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Abstract:We show that products of snow�aked Euclidean lines are not minimal for looking down. This ques-
tion was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes.
The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not
minimal for looking down. By a method of shortcuts, we de�ne a new distance d such that the product of
snow�aked Euclidean lines looks down on (RN , d), but not vice versa.
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1 Introduction
The concept of BPI space (Big Pieces of Itself) was introduced by David and Semmes in [4] in order to provide
a framework inwhich toworkwith self-similarity inmetric spaces setting. A BPI space ismore or less ametric
space in which any two balls contain big pieces that look almost the same up to scaling and bounded distor-
tions. They also introduced a notion of BPI equivalence in order to understand and classify BPI geometries.
Two BPI spaces are BPI equivalent if they possess pieces of positive measure that are biLipschitz equivalent.
With the aim of classifying BPI spaces that are not BPI equivalent, David and Semmes de�ned a notion of
looking down between BPI spaces of the same dimension. A natural question arises whenworking with look-
ing down BPI spaces: what are themost primitive BPI spaces? Such BPI spaces are calledminimal for looking
down (see Section 2 for the de�nitions).

By using ideas of [7], where it is proved that the Heisenberg group is not minimal for looking down, we
prove the following theorem, which gives an answer to Problem 11.17 in [4].

Theorem 1.1. Given s1, . . . sN ∈ (0, 1], the space
(
RN ,

N∑
k=1
|xk − yk|sk

)
is minimal for looking down if and only

if sk = 1 for all k.

The distance de�ned abovewill be denoted by ds, where s stands for (s1, . . . , sN) ∈ (0, 1]N . It is the `1 product
distance of the snow�aked distances | · |sk de�ned on R: if x = (x1, . . . , xN) and y = (y1, . . . , yN) are in RN ,
then

ds(x, y) =
N∑
k=1
|xk − yk|sk .

*Corresponding Author: Tapio Rajala: University of Jyvaskyla, Department of Mathematics and Statistics, P.O. Box 35 (MaD),
FI-40014 University of Jyvaskyla, Finland, E-mail: tapio.m.rajala@jyu.�
Matthieu Joseph: Département de Mathématiques, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France, E-mail:
matthieu.joseph@ens-lyon.fr

Brought to you by | Jyväskylän Yliopisto University
Authenticated

Download Date | 11/20/17 9:06 AM

https://doi.org/10.1515/agms-2017-0005


Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down | 79

Kirchheim proved in [5] that Euclidean spaces are minimal for looking down, that is, if s = (1, . . . , 1),
then (RN , ds) is minimal for looking down. To prove Theorem 1.1, it is thus su�cient to show that if sk < 1 for
some k, then the space (RN , ds) is not minimal for looking down.

From now on we �x an integer N ≥ 1 and an N-tuple s = (s1, . . . , sN) ∈ (0, 1]N such that sk < 1 for
some k. We denote by s the minimum snow�aking factor, i.e. s = min {sk , 1 ≤ k ≤ N}, and by L the minimally
snow�aked layer, that is the subset of {1, . . . , N} where the snow�aking factor is minimum:

L = {k ∈ {1, . . . , N} , sk = s} .

The strategy to prove Theorem 1.1 is the following. First we look at a one dimensional problem. We con-
struct a quotient semi-distance dR onR associated with an equivalence relationR using the shortening tech-
nique developed in [7]. The construction of dR is made in a self-similar way so that the subspace [0, 1] of R,
endowed with this semi-distance dR is a BPI space. To be more precise, the quotient space ([0, 1]/dR, dR) is
a BPI space. The semi-distance dR satis�es dR ≤ | · |s, where | · | is the Euclidean distance on R, and s the
minimum snow�aking factor. Moreover any Lipschitz function from ([0, 1], dR) to (R, | · |s) is constant.

Then we look at the N-dimensional problem. We slightly modify the distance ds in the minimally
snow�aked layer L by replacing the terms | · |s with the semi-distance dR. This gives a new semi-distance ds,R
on RN . As a product of bounded BPI spaces is a BPI space, the quotient space ([0, 1]N /ds,R, ds,R) is a BPI
space. Suppose then that ([0, 1]N , ds,R) looks down on (RN , ds). There exists a Lipschitz map g : (A, ds,R)→
(RN , ds) such that Hα(g(A)) > 0, where α is the Ahlfors dimension of (RN , ds) and A a closed subset of
[0, 1]N . By a blow-up argument, we prove that there exists a Lipschitz map f : ([0, 1]N , ds,R) → (RN , ds)
whose image has positive measure, which is in contradiction with the property on Lipschitz functions from
([0, 1], dR) to (R, | · |s).

Section 2 deals with de�nitions related to BPI spaces, quotient semi-distance, etc. In Section 3, we prove
that the product of two BPI spaces, both bounded or both unbounded, is a BPI space. In Section 4, we con-
struct the semi-distance dR on R and we prove that the metric space ([0, 1], dR) is a BPI space. In Section 5,
we prove that every Lipschitz function from ([0, 1], dR) to (R, | · |s) is constant. Finally, in Sections 6 and 7,
we conclude by a blow-up process that the space (RN , ds) is not minimal for looking down.

2 Preliminaries
Inwhat follows,N = {1, 2, 3, . . . }. By ameasurem on ametric space (X, d)we alwaysmean an outermeasure
such that Borel sets arem-measurable. Recall that an outer measurem on a set X is a mapm : P(X)→ [0,∞]
de�ned on all subsets of X, such that m(∅) = 0, m(A) ≤ m(B) for all A, B subsets of X with A ⊂ B, and for all
countable sequences (An)n∈N of subsets of X,

m

( ∞⋃
n=1

An

)
≤
∞∑
n=1

m(An).

Any metric space (X, d) can be endowed with a one-parameter family of natural measures: for all α > 0,
we de�ne the α-dimensional Hausdor� measureHα

d (or justHα when the distance is implicit) as follows: for
all A ⊂ X,

Hα
d(A) = lim

δ>0
inf
{ ∞∑
n=1

(
diamd(An)

)α , A ⊂ ∞⋃
n=1

An , diamd(An) ≤ δ
}
.

De�nition 2.1 (Ahlfors regularity). Let m be a measure on a complete metric space (X, d), and α > 0. We say
that the metric measure space (X, d,m) is Ahlfors regular of dimension α (or Ahlfors α-regular) if there exists a
constant K > 0 such that for all x ∈ X and r ∈ (0, diam(X)],

K−1rα ≤ m
(
B(x, r)

)
≤ Krα .
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In De�nition 2.1 and later on we follow the convention of [4] where each ball B(x, r) is implicitly assumed to
have �nite radius even if the range of radii would permit r = ∞. The following well-known lemma (see [4,
Lemma 1.2]) allows us to talk about Ahlfors regularity on a metric space (X, d).

Lemma 2.2. If (X, d,m) is Ahlfors regular of dimension α, then so is (X, d,Hα), and there exists a constant
K > 0 such that for all Borel sets B ⊂ X, K−1m(B) ≤ Hα(B) ≤ Km(B).

It iswell-known that closed andbounded sets of anAhlfors regular space are compact, because closed subsets
are totally bounded, and Ahlfors regular spaces are assumed to be complete.

Recall that a C-biLipschitz map f : (X, d) → (Y , ρ) between two metric spaces is a map f : X → Y such
that for all x, y ∈ X,

C−1d(x, y) ≤ ρ
(
f (x), f (y)

)
≤ Cd(x, y).

De�nition 2.3 (BPI space). An Ahlfors α-regular metric space (X, d) is a BPI space of dimension α if there exist
C > 0, θ > 0 such that for all x, y ∈ X and all r, t ∈ (0, diamdX], there exist a closed subset A ⊂ B(x, r) with
Hα(A) ≥ θrα and a C-biLipschitz embedding f : (A, r−1d)→ (B(y, t), t−1d).

We next de�ne an equivalence relation for BPI spaces.

De�nition 2.4 (BPI equivalence). TwoBPI spaces (X, d) and (Y , ρ) of the same dimension α are BPI equivalent
if there exist C > 0, θ > 0 such that for all x ∈ X, y ∈ Y and all r ∈ (0, diamd(X)], t ∈ (0, diamρ(Y)], there exist
a closed subset A ⊂ Bd(x, r) withHα

d(A) ≥ θr
α and a C-biLipschitz embedding f : (A, r−1d)→

(
Bρ(y, t), t−1ρ

)
.

This is an equivalence relation (see [4, Chapter 7]). The following de�nition allows us to compare BPI spaces
of the same dimension that are not BPI equivalent.

De�nition 2.5 (Looking down). Let (X, d) and (Y , ρ) be two BPI spaces of the same dimension α. We say that
X looks down on Y if there exist a closed subset A ⊂ X and a Lipschitz map g : A → Y such thatHα

ρ
(
g(A)

)
> 0.

