has
become more flexible as VMT has provided more

opportunities for learning at any place. There is often
a sense of community even if the collaborators are
thousand miles away from each other. Without the
time and expense of travel, experts can attend classes
from any location and respond to the questions of
other participants in real time.

Training through VMT has limitations. Most
importantly, the trainers have reduced control over
the virtual class-rooms compared to on-site training.
As a result, the trainers have to be highly experienced
in using VMT to interact effectively with their
audiences while missing many visual and other cues.

2.2. Unified Modeling Language tools

Some UML tools can generate software from

UML models and UML models from the software.
Some also have a built-in knowledge of UML rules,
so they can automatically validate the correctness of
UML models. Table 1 presents typical high-level
features for the class of UML modeling tools.

3. A Systematic Literature Review

Literature was reviewed to verify to which extent

existing studies cover VMT usage for UML and
UML tool training in industrial settings. To improve
the rigor of the study, a systematic literature review
was conducted following the principles of Kitchen-
ham et al. [15]. VMT related literature is fragmented
and keywords such as e-Learning, online learning,
web-based learning, computer-based training, Inter-
net-based training, and web-based training are used.
We thus decided to use a broader term “training”.
UML tool related literature is also fragmented (e.g.,
using keywords such as “UML tool” or “CASE
tool”), so we decided to use a broader term “UML”.
The following criteria and process were used:

1. The first criterion was to find UML training
related articles by searching words “UML” and
“training” in title, abstract, and keywords. Decision
was based on the title and the abstract of the article.

2. The second criterion was to categorize research
according to industrial experiences, that is, whether
the research reported industrial experiences or not.
The content was visited when it was impossible to
determine based on the abstract and the title whether
the article reported industrial experiences.

3. The third criterion was to categorize research
according to e-Learning, that is, whether the research
reported experiences related to e-Learning or not.
The content was visited when it was impossible to
determine based on the abstract and the title whether
the article reported e-Learning related experiences.

Table 1. Main features of UML modeling tools
(adapted from [16]).

Feature Purpose of the feature is to help
Modeling &
Diagramming

Create, remove, and edit model
elements and diagrams; view the
models from different perspectives.

Hierarchy
Management

Create, update, and delete hierarchies
in which model elements are assigned.

Collaboration
and Version
management

Multiple concurrent users to manage
different versions of assets and to
resolve conflicts; integrate the UML
tool to version control and/or change
management systems as necessary.

Publishing Compose and publish views of the se-
lected models or model elements; pro-
vide data in different formats (e.g,
JPG); create reports and documents
based on the selected model
(elements).

Tracebility Create, remove, update, and trace
relationships between models or
model elements.

Simulation
and
Validation

Simulate dynamic behaviors of
models or interface or integrate the
tool to simulation tools; validate UML
model correctness and completeness.

Model and
Code Synch-
ronization

Generate code based on models; crea-
te models based on code (reverse engi-
neering); integrate UML tools to sour-
ce code systems, Eclipse, or Model-
driven architecture tools such as
AndroMDA.

User
Management

Manage access and connectivity to the
organization’s directory services (e.g.,
Active Directory).

In the first phase of search, IEEE Explore, ACM
Portal, and Elsevier’s Science Direct were searched.
These databases covered both IS journals and
conferences. The number of found articles and
related references are described in Table 2. Seven
articles related to UML training were found. Three of
them reported UML modeling and/or UML modeling
tool training in industrial settings. In addition, Virvou
and Tourtoglou [28,29] present two potential systems
to support UML learning but no industrial
experiences were reported. Both Anda et al. [1] and
Andersson et al. [2] did not mention usage of any e-
Learning tools for UML modeling related training.
Bunse et al. [6] reported industrial experiences from
the design, organization, and execution of a training
program blending e-Learning and face-to-face
training to teach 42 employees UML in an
automotive branch of a large German corporation.
The program started with an online learning phase in

the form of web-based training, in which the learners
worked self-directed with the courseware to enhance
their knowledge and skills in applying the UML. The
phase was a prerequisite for the face-to-face trainings
of the second phase. After the face-to-face training, a
several weeks long coaching phase concluded the
training program. The coach consulted the learners
about applying UML in their day-to-day-work. No
UML modeling tool related training was included.

Whenever industrial experiences from UML and
UML modeling tool training were reported, the
importance of organizing UML and UML modeling
tool training in a cost effective way was clear ([1],
[2]). Anda et al. [1] investigated the adoption of
UML modeling principles and tools in a project
where a global company applied a UML-based
development method in a large, international project
with 230 system developers, testers and managers.
Adoption was supported by face-to-face training and
mentoring. Maximum benefits from UML-based
development were not achieved because training (1)
was not adapted to the needs of the project and (2)
was considered too expensive to provide to project
members who were not directly involved with UML-
based development. Andersson et al. [2] researched
the adoption of UML/SysML modeling principles
and tools in an aerospace systems engineering project
at Saab Aerosystems. Introducing UML/SysML with
a methodology and a supporting toolset in the
organization required a clear strategy including just-
in-time, face-to-face training and mentor support.

Table 2.Results of literature review.

Search criteria Number of
articles
found

Refe-
rences

UML training

Seven [1,2,6,22,
27,28,29]

UML and/or UML tool
training in industrial settings

Three [1,2,6]

Experiences of e-Learning
adoption for UML training
in industrial settings

One [6]

Relevant articles may have been published but not
found in this literature review. Nevertheless, we
conclude that the application of e-Learning in general
and VMT in particular for UML modeling and/or
UML modeling tool training has not received much
attention in the literature.

4. Description of the case organization
and the research methodology

4.1. Case Organization

A VMT-supported innovation for UML
technology training was implemented in the global
high-technology corporation. To support product
development, a new UML modeling tool was being
rolled out globally. A web-based VMT was provided
by the IT department. It was not used for voice
sharing but instead employees could use phone lines
or a VoIP application to perform conference calls
while using the VMT.

4.1.1. Introduction of the UML modeling tool in
the case organization

Most of the intended UML tool end-users were
from the R&D organization. Other organizations such
as partners using the same IT infrastructure were
involved as well. Deployment was supported by a
team consisting of personnel from the global IT
department, the department responsible for process
and information systems development and support
for R&D, and the subcontractors working for these
departments. The system was intended to gradually
replace some existing systems and the number of
end-users was thus growing.

4.1.2. The need for the Virtual Meeting Tool-
based training innovation

The need for a new way of training was noticed
based on two surveys conducted in 2009. The middle
management responsible for the tool rollout and
support decided to conduct the surveys to evaluate
how satisfied the end-users were with the tool and the
quality of service. The results of the two user
satisfaction surveys are presented in detail by [12].
The team analyzed the results of the surveys and
concluded that instructions, user guides, and training
practices had to be improved. It initiated several
improvement activities accordingly. The challenge
was that end-users were working in distributed sites
while at the same time there was pressure to extend
the use of VMT to cut down travelling costs.

The team had previously used VMT in
information sharing. Face-to-face trainings were
organized in co-operation with the UML tool vendor
which provided globally UML technology training
and consultancy as well as technical support for their
products. However, the vendor had no experience of
VMT-based training. The team decided to design and
pilot an innovation for UML technology training to
improve the overall effectiveness of this training.
Since then, the content, material, and organization of

trainings have been iteratively improved based on
free-form feedback from end-users. The middle
management initiated more formal evaluation during
2010 in the form of a survey but the response rate
was unsatisfactory. Interviews were then determined
to be the best method to verify that the innovation
was viable in 2011 after two years of deployment.

4.2. Research Methodology

4.2.1. Design Science

The first author of this paper was a member of the
team responsible for UML tool deployment. Design
science research was deemed as the most effective
methodology for designing the innovation for UML
technology training. Design science is a discipline of
information systems research which has recently got
ample attention among information systems
researchers. Design science research is relevant to
practitioners as it aims at solving practical and
theoretical problems by creating and evaluating IT
artifacts intended to solve identified organizational
problems [19;11;23]. The artifacts are the final
results of the design process. March and Smith [19]
define artifacts as constructs, models, methods and
instantiations. There are several extensions to their
list of artifacts. Rossi and Sein [25] include the
following artifacts: conceptual designs (e.g.,
definition of a relational model), methods (e.g.,
design patterns), models and systems (e.g.,
prototypes and commercial applications), and better
theories (e.g., relational algebra). Järvinen [13]
includes informational and human resources as
potential artifacts, too.

