
Ayesha Imran

SDN Controllers Security Issues

MS Thesis document in Web Intelligence and Service Engineering

November 9, 2017

University of Jyväskylä

Department of Mathematical Information Technology



Author: Ayesha Imran

Contact information: ayesha.a.imran@student.jyu.fi

Supervisors: Prof. Timo Hämäläinen, and Dr. Muhammad Zeeshan Asghar

Title: SDN Controllers Security Issues

Työn nimi: SDN-ohjaimet Turvallisuusongelmat

Project: MS Thesis document

Study line: MS-WISE

Page count: 62+0

Abstract: Software-Defined Networking (SDN) is essentially varying the way we design

and manage networks, which makes a communication network programmable. In SDN, a

logically centralized controller has straight control over the packet-handling functions of the

network switches, using a standard, open API (Application Programming Interface) such as

OpenFlow. OpenFlow is a broadly used protocol for software-defined networks (SDNs) that

presents a new model in which the control plane is inattentive from the forwarding plane

for the network devices. In SDNapproach centralized entities called "controllers" perform

like network operating systems run dissimilar applications that accomplish and control the

network via well-defined APIs. SDN permits network engineers and administrators to re-

ply rapidly to the changing business requirements by determining traffic from the central

controller deprived of having to touch the physical switches. They use software to rank,

redirect or block traffic globally or in varying degrees down to individual packet levels. In

short, SDN can deal with the more protected network if it is properly secured. SDN has the

ability to transform the network industry. It is observed that currently enterprises requiring

SDN deployment demand, multiple controllers that lead security challenges associated with

SDN Controller design. In this thesis, a comprehensive literature review concerning SDN

controllers security has been done. We demonstrate a comprehensive studies on SDN by

clarifying its concept, the OpenFlow protocol architecture and how it works, general benefits

and applications of SDN. We also present a discussion on SDN controllers and several threat

i



vectors which may enable for the exploitation of the vulnerabilities of SDN Controllers. This

study also focuses on designing a dependable Controller platform including the requirements

for a secure, resilient, and robust SDN Controller. The thesis is finalized by discussing that

how we can secure SDN controllers by making recommendations for security improvements

for future SDN Controllers. The discussion highlights the existing gap between the actual

security level of the current SDN Controller design and the potential security solutions.

Keywords: SDN, SDN Controllers, DoS attacks, Openflow Controller

Suomenkielinen tiivistelmä: Ohjelmistokohtainen verkkoyhteys (SDN) on olennaisesti eri

tavoin suunniteltu ja hallinnoitu verkkoja, mikä tekee viestintäverkon ohjelmoitavaksi. SDN:

ssä loogisesti keskitetyllä ohjaimella on suorat käskyt verkkokytkinten pakettikäsittelytoimin-

noista käyttäen standardia avointa API: ta (Application Programming Interface), kuten Open-

Flow. OpenFlow on yleisesti käytetty protokolla ohjelmistoverkkoihin (SDN), jotka esit-

televät uuden mallin, jossa ohjaustaso ei huomioi verkkolaitteiden välitystasoa. SDNapproach-

keskusyksiköissä, joita kutsutaan "ohjaimiksi", suorittavat samankaltaiset verkko-käyttöjärjestelmät

käyttävät erilaisia sovelluksia, jotka suorittavat verkon ja hallitsevat sitä hyvin määritelty-

jen sovellusrajapintojen kautta. SDN sallii verkkoinsinöörit ja ylläpitäjät vastaamaan no-

peasti muuttuviin liiketoiminnan vaatimuksiin määrittämällä liikenteen keskusohjaimelta,

joka ei ole joutunut koskettamaan fyysisiä kytkimiä. He käyttävät ohjelmistoja sijoitta-

maan, ohjaamaan tai estämään liikennettä maailmanlaajuisesti tai vaihtelevasti yksittäis-

ten pakettitasojen alapuolella. Lyhyesti sanottuna SDN voi hoitaa suojatun verkon, jos

se on asianmukaisesti suojattu. SDN pystyy muuttamaan verkkoalalla. On havaittavissa,

että nykyään yritykset, jotka vaativat SDN: n käyttöönottoa, tarvitsevat useita ohjaimia,

jotka johtavat SDN Controller -suunnitteluun liittyviin turvallisuusongelmiin. Tässä työssä

on tehty kattava kirjallisuuskatsaus SDN-ohjainten turvallisuudesta. Esittelemme kattavia

tutkimuksia SDN: stä selkeyttämällä sen käsitettä, OpenFlow-protokollaarkkitehtuuria ja sen