This is a partial order on the set of equivalence classes of BPI spaces with the equivalence relation "looking
down equivalence" (two BPI spaces are looking down equivalent if each looks down on the other, see [4, Chap-
ter 11]). We propose here a slightly di�erent de�nition of minimal for looking down from the one given in [4]
by David and Semmes.

De�nition 2.6 (Minimal for looking down). A BPI space X is minimal for looking down if for any BPI space Y
such that X looks down on Y, then Y looks down on X.

The original de�nition of David and Semmes says that a BPI space X isminimal for looking down if for any BPI
space Y such that X looks down on Y, then X and Y are BPI equivalent. Notice that BPI equivalence implies
looking down equivalence, but the converse is false [6]. De�nition 2.6 is thus weaker, but more natural, since
with this de�nition, a BPI space that is minimal for looking down is a BPI space minimal for the partial order
"looking down". Notice also that since our de�nition is weaker, Theorem 1.1 answers Problem 11.17 in [4] also
with the original de�nition of minimality for looking down.

Next, following [3, De�nition 3.1.12], we de�ne the notion of quotient semi-distance, which is useful in
the shortening technique used in Section 4. Given an equivalence relation R on a metric space (X, d) we can
construct the quotient semi-distance dR de�ned on X by

dR(x, y) = inf
{ n∑
k=0

d(xk , yk), xRx0, ykRxk+1, ynRy
}
.

The quotient semi-distance dR is a semi-distance, that is dR is nonnegative, symmetric, satis�es the triangle
inequality, is zero on the diagonal of X × X but can be zero also outside the diagonal.
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A set (x0, y0, . . . , xn , yn) such that xRx0, ykRxk+1 and ynRy is called an itinerary between x and y. That
is, one is allowed to take a shortcut by teleporting itself between x and x0, between yk and xk+1 for all k and
between yn and y. An itinerary (x0, y0, . . . , xn , yn) is shorter than another itinerary (x′0, y′0, . . . , x′n , y′n) if

n∑
k=0

d(xk , yk) ≤
n∑
k=0

d(x′k , y
′
k).

The next lemma gives a way to construct Lipschitz maps and similitudes for quotient semi-distances.

Lemma 2.7. Let (X, d), (Y , ρ) be two metric spaces, RX an equivalence relation on X and RY an equivalence
relation on Y . Suppose that there exist a map f : X → Y and λ > 0 such that for all x, y ∈ X, ρ

(
f (x), f (y)

)
=

λd(x, y) and xRXy ⇒ f (x)RY f (y). Then, for all x, y ∈ X,

ρRY

(
f (x), f (y)

)
≤ λdRX (x, y).

Moreover, if f is bijective and xRXy ⇔ f (x)RY f (y), then ρRY

(
f (x), f (y)

)
= λdRX (x, y).

Proof. Let ε > 0 and (x0, y0, . . . , xn , yn) be an itinerary from x to y such that

λ−1
n∑
k=0

ρ
(
f (xk), f (yk)

)
=

n∑
k=0

d(xk , yk) ≤ dR(x, y) + ε.

Since,
(
f (x0), f (y0), . . . , f (xn), f (yn)

)
is an itinerary from f (x) to f (y), then ρRY

(
f (x), f (y)

)
≤ λ(dRX (x, y) + ε),

and the result holds for ε → 0. If f is bijective and xRXy ⇔ f (x)RY f (y), it is su�cient to apply the foregoing
to f −1.

If d is a semi-distance on a space X, we denote by (X/d, d) the quotient metric space, which is the space of
all equivalence classes for the relation x ∼ y ⇔ d(x, y) = 0. The natural distance d on X/d is de�ned by
d
(
π(x), π(y)

)
= d(x, y), where π : X → X/d is the canonical projection. One can easily check that d is well

de�ned and is a distance on X/d.

Finally, we recall some basic facts about the Hausdor� distance. If (X, d) is a metric space, we de-
note by C(X) the set of all compact subsets of X. The ε-neighborhood of a set A ⊂ X, denoted by Aε, is{
x ∈ X, d(x, A) < ε

}
. On C(X), we consider the Hausdor� distance dH de�ned for A, B ∈ C(X) by

dH(A, B) = inf
{
ε > 0, A ⊂ Bε , B ⊂ Aε

}
.

The space (C(X), dH) is a metric space, which is compact if X is compact (Blaschke Theorem, see for instance
[3, Theorem 7.3.8]).We sometimeswrite Kn H−→ K to say that (Kn)n∈N converges to K in theHausdor� distance.
Moreover, if (X, d) is Ahlfors α-regular, then the α-dimensional Hausdor� measure is upper semi-continuous
on (C(X), dH).

Lemma 2.8. Let (X, d)beanAhlfors regularmetric space of dimension α. Let (Kn)n∈N bea sequence of compact
sets that converges to K ∈ C(X) in dH . Then,

lim sup
n→∞

Hα(Kn) ≤ Hα(K).

Proof. For all n ∈ N, we set fn = 1Kn\K . The convergence of Kn to K in the Hausdor� distance implies that
(fn) converges pointwise to 0. In fact, if x ∈ K, then for all n, fn(x) = 0. If x ∈ ̸ K, then there exists r > 0
such that B(x, r) ⊂ X \ K. Fix n0 ∈ N such that for all n ≥ n0, dH(Kn , K) < r/2. Then, for all n ≥ n0, x ∈ ̸ Kn,
thus fn(x) = 0. Moreover, since (Kn) converges, it is a bounded sequence, so there exists ε > 0 such that for
all n ∈ N, Kn ⊂ Kε ⊂ Kε, which is a compact set since closed and bounded subsets of an Ahlfors regular
space are compact. Then, for all n ∈ N, fn ≤ 1Kε and the latter function is integrable with respect to Hα,
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since compact subsets of an Ahlfors α-regular space have �nite α-dimensional Hausdor� measure. By the
dominated convergence theorem,

Hα(Kn \ K) =
ˆ
X
fndHα −→

n→∞
0.

We conclude by writingHα(Kn) ≤ Hα(Kn \ K) +Hα(K).

We will need the following proposition, whose proof can be found in [1, Proposition 4.4.14].

Proposition 2.9. Let (Kn)n∈N, K be compact sets of a metric space (X, d). If Kn H−→
n→∞

K then

1. for all x ∈ K, there exists a sequence (xn)n∈N such that xn ∈ Kn, and d(xn , x) −→n→∞
0,

2. for all x such that x = lim
k→∞

xnk where (xnk )k∈N is a subsequence of a sequence (xn)n∈N such that xn ∈ Kn,
we have x ∈ K.

Moreover, the converse is true if X is compact.

3 Product of BPI spaces
We will prove the following

Theorem 3.1. Let (X, d) and (Y , ρ) be two BPI spaces of dimension α and β. If X and Y are both bounded or
both unbounded, then the product X × Y endowed with a product distance is a BPI space of dimension α + β.

By a product distance on the product of two metric spaces (X, d), (Y , ρ) we mean a distance denoted by ‖ ·
‖(d, ρ) and de�ned for all (x, y), (x′, y′) ∈ X × Y by

‖ · ‖(d, ρ)
(
(x, y), (x′, y′)

)
= ‖
(
d(x, x′), ρ(y, y′)

)
‖,

where ‖ · ‖ is a norm on R2. By the equivalence of norms in �nite-dimensional vector spaces, all the product
distances are biLipschitz equivalent, and since being a BPI space is invariant under biLipschitz maps, it is
su�cient to prove Theorem 3.1 for one speci�c product distance.

In this section, we �x two BPI spaces (X, d) and (Y , ρ). Let α denote the dimension of X and β the dimen-
sion of Y. Let d∞ be the product distance ‖ · ‖∞(d, ρ), where ‖ · ‖∞ is the sup norm on R2. We remark that if
(x, y) ∈ X × Y, and r ∈ (0,max{diamdX, diamρY}], then

Bd∞
(
(x, y), r

)
= Bd(x, r) × Bρ(y, r). (3.1)

First of all, we need to prove that (X × Y , d∞) is Ahlfors regular of dimension α + β. To do so, the Hausdor�
measure H

α+β
d∞ seems to be natural. The problem is that this measure behaves badly with product sets. We

de�ne another measure m on the product X × Y that is better for measuring product sets. We denote by BX
andBY the Borel σ-algebra of X and Y. For all A ⊂ X × Y, let

m(A) = inf
{ ∞∑
k=1

Hα
d(Ak)H

β
ρ(Bk), A ⊂

∞⋃
k=1

Ak × Bk , Ak ∈ BX , Bk ∈ BY

}
.