The designed innovation for UML technology
training is partly an IT artifact but it also includes hu-
man (e.g., trainers, end-users, and their skills,
motivations, and stocks of knowledge) and informa-
tional resources (e.g., contents of training materials).
The case organization experimented with many diffe-
rent ways of supporting UML tool end-users. No
other combination of IT artifacts and informational
and human resources was found cost effective by the
management or appealing by end-users. This paper
focuses on the innovation that reflects the only
effective combination of the IT artifact (i.e., the VMT
tool) and informational and human resources. The
innovation is an artifact resulting from the systematic
application of the design science methodology.

4.2.2. Design of the Virtual Meeting Tool-based
Innovation

The design of the VMT-based training innovation
was a result of two years of development work
between 2009 and 2011. An initial set of training ses-

sions was created and executed in 2009 in co-opera-
tion with the UML tool vendor. The latest set of
sessions is introduced in Table 3. A set of sessions
was organized typically once every two months. Each
set of sessions was delivered during two weeks, so
end-users were able to learn the basics within
reasonable time. Each session was designed to last
between one and two hours, including the time
reserved for questions and answers. After each
session, feedback was asked via e-mail from
participants.

Trainers were not experienced in applying VMT
tools for UML technology training when the training
was started. They were specialists in both the UML
technology and traditional face-to-face training. The
UML tool vendor had to make a substantial effort to
install and learn to use the VMT tool and the
conference call system the case organization had
chosen. The vendor then organized training sessions
in its physical premises and delivered them via VMT,
decreasing the traveling costs of trainers.

Table 3.Names and descriptions of the
sessions.

Name of the
session

Description of the session

Introduction
to UML

Main diagrams of UML, history and
evolution of UML language

Introduction
to tool

Main features of tool, how to get
started with hands-on example,
support resources such as Intranet,
guides, and IT support

Class
diagrams

Class diagram in UML and demonstra-
tions showing how to create class
diagrams using the tool

Sequence
diagrams

Sequence diagram in UML and de-
monstrations showing how to create
sequence diagrams using the tool

Composite
structure
diagrams

Composite structure diagram in UML
and demonstrations showing how to
create such diagrams using the tool

State
machine
diagrams

State machine diagram in UML and
demonstrations showing how to create
state machine diagrams using the tool

Use Case
diagrams

Use case diagram in UML and
demonstrations showing how to create
use case diagrams using the tool

Introduction
to collabo-
ration

Features to support the collaborative
maintenance of UML models using
tool (presentation and demonstration)

How to
publish
models

Features to support the sharing of mo-
dels in different formats or through
Intranet (presentation and
demonstration)

Each set of on-line training sessions was
advertised through email and Intranet pages.
Employees registered in the sessions got personal
invitations to the calendar system used in the case
organization. However, it was possible to join the
sessions without registration because the conference
phone number and the link shared during each VMT
session remained the same. This flexibility was well
received by employees but the VMT technology did
not provide the team with possibilities to keep track
of the employees joining the sessions. The number of
trained employees is thus an estimation based on the
invitations sent. 107 employees were invited for the
training sessions in 2009 and 150 in 2010. Employees
could join the sessions in their offices, in meeting
rooms they had reserved, or in other premises, for
example, when traveling. They used their mobile
phones, conference phones, or PC software (such as
VOIP) for conference calls. Both muted and non-
muted lines were reserved for calling purposes. When
calling to muted lines, they could not make any
comments or questions verbally. However, it was
possible to send questions or comments through chat
to the trainers, who checked the questions and
comments and answered them as necessary during
the sessions.

Training materials were originally developed for
the purposes of face-to-face training. Each concept
(e.g., a UML diagram or feature) was introduced first
and then the use of the UML modeling tool was
demonstrated in the same context. Later on the
materials were further developed to better meet the
training needs when there is no face-to-face contact.
For example, questions were added that trainers
could ask to activate learners remotely. Questions
charted the ways of using the UML technology (e.g.,
“Do you use Class Diagram (Yes/No)? Do you find
Sequence Diagram useful in your work?”) and tested
the learners (e.g., “Which one of the following state-
ments is correct?”). It was also possible for the trai-
ners to share information during the sessions about
the test results and the opinions of learners. Training
material was available in Intranet for end-users to
study before, during, or after the training. All the
materials followed the same agreed upon way of
presentation (e.g., all menu options were presented in
italics).

4.2.3. Methodology for validating the innovation

The qualitative data was collected through seven
interviews after two sets of sessions were organized
during June 2011 and September 2011. To keep the
interviews informal, semi-structured questions were
used. The interviews were conducted over the phone.
They were transcribed to a standard format following

the semi-structured questions and related themes and
sent to the interviewees for review. The transcripts
were cross-checked by the research team to capture
misunderstandings and potentially missing
information. Surveys could not be used for this
research despite the substantial number of learners
because the response rates for surveys are very low in
the case organization. Formalized ways of testing
improvements in skills and stocks of knowledge
before and after the training sessions (pre-testing and
post-testing) were impossible to deploy as the end-
users were located all over the world and there were
no resources available to collect all the necessary
data from them.

To improve the rigor of interviews, the following
studies were applied when planning the questions:
• Koivulahti-Ojala and Käkölä [16] for cate-

gorizing the ways of using UML modeling tools,
• Kang and Santhanam [14] and Kraiger et al. [18]

for identifying potential areas for improvements
in skills, stock of knowledge, and motivation,

• Azadeh and Songhori [4] for identifying
potential areas of learner satisfaction.

Koivulahti-Ojala and Käkölä [16] proposed that the
ways of using UML models for communication can
be categorized as follows: human to human, human
to machine, machine to human, and machine to
machine. Kang and Santhanam [14] identified three
knowledge domains that training programs should
cover: Application knowledge covering commands
and tools embedded in IS applications; business con-
text knowledge covering the use of IS applications to
effectively perform business tasks; and collaborative
task knowledge covering the task interdependencies
between various actors and how the IS application
coordinates and mediates these interdependencies
(Table 4). End-users of UML modeling tools need to
master all the knowledge domains. The business
context needs to be mastered because UML modeling
tools are general purpose tools applicable to several
business processes. Collaborative task knowledge is
vital too because UML modeling tools (possibly
integrated with other tools) mediate collaborative
activities in distributed software development. Table
4 illustrates UML modeling tool related knowledge
needs with examples. This study focuses on
application and collaborative training as the training
sessions supported them. Although Kang and
Santhman [14] did not consider motivational aspects
in their study, training can positively affect
individuals’ motivations [18]. Interviews thus charted
also motivation issues from application and
collaborative task perspective.

Azadeh et al. [4] proposed seven factors that
should be taken into account when evaluating end-

user training programs from learners’ perspective:
relevance of the course to the learner's job,
satisfaction with course content and presentation,
quality of instruction, effectiveness of the trainer, and
overall satisfaction with the training. Interviews
covered all the factors comprehensively.

5. Preliminary Evaluation of the Virtual
Meeting Tool-based Innovation

Interviewees’ previous knowledge of UML
technology varied a lot. Three interviewees had
several years of experience of using UML technology
and had used this particular UML tool for more than
one year. Two had applied UML technology but had
used this particular UML tool little or not at all. Two
had very little knowledge of UML technology. All of
the interviewees shared models with other employees
but only one used built-in collaboration
functionalities. They did not use models for
communication between humans and machines (e.g.,
code generation or reverse engineering) on a regular
basis but some knew such possibilities exist or had
even tried using them. Interviewees represented
different continents (Asia and Europe) and
programmer and architect roles. Most interviewees
joined five or more sessions. Those joining less than
five sessions were more experienced and wanted to
learn specific topics.

5.1. Skills, knowledge and motivation after
training

All interviewees were able to name new UML
diagrams (or semantics related to a particular UML
diagram) or functionalities they had learned during
on-line training, indicating that their tool-procedural
and tool-conceptual skills had improved. However,
the results varied with respect to learning command
level skills. An interviewee with limited previous
UML technology knowledge mentioned: “If the
application is new, you cannot learn everything at
one glance.” Learners with limited knowledge may
thus be overloaded and unable to follow detailed
command level instructions. One interviewee had
found a solution to support his learning of command
level skills. He had completed notes during training
so he could later find the right menus more easily.
Another interviewee proposed that training sessions
should be recorded so the instructions can be
reviewed whenever necessary. We can conclude that
learners were able to find their ways to learn
command level skills over time with the help of on-
line training.

