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FAST COMPUTATION BY SUBDIVISION OF

MULTIDIMENSIONAL SPLINES AND THEIR APPLICATIONS

AMIR Z. AVERBUCH, PEKKA NEITTAANMÄKI, GIL SHABAT,
AND VALERY A. ZHELUDEV

Abstract. We present theory and algorithms for fast explicit computations of
uni- and multi-dimensional periodic splines of arbitrary order at triadic rational
points and of splines of even order at diadic rational points. The algorithms
use the forward and the inverse Fast Fourier transform (FFT). The implemen-
tation is as fast as FFT computation. The algorithms are based on binary and
ternary subdivision of splines. Interpolating and smoothing splines are used for a
sample rate convertor such as resolution upsampling of discrete-time signals and
digital images and restoration of decimated images that were contaminated by
noise. The performance of the rate conversion based spline is compared with the
performance of the rate conversion by prolate spheroidal wave functions.

1. Introduction

The goals of the paper are twofold: 1. Design fast algorithms, which provide
smooth resolution upsampling of signals/images, that retain the properties of the
sampled object. 2. If the signal/image is degraded by noise, the noise is reduced
and the structure of the signal/image is revealed. To achieve this, we design in-
terpolating and smoothing splines. Their computational efficiencies are gained by
using binary and ternary splines subdivision. The subdivision scheme provides in-
termediate values for 1D splines. Subdivision schemes are proposed to calculate the
splines’ values at diadic and triadic rational points.

Splines are important tools in approximation theory, computer aided geometric
design and signal/image processing. Splines have been designed by their samples
values at grid points. An important problem is how to explicitly design splines of any
order and how to achieve a fast calculation of their values at internal points between
grid points. In this paper, we propose a fast and efficient scheme for uni- and multi-
dimensional periodic splines computations of any order at triadic rational points
and of splines of even order at diadic rational points starting from their samples
at equidistant grid points. The idea behind the need for having diadic algorithm
is the following. The spline S(t), which interpolates available grid samples S(k), is
designed and its midpoints values between grid points are explicitly calculated. The
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newly derived samples are interpolated by the new spline whose midpoint values
are calculated. Then, this process is iterated. We prove that if the spline order is
even then the scheme at each step generates values for the initial spline. Thus, after
m iterations, the values S(k/2m) are derived. The calculations are reduced to the
application of a single forward and a single inverse FFT that are independent of the
number of iterations. Such a scheme is not valid for odd-order splines. However, a
similar subdivision scheme, which utilizes a triadic instead of diadic insertion rule, is
applicable to splines of any order. Extension of the algorithms to multidimensional
splines is straightforward.

Interpolatory subdivision schemes are refinement rules which iteratively refine
data by inserting values that correspond to intermediate points by using linear
combinations of values in the initial points, while the data in these initial points are
retained.

Restoration and rate conversion to many sample rates such as upsampling (resolu-
tion increase) of signals/images are natural applications for these spline algorithms.
A spline is designed to interpolate the available samples or pixels. Then, the object’s
resolution is upsampled by introducing intermediate spline values. If the available
data is contaminated by noise then smoothing splines are used for efficient denois-
ing. Performances of upsampling by splines are compared to the performances of
the prolate spheroidal wave functions.

There are two common methods for resolution upsampling of signals: One is
by zero-padding and the other is by inserting zeros between samples in the Fourier
domain of the signal. The application of discrete Fourier transform (DFT) to a zero-
padded signal, which becomes an extended signal, inserts complex valued numbers
between the interpolated samples. Complex numbers are unsuitable for resolution
upsampling. An alternative solution to interpolate the signal is to insert zeros
between the signal samples in its Fourier domain and then an interpolating low-
pass filter is applied to the extended signa . In fact, this is what is being achieved
in the scheme presented in our paper.

In the Fourier domain, inserting zeros between samples is achieved by a doubling
(diadic) or tripling (triadic) of the signals in the Fourier domain, followed by the
application of the inverse DFT. The algorithm interpolates the signal by inserting
zeros between the samples in the Fourier domain and then an interpolating low-
pass filter is applied to the extended signal. It is implicitly contained in Eq. (3.13)
where in the first line 2N -point inverse DFT is applied to the N -point DFT of
the signal. Low-pas filtering is achieved by multiplication of the signal DFT with
the 2N -periodic sequence. Such filtering results in replacement of the zeros in
the intermediate points by values of an even order spline, which interpolates the
initial samples. Similar operations are implemented for the ternary upsampling. A
practical implementation of the computation of periodic splines at dyadic rational
points is described in section 3.4 (Eq. (3.13)) where the detailed implementation
algorithm is described by Eq. (3.14). Practical implementation of the computation
of periodic splines at triadic rational points is described in section 4.5 (Eq. (4.14))
where the detailed implementation algorithm is described by Eq. (4.15).

The paper is organized as follows. Section 2 provides some preliminaries on inter-
polatory subdivision and on periodic splines. In particular, design of interpolating
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and smoothing splines of any order in one and two dimensions are outlined and their
properties are established. In Section 3, the binary subdivision for periodic splines
is presented. It leads to periodic splines computation at dyadic rational points and
an upsampling algorithm is described. Section 4 does the same for the ternary sub-
division schemes. In Section 5, the designed splines are applied to upsampling of
signals and images. Applications to restoration from noisy decimated images are
also shown.

2. Preliminaries

Throughout the paper, we denote N = 2j , Nm = 2mN = 2j+m, Nm̃ = 3mN =
2j 3m, j,m ∈ N, ω = e2πi/N . The space of N -periodic discrete-time signals is
denoted by Π[N ]. The spaces ofNm-periodic andNm̃-periodic signals are denoted as
Π[Nm] and Π[Nm̃], respectively. The forward and inverse discrete Fourier transform
(DFT) of signals x = {x[k]} ∈ Π[Nm] and x̃ = {x̃[k]} ∈ Π[Nm̃] are, respectively,

(2.1)

x̂[n]m =

Nm−1∑
k=0

ω−2−mkn x[k], x[k] =
1

Nm

Nm−1∑
n=0

ω2−mkn x̂[n]m

ˆ̃x[n]m̃ =

Nm̃−1∑
k=0

ω−3−mkn x̃[k], x̃[k] =
1

Nm̃

Nm̃−1∑
n=0

ω3−mkn ˆ̃x[n]m̃.

For N -periodic signals (m = 0), the standard notation is x̂[n] = x̂[n]0.The inner
product and the norm in the space Π[Nm] are defined as

⟨x,y⟩ ∆
=

Nm−1∑
k=0

x[k] y∗[k] =
1

Nm

Nm−1∑
n=0

x̂[n]m ŷ[n]
∗
m,

∥x∥2 ∆
=

Nm−1∑
k=0

|x[k]|2 =
1

Nm

Nm−1∑
n=0

|x̂[n]m|2.

Similarly, they are defined in the space Π[Nm̃]. Here, ·∗ means complex conjugation.
Throughout the paper, χ[a, b](t) denotes the indicator function of the interval

(a, b), which means that χ[a, b](t) = 1 when t ∈ (a, b) and zero otherwise. The
sequence δ[k] is the Kronecker delta which indicates δ[k] = 1 when k = 0 and zero
otherwise.

2.1. Interpolatory subdivision. Interpolatory subdivision schemes (ISS) are re-
finement rules, which iteratively refine the data by inserting values that correspond
to intermediate points by using linear combinations of values from the initial points
while the data in these initial points is preserved. Non-interpolatory schemes update
the initial data in addition to the insertion of values into intermediate points.

To be more specific, a univariate subdivision scheme with binary refinement
( [10, 11, 25]), denoted by S2

a, consists of the following: A function F (t) such
that F (k/2m) = fm[k], which is defined on the grid gm = {k/2m}k∈Z, is ex-

tended onto the grid gm+1 by filtering the upsampled array (↑ 2)fm = {f̆m[k]},
(f̆m[k] = fm[l], if k = 2l, and f̆m[k] = 0, otherwise) by an interpolating fil-
ter a = {a[k]}k∈Z such that a[2k] = δ[k]. Thus, one dyadic refinement step is
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F (k/2m+1) = fm+1[k] =
∑

l∈Z a[k − 2l]fm[l], which means that fm+1[2k] = fm[k]

and fm+1[2k + 1] =
∑

l∈Z a[2(k − l) + 1]fm[l]t. The next refinement step employs

fm+1 as an initial data.
A subdivision scheme with ternary refinement ( [3, 14, 15]), denoted by S3

a, con-
sists of the following: A function F (t) such that F (k/3m) = fm[k], which is defined
on the grid gm = {k/3m}k∈Z, is extended onto the grid gm+1 by filtering the

upsampled array (↑ 3)fm = {f̆m[k]},(f̆m[k] = fm[l], if k = 3l, and f̆m[k] = 0, oth-
erwise) by an interpolating filter a = {a[k]}k∈Z such that a[3k] = δ[k]. Thus, one
triadic refinement step is F (k/3m+1) = fm+1[k] =

∑
l∈Z a[k − 3l]fm[l]. It means

that fm+1[3k] = fm[k], and fm+1[3k ± 1] =
∑

l∈Z a[3(k − l) ± 1]fm[l]t. The next

refinement step employs fm+1 as an initial data.
In this paper, we assume that the initial data array f0 is N -periodic (belongs to

Π[N ]). Consequently, the refined data array fm belongs to Π[Nm] for the scheme
S2

a and belongs to Π[Nm̃] for the scheme S3
a. In the periodic setting, filtering a

signal x ∈ Π[Nm̃] is interpreted as a discrete circular convolution of the signal with a

signal am̃ ∈ Π[Nm̃] such that y = am̃ x ⇐⇒ y[k] =
∑Nm̃−1

l=0 am̃[k − l]x[l]. Similarly,
it holds for the signals from Π[Nm].