toimivuutta, SDN: n yleisiä hyötyjä ja sovelluksia. Esittelemme myös keskustelun SDN-

ohjaimista ja useista uhkaavektoreista, jotka voivat mahdollistaa haavoittuvuuksien hyväk-

sikäytön SDN-ohjaimia. Tämä tutkimus keskittyy myös luotettavan ohjainlaitteen suunnit-

teluun, joka sisältää turvallisen, joustavan ja kestävän SDN-ohjaimen vaatimukset. Opin-

näytetyö viimeistellään keskustelemalla siitä, miten voimme turvata SDN-ohjaimet tekemällä

ii



suosituksia turvallisuuden parantamiseksi tuleville SDN-ohjaimille. Keskustelussa korostuu

nykyisen SDN-ohjaimen todellisen suojaustason ja mahdollisten tietoturvaratkaisujen väli-

nen ero.

Avainsanat: SDN, SDN-ohjaimet, DoS-hyökkäykset, Openflow-ohjain

iii



Preface

I am grateful to Allah Almighty, the omnipotent, the most merciful and beneficent. His

blessings enable me to achieve my goal. Best of praises for the entire messenger and espe-

cially the last messenger Holy Prophet Hazrat Muhammad (P.B.U.H) who is always torch of

guidance and knowledge for humanity. Special and profound thanks to Pakistan and Finland

as a country whom I love from the depth of my heart.

I have a reverence and admiration for my supervisor Prof. Timo Hämäläinen. I am highly

indebted for his moral support, patience and enable guidance all through the study.

Special thanks to Dr. Muhammad Zeeshan Asghar, who is my Co-supervisor. It was his

efforts that I am able to successfully complete research work. He helped and motivated me a

lot during my research work.

In my personal life, I would like to express my great feelings of emotions for my grandpar-

ents and for my Uncles and Aunt. Their infallible love and support have always been my

strength.

I feel at the loss of words to express my thanks to my parents Muhammad Zafar and Alam

Khatoon, who work so hard that life becomes so easy and pleasant for me without their

precious efforts, prayers, moral, spiritual, and financial support it would not be possible for

me to produce this piece of work. Their patience and sacrifice will remain my inspiration

throughout my life. I feel a deep sense of gratitude for my sisters Sadia and Bushra for their

untiring help and guidance throughout my studies. For supporting me throughout writing

this thesis and my life in general. Without their help, I would not have been able to complete

much of what I have done and become who I am.

A creative energy in my soul cannot be resisted like a storm when my caring, loving family

evokes me to devote myself to my planned schemes and ensure me to a clear path before

me. In the end, I would like to say thanks to my other family members and friends for their

support and encouragement.

Jyväskylä, November 9, 2017

AYESHA IMRAN

iv



Glossary

SDN controller The Software Defined Network Controllers is essentially the

“brain” of the network (Yoon and Kim 2015).It manage the

flow-control to the routers or switches through the Southbound

AIPs and the application the business logic through the north-

bound APIs (Yoon and Kim 2015).

OVSDB The Open Virtual Switch Database is management protocol

which supports the communication between the network de-

vices in SDN system. This Protocol guides how the SDN Con-

trollers and the network devices exchange statistical and con-

trol information (Bittman et al. 2013).

i2rs The Interface to the Routing System developed by the Internet

Engineering Task Force (IETF) with the objective of offering

an efficient routing operation. The design of the i2rs architec-

ture is mainly to enhance the network control and allow appli-

cations to build on top of the system (Bittman et al. 2013).

Ryu Ryu is an Open Source SDN Controller which is designed to

provide various software components for use in SDN appli-

cations. The Ryu OpenFlow Controller supports the creation

of new networks management and controlling of applications.

According to (eg. “Ryu Controller” 2017).

NBI A North Bound Interface (NBI) can be called as a boundary be-

tween the controller and the application layer. It supports most

of the application layer protocols for interactions i.e. HTTPS,

SFTP etc.

SBI The South Bound Interface (SBI) is responsible for the com-

munication between the controller and the underneath switches.SBI

integration is also supported by Simple Network Management

Protocol (SNMP), Command Line Interface (CLI), etc. (Ar-

bettu et al. 2016).

v



List of Figures
Figure 1. OpenFlow protocol communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 2. SDN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 3. The three layers in SDN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. Three main parts of Openflow Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. OpenFlow Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 6. Example of OpenFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 7. The control path is moved to an external controller by the OpenFlow Protocol . . 18
Figure 8. i2rs and OpenFlow Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 9. Interaction between i2rs components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 10. OpenDaylight Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 11. The use of High-Level OpenContrail SDN Controller in combination with