Interviewees were not able to name any concepts
or practices (e.g., collaborative maintenance of
models) related to collaborative task knowledge after
training. Only one of the interviewees used
collaborative modeling and it can be expected that
interviewees focused on those sessions they

Table 4.The model for training users of UML tools (adapted from [14]).
Domain of knowledge Definition Example in UML tool context
Application Knowledge
1) Command based
2) Tool-procedural
3) Tool-conceptual

1) Commands/keystrokes needed to
execute an operation

2) Knowledge required to combine
multiple commands and
complete a generic task

3) Knowledge to understand the
bigger picture of what to do with
a tool

1) Commands/keystrokes in order to
create a UML element

2) Combine multiple commands to
complete a UML diagram

3) Which types of diagrams should be
used together and when, and how
the tool facilitates this?

Business context knowledge
1) Business-procedural
2) Business-motivational

1) How to apply the above levels of
knowledge to execute a specific
business task?

2) What the tool can do for my job?
3) What is the role of the tool in the

organization?

1) Which diagrams to apply and when
to support a particular business
process (e.g., requirements
management)?

2) Which business processes of the
organization are supported by the
UML tool and why?

Collaborative task
knowledge
1) Task interdependencies
2) Collaborative problem

solving approach

1) Interdependencies between tasks
and their effects upon using a
UML tool

2) Collaborative problem solving
effort between users

1) How tasks completed through the
UML tool affect and are affected by
other users of the tool (and/or related
tools)?

2) Knowledge sharing between users to
solve problems

considered most relevant to their immediate needs.
Thus it cannot be concluded that on-line training is
unsuitable for learning collaborative knowledge.
Instead, lack of such knowledge after training
indicates that interviewees lacked motivation to learn
such knowledge. Some interviewees stated that they
had not started to use collaborative modeling and
therefore had now skipped the related session but
were interested to join such a session later.

Most interviewees agreed that they were more
motivated to use the UML tool after training. For one
user, the usage of the tool was compulsory and he
indicated that training neither increased nor
decreased his motivation. Another user had a long
experience of UML technology and his expectations
for the course were learning business-procedural
skills and knowledge rather than application level
skills. On the other hand, one experienced user
indicated increased motivation due to the possibility
to refresh his UML technology knowledge. Our
preliminary conclusion is that those using the tool
voluntarily and joining sessions to learn application
level skills were more motivated after the training.
Interviewees did not express increased motivations to
solve UML technology related problems with other
end-users after the training. They mentioned their
own teams, Intranet, and Internet as the sources they
would use to solve the problems. Training thus
improved or maintained motivation at the application
level but not at the collaborative level.

In sum, the innovation for UML technology trai-
ning improved application related skills and know-
ledge and increased or maintained the motivation to
apply UML technology. However, improvements in
command level skills and collaborative task
knowledge and motivation were limited.

5.2. Learner Satisfaction

Interviewees were satisfied with content, training

material, voice, presentation sharing, and the way
learning was organized (Table 5). As the content and
training materials had been specifically tailored for
on-line training of application and collaborative task
knowledge during the previous two years, it is
possible that the interviewees did not see any major
improvement proposals necessary. The proposals for
new content came mainly from the users having most
extensive previous knowledge. They indicated needs
for training either business context related knowledge
or very detailed additional knowledge. But additional
details might neither be interesting nor useful for
novices. Accordingly, the scope of using the VMT
innovation must be extended for training business
context knowledge in future.

Table 5.Examples of answers for learner
satisfaction.

Domain for
learner
satisfaction

Example answers

Content “Content was a compact packet.”
 “I think content was good and some
good examples were presented. “
 “Potentially it could go into more
details and more advanced things.”

Demonstra-
tions

“Demonstrations were clear and
presented smoothly.” “Good to have
the sessions on UML modeling and the
use of the tool after each other.”
“When showing how to make menu
selections, the trainer should pause and
show the selections slowly.”

Training
material

“Material was ok”. “I have read those
materials I need for the three types of
diagrams I use.” “Good enough
whatever there was during those two
sessions I attended.” “Material does
not support finding information.
Searching and linking capabilities
would be improvements.”

Trainer “Trainer knew the material and the
UML tool.” “Trainer was fluent in
English and knew what he was doing.”
“He did know his topic and was clear
presenting it.” “Content was good but
sometimes too difficult to follow due to
fast speed.”

Voice “No problems.” “Mostly ok.”
Means of
presentation

“No problems”. “Surprisingly good.
Only one small break.”

Questions
for the
trainer

“It was good to have a chance to make
questions. Trainer answered them
promptly.”

Questions
for other
interviewees

“Most learners only listened. As far as I
remember, one person in two sessions
asked something.”

The way the
on-line
training
sessions
were
organized

“A full day session is difficult to alloca-
te nowadays. This [short session] was
good for me... I would probably miss it
if it were a longer face-to-face or on-
line session. On-line sessions are diffi-
cult to follow if they last several hours.
Face-to-face trainings need full day
allocations and negotiations with the
manager.” “Length of sessions was ok”.

One interviewee proposed that it should be possible
to find information in the material more easily. The
material was tailored for training purposes and did
not support the searching of particular pieces of

information. As learners were not able to fully learn
command level skills during training sessions, the
material should support the searching of relevant
content after training.

The organization of the training sessions got some
positive remarks. UML was always introduced first
and the use of the tool was focused on after that. This
combination of tool-conceptual and tool-procedural
training was seen beneficial. In addition, the lengths
of the sessions were suitable both from practical and
learning perspectives (see the last row of Table 4).
No interviewees mentioned other types of diagrams
that should also be covered in training sessions but
some detailed proposals for other topics were
mentioned (e.g., how to move elements in a
hierarchical model).

Interviewees were mostly satisfied with
demonstrations and the trainer but they agreed that
presentation speed was sometimes too fast. This is
understandable as the trainer could not see learners’
reactions and adapt the speed as necessary. On-line
training thus requires paying special attention to
presentation pace.

Interviewees were familiar with VMT and confe-
rence calling. They were satisfied with voice and pre-
sentation sharing but stated that sometimes PC appli-
cations used for presentation sharing or conference
calling were not working properly. However,
interviewees knew from their earlier experiences that
such incidents happen from time to time. This may
explain why the incidents did not decrease their
perceived satisfaction. When the studied sets of
sessions were organized, all trainers had previous
knowledge of applying VMT and voice sharing for
training. In organizations where trainers or learners
lack similar VMT skills and knowledge, learner
satisfaction may be lower than in this organization.

5.3. Generalizable findings from the
evaluation

The evaluated innovation for UML technology

training is based on experiences from one
organization during the period of two years.
However, it is possible to make some general
recommendations because both the innovation and
the related informational and human resources have
been specified. VMT can be applied for complex
technology training successfully (in terms of learner
satisfaction, sustained motivation to use the
technology, and improved tool-conceptual and tool-
procedural skills and knowledge) in organizations
where end-users are familiar with VMT and there are
trainers experienced in conducting customized on-
line training using the innovation. Organizations,

searching for a viable solution for training large
numbers of globally distributed employees to use
complex software technologies, should thus carefully
analyze both employees’ and trainers’ abilities to use
VMT and conference calls.

Subjective opinions of interviewees do not
necessarily correlate with real improvements in skills
and knowledge or learner satisfaction. However,
other data sources within the organization support the
interview results. First, a user satisfaction survey
completed in the organization indicated that after the
UML technology training sessions were initiated,
user satisfaction was increased (see details in [12]).
Second, the case organization tried out other ways of
supporting end-users’ efforts to learn UML
technology but they were unsuccessful in terms of
popularity amongst the end-users.

It should also be noted that in the case organiza-
tion, both business context knowledge creation and
collaborative task knowledge creation were also
supported by other means. Business context
knowledge creation was supported by UML
technology experts who joined deployment projects
where teams or projects took the UML tool into use.
Experts suggested suitable diagrams, structured the
models, and provided tailored training for team-,
project-, and department-specific purposes.
Collaborative task knowledge creation was enhanced
by finding and training contact persons for each team,
project, and department, and encouraging the sharing
of experiences in user forums.