In general it is not true thatHα+β = m.

Proposition 3.2. The measurem is an outer measure on X × Y such that for all A ∈ BX , B ∈ BY ,

m(A × B) = Hα
d(A)H

β
ρ(B).

Moreover, Borel sets of (X × Y , d∞) arem-measurable.

Proof. See [2, Theorem 6.2].
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Proof of Theorem 3.1. In this proof, any constant that refers to properties of X or Y is denoted with either an
X or a Y in the subscript. First we prove that (X × Y , d∞) is Ahlfors regular of dimension α + β.

Suppose that X and Y are both unbounded. For all (x, y) ∈ X × Y and all r > 0,

m
(
Bd∞

(
(x, y), r

))
= m

(
Bd(x, r) × Bρ(y, r)

)
= Hα

d
(
Bd(x, r)

)
H
β
ρ
(
Bρ(y, r)

)
,

with (3.1) and Proposition 3.2, hence

(KXKY )−1rα+β ≤ m
(
Bd∞

(
(x, y), r

))
≤ KXKY rα+β . (3.2)

By Lemma 2.2, (X × Y , d∞) is Ahlfors regular of dimension α + β.
IfX and Y arebothbounded, then the estimate (3.2) holds for all (x, y) ∈ X×Y andall r ∈ (0,min{diamdX, diamρY}].

By modifying the Ahlfors regularity constants KX , KY , it also holds for all r ∈ (0,max{diamdX, diamρY}],
thus (X × Y , d∞) is Ahlfors (α + β)-regular.

Fix now two points (x, y), (x′, y′) ∈ X × Y and two radii r ∈ (0, diamd(X)], t ∈ (0, diamρ(Y)]. Let AX ⊂
Bd(x, r), AY ⊂ Bρ(y, r) be the two big pieces and fX : (AX , r−1d) → (Bd(x′, t), t−1d), fY : (AY , r−1ρ) →
(Bρ(y′, t), t−1ρ) the two CX , CY -biLipschitz maps given by the de�nition of a BPI space. By Lemma 2.2, and
Proposition 3.2 (AX, AY are Borel sets), there exists a constant θ > 0 such thatHα+β(AX ×AY ) ≥ θrα+β. Finally,
the map

f : (AX × AY , r−1d∞)→
(
Bd∞

(
(x′, y′), t

)
, t−1d∞

)
de�ned by f (x, y) =

(
fX(x), fY (y)

)
is a C-biLipschitz map, for a constant C depending only on CX and CY .

We can now prove that (RN , ds) is a BPI space of dimension α =
∑
s−1k .

Proposition 3.3. The metric space (RN , ds) is a BPI space.

Proof. It it easy to check that if (X, d) is an unbounded BPI space of dimension α, then for 0 < s < 1, (X, ds)
is an unbounded BPI space of dimension α/s. The space (R, | · |) is an unbounded BPI space of dimension 1,
thus (R, | · |sk ) is an unbounded BPI space of dimension 1/sk for all k. By Theorem 3.1, (RN , ds) is a BPI space
of dimension α =

∑
s−1k , since ds is the `1 product distance of the distances | · |sk .

4 Construction of a quotient semi-distance
We construct a semi-distance dR on R using a shortening technique, by following the article [7]. First we
de�ne an equivalence relation R on R in a self-similar way. This corresponds to the shortcuts. We then look
at the quotient semi-distance dR. By construction, dR ≤ | · |s, where s is the minimum snow�aking factor.
For compactness reason, it is more convenient to work with the subset [0, 1] of R, endowed with the semi-
distance dR. By using a theorem in [7], the quotient space ([0, 1]/dR, dR) is Ahlfors regular of dimension
α = 1/s. We �nally prove that the space ([0, 1]/dR, dR) is a BPI space.

4.1 Motivation: the philosophy of shortcuts

In (R, | · |s), the triangle inequality can be improved if the points are chosen correctly. This is the general idea
of the shortcuts’ method. Let us explain this. In what follows, every ball is a ball for | · |s. When the centre of
a ball of radius r does not matter, we just write Br.

Let x, y, p, q ∈ R be four distinct points. By the triangle inequality,

|x − y|s ≤ |x − p|s + |p − q|s + |q − y|s . (4.1)
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Without loss of generality, we may assume that |x − p| ≤ |y − q|. Suppose that there exists r > 0 such that
q ∈ B(p, r) and x, y ∈ ̸ B(p, r). We write |p − q|s = Csr where C ∈ (0, 1). We have |x − p| ≥ r1/s ≥ (1 − C)r1/s and
|y − q| ≥ |y − p| − |p − q| ≥ (1 − C)r1/s, so

|p − q| ≤ C
1 − C |x − p|.

By using the inequality (1 + t)s ≤ 1 + st for t ≥ 0, we have

|x − y|s ≤
(
|x − p| + |p − q| + |q − y|

)s
≤
( 1
1 − C |x − p| + |q − y|

)s
= |q − y|s

(
1 + 1

1 − C
|p − x|
|q − y|

)s
≤ |q − y|s + s

1 − C |q − y|
s−1|p − x|

≤ s
1 − C |x − p|

s + |q − y|s . (4.2)

If C ≤ 1−s, then (4.2) leads to an improvement of (4.1): the term |p−q|s disappears. The ball B(p, (1−s)sr)
seems to be invisible when going from x to y. This motivates the introduction of a shortcut between p and q
by identifying them.

De�nition 4.1. A metric space (X, d) for which there exists λ ∈ (0, 1) such that for all r > 0, and all balls Br of
radius r, there are two points p, q ∈ Br satisfying d(p, q) ≥ λr and

d(x, y) ≤ d(x, p) + d(q, y), ∀x, y ∈ ̸ Br (4.3)

is called a space with λ-invisible pieces. We say that (p, q) ∈ Br × Br is λ-invisible outside Br.

We proved above that (R, | · |s) has λ-invisible pieces for all 0 < λ < (1 − s)s. In [7], it was proven that the
Heisenberg group as well as any snow�ake of an Ahlfors regular space have invisible pieces.

4.2 Construction of the shortcuts

Following [7], we construct an equivalence relation R that corresponds to the shortcuts.

Let c be a �xed constant. LetN1 be a 4λ-separated set, and a cλ-net for X, i.e.

∀x, y ∈ N1 distinct, d(x, y) ≥ 4λ and X =
⋃
x∈N1

Bd(x, cλ). (4.4)

Then for all x ∈ N1, choose two points px , qx ∈ Bd(x, λ) such that (px , qx) is λ-invisible outside Bd(x, λ).
De�ne the shortcuts of level 1 as S1 =

{
(px , qx), x ∈ N1

}
∪
{
(qx , px), x ∈ N1

}
⊂ X × X. By induction, let Nn

be a 4λn-separated set that is also a cλn-net of X, such that

Nn ⊂ X \
⋃

(p,q)∈Sk
1≤k≤n−1

{p, q}4λ
n
, (4.5)

where {p, q}4λ
n
is the 4λn-neighborhood of {p, q}, i.e. {p, q}4λ

n
=
{
x ∈ X, d({p, q} , x) < 4λn

}
.

For all x ∈ Nn, choose (px , qx) λ-invisible outside Bd(x, λn), and then de�ne the level n shortcuts as
Sn =

{
(px , qx), x ∈ Nn

}
∪
{
(qx , px), x ∈ Nn

}
⊂ X × X. Finally, de�ne the set of all shortcuts:

S =
⋃
n≥1

Sn .
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0 1

Figure 1: The shortcuts S1 , S2 and S3 in [0, 1] for l = 2, h = 1/4.

De�nition 4.2. A set S in X ×X constructed as above is called a set of shortcuts. An element (p, q) ∈ S is called
a shortcut between p and q. The integer n such that (p, q) ∈ Sn is called the level of the shortcut (p, q).

With a set of shortcuts S, we de�ne an equivalence relation R on X:

xRy ⇔ (x, y) ∈ S or x = y. (4.6)

The following proposition is proved in [7, Section 3.3].

Proposition 4.3. Let λ ∈ (0, 1) and (X, d) be an Ahlfors α-regular space with λ-invisible pieces. If S is a set of
shortcuts on X and R the equivalence relation de�ned as in (4.6), then the quotient metric space (X/dR, dR) is
Ahlfors α-regular.

In our case, we apply Proposition 4.3 to (X, d) = (R, | · |s). It is an Ahlfors regular space of dimension 1/s with
λ-invisible pieces, for all 0 < λ < (1 − s)s. We construct the set of shortcuts S in a self-similar way, so that the
space ([0, 1]/dR, dR) is a BPI space of dimension α = 1/s.
Let l ∈ N, h = 1/2l and µ = hs. For all n ∈ N, we de�ne the level n shortcuts (see Figure 1)

Sn =
{(
hn−1

(
m + 1

2

)
, hn−1

(
m + 1

2

)
+ hn+1

)
,m ∈ Z

}
⊂ R ×R.