2.2. Space of periodic splines. Nodes of splines of even and odd orders are
located at the points {k} and {(k + 1)/2}, k ∈ Z, respectively.

Definition 2.1. An N -periodic function Sp(t) is called the periodic spline of order
p ∈ N on the grid {k} , k ∈ Z, if it has p − 2 continuous derivatives (belongs to
Cp−2) and consists of pieces of polynomials of degree p− 1 that are linked to each
other at the nodes.

The space of N -periodic splines of order p is denoted by pS. A widely used basis
for the space pS consists of shifts of B-splines.

2.2.1. Periodic B-splines. Let N = 2j , j ∈ N. The centered N -periodic B-spline
B1(t) of first order on the grid {k} , k ∈ Z, is defined via periodization of the

indicator function χ[−1/2, 1/2](t) of the interval (−1/2, 1/2). That is, B1(t)
∆
=∑

l∈Z χ[−1/2, 1/2](t+Nl).
The Fourier coefficients of the B-spline are

cn(B
1) =

∫ N/2

−N/2
B1(t) e−2πint/N =

∫ 1/2

−1/2
e−2πint/N =

sinπn/N

πn/N
.

The B-splines of higher order are defined iteratively via the circular convolution

Bp(t)
∆
= B1 ⊛ Bp−1(t). Thus, B-spline Bp(t) can be expanded into the Fourier

series by

(2.2) Bp(t) =
1

N

∑
n∈Z

e2πint/N
(
sinπn/N

πn/N

)p

.

The B-spline Bp(t) is supported on the interval (−p/2, p/2) up to periodization. It
is strictly positive inside this interval and symmetric about zero where it has a single
maximum. The B-spline Bp consists of pieces of polynomials of degree p − 1 that
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are linked to each other on the nodes such that Bp ∈ Cp−2. An explicit expression
of the B-spline on the interval (−N/2, N/2) is

(2.3) Bp(t) =
1

(p− 1)!

p∑
k=0

(−1)p
(
p

k

) (
t+

p

2
− k
)p−1

+
, t+

∆
=

{
t, if t ≥ 0;
0, otherwise.

Certainly, to avoid self-overlapping of the N -periodic B-spline Bp, the inequality
p+ 1 ≤ N has to hold.

The integer shifts of the periodic B-spline {Bp (t− k)} , k = 0, ..., N − 1, p ∈ N,
form a basis for the space pS. Each spline Sp(t) ∈ pS can be represented by

(2.4) Sp(t) =

N−1∑
k=0

q[k]Bp (t− k) , q = {q[k]} ∈ Π[N ].

The Fourier coefficients of the spline Sp(t) are

(2.5) cn(S
p) =

∫ N/2

−N/2
e−2πint/N

N−1∑
k=0

q[k]Bp (t− k) dt = q̂[n]

(
sinπn/N

πn/N

)p

.

2.2.2. Exponential splines. The splines

ζp[n](t)
∆
=

N−1∑
k=0

ωknBp (t− k) , n = 0, ..., N − 1,(2.6)

which belong to pS, are called periodic exponential splines. They are the Zak
transforms of the periodic B-splines [6, 23].

The application of the inverse DFT (IDFT) to Eq. (2.6) provides a representation

for the B-splines via the exponential splines Bp (t− k) = N−1
∑N−1

n=0 ζ
p[n](t)ω−kn.

Substitution of this relation into Eq. (2.4) results in the following spline represen-
tation:

(2.7) Sp(t) =
1

N

N−1∑
k=0

q[k]

N−1∑
n=0

ζp[n](t)ω−kn =
1

N

N−1∑
n=0

σ[n] ζp[n](t), σ[n]
∆
= q̂[n].

The N -periodic sequence

(2.8) up[n]
∆
= ζp[n](0) =

N−1∑
k=0

e−2πink/NBp (k)

is called the characteristic sequence of the space pS. Representation of periodic
splines by exponential splines, as in Eq. (2.7), generates a variation of harmonic
analysis in the spline spaces that is called the spline harmonic analysis (SHA) [2,
4, 24], where the splines ζp[n](t) (Eq. (2.6)) are the counterparts of the Fourier
exponentials. We list a few properties of the exponential splines ( [2]) that will be
used later.

Proposition 2.2. The following properties of the exponential splines ζp[n](t) ∈ pS
hold:
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(1) Expansion into a Fourier series is

(2.9)

ζp[n] (t) =
∑
l∈Z

e2πi(n/N+l)t

(
sinπ (n/N + l)

π (n/N + l)

)p

= sinp
πn

N

∑
l∈Z

e2πi(n/N+l)t

(
(−1)l

π (n/N + l)

)p

.

In particular, the characteristic sequence up[n] = ζp[n] (0) is represented by
(2.10)

up[n]
∆
= ζp[n](0) =

∑
l∈Z

(
sinπ (n/N + l)

π (n/N + l)

)p

= sinp
πn

N

∑
l∈Z

(
(−1)l

π (n/N + l)

)p

.

(2) The exponential splines ζp[n](t) are the eigenfunctions of the integer shift
operator:

(2.11) ζp[n] (t+ d) = ωndζp[n](t) =⇒ ζp[n] (d) = ωnd up[n], d ∈ Z.

(3) The exponential splines ζp[n](t), n = 0, ...N − 1, form an orthogonal basis
for the space pS.

(4) The squared norms of the exponential splines are ∥ζp[n]∥2 = N u2p[n].
(5) The squared norms of s (s < p) derivatives of the exponential splines ζp[n](t)

are

(2.12)
∥∥∥(ζp[n])(s)∥∥∥2 = N

(
2 sin

πn

N

)2s
u2(p−s)[n].

Corollary 2.3. The squared norm of the s-th derivative of the spline S(t) =

N−1
∑N−1

n=0 σ[n] ζ
p[n](t) ∈ pS is

(2.13)
∥∥∥(S(s)

∥∥∥2 = 1

N

N−1∑
n=0

(
2 sin

πn

N

)2s
u2(p−s)[n] |σ[n]|2.

Equation (2.8) implies that the characteristic sequence up[n] is calculated by the
application of DFT to the sampled B-splines. The samples of the B-splines of any
order can be calculated by Eq. (2.3).

The B-splines are compactly supported and symmetric about zero. Therefore,
the sequences up[n] are cosine polynomials up[n] = Pr(cosπn/N) of degree r =
[(p + 1)/2] with real coefficients that have only even-degree terms. The sequences
up[n] are strictly positive and symmetric about N/2.
Examples of characteristic sequences: Denote y = cosπn/N . Then

u2[n] = 1, u3[n] =
1 + y2

2
, u4[n] =

1 + 2y2

3
.(2.14)

u5[n] =
5 + 18y2 + y4

24
, u6[n] =

2 + 11y2 + 2y4

15
,(2.15)

u7[n] =
y6 + 179y4 + 479y2 + 61

720
, u8[n] =

16y6 + 4740y4 − 4635y2 + 1139

1260
.(2.16)
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2.3. Interpolation and smoothing. A spline, which interpolates a periodic signal
x, can be explicitly represented by the basis of exponential splines.

Proposition 2.4. Any N -periodic signal x = {x[k]} , k ∈ Z, can be uniquely
interpolated by a spline S(k) = x[k] from pS.

Proof. f Assume a spline Sp ∈ pS is expanded by the basis of exponential splines
such that
Sp(t) = N−1

∑N−1
n=0 σ[n] ζ

p[n](t). Then, its grid samples are
(2.17)

Sp(k) =
1

N

N−1∑
n=0

σ[n] ζp[n](k) =
1

N

N−1∑
n=0

σ[n]ωkn ζp[n](0) =
1

N

N−1∑
n=0

σ[n]ωkn up[n].

If the spline’s values are Sp(k) = x[k] then, by the application of the DFT to both
sides of Eq. (2.17), we derive an explicit expression

(2.18) Sp(t) =
1

N

N−1∑
n=0

x̂[n]

up[n]
ζp[n](t)

for the interpolating spline. □

Definition 2.5. Denote by Fr the subspace of the N−periodic continuous-time
signals f(t) that satisfy the condition

(2.19) I(f)
∆
=

∫ N

0
(f (r)(t))2 dt <∞.

The subspace of the space Fr, which consists of interpolated discrete-time N -
periodic signal x where x = {x[k]}, is denoted by Fr

x.

Splines of even orders from the spaces 2rS possess a remarkable property.

Proposition 2.6 ( [1,13] Minimal norm property of even-order splines). The spline
S2r(t) ∈ 2rS of even order 2r, which interpolates the signal x, yields the minimum
on the space Fr

x of the functional I(f) defined in Eq. (2.19) by

(2.20) S2r(t) = arg min
f∈Fr

x

∫ N

0
(f (r)(t))2 dt.

The claim Proposition 2.6 remains true even when the signal’s samples are defined
on a non-uniform grid.

2.3.1. One-dimensional smoothing splines. Assume that the signal f(t) to be ap-
proximated belongs to Fr and the samples y = {y[k] = f(k) + ek} , k = 0, ..., N−1,
are given, where e = {ek} is a vector of random errors that is assumed to be a zero-

mean white noise. In addition, assume that the sum ε2
∆
=
∑N−1

k=0 e
2
k is evaluated.