OpenStack and Containers in Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 12. The working of Floodlight Controller in a SDN-environment . . . . . . . . . . . . . . . . . . . 29
Figure 13. How the Ryu OpenFlow Controller fits in SDN Environment . . . . . . . . . . . . . . . . . . 30
Figure 14. FlowVisor resides between the underlying software and the physical hard-

ware which it controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 15. SDN Main Threat Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 16. Secure and Dependable SDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



Contents
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 SDN CONCEPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Three layers in SDN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Northbound API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Southbound API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 OpenFlow protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 OpenFlow Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.3 Flow and group tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.4 Flow types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 SDN Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 SDN CONTROLLERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 Overview of SDN Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 SDN Controller Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 The OpenFlow Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 The Open Virtual Switch Database (OVSDB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Interface to the Routing System (i2rs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 OF-Config and Netconf Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Open Source SDN Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 OpenDaylight Open-Source SDN Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 OpenContrail SDN Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Floodlight Open SDN Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Ryu OpenFlow Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.3 FlowVisor OpenFlow Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 SECURING SDN CONTROLLERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Threat Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Faked or forged traffic flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Attacks on vulnerabilities in switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 Attacks on control plane communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.4 Attack on Controller vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.5 Lack of mechanisms for ensuring security between the management

applications and Controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.6 Attacks on vulnerabilities in administrative stations . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Secure Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 Control Process (Application) Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Implementation of Policy Conflict Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



4.3.3 Multiple Controller Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.4 Secure Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Secure Controller Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.1 Secure Control Layer Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.2 GUI/REST API Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Controller Security Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5.1 IDS/IPS Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5.2 Authentication and Authorization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5.3 Resource Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Improving the Robustness of a Secure and Dependable SDN . . . . . . . . . . . . . . . . . . 42
4.6.1 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6.2 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6.3 Self-healing Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6.4 Dynamic device association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6.5 Trust between Controllers and Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6.6 Trust between controllers and application software . . . . . . . . . . . . . . . . . . . . . . . 45
4.6.7 Security domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 Security Requirements for SDN Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.8 Recommendations for Future security improvements on SDN Controllers . . . . 46

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

viii



1 Introduction

Computer networks are designed to build from a large number of network devices such as

routers, switches and various types of middleboxes. Meaning that the devices with many

complex protocols implemented on them which control the traffic for other purposes than

packet forwarding, for instance a firewall. Network operators are responsible for designing

the strategies to deal with a broad range of network events and applications. Though adapting

to changing network conditions they perform the manual transformation of these high level-

strategies into low-level configuration commands. Usually, they have a very restricted access

to the tools to complete these very difficult tasks.

Thus, the modification of network management and performance is relatively challenging

and thus error-prone. The reason that the network devices are generally vertically-integrated

black boxes worsens the challenge network operators and administrators face.

One more unbeatable challenge network consultants and scholars face has been stated as

“Internet ossification”. The reason is that its massive deployment base and the fact it is con-

sidered part of our society’s critical infrastructure. Internet has become enormously prob-

lematic to progress both in terms of its physical infrastructure as well as its protocols and

performance. Nevertheless, as current and evolving Internet applications and services be-

come progressively more complex and demanding, it is imperative that the Internet be able

to progress to address these new challenges.

The awareness of “programmable networks” has been proposed as a way to simplify network

development. In particular, Software called SDN (Nunes et al. 2014).

A software-defined network (SDN) is a new networking paradigm that has come up with new

opportunities for network enthusiasts to experiment and organize advanced ways of network

management and to enthusiastically take control of packet forwarding in their network. It

gives the hope to change the limitations of current network infrastructures.

The concept of this is based on splitting the network intelligence out of the packet switching

device and putting it into a logically centralized controller. The forwarding decisions are

1



made by the controllers, which are located into the switches via standard protocols, like

OpenFlow(Lara, Kolasani, and Ramamurthy 2014) .

OpenFlow is a standard for a communications protocol that enables the control plane to in-

teract with the forwarding plane. Keeping in mind that OpenFlow is not the only protocol

available or in development for SDN. OpenFlow is widely used in implementation architec-

ture of SDN.

Figure 1. OpenFlow protocol communication

Software Defined Networking (SDN) is a new architecture thathas been aimed to allow more

agile and cost-effective networks. It allows dynamic reconfiguration of the network by taking

a new methodology to the network architecture.

The SDN architecture could be generally decomposed into three main layers (Fig. 1)

• Data Plane

• Control Plane

• Application Plane

Let’s consider the layers from bottom to top. Data plane is the bottom most layer of SDN

architecture, this layer deals with the implementation of data-path. It comprises of switches,

which get flow rules from higher layers as an instruction which will be continued in the

switches flow table. In some cases, if the received packet does not match any entry in the

2



flow table, the switch is responsible to forward that packet to the controller for a decision.