Let S =
⋃
n≥1

Sn. We will see that for l, c large enough, S is a set of shortcuts.

Following the notations de�ned above, we set Nn =
{
hn−1

(
m + 1

2

)
,m ∈ Z

}
. If x, y ∈ Nn are distinct,

then |x− y|s ≥ µn−1.Moreover, for all x ∈ R, there existsm ∈ Z such that
∣∣x − hn−1(m + 1/2)

∣∣s = µn−1|x/hn−1−
1/2 − m|s ≤ 2−sµn−1. SinceNn must be a 4λn-separated set and a cλn-net for X, we obtain the inequalities

4λn ≤ µn−1 ≤ 2scλn . (4.7)

If x ∈ Nn, the closest point p to x for which there exists q such that (p, q) ∈
⋃

1≤j≤n−1 Sj satis�es |x − p|
s =

µn−1(1/2 − h)s = µn−2(2l−1 − 1)s. The condition (4.5) implies that

4λn ≤ µn−2(2l−1 − 1)s . (4.8)

Finally, every couple (pm , qm) ∈ Sn has to be λ-invisible outside B|·|s (hn−1(m + 1/2), λn), so

λn+1 ≤ µn+1 ≤ (1 − s)sλn . (4.9)

We see that if λ = µ and l, c are su�ciently large such that

1
2sc ≤ µ ≤ min

{1
4 , (1 − s)

s , 12(2
l−1 − 1)s/2

}
,

then the conditions (4.7), (4.8) and (4.9) are satis�ed. Let us henceforth �x the constants l and c. With this set
of shortcuts S, we de�ne as above the equivalence relation R on R by

xRy ⇔ (x, y) ∈ S or x = y.

By Proposition 4.3, the space (R/dR, dR) is Ahlfors regular of dimension α = 1/s.
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In the sequel, it will be interesting towork on [0, 1] endowedwith this semi-distance dR. A priori, ifR[0,1]
denotes the equivalence relation R restricted on the subset [0, 1] × [0, 1] (that is one takes only shortcuts in
[0, 1]), then dR ≤ dR[0,1] , because there are more itineraries for the relation R than for the relation R[0,1].
Actually we will see in Corollary 4.9 that for all x, y ∈ [0, 1], dR(x, y) = dR[0,1] (x, y).

By Proposition 4.3 and bywhat we observed above, the space ([0, 1]/dR[0,1] , dR[0,1] ) is also Ahlfors regular
of dimension α.

Until the end of the article, the symbol R always denotes the equivalence relation on R we just con-
structed.

4.3 The metric space ([0, 1], dR) is a BPI space

In order to have compactness, we will prove that the subspace [0, 1], endowed with dR is a BPI space. To do
so, we prove that dR = dR[0,1] on [0, 1] (Corollary 4.9), thus ([0, 1]/dR, dR) is Ahlfors regular of dimension
α = 1/s. Then, we prove that any two balls possess big pieces that are biLipschitz equivalent for the rescaled
distances.

The notion of BPI space has been de�ned for a metric space, but dR is only a semi-distance on [0, 1]. Let
B(π(x), r) ⊂ ([0, 1]/dR, dR) be a ball. By de�nition, we have B(π(x), r) = π

(
B(x, r)

)
where π : ([0, 1], dR)→

([0, 1]/dR, dR) is the canonical projection, and B(x, r) ⊂ ([0, 1], dR). Moreover, π is an isometry by de�ni-
tion. Notice also that a biLipschitz map f : (A1, dR)→ (A2, dR)with A1, A2 ⊂ [0, 1], corresponds to a biLip-
schitz map f̃ : (π(A1), dR) → (π(A2), dR) satisfying {f̃ (x)} = π(f (π−1({x}))). To prove that ([0, 1]/dR, dR)
is a BPI space, it is thus su�cient to prove that there exist constants C, θ so that for each pair of balls
B(x, r), B(y, t) in ([0, 1], dR), there is a closed subset A ⊂ B(x, r)withHα

dR (A) ≥ θr
α and a C-biLipschitz map

f : (A, r−1dR)→
(
B(y, t), t−1dR

)
.

Until the end of the section, each ball B(x, r) is a ball for the semi-distance dR. For this paragraph, we
introduce the following de�nition for notational convenience.

De�nition 4.4. An interval I = [a, b] is called an interval without shortcut at the ends if for all x ∈ R, (a, x) ∉
S and (x, b) ∈ ̸ S.

Lemma 4.5. For all x ∈ R, and r > 0, there exists I ⊂ B(x, r) an interval of the form I = [hnm, hn(m + 1)],
without shortcut at the ends, where n = 1 + d ln rln µ e and m ∈ Z.

Proof. Since dR ≤ |·|s, we have ]x−r1/s , x+r1/s[⊂ B(x, r). By de�nition of n, hn−1 ≤ r1/s, so B(x, r) contains an
interval of (Euclidean) length hn−1. In this interval, we can �nd h−1 −1 intervals of the form [hnm, hn(m+1)],
where m ∈ Z. Among these intervals, at least one suits.

Let us make the following easy remark, that will be useful later: if (p, q) ∈ S with p < q, is a shortcut of level
less than or equal to n, then there exists m ∈ Z such that p = hnm (and then q = hn+1(m2l + 1)). Moreover,
the converse is true: if (p, q) ∈ S, p < q, and p = hnm, then the level of the shortcut (p, q) is less than or equal
to n. We can also say something about q: if (p, q) ∈ S, p < q and q = hn+1m, then the level of the shortcut
(p, q) is less than or equal to n.

Lemma 4.6. Let n ≥ 0,m ∈ Z and I = [hnm, hn(m + 1)] be an interval without shortcut at the ends. Then, I
contains no shortcut of level less than or equal to n. Moreover, for all (p, q) ∈ S, p ∈ I ⇔ q ∈ I.

Proof. The fact that I contains no shortcut of level less than or equal to n is easy with the remarkmade above,
and with the assumption that I is an interval without shortcut at the ends.

Then, let (p, q) ∈ S, p < q be a shortcut of level n′ > n. Write p = hn
′
m′, q = hn

′
m′ + hn

′+1 with m′ ∈ Z.
Suppose that p ∈ I, that is hnm < hn

′
m′ < hn(m + 1), i.e. m < hn

′−nm′ < m + 1. If one cuts the interval
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[m,m + 1] into equal intervals of length hn
′−n, then one sees that |m + 1 − hn

′−nm′| ≥ hn
′−n > hn

′−n+1, so
m < hn

′−nm′ + hn
′−n+1 < m + 1, which means that q ∈ I. A similar argument proves that q ∈ I ⇒ p ∈ I.

Lemma 4.7. Let n ≥ 0,m ∈ Z and I = [hnm, hn(m + 1)] be an interval without shortcut at the ends. Then,
either [hn(m − 1), hnm] or [hn(m + 1), hn(m + 2)] is an interval without shortcut at the ends.

Proof. Suppose not. Then, there exist x, y ∈ R such that (hn(m − 1), x) ∈ S and
(
y, hn(m + 2)

)
∈ S. Many

variations are possible:

1. If hn(m − 1) < x and hn(m + 2) < y, then these two shortcuts have level less than or equal to n.
2. If hn(m − 1) < x and y < hn(m + 2), then the level of (hn(m − 1), x) is less than or equal to n and the level

of
(
y, hn(m + 2)

)
is less than or equal to n − 1.

3. If x < hn(m − 1) and hn(m + 2) < y, then the level of
(
x, hn(m − 1)

)
is less than or equal to n and the level

of (hn(m + 2), y) is less than or equal to n.
4. If x < hn(m − 1) and y < hn(m + 2), then these two shortcuts have level less than or equal to n − 1.

In each case, this is impossible, because the distance between the two shortcuts is too small.

Lemma 4.8. Let n ≥ 0,m ∈ Z and I = [hnm, hn(m + 1)] be an interval without shortcut at the ends. Denote by
RI the equivalence relation on I which is the restriction of R to the subset I × I. Then, for all x, y ∈ I,

dR(x, y) = dRI (x, y).

Proof. The inequality dR ≤ dRI is easy. Let us prove the other inequality. Let x, y ∈ I. Let (x0, y0, . . . , xn , yn)
be an itinerary from x to y. Suppose that this itinerary gets out of I. We will construct another itinerary that
stays in I and that is shorter. Let a = min {k ∈ {0, . . . , n} , xk ∈ ̸ I} and b = max {k ∈ {0, . . . , n} , xk ∉ I}.
Since x ∈ I and xRx0, by Lemma 4.6, a ≥ 1.