The signal f(t) is approximated by a function g(t) ∈ Fr, which yields the mini-
mum to the functional I subject to the condition that the discrepancy functional

Ey(g)
∆
=
∑N−1

k=0 |g(k)− y[k]|2 satisfies the condition Ey(g) ≤ ε2.
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This constrained minimization problem is reduced to the solution of an uncon-

strained problem: gρ(t) = argming∈Fr (Jρ(g)), where Jρ(g)
∆
= ρ I(g) + Ey(g), fol-

lowed by derivation of the optimal value of the numerical parameter ρ from the

equation e(ρ)
∆
= Ey(gρ) = ε2.

Proposition 2.7 ( [18]). The unique solution to the minimization problem ming∈Fr Jρ(g)
is the spline Sρ[y](t) ∈ 2rS of even order 2r.

The spline Sρ(t) ∈ 2rS, which minimizes the functional Jρ, is called the periodic
smoothing spline. The spline Sρ(t) can be explicitly expressed via the basis of expo-

nential splines. Assume a spline is represented by S(t) = N−1
∑N−1

n=0 σ[n] ζ
2r[n](t).

Equation (2.13) implies that

(2.21) I(S) =
1

N

N−1∑
n=0

(
2 sin

πn

N

)2r
u2r[n] |σ[n]|2.

Due to Eq. (2.17), the grid samples of S(t) are S(k) = N−1
∑N−1

n=0 σ[n]ω
kn u2r[n].

Thus, the the discrepancy functional Ey(g) is expressed by

(2.22) Ey(S) =
1

N

N−1∑
n=0

∣∣σ[n]u2r[n]− ŷ[n]
∣∣2 , ŷ[n] =

N−1∑
k=0

ω−kn y[k].

An explicit solution to the unconstrained minimization problem is derived from
using Eqs. (2.21) and (2.22). It is the spline from 2rS where

(2.23) S2r
ρ (t) =

1√
N

N−1∑
n=0

σ[n](ρ) ζ2r[n](t), σ[n](ρ) =
ŷ[n]

ρ (2 sinπn/N)2r + u2r[n]
.

By substituting the coefficients σ[n](ρ) into Eq. (2.22), we derive the discrepancy
functional for the parameterized spline S2r

ρ (t) to be

e(ρ)
∆
= Ey(Sρ) =

1

N

N−1∑
n=0

∣∣σ[n](ρ)u2r[n]− ŷ[n]
∣∣2

=
1

N

N−1∑
n=0

|ŷ[n]|2
(

ρ (2 sinπn/N)2r

ρ (2 sinπn/N)2r + u2r[n]

)2

.

The function e(ρ) grows monotonically from e(0) = 0 to e(∞) = N−1
∑N−1

n=0 |ŷ[n]|2
= ∥y∥2. Therefore, the equation

(2.24) e(ρ) =
1

N

N−1∑
n=0

|ŷ[n]|2
(

ρ (2 sinπn/N)2r

ρ (2 sinπn/N)2r + u2r[n]

)2

= ε2

has a unique solution ρ̄. The spline S2r
ρ̄ (t) solves the constrained minimization

problem. Its grid samples are

(2.25) S2r
ρ̄ (k) =

1

N

N−1∑
n=0

σ[n](ρ̄)ωkn u2r[n] =
1

N

N−1∑
n=0

ωkn ŷ[n]u2r[n]

ρ̄ (2 sinπn/N)2r + u2r[n]
.
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Equation (2.25) means that the samples S2r
ρ̄ (k) are calculated by the application of

the IDFT to the sequence {σ[n](ρ̄)} .

Remark 2.8. The spline S2r
ρ̄ (t) can be regarded as a spline that interpolates the

signal s =
{
S2r
ρ̄ (k)

}
. The values between grid points are calculated by the subdivi-

sion methods that are described in Sections 3 and 4.

When there are no errors, that is ε = 0, then the parameter is ρ̄ = 0 and the
grid samples are S2r

0̄
(k) = y[k] = f(k). Thus, the smoothing spline reduces to be

an interpolating spline.

2.3.2. Two-dimensional splines. The two-dimensional function S(x, y)
∆
=∑N−1

k,n=0 s[k, n]B
p(x − k)Bq(y − n), which is N -periodic in both directions, is a

1D spline of order p with respect to x when the variable y is fixed, and a 1D
spline of order q with respect to y when x is fixed. It is called the 2D spline
on the grid {k, n} , k, n ∈ Z, and the space of such splines is denoted by p,qS.
An alternative representation of the splines is provided by the exponential splines
S(x, y) = N−2

∑N−1
κ,ν=0 σ[κ, ν] ζ

p[κ](x) ζq[ν](y). The grid samples of the spline S are

(2.26) S(k, n) =
1

N2

N−1∑
κ,ν=0

e2πi(kκ+nν)σ[κ, ν]up[κ]uq[ν].

Consequently, the spline S(x, y) ∈ p,qS, which interpolates an N -periodic array

z
∆
= {z[k, n]} in both directions where S(k, n) = z[k, n], is explicitly represented by

(2.27)

S(x, y) =
1

N2

N−1∑
κ,ν=0

ẑ[κ, ν]

up[κ]uq[ν]
ζp[κ](x) ζq[ν](y),

ẑ[κ, ν]
∆
=

N−1∑
k,n=0

e−2πi(kκ+nν)z[k, n].

The design of two-dimensional smoothing splines is implemented by the same steps
as in the 1D design. For simplicity, assume that the splines have the same order in
both x and y directions. Assume that the funcion φ(x, y) to be approximated is an
N -periodic in both directions such that the functional satisfies

I(f)
∆
=

∫ N

0

∫ N

0

(
(f (r)x (x, y))2 + (f (r)y (x, y))2

)
dx dy <∞.

Assume that z = {z[k, n] = f(k, n) + ek,n} , k, n = 0, ..., N − 1, where e = {ek,n},
k, n = 0, ..., N − 1, is the array of random errors that is a zero-mean white noise.
The estimated squared norm of the errors is ε2 =

∑N−1
k,n=0 e

2
k,n. Denote by Sρ(x, y) ∈

2r,2rS the spline that minimizes the parameterized functional Jρ(S)
∆
= ρI(S) +

Ez(S) on the space 2r,2rS. The discrepancy functional Ez(S) is defined by Ez(S)
∆
=∑N−1

k,n=0(S(k, n)− z[k, n])2. Equation (2.26) implies that

(2.28) Ez(S) =
1

N2

N−1∑
κ,ν=0

∣∣σ[κ, ν]u2r[κ]u2r[ν]− ẑ[κ, ν]
∣∣2 .
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The functional becomes

(2.29)
I(S) =

1

N2

N−1∑
κ,ν=0

(W r[κ, ν] +W r[ν, κ]) |σ[κ, ν]|2,

W r[κ, ν]
∆
=
(
2 sin

πκ

N

)2r
u2r[κ]u4r[ν].

By using Eqs. (2.28) and (2.29), the spline is explicitly represented by

Sρ(x, y) =
1

N2

N−1∑
κ,ν=0

σ[κ, ν](ρ) ζ2r[κ](x) ζ2r[ν](y),

σ[κ, ν](ρ)
∆
=
ẑ[κ, ν]u2r[κ]u2r[ν]

Ar[κ, ν](ρ)
,(2.30)

Ar[κ, ν](ρ)
∆
= ρ (W r[κ, ν] +W r[ν, κ]) + (u2r[κ]u2r[ν])2.

Like in the 1D case, the value of the regularization parameter ρ is derived from the

equation e(ρ)
∆
= Ez(Sρ) = ε2 that is expressed by

e(ρ) =
1

N2

N−1∑
κ,ν=0

|ẑ[κ, ν]|2
(
(ρ (W r[κ, ν] +W r[ν, κ])

Ar[κ, ν](ρ)

)2

= ε2,(2.31)

Equation (2.31) has a unique solution ρ̄. The grid values of the spline Sρ̄(x, y), which
is called the 2D smoothing spline, are

(2.32) Sρ̄(k, n) =
1

N2

N−1∑
κ,ν=0

e2πi(kκ+nν) ẑ[κ, ν] (u2r[κ]u2r[ν])2

ρ̄ (W r[κ, ν] +W r[ν, κ]) + (u2r[κ]u2r[ν])2
.

The grid values are calculated by the application of the 2D IDFT to the sequence
σ[κ, ν](ρ̄). Certainly, when ε2 = 0, the parameter ρ̄ = 0 and the spline Sρ̄(x, y)
interpolates the initial function f(x, y) such that S0(k, n) = f(k, n).

3. Binary subdivision for periodic splines

In this section, we present explicit formulae that calculate the values of a spline
S2r(t) ∈ 2rS of even order 2r at dyadic rational points {k/2m}, k ∈ Z, m ∈ N,
where its samples on the grid g = {k}, k ∈ Z, are S(k) = y[k]. In this case, the
utilization of exponential splines makes the spline computations of arbitrary even
orders straightforward.

3.1. Spline spaces with different dyadic resolution scales. We have dealt so
far with splines from the spaces pS whose nodes are located on the grid {k}. In this
section, we introduce an embedded set of periodic splines’ spaces that correspond
to different dyadic resolution scales.

We recall the notations: N = 2j , Nm = 2mN = 2j+m, j,m ∈ N and ω
∆
= e2πi/N .

Denote by pSm the space of N−periodic splines of order p on the grid {k/2m}. The
notation pS is reserved for the space pS0. Obviously, the space pSm is a subspace
of pSm+1. Thus, we get a set of periodic splines’ spaces that correspond to different
resolution scales such that pS ⊂ pS1.... ⊂ pSm... .
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Denote β1m(t)
∆
= 2m χ(−2−m−1, 2−m−1), where χ[a, b](t) is the indicator function.