The middle layer is the control plane is responsible or the implementation of the control-path

of a legacy network. This is the most critical layer of an SDN architecture which accepts the

traffic tasks i.e. traffic engineering, traffic shaping, and network management. The First

layer is the application layer with the help of a controller this layer is responsible for the

customization of packet forwarding, policy management, user management, and Quality of

Service (QoS). In SDN architecture all of the network functions and monitoring tools are

usually parts of the application layer.

There are two protocols which are used to help in the communication between different

layers(Fig. 2)

Figure 2. SDN Architecture

• A North Bound Interface (NBI) can be called as a boundary between the controller and

the application layer. It supports most of the application layer protocols for interactions

i.e. HTTPS, SFTP etc.

• The South Bound Interface (SBI) is responsible for the communication between the

controller and the underneath switches, OpenFlow is being widely used as a SBI pro-

tocol. SBI integration is also supported by Simple Network Management Protocol

(SNMP), Command Line Interface (CLI), etc. (Arbettu et al. 2016)

It deals with cloud and network engineers and administrators to answer promptly to chang-

ing business requirements through a centralized control support. It includes multiplekinds of

3



network technologies which are aimed to make the network more easy and agile to support

the virtualized server and storage structure of the modern data center and it was formerly

defined an approach to designing, building, and managing networks that separates the net-

work’s control (“Software-Defined-Networking” 2017).

1.1 Motivation

Traditional networks merge the control and data planes on a physical device, which char-

acteristically consists of exclusive hardware and software. Software-defined networks bring

the feature to the control plane out to a SDN controller. SDN controller uses a protocol

such as OpenFlow to control switches, which are responsible for handling the data plane.

Considering a security perspective, this division of responsibility has both advantages and

disadvantages. The ability to easily separate the control plane network from the production

data network is an obvious advantage. The SDN controller’s has the capability to control

complete network makes it a very high value target, which is a possible disadvantage com-

pared to a traditional network with a more distributed control plane. Moreover, the control

plane administration interfaces wide-open by the SDN controller, it has another attack sur-

face: the data plane of the switches it manages. When an OpenFlow switch come across a

packet that does not match any forwarding rules, it passes this packet to the controller for

instruction. Thus, it is very easy for an attacker who is simply able to send data through an

SDN switch to exploit vulnerability on the controller.

1.2 Research Objectives

The goal of this thesis is make a a comprehensive literature review concerning SDN con-

trollers security. To meet these goals, the research aims to answer the following research

questions:

• Why SDN is important in today’s modern datacenters?

• What type of issues and challenges have in SDN Controllers security?

• How the design of a dependable Controller platform can be improved?

• How to enhance the security of future SDN Controllers?

4



• What are the existing gap between the actual security level of the current SDN Con-

troller design and the potential security solutions?

1.3 Thesis Outline

The structure is as follows, Chapter 2 clarifies the SDN concept, the OpenFlow protocol

architecture and how it works, general benefits and applications of SDN. Chapter 3 discusses

the SDN controllers. Chapter 4 is about securing SDN controllers. Finalized by Chapter 5,

which discusses how we can secure SDN controllers and then Chapter 5 concludes this thesis.

5



2 SDN Concept

Software-defined networking (SDN) is a methodology in computer networks, which allows

the controlling of the network and the improvement of new network functions. Instead of

managing each network device separately through a vendor-specific interface, in SDN the

management of the network can be centralized to a specific SDN controller. This gives new

opportunities for designing computer networks and makes the administration easier than

before.

Figure 3. The three layers in SDN architecture

The major difference between SDN and the earlier approaches is that a software component

running on a server or a CPU is added to the architecture of the network. The software

component in SDN is responsible for the control plane of the network. That’s the reason

why we say that SDN decouples the control and data planes, as this difference was not as

clear in previous approaches.

One important characteristic of SDN is its capability to provide a network wide abstraction.

Keller et al. (Keller and Rexford 2010) discuss the idea of the “platform as a service” model

for networking. According to the authors, it is a common trend to decouple the infrastructure

management from the service management. In this model, the underlying physical network

and the topology are hidden to the user. Instead, the abstraction presented to the user is a

6



single router. According to them, the customer is mostly interested in being able to configure

policies and defining how packets are handled. We will see during the rest of this survey that

a large number of publications aim at hiding the complexity of the network and providing an

easier way to configure a service. Using names instead of IP addresses or high level policies

instead of access control configuration files are examples of this abstraction.