We remark that ya−1 ∈ ̸ I and yb ∈ I. Indeed, ya−1Rxa, but by Lemma 4.6, since xa ∈ ̸ I, we have ya−1 ∉ I.
The same argument works for yb. We consider separately two cases.

1. If ya−1 and xb are in the same connected component of R \ I, say in (−∞, hnm), then

|xa−1 − yb| ≤ |xa−1 − hnm| + |hnm − yb| < |xa−1 − ya−1| + |xb − yb|.

Thus, the itinerary
(x0, y0, . . . , xa−1, yb , . . . , xn , yn)

stays in I, and is shorter than (x0, y0, . . . , xn , yn). Similar construction works if the points are in (hn(m +
1),∞).

2. If ya−1 and xb are not in the same connected component ofR\ I, then either there exists j ∈ {a, . . . , b − 1}
such that xj and yj are in di�erent components, or there exists j ∈ {a, . . . , b} such that yj−1 and xj are in
di�erent components. In the �rst case, we easily notice that

|xa−1 − yb| ≤ hn < |xj − yj|

and thus again
(x0, y0, . . . , xa−1, yb , . . . , xn , yn)

stays in I, and is shorter than (x0, y0, . . . , xn , yn).
In the second case, the itinerary follows a shortcut that steps over I, see Figure 2. We may suppose that
ya−1 < hnm < hn(m + 1) < xb and that also the step happens from the left to right, that is, there exists an
integer j ∈ {a, . . . , b} such that yj−1 < hnm < hn(m + 1) < xj. Let J be an interval without shortcut at the
ends, adjacent to I, given by Lemma 4.7. Without loss of generality, we may suppose that J = I + hn. The
following remark is easy : for all (p, q) ∈ S, (p, q) ∈ I × I ⇔ (p + hn , q + hn) ∈ J × J.
Since J has no shortcut at the ends, there exists i such that xi ∉ J ∪ I, yi ∈ J. De�ne the new itinerary in
three parts.
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I J

hnm hn(m + 1)yj xj+1

Figure 2: The shortcut (yj , xj+1) across I.

I J

x y. . . . . .xa−1ya−1xa yb xb yi xiyb−1 . . .

Figure 3: The original itinerary.

(i) The �rst part is (x0, y0, . . . , xa−1, hnm).
(ii) The second part is (hnm, xb − hn , yb−1 − hn , xb−1 − hn , . . . , yi − hn , hn(m + 1)).
(iii) The last part is (hn(m + 1), yb , . . . , xn , yn).

In Figures 3 and 4, we represent the original and modi�ed itineraries, the thickest parts are the parts of
the itinerary where one has to walk, and the arcs are the shortcuts.
This modi�ed itinerary stays in I, and is shorter than the original one. This construction works similarly
if xb < hnm < hn(m + 1) < ya−1, or if J = I − hn.

We have proved that for any itinerary from x to y, there exists a shorter itinerary between x and y that stays
in I. Therefore, dRI ≤ dR.

Corollary 4.9. For all x, y ∈ [0, 1], dR(x, y) = dR[0,1] (x, y).

We can now prove that ([0, 1]/dR, dR) is a BPI space of dimension α = 1/s. By Proposition 4.3, we know
that it is Ahlfors regular of dimension α. Let x, y ∈ [0, 1], r, t ∈ (0, diamdR ([0, 1])], n = 1 + dln r/ ln µe and
n′ = 1 + dln t/ ln µe. Let I = [hnm, hn(m + 1)] ⊂ B(x, r) and I′ = [hn

′
m′, hn

′
(m′ + 1)] ⊂ B(y, t) be given by

Lemma 4.5. We remark that n, n′ ≥ 1, since r, t ≤ 1.
De�ne f : I → I′ by f (x) = hn

′−nx + hn
′
(m′ − m). Then, f is bijective and compatible with the shortcuts,

that is xRIy ⇔ f (x)RI′ f (y), and |f (x) − f (y)|s = µn
′−n|x − y|s, so by Lemma 2.7, for all x, y ∈ I,

dRI′

(
f (x), f (y)

)
= µn

′−ndRI (x, y),

thus by Lemma 4.8,
dR
(
f (x), f (y)

)
= µn

′−ndR(x, y).

I

x y. . . . . .xa−1 yb

J − hn = I

. . .

Figure 4: The modi�ed itinerary, which stays in I.
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The inequalities ln(t/r)ln µ − 1 ≤ n′ − n ≤ ln(t/r)
ln µ + 1 imply that tr µ ≤ µ

n′−n ≤ tr µ
−1. Therefore, f : (I, r−1dR) →

(I′, t−1dR) is a µ−1-biLipschitz map.
We �nally have to estimateHα

dR (I). The map g : I → [0, 1] de�ned by g(x) = h−nx − m is a bijection that
satis�es

dR
(
g(x), g(y)

)
= µ−ndR(x, y),

by Lemma 2.7 and Lemma 4.8 since g is bijective and compatible with the shortcuts. Then, Hα
dR (I) =

µnαHα
dR ([0, 1]). By de�nition of n, µnα ≥ µ2αrα. Finally, if we set θ = µ2αHα

dR ([0, 1]), thenHα
dR (I) ≥ θr

α.
We have proved that ([0, 1]/dR, dR) is a BPI space of dimension α = 1/s.

5 Lipschitz functions between ([0, 1], dR) and (R, | · |s).
The following proposition deals with Lipschitz functions from ([0, 1], dR) to (R, | · |s).

Proposition 5.1. Any Lipschitz function f : ([0, 1], dR)→ (R, | · |s) is constant.

Proof. Suppose not. Let f : ([0, 1], dR) → (R, | · |s) be a non constant Lipschitz map. Since dR ≤ | · |s,
f : ([0, 1], | · |s) → (R, | · |s) is Lipschitz, and hence f : ([0, 1], | · |) → (R, | · |) is also a Lipschitz map. By the
Rademacher Theorem, f is di�erentiable almost everywhere. Since f is a non constant Lipschitz map, f ′ does
not vanish almost everywhere. Hence, there exists a subset A of [0, 1]with positive measure such that for all
x ∈ A, f ′(x) = ̸ 0. For x0 ∈ A and p ∈ [0, 1],∣∣∣∣1ε (f (x0 + εp) − f (x0)) − f ′(x0)p

∣∣∣∣s −→ε→0
0. (5.1)

Let p, q ∈ [0, 1] with pRq and p = ̸ q, and ε > 0 su�ciently small so that x0 + εp, x0 + εq ∈ [0, 1]. Then,

|f ′(x0)p − f ′(x0)q|s ≤
∣∣∣∣f ′(x0)p − 1

ε

(
f (x0 + εp) − f (x0)

)∣∣∣∣s (5.2)

+ ε−s|f (x0 + εp) − f (x0 + εq)|s +
∣∣∣∣1ε (f (x0 + εq) − f (x0)) − f ′(x0)q

∣∣∣∣s .
By (5.1), the �rst and third terms of (5.2) tend to 0 when ε → 0. Since f is Lipschitz, there exists L > 0 such
that ε−s|f (x0 + εp) − f (x0 + εq)|s ≤ Lε−sdR(x0 + εp, x0 + εq).

For all n ∈ N, m ∈ Z, the map x → hn(x + m) from (R, dR) to (R, dR) is a hsn-Lipschitz map. Indeed, it
follows from Lemma 2.7, since xRy ⇒ hn(x + m)Rhn(y + m). Then,

h−sndR(x0 + hnp, x0 + hnq) ≤ dR(x0/hn + p − m, x0/hn + q − m)
≤ dR(x0/hn − m + p, p) + dR(p, q) + dR(q, q + x0/hn − m). (5.3)

Since dR ≤ | · |s, the �rst and third terms of (5.3) are less than or equal to∣∣∣ x0hn − m∣∣∣s = ∣∣∣2lnx0 − m∣∣∣s .
The following is awell-known fact of base-2 expansion of real numbers: There exists a Borel setU ⊂ [0, 1]

withL1(U) = 1 such that for every point x ∈ U, there exists a sequence (ni)i∈N of integers such that ni −→∞
when i → ∞, and for all i ∈ N, xlni+1 = · · · = x2lni = 0, where x =

∑
k≥0 xk2

−k is the standard binary
representation of x. In fact, if x ∈ U, then for all i ∈ N,

2lni x = mi +
∞∑

k=2lni+1
xk2lni−k , where mi ∈ Z

≤ mi + 2lni
∞∑

k=2lni+1
2−k
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= mi +
1
2lni

,

so 2lni − mi −→i→∞
0.