The N -periodic normalized B-spline of the first order on the grid {2−m k} and its
Fourier coefficients are

B1
m(t)

∆
=
∑
k∈Z

β1m (t+ kN) , cn(B
1
m) =

sinπn/Nm

πn/Nm
.

The N -periodic normalized B-spline of order p, which is defined via the iterated
circular convolution, is

(3.1) Bp
m(t)

∆
= B1

m ⊛Bp−1
m (t) =

1

N

∑
n∈Z

(
sin(πn/Nm)

πn/Nm

)p

e2πint/N .

Each spline Sm(t) ∈ pSm is represented by

(3.2) Sm(t) =

Nm−1∑
k=0

q[k]Bp
m

(
t− 2−mk

)
=

1

Nm

Nm−1∑
n=0

ξ[n] ζpm[n](t), ξ[n] = q̂[n]m,

where the exponential splines, which form orthogonal bases of pSm, are the Zak
transforms of the B-splines given for n = 0, ..., Nm − 1, by
(3.3)

ζpm[n](t)
∆
=

Nm−1∑
k=0

ω2−mnkBp
m(t−2−mk) = 2m

∑
l∈Z

e2πi(n/N+2ml)t

(
sinπ(n/Nm + l)

π(n/Nm + l)

)p

.

The Nm-periodic characteristic sequence of the space pSm is
(3.4)

upm[n]
∆
= ζpm[n](0) =

Nm−1∑
k=0

ω−2−mnkBp
m(2−mk) = 2m

∑
l∈Z

(
sinπ(n/Nm + l)

π(n/Nm + l)

)p

.

The spline Sm(t) ∈ pSm, which interpolates an Nm-periodic signal x = {x[k]} by
S(2−m k) = x[k], k ∈ Z, is

(3.5) Sm(t) =
1

Nm

Nm−1∑
n=0

x̂[n]m
upm[n]

ζpm[n](t), x̂[n]m =

Nm−1∑
k=0

ω−2−mnkx[k].

Proposition 3.1. The characteristic sequence upm[n] of the space pSm is calculated
by the application of the 2mN−point DFT to the sampled B-spline Bp(t) ∈ pS.

Proof. Replace N by Nm = 2mN in Eqs. (2.8) and (2.10), and compare the result
with Eq. (3.4). We get

Nm−1∑
k=0

e−2πink/NmBp (k) =
∑
l∈Z

(
sinπ (n/Nm + l)

π (n/Nm + l)

)p

= 2−m upm[n].

Thus, the sequence upm[n] is the output from the application of the 2mN−point

DFT to the sampled B-spline
{
bp[k]

∆
= Bp(k)

}
multiplied by 2m to become upm[n] =

2m b̂p[n]m = 2m
∑Nm−1

k=0 ω−2−mknBp(k). □
Remark 3.2. The previous notation ζp[n](t) ≡ ζp0 [n](t), u

p[n] ≡ up0[n], are reserved
for splines on the initial scale m = 0.
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3.2. Insertion rule. Calculation of the values of even-order splines at dyadic ra-
tional points is based on the following insertion rule:

Dyadic periodic spline insertion rule: Assume that f0
∆
=
{
f0[k]

}
, k ∈ Z, is an

N -periodic sequence. For m = 1, 2, . . ., we construct a spline Sm−1(t) ∈ pSm−1 on

the grid gm−1 ∆
=
{
k/2m−1

}
, k ∈ Z, such that Sm−1

(
k/2m−1

)
= fm−1[k], k ∈ Z.

Then, fm[k]
∆
= Sm−1 (k/2

m) , k ∈ Z.
In other words, in order to refine the data fm−1 from the grid

{
k/2m−1

}
to the

grid {k/2m}, we construct the spline Sm−1(t), which interpolates fm−1 on the grid{
k/2m−1

}
and define fm[2k]

∆
= fm−1[k], fm[2k+1]

∆
= Sm−1((k+1/2) 2m−1), that

are the spline values at midpoints between the interpolation points.
If the spline’s order is even then this insertion rule reproduces the spline, which

means that Sm(t) ≡ Sm−1(t) ≡ ... ≡ S0(t). Consequently, each refinement step
provides the spline’s S0(t) values at the subsequent set of dyadic rational points.

Theorem 3.3. Let S(t) ∈ 2rS be an N -periodic spline of order 2r with nodes on

the grid {k}, k ∈ Z. Its samples are
{
S(k) = f0[k]

}
, f0

∆
=
{
f0[k]

}
, k ∈ Z. Then,

all the subsequent subdivision steps with the dyadic spline insertion rule reproduce
the values {fm[k] = S(k/2m)} , k ∈ Z, m = 1, 2, ... of this spline.

Proof. Due to the minimal norm property (Proposition 2.6), we get

µ
∆
=

∫ N

0
|S(r)(t)|2 dt ≤

∫ N

0
|g(r)(t)|2 dt,

where g(t) is any function such that g(r)(t) is a square integrable and
{
g(k) = f0[k]

}
,

k ∈ Z. Let S1(t) ∈ 2rS1 be a spline of order 2r that interpolates the values {f1[k] =
S(k/2)}k∈Z. Then,

ν
∆
=

∫ N

0
|S(r)

1 (t)|2 dt ≤
∫ N

0
|G(r)(t)|2 dt,

where G(t) is any function such that G(r)(t) is square integrable and G(k/2) =
f1[k] = S(k/2). Hence, ν ≤ µ. On the other hand, S1(k) = f0[k], therefore,

µ ≤ ν. Thus,
∫ N
0 |S(r)(t)|2 dt =

∫ N
0 |S(r)

1 (t)|2 dt. Hence, it follows that S1(t) ≡
S(t). Repeating the above reasoning, we get that the spline S2(t) ∈ 2rS2, which
interpolates the values {f2[k] = S1(k/4)}k∈Z, coincides with S1(t). Consequently, it
coincides with S(t). The same is true for any spline Sm(t) ∈ 2rS2m that interpolates
the values {fm[k] = Sm−1(k/2

m)}k∈Z. □
3.3. Periodic spline filters for binary subdivision. The spline S0(t) ∈ pS,
which interpolates anN -periodic sequence f0

∆
=
{
f0[k]

}
such that S(k) = f0[k], k ∈

Z, is represented by

S0 (t) =
1

N

N−1∑
n=0

f̂0[n]

up[n]
ζp[n](t), f̂0[n] =

∑
k∈Z

ω−knf0[k],(3.6)

where ζp[n](t) are the exponential splines defined in Eq. (2.6) whose Fourier expan-
sion is given in Eq. (2.9). The characteristic sequence up[n] = ζp[n](0) of the space
pS is presented by Eq. (2.8).



FAST COMPUTATION BY SUBDIVISION OF MULTIDIMENSIONAL SPLINES 13

The DFT of the refined array is split into the polyphase components

(3.7)

f̂1[n]1 =

2N−1∑
k=0

ω−kn/2 f1[k] = f̂10 [n] + ω−n/2f̂11 [n],

f̂10 [n]
∆
=

N−1∑
k=0

ω−kn f1[2k] = f̂0[n], f̂11 [n]
∆
=

N−1∑
k=0

ω−kn f1[2k + 1].

According to the dyadic insertion rule and the shift property (Eq. (2.11)) of the
exponential splines, we get f1[2k + 1] = S0 (k + 1/2) and

S0

(
k +

1

2

)
=

1

N

N−1∑
n=0

f̂0[n]

up[n]
ζp[n]

(
k +

1

2

)
,

ζp[n]

(
k +

1

2

)
= ωkn ωn/2 υp[n](3.8)

υp[n]
∆
= ω−n/2 ζp[n]

(
1

2

)
=
∑
l∈Z

eπil
(
sinπ (n/N + l)

π (n/N + l)

)p

.

Consequently,

(3.9) f1[2k + 1] =
1

N

N−1∑
n=0

f̂0[n]

up[n]
ωkn ωn/2 υp[n] =⇒ f̂11 [n] = ωn/2υ

p[n]

up[n]
f̂0[n].

By substituting Eq. (3.9) into Eq. (3.7), we get

(3.10) f̂1[n]1 = âp0[n] f̂
0[n] ⇐⇒ f1[k] =

1

2N

2N−1∑
k=0

ωkn/2 âp0[n] f̂
0[n],

where âp0[n]
∆
=
up[n] + υp[n]

up[n]
.

Thus, the refined sequence f1 is derived by filtering the initial data f0 with the filter
ap0, whose frequency response âp0[n] is defined in Eq. (3.10).

Proposition 3.4. If the order is p = 2r then the frequency response of the filter ap0
is

(3.11) â2r0 [n] = 2 cos2r
πn

2N

u2r1 [n]

u2r[n]
, n = 0, ..., 2N − 1,

where the sequence u2r1 [n] is defined in Eq. (3.4).

Proof. Denote A[n]
∆
= u2r[n] + υ2r[n]. Then, â2r0 [n] = A[n]/u2r[n]. By combining

Eqs (2.8) and (3.8) we get

A[n] =
∑
l∈Z

(
1 + eiπl

)(sinπ (n/N + l)

π (n/N + l)

)2r

=
∑
l∈Z

(
1 + (−1l

)(sinπ (n/N + l)

π (n/N + l)

)2r

.
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Thus, only the even terms in the series remain

A[n] = 2
∑
l∈Z

(
sin 2π (n/2N + l)

2π (n/2N + l)

)2r

= 2
∑
l∈Z

(
sinπ (n/2N + l) cosπ (n/2N + l)

π (n/2N + l)

)2r

= 2 cos2r
πn

2N

∑
l∈Z

(
sinπ (n/2N + l)

π (n/2N + l)

)2r

= 2 cos2r
πn

2N
u2r1 [n].