2.1 Three layers in SDN architecture

The concept of SDN (shown in Fig 3 ) is to detached the control layer and merge it to one

single point of network which means that every single network device need only take care

of data layer and move data packets from one point to another based on the forwarding

decisions made by the SDN controller.

Therefore every switch is controlled by one specific controller through application program-

ming interface (API) and the controller is directed with application layer SDN applications.

• Infrastructure layer: All the hardware exists and is connected physically, in this

layer. Software run on these hardware devices which provide a control data plane

interface (Southbound API) which is used to communicate with the upper level.

• Control layer: This is the most important layer in SDN architecture. It has a controller

which communicates to all the network devices in the infrastructure and it saves track

of the topology. During the exchange of information of the network state with upper

layer applications (through (Northbound API), the controller makes the commands

understandable to the network devices to have corresponding and desired network be-

havior.

• Application layer: All features, services and policies are defined in this layer. In-

formation of the network devices is requested by the applications and the topology

in order to act upon it. According to the changes in the network these applications

can create features end-to-end and make big picture decisions. As soon as the net-

work topology, feature, or policy requirements changes, applications have the control

to change dynamically the network behavior from one single point.

There are Application Programming Interfaces (APIs) between these layers, which provide

7



the important communication tools between the layers.

2.2 Northbound API

The Northbound API is provided by the controller and the applications have to manage

their communication to the controller through it. This is a technique to manage the con-

troller and the whole SDN network. Northbound API is generally implemented using restful

API (representational state transfer); by this we can easily manage the controller with basic

HTTP-methods like POST, GET, PUT and DELETE.

In SDN, the northbound API interface on the controller enables applications and the overall

management system to program the network and request services from it. This application

tier often includes global automation and data management applications, as well as providing

basic network functions such as data path computation, routing, and security. Currently, no

formalized standards have been ratified for northbound APIs, with several dozen open and

proprietary protocols being developed using different northbound APIs.

The lack of a standard API is likely due to the varied nature of applications sitting above the

controller, which can include managing cloud computing systems, network virtualization

schemes, and other disparate or specialized functions. Nevertheless, work on open north-

bound APIs is being done for specific vertical applications.

OpenStack, a cloud computing effort backed by Arista Networks, Big Switch Networks, Bro-

cade, VMware, and other SDN vendors, has developed the Quantum API, which is a vendor-

agnostic API for defining logical networks and related network-based services for cloud-

based systems. Several vendors have developed plugins for Quantum, which has helped it

to become the default networking API for OpenStack, one of the largest open source cloud

management platforms (Kirkpatrick 2013).

2.3 Southbound API

The Southbound API is the communication between the controller and the network devices.

This environment is centralized to SDN controller and switches are managed by the con-

8



troller through southbound API.

The controller, view the network and it is configuring necessary flows to every switch under

the controller. Switches will keep up flow tables which tell where to forward packets. In case

if the switch can’t make decision based on beforehand programmed flows, it will implement

the configured default action that can be for example sending the packet to the controller.

Though not explicitly required by SDN, OpenFlow is a protocol often used as the south-

bound API that defines a set of open commands for data forwarding. These commands allow

routers to discover the network’s topology and define the behavior of physical and virtual

switches, based on application requests sent via the northbound APIs. Note, however, that

while commonly used in SDN architectures, OpenFlow is not a requirement of SDN, and

organizations may opt to use other types of southbound APIs for the control of switches and

devices.

According to Dan Pitt, executive director of the Open Networking Foundation, a trade or-

ganization working to promote software-defined networking and the use of the OpenFlow

protocol, the open protocol can assist organizations in scaling and reconfiguring their net-

works, while supporting the growing trend of network virtualization.

“The perpetuation of manual configuration through command-line interfaces has long held

networking back from the advances in virtualization enjoyed by the computing world, and

has led to high operating costs, long delays in updating networks to meet business needs,

and the introduction of errors,” Pitt says. “Eliminating the need to tie applications to specific

network details like ports and addresses makes it possible to evolve the network’s physical

aspects without the delay and cost of both rewriting the applications and manually configur-

ing the network devices”(Arbettu et al. 2016).

2.4 OpenFlow protocol

2.4.1 Overview

OpenFlow is widely used protocol for software-defined networks (SDNs) that presents a new

model in which the control plane is abstracted from the forwarding plane for the network

9



devices. This approach varies from the conventional networking architecture, where both

planes exist in on the same networking device. In centralized SDN approach, main entities

are called as "controllers" which act like network operating systems run different applications

that cope and control the network via well-defined APIs. The forwarding plane in SDN

architecture is OpenFlow switch that consists of tables of packet handling rules. Traffic

passing the switch is compared against these rules and a match – action method is applied to

the traffic. Depending on the rules installed by a controller application, an OpenFlow switch

can act as a router, a switch, or a middlebox without much caring about what kind of vendor

to use in the network. In Data centers networking is one of the most powerful applications

that presented effective integration with OpenFlow protocol by making the network more

reliable to the speedily expanding number of virtual machines. On the other hand the growing

traffic in the data centers, the need for high controllers performance increases.