Let us �nish the proof of the proposition. Since A has positive measure, there exists a point x0 ∈ A ∩ U.
With the inequalities (5.2), (5.3), choosing n = ni, m = mi and letting i →∞, we can conclude that

|f ′(x0)p − f ′(x0)q|s ≤ LdR(p, q),

but this is impossible since f ′(x0) ≠ 0 (recalling that pRq and p = ̸ q so that dR(p, q) = 0 but |p − q| > 0).
Thus, f is constant.

6 Blow-up
In the sequel, topological properties (closed sets, compact sets, etc) are related to the Euclidean topology
on RN , which is the same as the topology induced by ds. The balls will be balls for the distance ds and the
measureHα will always refer toHα

ds
, where α =

∑
s−1k is the dimension of the BPI space (RN , ds). Recall that

s is the minimum snow�aking factor, and L the minimally snow�aked layer. We de�ne a semi-distance ds,R
on RN by modifying ds on the minimally snow�aked layer L:

∀x, y ∈ RN , ds,R(x, y) =
∑
k∈L

dR(xk , yk) +
∑
k∈ ̸L
|xk − yk|sk ,

where dR is the semi-distance de�ned on R in Section 4, by the shortcuts method. The topology induced by
ds,R, for which a basis is given by the open balls {y ∈ RN , ds,R(x, y) < r}, is the Euclidean topology.

Proposition 6.1. The quotient space ([0, 1]N /ds,R, ds,R) is a BPI space of dimension α.

Proof. The quotient space ([0, 1]N /ds,R, ds,R) is the product of ([0, 1], | · |sk ) for all k ∉ L and ([0, 1]/dR, dR)
for all k ∈ L, which are bounded BPI spaces. Thus, we may apply Theorem 3.1 to conclude.

We want to prove the following theorem, by a blow-up technique.

Theorem 6.2. Let A ⊂ [0, 1]N be a closed subset, and g : (A, ds,R) → (RN , ds) a Lipschitz map such that
Hα(g(A)) > 0. Then, there exists a Lipschitz map f : ([0, 1]N , ds,R)→ (RN , ds) such thatHα(f ([0, 1]N)) > 0.
From now on, we �x a closed (and thus compact) subset A of [0, 1]N , and an L-Lipschitz map g : (A, ds,R)→
(RN , ds).

For δ > 0, we de�ne dilδ(z) = (δ1/s1 z1, . . . , δ1/sN zN) where z = (z1, . . . , zN) ∈ RN . The map dilδ is a
similitude for ds: for all x, y ∈ RN ,

ds
(
dilδ(x), dilδ(y)

)
= δds(x, y).

For all j = (j1, . . . , jN) ∈ ZN and i ∈ N, we set

I ij = dilhis ([0, 1]
N + j) =

N∏
k=1

[
hi

s
sk jk , h

i ssk (jk + 1)
]
.

The I ij will be called "cubes" in the sequel even though it would be more correct to call them parallelepipeds.
The family {I ij , i ∈ N, j ∈ ZN} is not a family of nested cubes, which means that two cubes I ij , I i

′

j′ with i ≠ i′

might overlap.
If we set fi,j(x) = dilhis (x + j), then I ij = fi,j([0, 1]N). We also de�ne

Adm =
{
(i, j) ∈ N × ZN , I ij ⊂ [0, 1]N and fi,j : ([0, 1]N , ds,R)→ (I ij , h−isds,R) is an isometry

}
,
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the set of indices for which the corresponding cube is included in the unit cube and is similar to it for the
distance ds,R.

Recall that by construction of dR, for all (i, j) ∈ N × ZN such that I ij ⊂ [0, 1]N , there exists j′ ∈ ZN such
that (i + 1, j′) ∈ Adm and I i+1j′ ⊂ I ij .

For all (i, j) ∈ Adm, such that A ∩ I ij = ̸ ∅, choose zi,j ∈ A ∩ I ij and de�ne

gi,j :
(
f −1i,j (A ∩ I ij), ds,R

)
−→ (RN , ds)

x 7−→ dilh−is
(
g(fi,j(x)) − g(zi,j)

)
.

Lemma 6.3. The maps
{
gi,j , (i, j) ∈ Adm

}
are Lipschitz, with uniformly bounded Lipschitz constants.

Proof. Let (i, j) ∈ Adm such that A ∩ I ij = ̸ ∅. For all x, y ∈ f −1i,j (A ∩ I ij),

ds
(
gi,j(x), gi,j(y)

)
= h−isds

(
g(fi,j(x)), g(fi,j(y))

)
≤ Lh−isds,R

(
fi,j(x), fi,j(y)

)
≤ Lds,R(x, y).

For any set E ⊂ RN , all m ∈ N and all indices i ∈ N, we set

Eim(E) =
{
j ∈ ZN ,

Hα(E ∩ I ij)
Hα(I ij)

< 1 − 1
m

}
.

In order to prove Theorem 6.2, we need to �nd a sequence (im , jm)m∈N ∈ AdmN that satis�es two properties,
explained in the following proposition.

Proposition 6.4. There exists c > 0 such that for all m ∈ N, there exists (im , jm) ∈ Adm such that

jm ∉ Eimm (A), i.e.
Hα(A ∩ I imjm )

Hα(I imjm )
≥ 1 − 1

m , (6.1)

and
h−imsαHα(g(A ∩ I imjm )) ≥ c. (6.2)

The property (6.1) will imply that the sequence of compact sets
(
f −1im ,jm (A ∩ I

im
jm )
)
m∈N converges to [0, 1]N in

the Hausdor� distance, whereas the property (6.2) will imply thatHα(f ([0, 1]N)) > 0, where f is the blow-up
map. The proof of Proposition 6.4 requires some lemmas.

The next lemma proves that in a small ball B(x, r)where x is a point of density of a set E in RN , a "good"
cover of B(x, r) by cubes has a small number of cubes that have density in E not close to 1.

Lemma 6.5. Let x be a point of density for a subset E of RN . For all ε > 0 and all m ∈ N, there exists r0 > 0
such that for all r ∈ (0, r0), for all i ∈ N and all coverings {I ij}j∈J i of B(x, r) such that

Hα
(⋃

j∈J i I
i
j

)
Hα
(
B(x, r)

) ≤ 1 + ε
m ,

then
0 ≤ #(J

i ∩ Eim(E))
#J i

≤ ε.

Proof. Let ε > 0,m ∈ N and η > 0. Since x is a point of density for E, there exists r0 > 0 such that for all
r ∈ (0, r0),

1 − η ≤
Hα(E ∩ B(x, r))
Hα
(
B(x, r)

) ≤ 1.
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Fix r ∈ (0, r0). Let i ∈ N and {I ij}j∈J i be a covering of B(x, r) such that

Hα
(⋃

j∈J i I
i
j

)
Hα
(
B(x, r)

) ≤ 1 + ε
m , (6.3)

then,

(1 − η)Hα(B(x, r)) ≤ Hα(E ∩ B(x, r))
≤ Hα

(
E ∩

⋃
j∈J i

I ij
)

≤
∑
j∈J i

Hα(E ∩ I ij)

=
∑

j∈J i∩Ei
m(E)

Hα(E ∩ I ij) +
∑

j∈J i\Ei
m(E)

Hα(E ∩ I ij)

≤ (1 − 1/m)
∑

j∈J i∩Ei
m(E)

Hα(I ij) +
∑

j∈J i\Ei
m(E)

Hα(I ij).

For all j ∈ J i,Hα(I ij) =
1
#J i

Hα
( ⋃
j∈J i

I ij
)
. Using #J i = #(J i ∩ Eim(E)) + #(J i \ Eim(E)) we get

(1 − η)Hα(B(x, r)) ≤ 1
#J i

Hα
( ⋃
j∈J i

I ij
)(

(1 − 1/m)#(J i ∩ Eim(E)) + #(J i \ Eim(E))
)

≤ Hα
( ⋃
j∈J i

I ij
)(

1 − #(J i ∩ Eim(E))
m#J i

)
.

Using now the inequality (6.3), we get

(1 − η) ≤ (1 + ε/m)
(
1 − #(J i ∩ Eim(E))

m#J i

)
which is the same as

#(J i ∩ Eim(E))
#J i

≤ m
(
1 − 1 − η

1 + ε/m

)
.

Set η = (ε/m)2 to get the lemma.

With this lemma, it is easy to get local information on the sum of the measures of all the E ∩ I ij such that I ij
has density in E not close to 1.