□

Similarly to Eq. (3.10), we obtain an expression for the refinement from resolution
scale m− 1:

(3.12) f̂m[n]m = â2rm−1[n] f̂
m−1[n]m−1, â2rm−1[n] = 2 cos2r

πn

Nm

u2rm [n]

u2rm−1[n]
,

where u2rm [n] are defined in Eq. (3.4) and n = 0, ..., Nm − 1.

3.4. Computation of periodic splines at dyadic rational points: Practical
implementation. Assume that the samples

{
S(k) = f0[k]

}
, k = 0, ..., N − 1,

of a spline S(t) ∈ 2rS are given. It follows from Eq. (3.12) that its values
{S(k/2m)} , k ∈ Z, are derived by the application of m successive refinement steps
with the initial data f0 and the filters a2r0 , a2r1 ,...,a2rm−1, whose frequency responses
are given in Eq. (3.12). This process can be described explicitly. From Eq. (3.12),
we get

f̂1[n]1 = â2r0 [n] f̂0[n], â2r0 [n] = 2 cos2r
πn

2N

u2r1 [n]

u2r[n]
f̂0[n],

f̂2[n]2 = 2 cos2r
πn

4N

u2r2 [n]

u2r1 [n]
f̂1[n]1(3.13)

= 22 cos2r
πn

4N
cos2r

πn

2N

u2r2 [n]u2r1 [n]

u2r1 [n]u2r[n]
f̂0[n],

. . .

f̂m[n]m = 2m
u2rm [n]

u2r[n]
f̂0[n]

m∏
l=1

cos2r
πn

2lN
.

Computation of the values S(k/2m) = fm[k] of the spline S(t) ∈ 2rS from the
samples S(k) = f0[k] is reduced to the following three steps:

(1) Apply the N−point DFT to the initial data f0 =
{
f0[k]

}
to get f̂0[n] =∑N−1

k=0 ω
−knf0[k] .

(2) Multiply the array
{
f0[n]

}
by

f̂m[n]m = 2m
u2rm [n]

u2r[n]
f̂0[n]

m∏
l=1

cos2r
πn

2lN

where u2r[n] and f̂0[n] areN−periodic sequences, while u2rm [n] is 2mN−periodic.
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(3) Apply the 2mN−point IDFT to the sequence f̂m =
{
f̂m[n]m

}
to get

(3.14) S(k/2m) = fm[k] =
1

Nm

Nm−1∑
n=0

ω−2mkn f̂m[n]m.

The above algorithm interpolates the signal by inserting zeros between the sam-
ples in the Fourier domain and then apply to the extended signal an interpolating
low-pass filter. It is implicitly contained in Eq. 3.13 where in the first line 2N -point
inverse DFT is applied to the N -point DFT of the signal f such that f̂0[n]. Low-pas
filtering is achieved by multiplication of the DFT of the signal f by the 2N -periodic

sequence 2 cos2r πn
2N

u2r
1 [n]

u2r[n]
. Such filtering results in replacement of the zeros in the

intermediate points by values of the 2r-order spline, which interpolates the initial
samples. Similar operations are implemented for the ternary upsampling shown in
section 4.

4. Ternary periodic subdivision

Section 3.4 established that the values of even-order splines at the dyadic rational
points can be derived from the initial grid samples by Eq. (3.14). This is not the
case for splines of odd order. The above binary subdivision scheme, being applied to
an odd-order spline, does not restore this spline but rather converges to a function
that is smoother than the original spline ( [25]). However, the ternary subdivision
scheme in Section 4.1 restores the values of the spline of any order at the triadic
rational points {3−mk} , m ∈ N.

4.1. Super-resolution spline spaces (triadic scale). In this section, N = 2j , j ∈
N, Ñm = 3mN, m = 1, 2, ..., and ω

∆
= e2πi/N . The “triadic” DFT of an Ñm−periodic

signal x = {x[k]} is defined in Eq. (2.1).

We refine the spline space pS along the triadic scale pS = pS̃0 ⊂ pS̃1 ⊂ pS̃2... ⊂
pS̃m..., where

pS̃m denotes the space of N−periodic splines of order p defined on
the grid {3−m k} , k ∈ Z, m = 0, 1, . . ..

The N -periodic normalized B-spline of the first order on the grid {3−m k} and
its Fourier coefficients are

B̃1
m(t)

∆
=
∑
k∈Z

3mχ[−3−m−1, 3−m−1] (t+ kN) , cn(B̃
1
m) =

sinπn/Ñm

πn/Ñm

,

where χ[a, b](t) is the indicator function.
The N -periodic triadic normalized B-spline of order p is defined via the iterated

circular convolution

B̃p
m(t)

∆
= B̃1

m ⊛ B̃p−1
m (t) =

1

N

∑
n∈Z

(
sin(πn/Ñm)

πn/Ñm

)p

e2πint/N .

Each spline S(t) ∈ pS̃m is represented by

S(t) =

Ñm−1∑
k=0

q[k]B̃p
m

(
t− 3−mk

)
=

1

Ñm

Ñm−1∑
n=0

ξ[n] ζ̃pm[n](t),
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ξ[n] =

Ñm−1∑
k=0

e−2πink/Ñmq[k],

where the exponential splines, which form the orthogonal bases of pS̃m, are

ζ̃pm[n](t)
∆
=

Ñm−1∑
k=0

e2πink/ÑmB̃p
m(t− 3−mk)

= 3m
∑
l∈Z

e2πi(n/N+3ml)t

(
sinπ(n/Ñm + l)

π(n/Ñm + l)

)p

,

n = 0, ..., Ñm − 1. The Ñm -periodic characteristic sequence of the space pS̃m is
(4.1)

ũpm[n]
∆
= ζ̃pm[n](0) =

Ñm−1∑
k=0

e2πink/ÑmB̃p
m(3−mk) = 3m

∑
l∈Z

(
sinπ(n/Ñm + l)

π(n/Ñm + l)

)p

.

The proof Proposition 4.1 is similar to the proof of Proposition 3.1.

Proposition 4.1. The characteristic sequence ũpm[n] of the space pS̃m is calculated
by the application of 3mN−point DFT to the sampled B-spline Bp(t) ∈ pS such
that

ũpm[n] = 3m b̂p[n]m̃ = 3m
Ñm−1∑
k=0

ω−3−mknBp(k).

The spline S(t) ∈ pS̃m, which interpolates an Ñm -periodic signal x = {x[k]}, is
S(k/3m) = x[k], k ∈ Z such that

S(t) =
1

Ñm

Ñm−1∑
n=0

x̂[n]m̃
ũpm[n]

ζ̃pm[n](t), x̂[n]m̃
∆
=

Ñm−1∑
k=0

ω−3−mnkx[k].

4.2. Insertion rule. Calculation of the N -periodic splines of order p at triadic
rational points is based on the following insertion rule:

Triadic periodic spline insertion rule: Assume that f0
∆
=
{
f0[k]

}
, k ∈ Z, is an

N -periodic sequence. For m = 1, 2, . . ., we construct a spline Sm−1(t) ∈ pS̃m−1, on

the grid g̃m−1 ∆
=
{
k/3m−1

}
, k ∈ Z, such that Sm−1

(
k/3m−1

)
= fm−1[k], k ∈ Z.

Then, fm[k]
∆
= Sm−1 (k/3

m) , k ∈ Z.
In other words, in order to refine the data fm−1 from the grid

{
k/3m−1

}
to the

grid {k/3m}, we construct the spline Sm−1(t), which interpolates fm−1 on the grid{
k/3m−1

}
and define fm[3k] = fm−1[k] and fm[3k ± 1] = Sm−1((k ± 1/3)/3m−1),

that are the spline values at points around the interpolation points.
This insertion rule reproduces a spline of any order, which means that Sm(t) ≡

Sm−1(t) ≡ ... ≡ S0(t). Consequently, each refinement step provides the values of
the spline S0(t) at a subsequent set of triadic rational points. The proof of this fact
for splines of arbitrary order is given in Section 4.4.
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4.3. Periodic spline filters for ternary subdivision. The spline S0(t) ∈ pS,
which interpolates the N -periodic sequence f0

∆
=
{
f0[k]

}
(S(k) = f0[k], k ∈ Z), is

represented by

S0 (t) =
1

N

N−1∑
n=0

f̂0[n]

up[n]
ζp[n](t), ζp[n](t) =

∑
l∈Z

e2πi(n/N+l)t

(
sinπ (n/N + l)

π (n/N + l)

)p

.

The DFT of the refined array is
(4.2)

f̂1[n]1̃ = f̂10 [n] + e−2πin/3N f̂11 [n] + e2πin/3N f̂1−1[n],

f̂10 [n]
∆
=

∑N−1
k=0 ω−kn f1[3k] = f̂0[n], f̂1±1[n]

∆
=
∑N−1

k=0 ω−kn f1[3k ± 1].

According to the triadic insertion rule and the shift property (Eq. (2.11)) of the
splines ζp[n](t), we get

f1[3k ± 1] = S0

(
k ± 1

3

)
=

1

N

N−1∑
n=0

f̂0[n]

up[n]
ζp[n]

(
k ± 1

3

)
ζp[n]

(
k ± 1

3

)
= ωkn e±2πin/3N υp±1[n], where

υp±1[n]
∆
= e∓2πin/3N ζp[n]

(
1

3

)
=
∑
l∈Z

e±2πil/3

(
sinπ (n/N + l)

π (n/N + l)

)p

.(4.3)

Consequently,
(4.4)

f1[3k±1] =
1

N

N−1∑
n=0

f̂0[n]

up[n]
ωkn e±2πin/3N υp±1[n] =⇒ f̂1±1[n] = e±2πin/3N υ

p
±1[n]

up[n]
f̂0[n].