In mid-2000, the numerous researchers in the scope of Internet technologies have begun to

show greater interest in large networks which are proficient of performing tests and trying out

new technologies and protocols. NFS (National Science Foundation) have established GENI

project (Global Environment Networking Innovations). Essential architecture for creating

new solutions in numerous fields of IT was made. OpenFlow protocol arose from one of

such projects. Research group on Stanford University have created Clean State program and

focused on local area testing that could be easier to control. The campus network of all

universities in the United States was created. This allowed procreation of protocol which

could replace L2 and L3 protocols. The progress of OpenFlow protocol is still an ongoing

process. Each fresh version of OpenFlow protocol comes up with new features (Godanj,

Nenadić, and Romić 2016).

OpenFlow deals with the concept that switches have forwarding tables and an open API

which OpenFlow controller is using. The controller has the understanding of the network; it

will populate the required forwarding rules to the switch. Described in above (figure 4) of

an OpenFlow switch, it primarily states the communication between an OpenFlow controller

device and an OpenFlow switch and also with the performance of data plane function in

an OpenFlow switch. This communication is done through a safe channel where both the

OpenFlow control messages and the transferred data packets are moving from the controller

10



Figure 4. Three main parts of Openflow Switch

to a switch and vice versa. OpenFlow switch includes pipeline processing including multiple

flow tables where the incoming data packet is processed.

2.4.2 OpenFlow Architecture

The OpenFlow network architecture consists of three basic models:

• OpenFlow-compliant switches that comprise the data plane.

• Control plane comprises one or more OpenFlow controllers.

• Secure control channel links the switches with the control plane.

Communication of switches is done with the hosts and with each other using the data path

software can provide, communication of controller with switches is done by using the control

path as shown in Figure 5 .

Secured connection is maintain between the OpenFlow controller and the switch by using

SSL or TLS cryptographic protocols, in this case the switch and the controller are jointly

authenticated by exchanging certificates signed by both sides’ private key. Even though

this is a very powerful security algorithm, the controller may be vulnerable to denial of

service (DoS) attack, or Man in the middle attack; thus, suitable security practices must be

implemented to stop such attacks.

11



Figure 5. OpenFlow Network Architecture

2.4.3 Flow and group tables

Behavior of switches with data flow coming from different interfaces i.e. physical and vir-

tual. The table comprises of a set of rules, where the flow of the communication data is

defined. The Switch responds upon every flow according to the rules, these rules are called

as flow rules.

Figure 6. Example of OpenFlow

An OpenFlow switch is comprised of one or more flow tables and a group table for frame

lookups and forwarding. A flow rule consists of three fields (see Figure 6)

• Rule: Header to match with the frames of the flows. There are many supported Eth-

12



ernet headers in OpenFlow specification (Godanj, Nenadić, and Romić 2016) , but as

OpenFlow is designed to be extensible, custom headers can be furthermore defined.

The switch only performs a bit mask match. For this reason, OpenFlow switch is open

for advanced non-IP traffic.

• Action: Rule is matched with traffic; and defined that which action has to be per-

formed. These actions are also open for extensions, but some basic actions are already

provided in the specification. For example, forwarding to one or more ports, forward to

the controller, drop the frame, and modify frame fields. In order to add the customized

actions the only requirement is that the data path must have flexibility whereas provid-

ing high performance and low cost.

• Statistics: Always when a flow rule is matched, the switch has to update the frame

counters, which shows the popularity of a specific flow. Counters are available for

every table, each flow, all the ports and every queue. Furthermore a timer of last

activity and initial set of the flow are maintained.

An OpenFlow channel is the connection between the switch and the controller. This channel

is usually encrypted with Transport Layer Security (TLS) protocol; though, the channel can

also be run by using plain Transmission Control Protocol (TCP). This provides an interface

for the controller to manage and adjust flow and group tables of the OpenFlow switch. In par-

allel, the switch also supplies the controller with its hardware information, the connectivity

status of ports, and meter statistics of every flow rule. The OpenFlow protocol predefines the

communication message pattern which is used when communicating between the controller

and the switch or between the switches.

OpenFlow channel is the connection between the switch and the controller.