Corollary 6.6. Let x be a point of density for a subset E of RN . For all ε > 0, and all m ∈ N, there exists r0 > 0
such that for all r ∈ (0, r0), for all i ∈ N and all coverings {I ij}j∈J i of B(x, r) such that

Hα
(⋃

j∈J i I
i
j

)
Hα
(
B(x, r)

) ≤ 1 + ε
m ,

then ∑
j∈J i∩Ei

m(E)

Hα(E ∩ I ij) ≤ ε
(
1 + ε

m

)
Hα(B(x, r)).

Proof. Let ε > 0, m ∈ N. Let r0 > 0 be given by Lemma 6.5. For all r ∈ (0, r0), all i ∈ N and all coverings
{I ij}j∈J i such that

Hα
(⋃

j∈J i I
i
j

)
Hα
(
B(x, r)

) ≤ 1 + ε
m ,
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we have ∑
j∈J i∩Ei

m(E)

Hα(E ∩ I ij) ≤
∑

j∈J i∩Ei
m(E)

Hα(I ij)

= 1
#J i

Hα
( ⋃
j∈J i

I ij
)
#(J i ∩ Eim(E))

≤ εHα
( ⋃
j∈J i

I ij
)

by Lemma 6.5

≤ ε
(
1 + ε

m

)
Hα(B(x, r)).

By a compactness argument, we can now deduce global information on the sum of the measures of the E∩ I ij
where I ij is a cube with density in E not close to 1.

Lemma 6.7. Suppose that E is a compact subset of RN such thatHα(E) > 0. Then, for all ε > 0 and all m ∈ N,
there exists i0 ∈ N such that for all i ≥ i0, ∑

j∈Ei
m(E)

Hα(E ∩ I ij) ≤ ε.

Proof. Take a bounded set K compactly containing E. Let ε > 0 and m ∈ N. By Ahlfors-regularity there exists
a constant C > 0 such thatHα(B(x, 3r)) ≤ CHα(B(x, r)) for all x ∈ RN and all r > 0. Let δ > 0 be such that

ε = δ + Cδ
(
1 + δ

m

)
Hα(K).

Denote by E′ the set of points of density in E. Recall that Hα(E \ E′) = 0. By inner regularity of Hα,
there exists a compact set E′′ ⊂ E′ such that Hα(E′ \ E′′) ≤ δ. For all x ∈ E′′, there exists r0(x) > 0 given
by Lemma 6.5. For all x ∈ E′′, choose rx ∈ (0, r0(x)/3) such that B(x, rx) ⊂ K. Then, {B(x, rx)}x∈E′′ covers
E′′. By compactness, there exists a �nite subfamily {B(xk , rk)}1≤k≤n of {B(x, rx)}x∈E′′ that covers E′′. By Vitali
Covering Lemma, we can extract another subfamily of disjoint balls, say {B(xk , rk)}1≤k≤n0 such that

E′′ ⊂
n0⋃
k=1

B(xk , 3rk).

Then choose i0 su�ciently large such that for all i ≥ i0 and all 1 ≤ k ≤ n0,

Hα
(⋃

j∈J ik
I ij
)

Hα
(
B(xk , 3rk)

) ≤ 1 + δ
m ,

where J ik =
{
j ∈ ZN , B(xk , 3rk) ∩ I ij = ̸ ∅

}
. Then,∑

j∈Ei
m(E)

Hα(E ∩ I ij) ≤ Hα(E \ E′) +Hα(E′ \ E′′) +
∑

j∈Ei
m(E)

Hα(E′′ ∩ I ij)

≤ δ +
n0∑
k=1

∑
j∈J ik∩Ei

m(E)

Hα(E′′ ∩ I ij)

≤ δ +
n0∑
k=1

δ
(
1 + δ

m

)
Hα(B(xk , 3rk)) by Corollary 6.6

≤ δ + Cδ
(
1 + δ

m

) n0∑
k=1

Hα(B(xk , rk)) by Ahlfors regularity

≤ δ + Cδ
(
1 + δ

m

)
Hα
( n0⋃
k=1

B(xk , rk)
)

since the balls are disjoint
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≤ δ + Cδ
(
1 + δ

m

)
Hα(K) = ε,

which proves the lemma.

Proof of Proposition 6.4. Suppose that Proposition 6.4 is false. For all c > 0, there exists m ∈ N such that for
all (i, j) ∈ Adm, either j ∈ Eim(A) or h−isαHα(g(A ∩ I ij)) < c.

Fix c > 0 and the corresponding integer m. By Lemma 6.7, there exists an increasing sequence (in)n∈N of
integers such that for all n ∈ N, ∑

j∈E
in
m (A)

Hα(A ∩ I inj ) ≤
1
2n .

Fix n0 ∈ N, de�ne Fn0 = ∅ and iteratively for n > n0

Fn =

j ∈ ZN | (in , j) ∈ Adm, h−insαHα(g(A ∩ I inj )) < c, and I inj ∩

 n−1⋃
n′=n0

⋃
j′∈Fn′

I in′j′

 = ∅

 .

Now we set

B = A \
∞⋃
n=n0

( ⋃
j∈Ein

m (A)
(in ,j)∈Adm

I inj ∪
⋃
j∈Fn

I inj

)
.

Let us prove that Hα(B) = 0. Suppose that Hα(B) > 0. Choose a point of density x ∈ B. We prove that
there exists ε > 0 and a sequence (rn)n∈N such that rn → 0 and for all n ∈ N,

Hα(B ∩ B(x, rn))
Hα
(
B(x, rn)

) ≤ 1 − ε, (6.4)

which contradicts the fact that x is a point of density. Let rn = 2Nh(in−1)s. By de�nition of rn,
N∏
k=1

[xk − h(in−1)s/sk , xk + h(in−1)s/sk ] ⊂ B(x, rn/2),

thus if we set jn = (bx1/h(in−1)s/s1c, . . . , bxN /h(in−1)s/sN c), then

I in−1jn ⊂
N∏
k=1

[xk − h(in−1)s/sk , xk + h(in−1)s/sk ] ⊂ B(x, rn/2).

For all n ∈ N, there exists j′n ∈ ZN such that (in , j′n) ∈ Adm and I inj′n ⊂ I in−1jn . Now there are two cases:
either j′n ∈ Einm(A) or h−insαHα(g(A ∩ I inj′n )) < c.
1. If j′n ∈ Einm(A), then B ∩ I inj′n = ∅. Thus, B ∩ B(x, rn) = B ∩

(
B(x, rn) \ I inj′

)
, and we can write

Hα(B ∩ B(x, rn))
Hα
(
B(x, rn)

) ≤
Hα(B(x, rn) \ I inj′n )
Hα
(
B(x, rn)

) ≤ 1 −
Hα(I inj′n )
Crαn

= 1 − hsαH
α([0, 1]N)
C(2N)α ,

where C is a constant given by Ahlfors regularity. This proves (6.4) in this case.
2. If h−insαHα(g(A ∩ I inj′n )) < c, then either j′n ∈ Fn or j′n ∈ ̸ Fn. If j′n ∈ Fn, then B ∩ I inj′n = ∅ and we conclude as

in the �rst case. If j′n ∈ ̸ Fn, then

I inj′n ∩

 n−1⋃
n′=n0

⋃
j′∈Fn′

I in′j′

 ≠ ∅.

Thus, there exists n′ ∈ {n0, . . . , n − 1} and j′ ∈ Fn′ such that I inj′n ∩ I
in′
j′ = ̸ ∅. By construction, B ∩ I in′j′ = ∅.

If one translates the cube I inj′n so that the image lies in I in′j′ and intersects I inj′n , then the translated cube is in
B(x, rn) but not in B, and has the same measure that I inj′n , so the same estimate as in the �rst case holds
(see Figure 5).
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•x

B(x, rn/2) B(x, rn)

I in−1jn

I inj′n

I in′j′

Figure 5: Construction of a cube isometric to I inj′n that does not intersect B ∩ B(x, rn).

Thus,Hα(B) = 0, and since g is Lipschitz,Hα(g(B)) = 0. With these we can write

Hα(g(A)) ≤ Hα(g(A \ B)) +Hα(g(A ∩ B))
≤

∞∑
n=n0

( ∑
j∈Ein

m (A)
(in ,j)∈Adm

Hα(g(A ∩ I inj )) + ∑
j∈Fn

Hα(g(A ∩ I inj ))
)

≤
∞∑
n=n0

( ∑
j∈Ein

m (A)
(in ,j)∈Adm

LαHα(A ∩ I inj ) + c
∑
j∈Fn

hinsα
)

≤
∞∑
n=n0

(
Lα

∑
j∈E

in
m (A)

Hα(A ∩ I inj ) + c
∑
j∈Fn

Hα(I inj )
Hα([0, 1]N)

)

≤ Lα
∞∑
n=n0

1
2n +

c
Hα([0, 1]N)

∞∑
n=n0

∑
j∈Fn

Hα(I inj )

≤ Lα 1
2n0−1 + cH

α([0, 1]N)
Hα([0, 1]N) ,

the last inequality is true since the cubes (I inj )n≥n0 ,j∈Fn have disjoint interiors by construction. Since the last
inequality is true for all c > 0 and all n0 ∈ N, thenHα(g(A)) = 0, which contradicts the assumption on A.