6. Conclusions and Future Research

This research described an innovation for UML

technology training that results from a few years of
iterative development of the case organization,
content, material, and trainers’ skills and knowledge.
It was found that VMT can be applied for training
people to use complex technologies successfully (in
terms of learner satisfaction and motivation and
knowledge to use the technology) in organizations
where end-users routinely use VMT and there are
trainers experienced in on-line training. Information
systems professionals benefit from the proposed
innovation for UML training when planning,
implementing, and evaluating UML training sessions
organized through VMT. Information systems
management can take advantage of the results when
making decisions about VMT usage in complex
technology training.

The single case study methodology may not pro-
vide a sound basis for generalization. Future research
in other organizations is necessary to probe the
applicability of VMT in training people to use

especially nontrivial information systems. The UML
technology is considered to be complex and difficult
to learn. This study indicates that it is possible to
support the learning of complex technologies through
VMT by structuring the complex content in an
appropriate way from the end-users’ perspectives.

7. References

[1] Anda, B., Hansen, K., Gullesen, I. and Thorsen, H.
(2006). Experiences from introducing UML-based
development in a large safety-critical project. Empirical
Software Engineering, 11(4), 555-581.
[2] Andersson, H., Herzog, E., Johansson, G. and
Johansson, O. (2010). Experience from introducing unified
modeling language/systems modeling language at Saab
Aerosystems. Systems Engineering, 13(4), 369-380.
[3] Attewell, P. (1992). Technology diffusion and
organizational learning: The case of business computing.
Organization Science, 3(1), 1-19.
[4] Azadeh, A. and Songhori, M. (2006). End-user training
programs planning model based on Information
Technology and Information Systems (IT/IS) impact on
individual work. In Proceedings of the IEEE Industrial
Technology, 2107 -2112.
[5] Bostrom, R., Olfman, L. and Sein, M. (1990). The
importance of learning style in end-user training. MIS
Quarterly, 14(1), 101-119.
[6] Bunse, C., Grutzner, I., Peper, C., Steinbach-Nordmann,
S. and Vollmers, C. (2006). Coaching professional software
developers-an experience report. In Proceedings of the 19th
Conference on Software Engineering Education and
Training, IEEE, 123-130.
[7] Compeau, D., Olfman, L., Sein, M. and Webster, J.
(1995). End-user training and learning. Communications of
the ACM, 38(7), 24-26.
[8] Dori, D. (2002). Why significant UML change is
unlikely. Communications of the ACM, 45(11), 82-85.
[9] Dzidek, W.J., Arisholm, E. and Briand, L.C. (2008). A
Realistic Empirical Evaluation of the Costs and Benefits of
UML in Software Maintenance. IEEE Transactions on
Software Engineering, 34(3), 407-432.
[10] ELI (2006). 7 things you should know about virtual
meetings, Educause Learning Initiatives.
http://connect.educause.edu/Library/ELI/7ThingsYou
ShouldKnowAbout/39388
[11] Hevner, A., March, S., Park, J. and Ram, S. (2004).
Design science in information systems research. MIS
Quarterly 28(1), 75-105.
[12] Islam, N.A.K.M., Koivulahti-Ojala, M., and Käkölä,
T. (2010). A lightweight, industrially-validated instrument
to measure user satisfaction and service quality experienced
by the users of a UML modeling tool. In Proceedings of the
AMCIS 2010.
[13] Järvinen P. (2004). On research methods. Opinpajan
kirja, Tampere.
[14] Kang, D. and Santhanam, R. (2003). A longitudinal
field study of training practices in a collaborative
application environment. Journal of Management
Information Systems 20(3), 257-281.

[15] Kitchenham, B., Pearl Brereton, O., Budgen, D.,
Turner, M., Bailey, J. and Linkman, S. (2009). Systematic
literature reviews in software engineering-A systematic
literature review. Information and Software Technology,
51(1), 7-15.
[16] Koivulahti-Ojala, M. and Käkölä, T. (2010).
Framework for Evaluating the Version Management
Capabilities of a Class of UML Modeling Tools from the
Viewpoint of Multi-Site, Multi-Partner Product Line
Organizations. In Proceedings of the 43rd Hawaii
International Conference on Systems Sciences (HICSS-43).
IEEE. 1-10.
[17] Kobryn, C. (2002). Will UML 2.0 be agile or
awkward? Communications of the ACM, 45(1), 107-110.
[18] Kraiger, K., Ford, J. K. and Salas, E. (1993).
Application of cognitive, skill-based, and affective theories
of learning outcomes to new methods of training
evaluation. Journal of Applied Psychology, 78(2), 311-328.
[19] March, S. and Smith, G. (1995). Design and natural
science research on information technology. Decision
Support Systems 15(4), 251-266.
[20] Nelson, R., Whitener, E. and Philcox, H. (1995). The
assessment of end-user training needs. Communications of
the ACM 38(7), 27-39.
[21] Object Management Group (2009). Unified Modeling
Language: Superstructure. Formal Specification, version
2.2, 2009.
[22] Pavlov, V. L. and Yatsenko, A. (2005). Using
Pantomime in Teaching OOA & OOD with UML. In
Proceedings of the 18th Conference on Software
Engineering Education & Training, IEEE, 77 -84.
[23] Peffers, K., Tuunanen, T., Rothenberger, M. and
Chatterjee, S. (2007). A design science research
methodology for information systems research. Journal of
Management Information Systems 24(3), 45-77.
[24] Piccoli, G, Ahmad, R., and Ives, B. (2001). Web-based
virtual learning environments: A research framework and a
preliminary assessment of effectiveness in basic IT skills
training. MIS Quarterly, 25(4), 401-426.
[25] Rossi, M. and Sein, M. (2003). Design Research
Workshop: A Proactive Research Approach. Presentation
delivered at IRIS 26, August 9 – 12, 2003.
http://tiesrv.hkkk.fi/iris26/presentation/workshop_designRe
s.pdf last accessed January 16, 2004.
[26] Sabherwal, R., Jeyaraj, A. and Chowa, C. (2006).
Information system success: individual and organizational
determinants. Management Science 52(12), 1849-1864.
[27] Turner, S., Perez-Quinones, M. and Edwards, S.
(2005). minimUML: A minimalist approach to UML
diagramming for early computer science education. Journal
on Educational Resources in Computing (JERIC), 5(4), 1-
28.
[28] Virvou, M. and Tourtoglou, K. (2006). An Adaptive
Training Environment for UML. In Proceedings of the
Sixth International Conference on Advanced Learning
Technologies, IEEE, 147 -149.
[29] Virvou, M. and Tourtoglou, K. (2006). Intelligent
Help for Managing and Training UML Software
Engineering Teams. In Proceedings of the Seventh Joint
Conference on Knowledge-Based Software Engineering.
IOS Press, 11-20.

IV

A LIGHT-WEIGHT, INDUSTRIALLY-VALIDATED INSTRUMENT
TO MEASURE USER SATISFACTION AND SERVICE QUALITY
EXPERIENCED BY THE USERS OF A UML MODELING TOOL

by

A.K.M. Najmul Islam, Mervi Koivulahti-Ojala & Timo Käkölä, 2010

Proceedings of the AMCIS 2010

Reprinted with permission.

Islam et al. A lightweight instrument to measure user satisfaction and service quality

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 1

A lightweight, industrially-validated instrument to measure
user satisfaction and service quality experienced by the

users of a UML modeling tool

A.K.M. Najmul Islam
University of Turku
najmul.islam@utu.fi

Mervi Koivulahti-Ojala
University of Jyväskylä

meelheko@jyu.fi

Timo Käkölä
University of Jyväskylä

timokk@jyu.fi

ABSTRACT

The research community has delivered many comprehensive instruments to measure user satisfaction and service quality.
However, they may be tedious to deploy in industrial settings, often leading to low response rates. Industrial organizations
are thus looking for simpler and more cost effective ways to measure both user satisfaction and service quality. This paper
presents and validates a lightweight 8-item instrument to measure the user satisfaction and the quality of service experienced
by the users of a Unified Modeling Language tool. The instrument merges ease of use and service-related items. The analysis
of the results of two surveys, conducted in a global high-tech corporation, indicates that the instrument has adequate
reliability and validity. It is short, easy to use, and appropriate for both practical and research purposes. Future research is
needed to validate the instrument in the context of other organizations and other classes of information systems.

Keywords

Service Quality Measurement, User Satisfaction Measurement, UML tools.