OpenFlow protocol predefines the communication message pattern which is used when

communicating between the controller and the switch or between the switches.

Network policies and services are implemented as OpenFlow applications in OpenFlow

which interact with the control plane through the north-bound API (application program-

ming interface) of the control plane. Functionalities of the control plane are implemented in

an OpenFlow controller which interacts with the data plane through the OpenFlow protocol

13



(south-bound API). SDN applications which are OpenFlow-based are developed that use the

essential network infrastructure and deploy various functions at run-time.

Therefore, control of the network traffic is transferred from the infrastructure to the ad-

ministrator. Network operators will gain high levels of network control, automation and

optimization with the help of SDN applications.

2.4.4 Flow types

Flows from the OpenFlow controller can be classified into two types:

• Microflows: microflows are beneficial when we need a small number of flows to be

fixed in the switch, e.g. campus network. In this type the flow tables contain one entry

per flow and exact matching is needed to perform an action.

• Aggregated: This type is beneficial for large networks that need a large number of

flow table entries, e.g. backbone networks. One flow entry (Wildcarded) covers a

large number of flows, each of which must belong to a specific group. Development of

the TCP / IP architecture, the Internet has a great achievement in these 30 years, and

has been one of the most broadly used technology in the world today. The fast devel-

opment of the information society, the new application trends such as high-definition

television, video on demand, VoIP and high-speed Internet, for the current network

open a great challenge. SDN network, relying on its programmability, centralized

control, resource virtualization and other advantages, will be widely used in industry.

2.5 SDN Applications

• Internet Research:

In the meantime the Internet is a life network and is frequently being used, it will be

difficult to do any updates or tests for new ideas that might solve the issues or prob-

lems that current Internet infrastructure faces. Through SDN we have more control,

as the controller part of the network and the data traffic is separated, in other words

we can say that separating the hardware part from software. These separations permit

for testing new ideas about future Internet architecture before implanting it in the live

14



network (Hu et al. 2013).

• Load Balancing for Application Servers:

The most essential requirement for enterprise networks is Load balancing. Hence it

can offer high availability and scalability for the requests to a particular service. Gen-

erally this functionality of balancing loads between numerous servers is implemented

by a dedicated device that is implemented in the network.

Though with SDN an OpenFlow switch is able to deal with this functionality automat-

ically and will allocate the traffic to different servers. However it does not scale well;

thus it is conceivable to write an application that works on top of the controller that can

provide a scalable and efficient load-balancing application (Wang, Butnariu, Rexford,

et al. 2011). And with this application the requirement for a dedicated middle in the

network will be removed.

• Data Centers Upgrading:

Data centers are an important internal part of many large scale companies. Considering

the example of, Google Facebook, Amazon and Yahoo have large numbers of data

centers to put up the huge number of requests and response to them rapidly. These data

centers are enormously expensive and complicated to keep well and run. Companies

can have a cost cutting by setting up and configuring the datacenter which is allowed

by SDN and OpenFlow. As data forwarding parts of the network can be managed from

a central location (Hu, Hao, and Bao 2014).

15



3 SDN Controllers

3.1 Overview of SDN Controllers

The Software Defined Network Controllers also called SDN controller platform is essentially

the “brain” of the network (Yoon and Kim 2015). The SDN controller is the application func-

tions as the strategic control point in the Software Defined Network. In SDN network, the

SDN controllers manage the flow-control to the routers or switches through the Southbound

AIPs and the application the business logic through the northbound APIs (Yoon and Kim

2015). This arrangement allows SDN controllers to the intelligent network. SDN controllers

are based on protocols which allow servers to direct switches how and where to send the

packets. The most common protocol used with SDN Controllers is OpenFlow.

SDN controller platform mainly consists of modules (mostly pluggable) which can perform

varieties of Network tasks. For example, plugged modules keep the record of all the devices

in the network and the capabilities of each device. Additionally, the SDN Controller modules

gather the information relating to the network statistics to enable SDN controller to manage

the flow control to support intelligent networking (Benamrane, Mamoun, and Benaini 2017).

Moreover, to enhance the module performance of SDN Controller Module, additional fea-

tures can be inserted which support more advanced functionalities such scoring new.

The NOX, initially developed by Nacira Networks, was the first SDN controller. In 2008, the

developer (acquired by VMware) deployed its NOX to the SND community. With the do-

nation of this open source version SDN controller, Nacira Networks laid the foundation for

the development of many SDN controller solutions. The company collaborated with other

two application developers, namely, Google and NTT to co-develop ONIX which became the

base for Nacira/VMware) Controllers (Pol et al. 2011). Today, a large number of open source

SDN Controllers are being developed such as POX and Beacon. The SDN Controller market

has attracted many companies including Cisco, IBM, HP, Juniper, and VMware. Cisco, HP,

and IBM Controllers are all shifted from the Beacon Controller, and the companies are now

moving toward the OpenDaylight.