By substituting Eqs. (4.3) and (4.4) into Eq. (4.2), we get

(4.5) f̂1[n]1̃ = âp0[n] f̂
0[n], f1[k] =

1

3N

3N−1∑
k=0

ωkn/3 âp0[n] f̂
0[n],

where âp0[n]
∆
=
up[n] + υp1 [n] + υp−1[n]

up[n]
.

Equation (4.5) means that the refined array f1 is derived by filtering the initial
array f0 with the filter ap0, whose frequency response is {âp0[n]}.
Proposition 4.2. The frequency response of the filter ap0 for splines of order p is

âp0[n] = 3−p

(
1 + 2 cos

2πn

3N

)p ũp1[n]

up[n]
, n = 0, ..., 3N − 1,

where the characteristic sequence ũp1[n] is defined in Eq. (4.1).

Proof. Denote A[n]
∆
= up[n] + υp1 [n] + υp−1[n]. Then, âp0[n] = A[n]/up[n]. By com-

bining Eqs. (2.10) and (4.3), we get

A[n] =
∑
l∈Z

(
1 + e2πil/3 + e−2πil/3

)(sinπ (n/N + l)

π (n/N + l)

)p
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=
∑
l∈Z

(
1 + 2 cos

2πl

3

)(
sinπ (n/N + l)

π (n/N + l)

)p

.

Thus, only the terms l = 3ν, ν ∈ Z, in the series remain

A[n] = 3
∑
l∈Z

(
sin 3π (n/3N + l)

3π (n/3N + l)

)p

.

By using the trigonometric identity sin 3α = sinα (1 + 2 cos 2α), we get

A[n] = 31−p
∑
l∈Z

(
sinπ (n/3N + l) (1 + 2 cosπ (2n/3N + 2l)

π (n/2N + l)

)p

= 31−p

(
1 + 2 cos

2πn

3N

)p∑
l∈Z

(
sinπ (n/3N + l)

π (n/3N + l)

)p

=
1

3p

(
1 + 2 cos

2πn

3N

)p

ũp1[n].

□
Corollary 4.3. The DFT of the m-th refined array of splines of order p is
(4.6)

f̂m[n]m̃ = âpm−1[n] f̂
m−1[n]

m̃−1
, âpm−1[n] =

1

3p

(
1 + 2 cos

2πn

Ñm

)p ũpm[n]

ũpm−1[n]
,

where ũpm[n] are defined in Eq. (4.1), Ñm = N 3−m, n = 0, ..., Ñm − 1.

4.4. Computation of periodic splines at triadic rational points. Now we are
in a position to justify the claim about splines restoration of arbitrary order by the
ternary subdivision.

Theorem 4.4. Let S0(t) ∈ pS be an N -periodic spline of order p with nodes on
the grid {k}, k ∈ Z, whose samples are

{
S(k) = f0[k]

}
, k ∈ Z. The sequence

f0
∆
=
{
f0[k]

}
, k ∈ Z, is N -periodic. Then, all the subsequent subdivision steps with

the triadic periodic spline insertion rule reproduce the values of this spline

(4.7) fm[k] = S(k/3m), k ∈ Z, m = 1, 2, ..., .

Proof. From the triadic insertion rule, we have f1[k]
∆
= S0(k/3). The next subdivi-

sion step consists of spline construction S1(t) ∈ pS̃1 on the grid g1 = {k/3}, such
that S1(k/3) = f1[k]. Then, f2[k]

∆
= S1(k/9). We prove that f2[k] = S0(k/9). The

subsequent relations in Eq. (4.7) are derived by a simple induction.
The array f2 is obtained by successive application of the filters ap1 after a

p
0 (Propo-

sition 4.2) to the array f0:

f̂2[n]2̃ = âp1[n] f̂
1[n]1̃ = âp1[n] â

p
0[n] f̂

0[n](4.8)

=
1

32p

(
1 + 2 cos

2πn

9N

)p ũp2[n]

ũp1[n]

(
1 + 2 cos

2πn

3N

)p ũp1[n]

up[n]
f̂0[n] = Ĥ[n]

f̂0[n]

up[n]
,

Ĥ[n]
∆
=

1

32p

(
1 + 2 cos

2πn

9N

)p (
1 + 2 cos

2πn

3N

)p

ũp2[n].(4.9)
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Denote, s
∆
= {s[k] = S0(k/9)} , k ∈ Z. Similarly to Eq.(4.2), the 9N -point DFT

application to s is given by
(4.10)

ŝ[n]2̃ =

9N−1∑
k=0

e−2πink/9Ns[k] = ŝ0(n) +

4∑
l=1

(
e−2πiln/9N ŝl[n] + e2πiln/9N ŝ−l[n]

)
,

where ŝ0(n)
∆
=
∑N−1

k=0 ω
−nkS0 (k) = f̂0(n) and for l = ±1,±2,±3,±4, the following

relations hold:

ŝl[n]
∆
=

N−1∑
k=0

ω−nkS0

(
k +

l

9

)
=

N−1∑
k=0

ω−nk 1

N

N−1∑
ν=0

f̂0[ν]

up[ν]
ζp[ν]

(
k +

l

9

)

=
N−1∑
k=0

ω−nk 1

N

N−1∑
ν=0

ωνk f̂
0[ν]

up[ν]
ζp[ν]

(
l

9

)
=
f̂0[n]

up[n]
e2πiln/9N ῡpl [n],(4.11)

ῡpl [n]
∆
= e−2πiln/9Nζp[n]

(
l

9

)
=
∑
ν∈Z

e2νlπi/9
(
sinπ (n/N + ν)

π (n/N + ν)

)p

.

By substituting Eq. (4.11) into Eq. (4.10), we get

ŝ[n] = f̂0[n]
up[n] +

∑4
l=1

(
ῡpl [n] + ῡp−l[n]

)
up[n]

(4.12)

=
f̂0[n]

up[n]

∑
ν∈Z

(
1 + 2

4∑
l=1

cos
2νlπ

9

)(
sinπ (n/N + ν)

π (n/N + ν)

)p

.

The sum 1 + 2
∑4

l=1 cos 2νlπ/9 = 9 when ν = 9n and zero otherwise. Thus,

ŝ[n]

=
9f̂0[n]

up[n]

∑
ν∈Z

(
sin 9π(n/9N + πν)

9(n/9N + πν)

)p

= 91−p

(
1 + 2 cos

2πn

9N

)p f̂0[n]

up[n]

∑
ν∈Z

(
sin 3π(n/9N + πν)

(n/9N + πν)

)p

= 91−p

(
1 + 2 cos

2πn

9N

)p (
1 + 2 cos

2πn

3N

)p f̂0[n]

up[n]

∑
ν∈Z

(
sinπ(n/9N + πν)

(n/9N + πν)

)p

(4.13)

= 3−2p

(
1 + 2 cos

2πn

9N

)p (
1 + 2 cos

2πn

3N

)p

ũp2[n]
f̂0[n]

up[n]
.

By comparing between Eq. (4.13) and Eqs. (4.8) and (4.9), we see that f̂2[n] =
ŝ[n], n = 0, ..., 9N − 1 and consequently, f2[k] = S(k/9), k ∈ Z. Repeating the
above reasoning with the initial data set f1 instead of f0, we prove that f3[k] =
S1(k 3

−3), and so on. □
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4.5. Computation of periodic splines at triadic rational points: Practical
implementation. It follows from Theorem 4.4 that, once we know the samples{
S(k) = f0[k]

}
, k ∈ Z, of a spline S(t) ∈ pS, its values {S(k 3m)} , k ∈ Z, m =

1, 2, ..., are derived by m successive refinement steps of the initial data f0 and the
filters ap0, a

p
1,...,a

p
m−1, whose frequency responses are given in Eq. (4.6). This process

can be described explicitly. Due to Eq. (4.6), we get

f̂m[n]m̃ =
ũpm[n]

3mp up[n]
f̂0[n]

m∏
l=1

(
1 + 2 cos

2πn

Ñl

)p

.(4.14)

Computation of the values S(k/3m) = fm[k] of the spline S(t) ∈ pS from the
samples S(k) = f0[k] is reduced to the following three steps:

(1) Apply the N−point DFT to the initial data f0 =
{
f0[k]

}
to get f̂0[n] =∑N−1

k=0 ω
−kn f0[k] .

(2) Derive f̂m[n]m̃ from Eq. (4.14) bearing in mind that up[n] and f̂0[n] are
N−periodic sequences, while ũpm[n], which are calculated according to Propo-
sition 4.1, is 3mN−periodic.

(3) Apply the 3mN−point IDFT to the sequence f̂m =
{
f̂m[n]m̃

}
:

(4.15) S(k/3m) = fm[k] =
1

3mN

3m N−1∑
n=0

e−2πikn/3mN f̂m[n]m̃.

4.6. Two-dimensional spline subdivision. The subdivision schemes, which pro-
vide intermediate values for 1D splines, are extended to 2D cases in a natural way.

A two-dimensional N -periodic spline S(x, y)
∆
=
∑N−1

k,n=0 s[k, n]B
p(x − k)Bq(y − n)

from the space p,qS is a 1D spline of order p with respect to x when the variable y
is fixed, and a 1D spline of order q with respect to y when the variable x is fixed.
Therefore, once the grid samples of the spline {S(k, n)} , k, n = 0, ..., N − 1, are
given, we can first apply either a binary (for this p = 2r) or a ternary 1D subdivi-
sion scheme to columns of the array {S(k, n)}, thus producing one of the two arrays
sPm = {S(k/Pm, n)} , k = 0, ..., PmN − 1, n = 0, ..., N − 1, P = 2 or 3. The next
step applies the subdivision algorithm to rows of the array sPm, P = 2 or P = 3,
thus producing one of the following four arrays:{

S(k/Pm, n/Ql)
}
, k = 0, ..., PmN − 1, n = 0, ..., QlN − 1, P = 2

or 3, Q = 2 or 3, m, n ∈ N.