INTRODUCTION

Modern business organizations have typically invested ample resources to improve their business processes and Information
Technology (IT) infrastructures over the years. During the current economic downturn, most business organizations have
continued to increase their IT investments (Kanaracus, 2008) but only in the areas of IT where most business value can be
obtained. Organizations thus need to assess the returns of IT investments.

The extant research in information systems (IS) evaluation considers the user satisfaction and the service quality as the
central constructs or surrogate measures of the business value of IT. It has produced comprehensive approaches and multi-
dimensional instruments (DeLone and McLean, 2003; Petter et al., 2008; Smithson and Hirschheim, 1998; Symons, 1991).
However, the instruments are complex and tedious to use in industrial settings. The surveys collect data using so many time-
consuming evaluation dimensions that the response rates may deteriorate (Jarrett, 2005; Urbach et al., 2009). For example,
the widely adopted instrument End User Computing Satisfaction (EUCS) (Doll and Torkzadeh, 1988) deploys 12 questions
to measure user satisfaction. If the management also wants to measure service quality using, for example, the IS ZOT
SERVQUAL (Kettinger and Lee, 2005), there are 54 additional questions to be answered.

The situation is worsened by the fact that the IT organizations typically offer large portfolios of applications and evaluate all
or most of them regularly. For example, the outsourcing of applications and related services is common and the service
qualities and applications of all providers must be surveyed frequently to ensure the fulfillment of service level agreements.
Because each user is likely to use a substantial portion of the entire portfolio of applications, the same users need to fill
numerous lengthy questionnaires to assess the systems and related services. For example, if each user deploys on average ten
applications and the IT organization measures each application and related services biannually using EUCS and IS ZOT
SERVQUAL, each user should answer 2*10*(12+54) =1320 questions annually. In practice, most users are unlikely to
answer all surveys, decreasing the reliability of the results. Finally, the analysis of vast amounts of multi-dimensional data is
so cumbersome especially in large organizations that IT departments may find the task insurmountable.

Islam et al. A lightweight instrument to measure user satisfaction and service quality

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 2

Organizations would thus benefit from lightweight instruments to evaluate the systems and services. They also need to plan
sampling and other mechanisms carefully to devise the overall structure for measurement. To address these concerns, this
paper draws upon the experiences obtained in a global high-tech corporation that wanted to measure user satisfaction and
service quality systematically and organization-wide. The corporation could not accomplish this objective effectively because
it experienced all the challenges discussed above. This paper presents and applies a new lightweight instrument containing 8
questions to evaluate a Unified Modeling Language (UML) tool used in the corporation and the services supporting tool
deployment. The instrument has been designed to be generally applicable for evaluating a variety of systems and services.

The paper proceeds as follows. Section “Evaluation of user satisfaction and service quality” reviews the research on the
measurement of user satisfaction and service quality. Section “UML Modeling tools for UML modeling” introduces the basic
concepts related to UML modeling and modeling tools. Section “Case organization” describes the case organization and the
UML modeling tool used. Section “Research methodology” presents the research methodology and the proposed instrument.
Section “Validation of the proposed instrument” presents the preliminary validation. Section “Conclusions and future
research” concludes the paper.

EVALUATION OF USER SATISFACTION AND SERVICE QUALITY

User Satisfaction measurement

User satisfaction has received considerable research attention since the 1980s (Bailey and Pearson, 1983; Baroudi et al.,
1986; Benson, 1983; DeLone and McLean, 1992; DeLone and McLean, 2002; Ives et al., 1983). It is an important measure of
information systems success, often regarded as the easiest and the most useful way to evaluate the IS. Bailey and Pearson
(1983, p. 531) define user satisfaction as the “sum of one’s positive and negative reactions to a set of factors.” Doll and
Torkzadeh (1988, p. 261) describe it as “the affective attitude toward a specific computer application by someone who
interacts with the application directly.” Eagly and Chaiken (1998, p. 296) regard user satisfaction as a “psychological
tendency expressed by evaluating a particular entity with some degree of favor and disfavor”. Huang et al. (2004) conclude
that user satisfaction is the most often used construct to measure the success of information systems.

Bailey and Pearson (1983) developed a 39-item instrument to measure user satisfaction of data processing personnel. Ives et
al. (1983) developed a 39-item User Information Satisfaction (UIS) instrument and a separate 4-item UIS measure using a
sample of 200 production managers. Due to some limitations, these instruments are not used as much as the 12-item EUCS
instrument (Doll and Torkzadeh, 1988), comprising content, accuracy, format, ease of use, and timeliness factors. EUCS is
very comprehensive and addresses most limitations of the previously developed instruments. After the exploratory study was
completed in 1988, confirmatory studies with different samples concluded the instrument was valid (Doll et al., 1994; Doll
and Xia, 1997). A test-retest of the reliability of the instrument found the instrument was reliable over time (Torkzadeh and
Doll, 1991). Harrison and Rainer (1996) showed that the instrument could be used generically to evaluate computer
applications. The instrument has become widely adopted and it has served as the reference model for many user satisfaction
measurement instruments. Lewis (1995) developed the 19-item Computer Usability Satisfaction Questionnaires to measure
system usefulness, information quality, and interface quality. Other authors have developed user satisfaction models for
specific areas (e.g, Bargas-Avila et al., 2009; Huang et al., 2004; Muylle et al., 2004; Ong and Lai, 2007; Palvia, 1996; Wang
and Liao, 2007).

Service quality measurement

Marketing researchers developed the 22-item SERVQUAL instrument to assess service quality through the following five
dimensions (Parasuraman et al., 1988):

(1) Tangibles: Physical facilities, equipment, and appearance of personnel;

(2) Reliability: The ability to perform the promised service dependably and accurately;

(3) Responsiveness: The willingness to help customers and provide prompt service;

(4) Assurance: The knowledge and courtesy of employees and their ability to inspire trust and confidence; and

(5) Empathy: Providing caring and individualized attention to customers.

SERVQUAL has been adopted in a variety of domains such as healthcare, education, banking, financial services and IS (e.g.,
Jiang et al., 2002; Pitt et al., 1995). Nyeck et al. (2002, p. 102) stated the SERVQUAL instrument “remains the most
complete attempt to conceptualize and measure service quality.” In the IS field the application of the instrument has garnered
a great deal of debate recently (for a review of most debated issues, see (Landrum et al., 2009)). The case organization did
not find SERVQUAL attractive for two reasons. First, SERVQUAL includes only one training and documentation related

Islam et al. A lightweight instrument to measure user satisfaction and service quality

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 3

question: “Useful support materials (such as documentation, training, videos, etc.)”. Yet, the role of documentation is
emphasized in the context of open source tools because nobody may be supporting these tools. Second, when the support is
centralized, the users may not be able to meet the support personnel face-to-face in order to evaluate physical facilities,
equipment, or personnel-related tangibles. Therefore, SERVQUAL may not be attractive when open source tools are used or
the support organization is centralized.

UML MODELING TOOLS FOR UML MODELING

Unified Modeling Language™ has become an international standard for systems modeling (ISO, 2005). UML modeling tools
offer graphical editors to enable architects, developers, and engineers to model requirements, architectures, data structures,
dynamic behaviors, and other characteristics of systems. UML models can be used to support communication between
people, document a system, generate test cases, predict the realized system’s quality, and automate code generation. UML
tools may generate software from the UML models and UML models from the software (reverse engineering) and may have
a built-in knowledge of UML rules to validate the correctness of the models automatically. Table 1 presents high-level
features for the UML modeling tools (adapted from Koivulahti-Ojala and Käkölä, 2010).

The use of UML and UML modeling tools do not automatically lead to productivity improvements. Their potential may not
be reached, if engineers need to struggle with the problems related to the poor availability or usability of modeling tools or
the lack of user support and training. For example, Arisholm et al. (2006, p. 365) studied the impact of UML documentation
on software maintenance and concluded that “for complex tasks and past a certain learning curve, the availability of UML
documentation may result in significant improvements in the functional correctness of changes as well as the quality of their
design. However, there does not seem to be any saving of time. For simpler tasks, the time needed to update the UML
documentation may be substantial compared with the potential benefits, thus motivating the need for UML tools with better
support for software maintenance.” Dzidek et al. (2008) found that using the UML could be beneficial when a developer
must extend a nontrivial system with which he/she is unfamiliar and that better UML tools and more experience would likely
yield even a larger return on investment. These results indicate that when the processes and capabilities are improved
through, for example, better UML tools, training, and user support, returns on UML-related investments can be substantial.
Measuring user satisfaction and service quality is crucial to focus the required improvement actions appropriately.