Until the end of this section, we �x a constant c > 0 and a sequence {(im , jm) ∈ Adm, m ∈ N} given by
Proposition 6.4. For allm ∈ N, set fm = fim ,jm and Km = f −1m (A∩ I imjm ). For allm ∈ N, Km is a compact of [0, 1]N .

Lemma 6.8. There exists a subsequence of (Km)m∈N that converges to [0, 1]N in the Hausdor� distance.

Proof. By Proposition 6.4,

Hα(Km) = h−imsαHα(A ∩ I imjm ) = Hα([0, 1]N)Hα(A ∩ I imjm )

Hα(I imjm )
−→
m→∞

Hα([0, 1]N). (6.5)

For all m ∈ N, Km is a compact of [0, 1]N , so by the Blaschke Theorem, we can suppose that Km H−→
m→∞

K. By
(6.5) and Lemma 2.8, Hα(K) = Hα([0, 1]N). Then, K = [0, 1]N , because a compact set strictly contained in
[0, 1]N has Hausdor� α-measure strictly less thanHα([0, 1]N).
We can now prove Theorem 6.2.

Proof of Theorem 6.2. The proof is pretty much the same as the proof of Ascoli-Arzelà Theorem. Let E be a
dense subset of [0, 1]N . By Proposition 2.9, for all x ∈ E, there exists a sequence (xm) such that for all m ∈
N, xm ∈ Km, and ds(xm , x)→ 0. For all x ∈ E, we �x a sequence as above.
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For all m ∈ N, we set gm = gim ,jm and zm = zim ,jm the chosen point in A ∩ I imjm . We now prove that there
exists a compact K such that for all m ∈ N, gm(Km) ⊂ K. Let m ∈ N and x ∈ Km. Then,

ds(gm(x), 0) ≤ h−imsds
(
g(fm(x)) − g(zm), 0

)
≤ h−imsds

(
g(fm(x)), g(zm)

)
≤ Lh−imsds,R(fm(x), zm)

≤ Lh−imsds(fm(x), zm)

≤ Lh−imsdiamds I
im
jm ,

but diamds I
im
jm = Nhims; then ds

(
gm(x), 0

)
≤ LN . Thus, gm(Km) ⊂ B(0, LN), which is compact. The usual

Cantor diagonalization argument allows us to choose a subsequence (that we will still denote by m) such
that

(
gm(xm)

)
m∈N converges (for the distance ds) for all x ∈ E (that is, for all the sequences (xm) �xed above).

Denote f (x) the limit. The map f : (E, ds,R)→ (RN , ds) is Lipschitz. In fact, for all x, y ∈ E, let (xm), (ym) the
two �xed sequences converging to x, y for the distance ds. Then, for all m ∈ N,

ds,R
(
f (x), f (y)

)
≤ ds,R

(
f (x), gm(xm)

)
+ ds,R

(
gm(xm), gm(ym)

)
+ ds,R

(
gm(ym), f (y)

)
≤ ds

(
f (x), gm(xm)

)
+ Lds(xm , ym) + ds

(
gm(ym), f (y)

)
≤ ds

(
f (x), gm(xm)

)
+ L
(
ds
(
xm , x

)
+ ds(x, y) + ds(y, ym)

)
+ ds

(
gm(ym), f (y)

)
≤ Lds(x, y).

By a standard argument, there is a unique extension of f (thatwe still denote by f ) de�ned on [0, 1]N such that
f : ([0, 1]N , ds,R)→ (RN , ds) is Lipschitz. Moreover, (gm) "converges pointwise" in the following sense: for all
x ∈ [0, 1]N and for all sequences (xm) (not only the ones �xed above) such that xm ∈ Km and ds,R(xm , x) −→m→∞
0, we have ds

(
gm(xm), f (x)

)
−→
m→∞

0. In fact, by density of E, for all p ∈ N, there exists x(p) ∈ E such that

ds(x(p), x) ≤ 1/2p. For all p, denote by (x(p)m )m∈N the sequence converging to x(p) that we choose above. Then,

ds
(
gm(xm), f (x)

)
≤ ds

(
gm(xm), gm(x(p)m )

)
+ ds

(
gm(x(p)m ), f (x(p))

)
+ ds

(
f (x(p)), f (x)

)
≤ Lds,R(xm , x(p)m ) + ds

(
gm(x(p)m ), f (x(p))

)
+ Lds,R(x(p), x)

and the result holds by letting m →∞ and then p →∞.
We now want to prove thatHα(f ([0, 1]N)) > 0. Recalling that

gm(x) = dilh−im s (g(fm(x)) − g(zm)),

we get by Proposition 6.4, that

Hα(gm(Km)) = h−imsαHα(g(fm(Km))) = h−imsαHα(g(A ∩ I imjm ))) ≥ c.

Therefore, by Lemma 2.8 it is su�cient to prove that dH
(
gm(Km), f ([0, 1]N)

)
−→
m→∞

0, because then

0 < c ≤ lim sup
m→∞

Hα(gm(Km)) ≤ Hα(f ([0, 1]N)).
Let us remark that since gm(Km) ⊂ B(0, Ln), then f ([0, 1]N) ⊂ B(0, LN) by pointwise convergence, thus we
can use the equivalence in Proposition 2.9 to prove that gm(Km) H−→ f ([0, 1]N). The �rst point of Proposition
2.9 is true by pointwise convergence of gm to f . For the second point, let y = lim

k→∞
gmk (xmk ) where, {xm} is a

sequence such that for all m ∈ N, xm ∈ Km. We want to prove that y ∈ f ([0, 1]N). Without loss of generality,
since Km ⊂ [0, 1]N we can suppose that xmk −→k→∞

x ∈ [0, 1]N . Then, gmk (xmk ) → f (x) = y by pointwise
convergence.

This proves that dH
(
gm(Km), f ([0, 1]N)

)
−→
m→∞

0, and thusHα(f ([0, 1]N)) ≥ c > 0.
Brought to you by | Jyväskylän Yliopisto University

Authenticated
Download Date | 11/20/17 9:06 AM



Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down | 97

7 (RN , ds) is not minimal for looking down
Weknow that (RN , ds) looksdownon ([0, 1]N /ds,R, ds,R), since ds,R ≤ ds and theprojection π : ([0, 1]N , ds,R)→
([0, 1]N /ds,R, ds,R) is an isometry.

Proposition 7.1. A Lipschitz map f : ([0, 1]N , ds,R)→ (RN , ds) satis�esHα(f ([0, 1]N)) = 0.

Proof. Let x, y ∈ RN and i ∈ L. Let πi be the canonical projection on the i-th coordinate. We denote by
γ : [1, N] → RN the following piecewise linear curve: if x = (x1, . . . , xN) and y = (y1, . . . , yN) then for all
k ∈ {1, . . . , N}

γ|[k,k+1](t) = (y1, . . . , yk−1, xk + (t − k)(yk − xk), xk+1, . . . , xn).

γ is a geodesic between x and y with the distance induced by the classical norm ‖ · ‖1 in RN . For all k ∈
{1, . . . , N} the map

φk : ([0, 1], dk) −→ (R, | · |s)
t 7−→ (πi ◦ f )

(
γ(k + t)

)
is a Lipschitz map since γ|[k,k+1] and πi are Lipschitz. Here, dk = | · |sk if k ∉ L, and dk = dR if k ∈ L. The case
k ∈ ̸ L implies by a standard argument that φk is constant, since s < sk. The case k ∈ L also implies that φk is
constant by Proposition 5.1.We conclude that πi ◦ f is constant along the curve γ and thus πi

(
f (x)

)
= πi

(
f (y)

)
,

which proves thatHα(f ([0, 1]N)) = 0.

Suppose that ([0, 1]N /ds,R, ds,R) looks down on (RN , ds). Then, there exist a closed subset A ⊂ [0, 1]N /ds,R
andan L-Lipschitzmap g : (A, ds,R)→ (RN , ds) such thatHα

ds
(g(A)) > 0. Themap g̃ = g◦π : (π−1(A), ds,R)→

(RN , ds) is Lipschitz, Hα
ds

(
g̃(A)

)
> 0 and π−1(A) is compact. Thus, we can apply Theorem 6.2. There exists a

Lipschitz map f : ([0, 1]N , ds,R)→ (RN , ds) such thatHα(f ([0, 1]N)) > 0, which contradicts Proposition 7.1.
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