We emphasize that a spline S(x, y) can have different orders with respect to x
and y. The subdivision algorithms and their depth can be different for columns and
rows. In a MATLAB implementation, calculations of periodic splines are accelerated
because basic operations such as the fast Fourier transforms, multiplications and
divisions are applicable to the whole array rather than to separate columns and
rows.
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5. Experiments on upsampling of signals and images

Upsampling of discrete-time signals and digital images is an obvious application
for the 1D and 2D spline subdivision.

5.1. Upsampling of discrete-time signals. If a signal x = {x[k]} , k = 0, ..., N−
1, N = 2j , consists of samples of a smooth function x[k] = f(k/T ), then the
subdivision techniques described in Sections 3 (Eq. (3.13)) and 4 (Eq. (4.14))
enable us to approximate the function on the intermediate points even if the grid
{k/T} is sparse. When the samples are affected by noise, then smoothing splines
do a good restoration job.

Remark 5.1. If the length L of a signal x = {x[k]} to be upsampled is not a
power of 2, then in order to apply the above subdivision schemes, it should be
symmetrically expanded to length N = 2j > L. The upsampling result should be
shrunk accordingly. The same consideration is applied to processing digital images.

Example: Restoration of a noised signal. In this example, the original signal is
a fragment of the chirp function f(t) = sin(1/t), where t ∈ [0.071, 0.971]. This
fragment is displayed in Fig. 5.1. It oscillates with a variable frequency.

Figure 5.1. The chirp function f(t) = sin(1/t)

In the first experiment, the data contains 128 equidistant samples of the function,
which are affected by white noise with STD=0.35. This data was upsampled at ratio
of 1:8 by a binary subdivision with smoothing splines of orders 4, 8 and 12, where
the results are displayed in the top, middle and bottom, respectively, of the left
side of Fig. 5.2. The regularization parameter ρ is derived automatically from Eq.
(2.24). In the second experiment, the data was decimated by a factor of 2, thus, the
initial data consisted of 64 noised samples. The data was upsampled at the ratio of
1:16 by the application of a subdivision with smoothing splines of orders 4, 8 and
12. The results are displayed in the right side of Fig. 5.2.
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Figure 5.2. Left: restoration of the function f(t) = sin(1/t) from
128 noised samples by smoothing splines of order 4 (top), 8 (middle)
and 12 (bottom). Right: restoration from 64 samples. Dotted line
denotes the original function, “pluses” denote the available data.
Solid lines denote the restored splines

We observe that, in spite of the presence of strong noise and sparse sampling,
the original signal was satisfactorily restored. Note that order 4 (cubic) splines best
restore the low-frequency part of the signal, while splines of 12th order restore well
the high-frequency region.

5.2. Upsampling of digital images. Upsampling of an image using 2D interpo-
lating splines increases its resolution. To achieve this, the image pixels are treated
as grid samples of a 2D spline and the initial data array is upsampled by the spline’s
values in internal points, which are derived by the application of either binary (Eq.
(3.13)) or ternary (Eq. (4.14)) subdivision as described in Sections 3.4 and 4.5,
respectively. The 2D subdivision is outlined in Section 4.6. When pixels of the
image are affected by noise, the smoothing splines provide a good approximation.

We illustrate the performance of the spline subdivision schemes by a few exper-
iments with the benchmark images “Lena” and “Barbara”, which are 512 × 512
pixels arrays denoted by L and B, respectively.

The proximity between an approximated image L̃ and the original image L is
evaluated visually and by the Peak-Signal-to-Noise ratio (PSNR)

PSNR
∆
= 10 log10

(
M 2552∑M

k=1(xk − x̃k)2

)
dB

where M is the number of pixels in the image (in our experiments, M = 5122),

{xk}Mk=1 are the original pixels of the image L and {x̃k}Mk=1 are the pixels of the

image L̃.
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Example 1: “Lena” is restored from decimated arrays. In this example, the “Lena”
image is restored after it was decimated by ratios of 2:1 and 4:1 to generate the
data arrays d2 of size 256×256 and d4 of size 128×128. The low-pass anti-aliasing
filtering was not applied to the decimated arrays. The data arrays ds, s = 2, 4 were
interpolated by the even-order splines S2r

s (x, y), s = 2, 4, that is S2r
s (k, n) = ds[k, n].

Then, the original array was restored by the splines values L(k, n) ≈ S2r
2 (k/2, n/2)

and L(k, n) ≈ S2r
4 (k/4, n/4), k, n,= 0, , , , , 511.

The best PSNR was achieved by using subdivision with cubic splines. Figure 5.3
displays the results of this restoration. We observe that the restoration from the
array d2 is quite satisfactory (PSNR=33.28), while the restoration from the array
d4 is somewhat blurred (PSNR=27.25).

Figure 5.3. Left: Decimated data arrays. Top: d2, bottom d4.
Right: The “Lena” image restored by the application of interpolating
cubic splines subdivision from d2 (top) and d4 (bottom)

Example 2: “Lena” restoration from noised decimated arrays. In this example, the
“Lena” image was decimated by factors of 2:1 and 4:1 to generate the data arrays
d2 of size 256 × 256 and d4 of size 128 × 128, respectively. Then, the arrays were
corrupted by a moderate Gaussian noise with STD=10. The data arrays ds, s =
2, 4, were approximated by the even-order smoothing splines S2r

ρ,s(x, y), s = 2, 4,

such that S2r
ρ,s(k, n) ≈ ds[k, n], where the optimal values of the parameter ρ were

derived from Eq. (2.31). Then, the original array was restored by the splines
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values L(k, n) ≈ S2r
ρ,2(k/2, n/2) and L(k, n) ≈ S2r

ρ,4(k/4, n/4), k, n,= 0, . . . , 511. As
before, the best PSNR was produced by a subdivision with cubic splines. Figure
5.4 displays the results of this restoration. We observe that noise is suppressed in
the restored images. Restoration from the array d2 produces a satisfactory quality
(PSNR=29.19), while the restoration from the array d4 is blurred (PSNR=26.01).

Figure 5.4. Left: Decimated noised images. Top: d2, bottom d4

data arrays. Right: The “Lena” image restored by the binary sub-
division using the cubic smoothing splines from d2 (top) and from
d4 (bottom)

Example 3: Upsampling the “Barbara” image. In this example, we upsample the
“Barbara” image of size 512×512. It is given by the array B of pixels. We used the
2D spline S7,8(x, y),, which interpolates the initial data, that is S7,8(k, n) = B[k, n].
The spline S7,8(x, y) is of order 7 in the vertical direction and of order 8 in the
horizontal direction. By the application of 3 steps of the ternary subdivision in the
vertical direction and 4 steps of the binary subdivision in the horizontal direction,

we generate the array S
∆
=
{
S7,8(k/27, n/16)

}
, where k = 0, . . . , 13823 and n =

0, . . . , 8191. Thus, the array S is upsampled at rate 1:27 in the vertical direction
and at rate of 1:16 in the horizontal direction. The array S is used for the upsampled
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image. The results are displayed in Fig. 5.5. We see that upsampling significantly
increases the image resolution.

Figure 5.5. Left: The original “Barbara” image in two formats.
Top left: The whole image. Bottom left: A fragment of the image.
Right: The upsampled image after the application of the interpolat-
ing splines S7,8(x, y) using three steps of the ternary subdivision in
the vertical direction and four steps of the binary subdivision in the
horizontal direction

Example 4: Upsampling the “Barbara” image that was corrupted by noise. In
this example, the pixels array B is corrupted by a moderate Gaussian noise with
STD=10. The image was upsampled by using the 2D bicubic smoothing spline
S4,4
ρ (x, y), which approximates the original noised data, by S4,4

ρ (k, n) ≈ B[k, n].
The optimal value of the parameter ρ was derived from Eq. (2.31). By the appli-
cation of two steps of the ternary subdivision in both direction, we generated the

array Sρ
∆
=
{
S4,4
ρ (k/9, n/9)

}
, k, n = 0, . . . , 4607. Thus, the array Sρ is upsampled

at rate of 1:9 in the vertical and horizontal directions. The array Sρ is used as the
upsampled image. The upsampled result is displayed in Fig. 5.6. We observe that
the upsampling suppressed the noise while increasing the image resolution.
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Figure 5.6. Left: The noised “Barbara” image in two formats. Top
left: The original image. Bottom left: A fragment from the image.
Right: The upsampled image by using two steps of the ternary sub-
division of the the smoothing splines S4,4

ρ (x, y) in each direction.