CASE ORGANIZATION

This research project was conducted in a global high-technology corporation, developing products in multiple sites with
multiple partners. To support product development, a new UML modeling tool was being rolled out globally when the
research project started. Most of its users were from the R&D organization. It was supported by a virtual team consisting of
personnel from the global IT department and the department responsible for process and information systems development
and support for R&D as well as subcontractors working for these departments. The middle management responsible for the
tool rollout and support decided to conduct two surveys to evaluate how satisfied the users were with the tool and the quality
of service. The tool was intended to gradually replace some existing tools. Numerous users thus adopted the tool between the
two conducted surveys. The section “Research methodology” describes the process of study design. The name of the UML
tool selected for rollout is not disclosed here. The main functionalities of the tool are presented in Table 1.

RESEARCH METHOLODOGY

Study design

Two surveys were conducted. Table 2 provides their sample details. The email invitations were sent to all the people who had
registered as users by the date of each survey. One reminder was sent to the same users.

Instrumentation

The instrumentation of the survey was developed in co-operation with the virtual team responsible for tool support and
deployment. The team had three main requirements for the instrumentation: 1) it should measure both the service quality and
the user satisfaction with respect to the tool; 2) there should be no more than 10 questions, 3) the survey should be applicable
to develop the service and the tool further together with the tool vendor. The first requirement limited the possibility to use a
standard survey as to our knowledge there is no standard survey to cover both the service quality and the tool related
satisfaction. The authors of this paper created a new instrument, which was accepted by the case organization. The list of
questions in the instrument is given in Appendix. Identifiers (Q1-Q11) express the questions in short form. Q8, “Overall, how
satisfied are you with <UML Modeling Tool> tool and service” was included for use as the criterion for data analysis because
it covers both the service quality and the user satisfaction with respect to the tool. A five scale measure was used from ‘5 =

Islam et al. A lightweight instrument to measure user satisfaction and service quality

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 4

Very Satisfied’ to ‘1 = Very Dissatisfied’ for questions, Q1-Q8. In our data collection, we randomized the questions in the
instrument, mostly eliminating the common method bias (Straub et al., 2004).

Feature Purpose of the feature is to help Functionalities that the UML modeling tool in the case
organization supports:

Modeling &
Diagramming

Create, remove, and edit model elements
and diagrams; view the models from
different perspectives.

Yes. Create, remove and edit of the following UML
diagrams: Use Case, Class, Object, Composite Structure,
State Machine, Protocol State Machine, Activity, Sequence,
Communication, Component, and Deployment Diagrams

Hierarchy
Management

Create, update, and delete hierarchies in
which model elements are assigned.

Yes. Possible to create a package hierarchy.

Collaboration
and Version
management

Multiple concurrent users to manage
different versions of assets and to resolve
conflicts; integrate the UML tool to
version control and/or change
management systems as necessary.

Yes. Integration to version control which enables multiple
users to manage models concurrently.

Publishing Compose and publish views of the se-
lected models or model elements; pro-
vide data in different formats (e.g, JPG);
create reports and documents based on
the selected model (elements).

Yes. Possibilities such as report generation, publishing in
the HTML format, and copying diagrams in different
formats. Open Application Programming Interface for
accessing models. XML Metadata Interchange and Eclipse
Modeling Framework support model interchange.

Tracebility Create, remove, update, and trace
relationships between models or model
elements.

Yes. Possibility to create relationships between model
elements and trace those relationships.

Simulation and
Validation

Simulate dynamic behaviors of models
or interface or integrate the tool to
simulation tools; validate UML model
correctness and completeness.

Limited. No simulation possibilities for dynamic
behaviors. Validation of UML models is possible (Object
Constraint Language or Java).

Model and Code
Synchronization

Generate code based on models; create
models based on code (reverse engi-
neering); integrate UML tools to source
code systems, Eclipse, or Model-driven
architecture tools such as AndroMDA.

Yes. Code generation/reverse engineering: (e.g., Java 5,
EJB 2.0). Integration with Integrated Development
Environments.

User
Management

Manage access and connectivity to the
organization’s directory services (e.g.,
Active Directory).

No. However, integrated version control system may be
connected to directory services.

Table 1. Main features of UML modeling tools (adapted from Koivulahti-Ojala and Käkölä, 2010)

Survey Number of invitations Number of responses (N) Percentage of responses
Survey 1 267 42 15.73%
Survey 2 444 62 13.96%

Table 2. Sample data

Actions taken in the case organization

The virtual team supporting the UML Modeling tool analyzed the results of the surveys. As the validation results were not
available during that time, the team made decisions based on the means of all questions and the total mean of all questions.
Based on the 1st survey, communication and training practices had to be improved because the means of questions related to
instructions, user guides, and training were lower than the mean of all questions.

Based on the 1st survey, information sharing with the users was improved in several ways and training sessions were
organized. Information letters were emailed to the users, new guides were created, and the Intranet pages providing
information about the tool and related support were improved. Tens of users were trained in on-line and face-to-face training
sessions before the second survey was organized. Conference calls and virtual meeting tools were used, respectively, to share
voice and presentations in on-line training sessions.

Islam et al. A lightweight instrument to measure user satisfaction and service quality

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 5

The answers to the feedback question Q11 were analyzed together with the tool vendor. In 1st and 2nd surveys, respectively,
20 and 18 users gave feedback. A requirements management process and tool were used to manage the UML tool related
requirements sourced from the answers.

The results of the second survey revealed that the improvements related to information sharing and training had raised user
satisfaction and that the availability and speed of the tool would be the next areas to improve. Fortunately, the software
upgrades had already been planned to increase the reliability and usability of the version management features and to make
the features faster to use. No separate action plan was thus necessary.

VALIDATION OF THE PROPOSED INSTRUMENT

This section presents the univariate and bivariate analyses for the two surveys. The PASW 18.0 software was used for data
analysis.

Central tendency computation

All the questions in the study are either nominal or ordinal. The central tendency of nominal/ordinal variables can be best
explained by the Median and Mode (Bryman and Cramer, 1999). Besides them, the mean, standard deviation, and range of all
the questions are presented in Table 3.

Question Mean Median Mode Std Range

Q1 3.791, 3.522 41, 42 41, 42 .7821, .8802 31, 42

Q2 4.001, 4.032 41, 42 51, 42 1.0361, .8492 31, 32

Q3 3.791, 3.572 41, 42 41, 42 .8711, .8192 31, 42

Q4 3.511, 3.632 41, 42 41, 42 .7461, .8212 31, 32

Q5 3.931, 4.022 41, 42 41, 42 .8771, .8332 41, 42

Q6 3.301, 3.922 31, 42 41, 42 .9661, 1.012 41, 42

Q7 4.121, 4.002 41, 42 41, 42 .8031, .9232 31, 42

Q8 3.881, 4.002 41, 42 41, 42 .7391, .8102 31, 32

 1: Survey 1, 2: Survey 2

Table 3. Central tendency computation

Linear Regression Method

In order to ensure statistical conclusion validity (Straub et al., 2004), we perform regression analysis. The regression analysis
assumes Q8 (criterion) is the dependent variable and the others (Q1-Q7) are independent variables. Table 4 provides the
results of the regression analysis.

Question R-Squared Constant B

Q1 .1421, .3052 2.5331, 2.2082 .3561, .5082

Q2 .3661, .1282 2.1541, 2.6232 .4321, .3412

Q3 .1421, .2442 2.6711, 2.2532 .3201, .4892

Q4 .2681, .2422 2.0531, 2.4722 .5201, .4402

Q5 .1001, .3052 2.9041, 2.1132 .2481, .4862

Q6 .0121, .2602 4.0881, 2.6232 -0.801, .3692

Q7 .4661, .5242 1.2921, 1.4622 .6281, .6352

 1: Survey 1, 2: Survey 2

Table 4. Regression analysis results

Islam et al. A lightweight instrument to measure user satisfaction and service quality

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 6

The following rule proposed by Bryman and Cramer (1999) is followed in identifying how well each question fits the data:

 <0.1: poor fit
 0.11– 0.3: modest fit
 0.31– 0.5: moderate fit
 > 0.5: strong fit

Table 4 shows there is at least the modest fit for all questions except Q6 in both surveys. The R squared values for Q6 in the
1st and 2nd surveys are, respectively, 0.012 (poor fit) and 0.260 (modest fit). It means that the overall satisfaction is not
explained by Q6 in the 1st survey because people were not satisfied with the available training or training had low importance
in measuring overall satisfaction. However, the 2nd survey suggests that training impacted the overall satisfaction. People
were not satisfied with the training in the first survey and their overall satisfaction level was mainly caused by other areas
(Q1-Q5 and Q7). The low satisfaction level of training revealed by the 1st survey is also visible from the mean of Q6 which is
3.30 while in the 2nd survey the mean is 3.92 (Table 3). The difference may be explained by the fact that both on-line and
face-to-face training sessions were arranged between the surveys. The strongest fit is observed for Q7.

Item to Criterion correlation

In order to ensure the criteria-related validity (Boudreau et al., 2001), the correlation of each item with the overall criterion is
computed. Table 5 shows the correlation coefficients. Some prior studies (e.g., Doll and Torkzadeh, 1988) suggest having a
cut-off point as 0.40 for this criteria-related validity check. Table 5 shows most of the correlation results are above the cut-off
point. However, the coefficient for Q5 in the first survey is slightly below the cut-off point. On the other hand, the correlation
coefficient of Q6 in the first survey is very low (also confirmed by the regression method). The explanation to this was given
in the previous subsection.

Question Correlation Coefficient

Q1 .4261, .4882

Q2 .6211, .4062

Q3 .4221, .4742

Q4 .5321, .4912

Q5 .3901, .5442

Q6 .0421, 4472

Q7 .7191, 6692

1: Survey 1, 2: Survey 2

Table 5. Item to Criterion correlation

Item to total correlation

To ensure higher model reliability, the correlation of each item’s score with the total of all items’ scores has been computed.
A threshold of 0.45 is used for this validity check. Table 6 shows that the correlation values are well above the threshold
except the result of Q6 in the 1st survey (see the explanation in ‘Linear Regression Method’ subsection).

Factor analysis

The factor analysis was performed only for the data from the second survey that had enough responses. The principle
component analysis was used as the extraction technique and varimax was used as the method of rotation. Two formative
factors (Petter et al., 2007) were revealed with eigenvalues greater than 1.00, explaining about 61% of the total variance:
System Use and System & Support Richness. The item loadings are given in Table 7. Some prior studies (Ong and Lai, 2007;
Bargas-Avila et al., 2009) suggested using 0.5 as the threshold value for the item loadings. All item loadings are above the
threshold, except the Q2 loadings. Q2 represented both factors to some extent, demanding some more validation of the
instrument using more data. The Cronbach’s alphas for the factors were 0.65 and 0.792 respectively.

Islam et al. A lightweight instrument to measure user satisfaction and service quality

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 7

Question Correlation Coefficient

Q1 .4581, .5692

Q2 .5491, .6342

Q3 .6831, .6182

Q4 .6001, .7082

Q5 .5441, .7372

Q6 .3721, .7562

Q7 .7341, .6162

1: Survey 1, 2: Survey 2

Table 6. Item to total correlation

Question/
Item

Factor 1
(System Use)

Factor 2 (System &
Support Richness)

Q1 .699
Q2 .421 .437
Q3 .888
Q4 .559
Q5 .848
Q6 .808
Q7 .749

Table 7. Rotated Factor Matrix

Test-retest reliability

Based on the central tendency computation and the regression and correlation-based analyses, both surveys provide similar
results and relationships, thus confirming the test-retest reliability check. However, there were some exceptions due to a
limited number of responses in the first survey and lack of training and communications.

CONCLUSIONS AND FUTURE RESEARCH

The extant literature provides few, if any, methodologies and instruments that could be used effectively to measure user
satisfaction with respect to applications and services in industrial contexts where the effective execution of business
processes is dependent on the use of tens of application systems. New instruments are thus needed that enable IT
organizations on a regular basis (i.e., even several times a year) to measure user satisfaction with respect to all the
applications and related services that belong to the portfolios of the IT organizations.

This paper presents a lightweight 8-item instrument, merging ease of use and service-related items, to measure user
satisfaction with respect to both an application and related services. Based on the use of the instrument in one organization to
assess user satisfaction with respect to one application and the related services, the instrument appears to have adequate
reliability and validity. It is easy to use and appropriate for both practical and research purposes. The case organization was
able to plan and implement improvements by analyzing the means of all questions. We thus encourage practitioners to adapt
and test the instrument in their own application and service contexts and academics to further validate and refine the
instrument in different organizations and for a variety of classes of systems.

REFERENCES

1. Arisholm, E., Briand, L.C., Hove, S.E., Labiche, Y. (2006) The impact of UML documentation on software
maintenance: An experimental evaluation, IEEE Transactions on Software Engineering, 32, 6, 365-381.

2. Bailey, J. E. and Pearson S. W. (1983) Development of a tool for measuring and analyzing computer user satisfaction,
Management Science, 29, 5, 530-545.

Islam et al. A lightweight instrument to measure user satisfaction and service quality

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 8

3. Bargas-Avila, J. A., Lötscher, J., Orsini, S. and Opwis, K. (2009) Internet satisfaction questionnaire: Development and
validation of a questionnaire to measure user satisfaction with the Internet, Computers in Human Behavior, 25, 1241-
1250.

4. Baroudi, J. J., Olson, M. H., Ives, B. (1986) An empirical study of the impact of user involvement on system usage and
information satisfaction, Communications of the ACM 29, 3, 232-238.

5. Benson, D. H. (1983) A Field Study of End-User Computing: Findings and Issues, MIS Quarterly 7, 4, 35-45.

6. Boudreau M.-C., Gefen, D., and Straub D. W. (2001) Validation in information systems research: A state-of-the-art
assessment, MIS Quarterly, 25, 1, 1-16.

7. Bryman, A. and Cramer, D. (1999) Quantitative data analysis with SPSS release 8.0 for Windows: For Social Scientists,
Routledge, New York.

8. Jarrett, C. (2005) Survey Response Rates? 2% is not good enough. (http://www.usabilitynews.com/news/article2528.asp)

9. Delone, W. and Mclean, E. (1992) Information systems success: the quest for the dependent variable, Information
Systems Research 3, 1, 60-95.

10. Delone, W. and McLean, E. (2002) Information systems success revisited, in Proceedings of the 35th Hawaii
International Conference on Systems Sciences, IEEE Computer Society, Hawaii, USA.

11. Delone, W. and McLean, E. (2003) The DeLone and McLean model of information systems success: A ten year update,
Journal of Management Information Systems 19, 4, 9-30.

12. Doll, W. J. and Torkzadeh, G. (1988) The measurement of end user computing satisfaction, MIS Quarterly 12, 2, 259-
274.

13. Doll, W. J. and Xia, W. (1997) A confirmatory factor analysis of end user computing satisfaction instrument: A
replication, Journal of End User Computing 9, 2, 24-31.

14. Doll, W. J., Xia, W. and Torkzadeh, G. (1994) A confirmatory factor analysis of end user computing satisfaction
instrument, MIS Quarterly 18, 4, 357-369.

15. Dzidek, W.J., Arisholm, E. and Briand, L.C. (2008) A realistic empirical evaluation of the costs and benefits of UML in
software maintenance, IEEE Transactions on Software Engineering, 34, 13, 407 – 432.

16. Eagly, E. A. and Chaiken, S. (1998) Attitude structure and function, Handbook of social psychology (4th ed., 269-322),
Mc Graw-Hill, New York.

17. Harrison, A. W. and Rainer, K. R. (1996) A general measure of user computing satisfaction, Computers in Human
Behavior, 12, 1, 29–92.

18. Huang, J.-H., Yang, C., Jin, B.-H. and Chiu, H (2004) Measuring satisfaction with business-to-employee systems,
Computers in Human Behavior, 20, 17-35.

19. ISO/IEC 19501 (2005) Information technology - Open Distributed Processing - Unified Modeling Language (UML)
Version 1.4.2. International Organization for Standardization.

20. Ives, B., Olson, M. H. and Baraoudi, J. J. (1983) The measurement of user information satisfaction, Communications of
the ACM, 26, 10, 785-793.