Comments. The above examples demonstrate that the parameterized smoothing
splines, where the regularization parameter ρ is derived automatically from Eqs.
(2.24) and (2.31), efficiently suppress broad-band noise. Their mode of operation
on non-decimated signals and images consists of an adaptive low-pass filtering of
the input data. The filters pass-band, which are determined by the parameter ρ,
depend on the signal-to-noise ratio of the available data. Suppression of strong
noise is achieved by narrowing the pass-band. A side effect is that fine details of
the objects become blurred. A possible way to retain fine detail in the image while
suppressing noise is by the application of wavelet transforms followed by adaptive
thresholding of the transform coefficients [7–9]. Another approach is to use different
ρ values in different frequency domains of images. This approach, which is based
on utilizing spline wavelet packets, is discussed in [5].
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5.3. The Prolate Spheroidal Wave Functions. We now use the Prolate Spher-
oidal Wave Functions (PSWFs) for rate change and compare its performance to
splines. In this section, we review the required material for the PSWFs that first
appeared in [21].
Given a positive number c, the operator Fc : L

2 [−1, 1] → L2 [−1, 1] is defined such
that

Fc [ψ] (x) =

∫ 1

−1
ψ(t)eicxtdt.(5.1)

Since Fc is compact, it has a discrete set of eigenvalues λ0, λ1, . . . , λn, . . . . Assume
that they are ordered in a non-increasing order. Let ψn be the eigenfunction that
corresponds to λn. For all integer n ≥ 0 and for all real −1 ≤ x ≤ 1, λnψn (x) =∫ 1
−1 ψn(t)e

icxtdt holds.

We assume that the eigenvectors are normalized to length 1, that is ∥ψn∥L2[−1,1] =
1 (as in [16, 17, 22]). Theorem 5.2 describes the eigenvalues and the eigenfunctions
of Fc.

Theorem 5.2 ( [21]). Suppose that c > 0 is a real number and the operator Fc

is defined by Eq. (5.1). Then, the eigenfunctions ψ0, ψ1, . . . of Fc are purely real,
orthonormal and complete in L2 [−1, 1]. The even-numbered functions are even and,
the odd-numbered ones are odd. Each function ψn has exactly n simple roots in
(−1, 1). All the eigenvalues λn of Fc are non-zero and simple. The even-numbered
ones are purely real and the odd-numbered ones are purely imaginary. In particular,
λn = in |λn|.

The operator Qc = c
2πF

∗
c Fc has the same eigenfunctions as Fc and Qc [ψ] (x) =

1
π

∫ 1
−1

sin(c(x−t))
x−t ψ(t)dt where Qc[ψ] can be thought of as the output from a low pass

filter and its eigenvalues are µn = |λn|2. This intuitively links between PSWFs
and band limited functions in addition to being the eigenfunctions of the Fourier
transform. The eigenvalues equation of Qc is given by:

(5.2)

∫ 1

−1
ψn(x)

sin c(t− x)

π(t− x)
dx = µnψn(t).

The solutions of Eq. (5.2) are denoted by ψ0(x), ψ1(x), ψ2(x), . . . with the corre-
sponding eigenvalues µ0, µ1, µ2 . . .. The eigenvalues are ordered such that µ0 >
µ1 > µ2 . . .. Note that the PSWFs are the eigenfunctions of an ideal low pass filter
operator and they form a basis for all bandlimited functions. We will use their basis
property in the interpolation procedure. The ability of the PSWFs to approximate
accurately bandlimited functions has been recently investigated in [20].

Figure 5.7 shows the fast decay of the eigenvalues of Fc (in absolute value).
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Figure 5.7. Eigenvalues of Fc in absolute value for c = 10

5.3.1. Problem Setup. Assume we are given a set of points {xi}Ni=1 on the interval
[−1, 1] taken from a bandlimited function f(x) with bandwidth c and an additional
point z. We want to compute the weights {hi}Ni=1 that approximate f(z) such that

f̃(z) =
∑N

i=1 hif(xi). Moreover, we are looking for a solution that is independent of
the actual value of the function f(x) so it can be applied to any bandlimited function
with bandwidth c. The weights computation can be done by approximating a basis
for the bandlimited functions. If the basis functions are approximated then we
can find weights applicable to all the bandlimited functions (bandwidth c). Given
bandwidth c, a set of points {xi}Ni=1 and a point z, we can solve the following least-

squares (LS) problem by minimizing ϵ = ∥eicωz −
∑N

i=1 hie
icωxi∥22 to compute the

weights {hi}Ni=1.
Complex exponents are taken as basis functions since they are the eigenfunctions

of Linear-Time-Invariant (LTI) systems. By computing the gradient of ϵ(h) and
setting it to zero, we get the following set of linear equations: ∂ϵ

∂hm
= ⟨eicωz −∑N

i=1 hie
icωxi , hme

icωxm⟩ = 0, ⟨eicωz, eicωxm⟩ −
∑N

i=1 hi⟨eicωxi , eicωxm⟩ = 0 to obtain
for m = 1, ..., N

(5.3)
sin c(z − xm)

c(z − xm)
−

N∑
i=1

hi
sin c(xi − xm)

c(xi − xm)
= 0.

Equation (5.3) represents an N × N system of equations Ah = b where amn =
sin c(xm−xn)
c(xm−xn)

and bn = sin c(z−xn)
c(z−xn)

. This system consists of sinc functions, which are

known to be optimal for the interpolation of bandlimited functions. In practice,
however, this method (Eq. 5.3) is far from being optimal due to the rapid growth
of the condition number of A. Hence, even for small number of samples and a low
frequency signal the condition number is large.

5.3.2. Interpolation using PSWFs. Since f(x) is bandlimited it can be represented
as a linear combination of PSWFs f(x) = c1ψ1(x) + c2ψ2(x) + . . .+ cnψn(x) + . . ..
It takes a series of approximated length M = O(c + log(c)) to achieve a good
approximation of the order λM+1 [20]. The eigenvalues decay as a function of c
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such that the first c+ log(c) eigenvalues are of order 1 and the others are very close
to zero (Fig. 5.7). Since f can be approximated with PSWFs, it is possible to use the
same basis approach as in Section 5.3.1 and interpolates the values of the PSWFs by
finding the weights. It is known that sinc functions are optimal. Equation 5.3 can
be reformulated in terms of PSWFs by maintaining the theoretical optimality. The

matrices A = {amn} = sin c(xm−xn)
c(xm−xn)

and b = {bn} = sin c(z−xn)
c(z−xn)

can be factorized

using a new matrix C, which is not necessarily square, such that A = CTC and

b = CTb̃. By using the identity sin c(xm−xn)
c(xm−xn)

=
∑

j |λj |2ψc
j(xm)ψc

j(xn), we get that

the matrix C is cmn = |λm|ψm(xn). By rewriting Eq. (5.3) in terms of the new

matrix, we get CTCh = CTb̃ which is the weighted LS solution of

(5.4) Ch = b̃

where b̃n = ψn(xn). Explicitly, Eq. 5.4 can be written as:

|λ1|ψ1(z) = c1|λ1|ψ1(x1) + ...+ cN |λ1|ψ1(xN )

|λ2|ψ2(z) = c1|λ2|ψ2(x1) + ...+ cN |λ2|ψ2(xN )

...

|λM |ψM (z) = c1|λM |ψM (x1) + ...+ cN |λM |ψM (xN ).

Equation 5.4 has the same (least-squares) solution as Eq. (5.3). Its condition
number is exactly the square root of the matrix in Eq. (5.3). It is shown in [19]
that the obtained solution of Eq. (5.4) is very accurate despite the large condition
number. In short, given the SVD UΣVT of C, then, the singular values of C
are almost identical to the absolute values of the eigenvalues λi such that σi(C) =
O(|λi|) (see Fig. 5.8) leading to numerically stable equations as the left hand side
is proportional to the right hand side which is dominated by |λi|. This “balance”
provides an accurate numerical solution. A more rigorous analysis is also required
to analyze the matrix U of the SVD as it can theoretically reorder the equations.
A complete analysis appears in [19].

Figure 5.8. The singular values of C vs |λi|
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Figure 5.8 shows the singular values of the matrix C with respect to the PSWF’s
eigenvalues which indicate that the equation can be solved accurately despite the
large condition number.

Figure 5.9. Error comparison between Sinc and Prolate methods

Equation 5.4 was tested on a bandlimited function f(x) = cos(2πfx) where the
number of samples is N = 2f . An even number of equispaced samples were taken
on the interval [−1, 1] and the interpolation goal was to reconstruct f at x = 0.
Figure 5.9 compares between the numerical error obtained using sinc functions with
the error obtained using PSWFs under identical conditions. Clearly, the numerical
error obtained using PSWFs is smaller by a factor 108.

The interpolation-based PSWF is achieved by the application of the interpolation
scheme to each dimension separately. By assuming that both dimensions have the
same bandwidth (same c is used) then the weights can be computed only once.

We now compare between the performances (three criteria) of splines of order 8
and PSWFs on digital images: visual quality (see Fig. 5.10), achieved PSNR and
computational time (see both in Table 5.1).

We see that the splines produce better quality with less artifacts although the
achieved PSNR (Table 5.1) are very similar.

Upsampling PSWF PSNR Spline PSNR PSWF Time [sec] Spline Time [sec]
2 28.7 29.2 24 0.05
4 24.7 24.4 41 0.2
8 22.1 21.8 80 0.8
16 20.5 20 150 3.4

Table 5.1. Performance comparison on the achieved PSNRs and
on the processing time between splines of order 8 and prolates for
the usampling by factor 2, 4, 8 and 16 of the source image in Fig.
5.10.
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Figure 5.10. Comparison between the upsampling performance by
factors 2,8 and 16 of spline of order 8 (left column) and prolate with
c = 280 (right column)
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Conclusions

The advantages of the smoothing splines is in the simplicity of their implemen-
tation and in their automatic adaptation to the available data.

The subdivision schemes in this paper, which reduce splines computation of any
order, are built from one pass application of the forward FFT and from one pass
application of the inverse FFT. Additional adaptation abilities stem from the free-
dom of choice of splines involved in the upsampling process. Surely, the field of
applications of the subdivision algorithms is not confined to upsampling signals and
images. The most common application is the geometric design/modeling (see [12],
for example).
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