21. Jiang, J.J., Klein, G. and Carr, C. L. (2002) Measuring information systems service quality: SERVQUAL from the other
side, MIS Quarterly, 26, 2, 145-166.

22. Kanaracus C. (2008) Gartner: Global IT sending growth stable. InfoWorld.

23. Kettinger, W. J. and Lee, C. C. (2005) Zones of tolerance: Alternative scales for measuring information systems service
quality, MIS Quarterly, 29, 4, 607-623.

24. Koivulahti-Ojala, M. and Käkölä, T. (2010) Framework for evaluating the version management capabilities of a class of
UML modeling tools from the viewpoint of multi-site, multi-partner product line organizations, in Proceedings of the
43rd Hawaii International Conference on Systems Sciences, IEEE Computer Society, Hawaii, USA.

25. Landrum, H., Brybutok, V., Zhang, X., Peak, D. (2009). Measuring IS system service quality with SERVQUAL: Users’
perceptions of relative importance of the five SERVPERF dimensions, Informing Science: the International Journal of
an Emerging Transdiscipline, 12.

26. Lewis, J. R. (1995) IBM computer usability satisfaction questionnaires: Psychometric evaluation and instructions for
use, Human-Computer Interaction, 7, 1, 57–78.

Islam et al. A lightweight instrument to measure user satisfaction and service quality

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 9

27. Muylle, S., Moenaert, R. and Despontin, M. (2004) The conceptualization and empirical validation of web site user
satisfaction, Information & Management, 41, 5, 543–560.

28. Nyeck, S., Morales, M., Ladhari, R., and Pons, F. (2002) 10 years of service quality measurement: reviewing the use of
the SERVQUAL instrument, Cuadernos de Difusion, 7, 13, 101-107.

29. Ong, C.S., Lai, J.Y. (2004) Developing an instrument for measuring user satisfaction with knowledge management
systems, in Proceedings of the 37th Hawaii International Conference on Systems Sciences, IEEE Computer Society,
Hawaii, USA, 1-10.

30. Palvia, P. C. (1996) A model and instrument for measuring small business user satisfaction with information technology,
Information & Management, 31, 151–163.

31. Parasuraman, A., Zeithaml, V.A., and Berry, L.L. (1988) SERVQUAL: A multiple-item scale for measuring consumer
perceptions of service quality, Journal of Retailing, 64, 1, 12-37.

32. Pitt, L.F., Watson, R. T. and Kavan, C.B. (1995), Service quality: A measure of information systems effectiveness, MIS
Quarterly, 19, 2, 173-187.

33. Petter, S., Straub, D. W., and Rai, A. (2007) Specifying formative constructs in information systems research, MIS
Quarterly, 31, 4, 623-656.

34. Petter, S., Delone, W. and Mclean, E. (2008) Measuring information systems success: Models, dimensions, measures,
and relationships, European Journal of Information Systems, 17, 236-263.

35. Smithson, S. and Hirschheim, R. (1998) Analyzing information systems evaluation: another look at the old problem,
European Journal of Information Systems, 7, 158-174.

36. Straub, D. W., Boudreau, M.-C., and Gefen, D. (2004) Validation guidelines for IS positivist research, Communications
of the Association for Information Systems, 13, 380-427.

37. Symons, V. J. (1991) A review of information systems evaluation: content, context and process, European Journal of
Information Systems, 1, 3, 205-212.

38. Torkzadeh, G. and Doll, W. J. (1991) Test-retest reliability of the end-user satisfaction instrument, Decision Sciences,
22, 1, 26-37.

39. Urbach, N., Smolnik, S. and Riemp, G. (2009) Development and validation of a model for assessing the success of
employee portals, in Proceedings of the 17th European Conference on Information Systems, Verona, Italy.

40. Wang, Y. and Liao, Y. (2007) The conceptualization and measurement of m-commerce user satisfaction, Computers in
Human Behavior, 23, 1, 381–398.

APPENDIX

Q1. How satisfied are you with the speed of <UML Modeling Tool>?

Q2. How satisfied are you with the availability of <UML Modeling Tool>?

Q3. How satisfied are you with the ease of use of <UML Modeling Tool>?

Q4. How satisfied are you with the instructions and user guides available for <UML Modeling Tool>?

Q5. When needed, I get support fast and in a professional way

Q6. How satisfied are you with training available for <UML Modeling Tool>?

Q7. How well does <UML Modeling Tool> tool meet your modeling needs?

Q8. Overall, how satisfied are you with <UML Modeling Tool> tool and service?

Q9. How often do you use <UML Modeling Tool> (Weekly, Daily, Monthly, Less than Monthly)?

Q10. Your area is (EMEA, APAC, Americas)

Q11. Please give feedback (E.g.Improvements, development ideas)

V

TRAINING PEOPLE TO MASTER COMPLEX TECHNOLOGIES
THROUGH E-LEARNING: CASE OF UML TECHNOLOGY TRAIN-

ING IN A GLOBAL ORGANIZATION

by

Mervi Koivulahti-Ojala & Timo Käkölä, 2014

Proceedings of the AMCIS 2014

Reprinted with permission.

	On UML Modeling Tool Evaluation, Use and Training
	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF INCLUDED ARTICLES
	FIGURES
	TABLES
	CONTENTS
	1 INTRODUCTION
	1.1 Research questions
	1.2 Authors’ contribution to the included articles
	1.3 Structure of the thesis

	2 SUMMARY OF ARTICLES
	2.1 An Information Systems Design Product Theory for the Class of Integrated Requirements and Release Management Systems (Article I)
	2.2 A Framework for Evaluating the Version Management Capabilities of a Class of UML Modeling Tools from the Viewpoint of Multi-site, Multi-partner Product Line Organizations (Article II)
	2.3 Design, implementation, and evaluation of a Virtual Meeting Tool-based innovation for UML technology training in global organizations (Article III)
	2.4 A lightweight, industrially-validated instrument to measure user satisfaction and service quality experienced by the users of a UML modeling tool (Article IV)
	2.5 Training people to master complex technologies through e-Learning: A case study of UML technology training in a global organization (Article V)
	2.6 The case company and my role in the case company

	3 POST-EVALUATION OF STUDIES
	3.1 An Information Systems Design Product Theory for the Class of Integrated Requirements and Release Management Systems (Article I)
	3.2 A Framework for Evaluating the Version Management Capabilities of a Class of UML Modeling Tools from the Viewpoint of Multi-site, Multi-partner Product Line Organizations (Article II)
	3.3 Design, implementation, and evaluation of a Virtual Meeting Tool-based innovation for UML technology training in global organizations (Article III)
	3.4 A lightweight, industrially-validated instrument to measure user satisfaction and service quality experienced by the users of a UML modeling tool (Article IV)
	3.5 Training people to master complex technologies through e-Learning: Case of UML technology training in a global organization (Article V)

	4 THE STUDY: UML MODELING TOOL IMPLEMENTATION IN A GLOBALLY DISTRIBUTED PRODUCT ORGANIZATION
	4.1 UML modeling tool implementation in the case company
	4.2 Overview to the study
	4.3 Software package implementation stage model: Comparison and a new model

	5 DISCUSSION
	5.1 Implications of results to science
	5.2 Implications of results to practice
	5.3 Limitations and future research

	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES
	ORIGINAL PAPERS
	AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY FOR THE CLASS OF INTEGRATED REQUIREMENTS AND RELEASE MANAGEMENT SYSTEMS
	FRAMEWORK FOR EVALUATING THE VERSION MANAGEMENT CAPABILITIES OF A CLASS OF UML MODELING TOOLS FROM THE VIEWPOINT OF MULTI-SITE, MULTI-PARTNER PRODUCT LINE ORGANIZATIONS
	DESIGN, IMPLEMENTATION, AND EVALUATION OF A VIRTUAL MEETING TOOL-BASED INNOVATION FOR UML TECHNOLOGY TRAINING IN GLOBAL ORGANIZATIONS
	A LIGHT-WEIGHT, INDUSTRIALLY-VALIDATED INSTRUMENT TO MEASURE USER SATISFACTION AND SERVICE QUALITY EXPERIENCED BY THE USERS OF A UML MODELING TOOL
	TRAINING PEOPLE TO MASTER COMPLEX TECHNOLOGIES THROUGH E-LEARNING: CASE OF UML TECHNOLOGY TRAINING IN A GLOBAL ORGANIZATION

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