16



3.2 SDN Controller Protocols

Particularly, there are two main protocols used by SDN Controllers communicate with routers

and switches in the network. These include the OpenFlow and the Open Virtual Switch

Database (OVSDB) (Benamrane, Mamoun, and Benaini 2017). Apart from the OpenFlow

and OVSDB Protocols, SDN Controllers can also use NetConf and YANG Protocols. Ad-

ditionally, there are much more SDN Controller Protocols which are being developed and

customized to function in SDN environment. An excellent example of such Protocols is the

IETF’s Interface to the Routing System (i2rs) which is designed to provide high scalability

and routing efficiency (Benamrane, Mamoun, and Benaini 2017).

3.2.1 The OpenFlow Protocol

The OpenFlow Protocol is the first standard SDN Control Protocol. It defines the open com-

munication standards which guide how the SDN Controllers function in collaboration with

the "forward plane" (such as routers and switches) and modify the necessary changes on

the network. As such, the OpenFlow Protocol provides businesses with opportunities for

implementing their changing network needs and achieve high controls over the system (Be-

namrane, Mamoun, and Benaini 2017). The Protocol is primarily the first and most widely

used SDN Controller Protocol which was initially designed as an open interface to control

the manner in which packets are routed in a SDN-based network (McKeown et al. 2008). In

a traditional network infrastructure, the data path and the control logic communicate through

the internal proprietary bus and are co-located on the same device. However, with OpenFlow

Protocol, the arrangement is quite different (McKeown et al. 2008). The OpenFlow Proto-

col moves the control path or logic to a commodity PC (or external Controllers) (McKeown

et al. 2008). In this case, OpenFlow provides the communication for the Controller to “talk”

to the data path over the network.

During the above process, the routing or forwarding directives are abstracted as “flow-

entries” by the OpenFlow Protocol. A flow entry consists of a list of actions, a bit pattern,

and a set of counters. Each flow is a packet set which matches the given pattern (Pol et

al. 2011). Each time a packet arrives at a router or a switch, the device checks the flow-table

17



Figure 7. The control path is moved to an external controller by the OpenFlow Protocol

(a collection of flow entries on the device) to find packet and then performs the relevant

action or “action set.” However, some packets may fail to match any existing bit patterns

in the flow-table, for example, when the packet does not have its corresponding entry. In

such a case, the packet is queued, and OpenFlow Protocol sends a new entry to the external

Controller which will then respond with “flow-modification message.” The message makes

a new rule (meant for handling the queued packet) to be added to the flow-table [5]. Next,

the new flow-entry is cached in the flow-table for the handling of the succeeding packets in

the flow-table.

By its architecture, OpenFlow employs the idea that the modern routers/switches logically

implement flow-tables and flow-entries (Benamrane, Mamoun, and Benaini 2017; Pol et

al. 2011). Accordingly, the network devices can be made to comply with OpenFlow by

upgrading the firmware. So, there is no need for additional hardware support.

Benefits of OpenFlow Protocols

• The OpenFlow Protocol provides flexibility in network usage, operation, and selling.

The software which governs the OpenFlow-based SDN controller protocol can be writ-

ten by service providers or application developers within the enterprise using ordinary

software environment.

18



• Since the operator can implement the features they desire for the software which they

use, OpenFlow Protocol promotes rapid service introduction through customization.

Therefore, the operator does not need to wait for a vendor. In this way, OpenFlow

protocol also provides time-saving the advantages.

• OpenFlow protocol results in few errors, and therefore, lowers the operation costs. Ad-

ditionally, since the occurrences of errors are minimized, the network has low down-

time especially due to automatic configuration supported by OpenFlow Control proto-

col.

• The OpenFlow can be readily integrated into computing to support the management

and maintenance of network resources.

• Many organizations find the OpenFlow protocol useful for aligning the network with

business objectives.

• It also fosters open multi-vendor market offering a standard means for conveying flow-

table operation.

3.2.2 The Open Virtual Switch Database (OVSDB)

The Open Virtual Switch Database is management protocol which supports the communi-

cation between the network devices in SDN system. This Protocol guides how the SDN

Controllers and the network devices exchange statistical and control information (Bittman et

al. 2013). For example, for an Open Virtual Switch Database client machine on a software-

defined network Controller to communicate with Open Virtual Switch Database Server on

a network device, a connection has to be established between the device and the Controller.

This connection establishment is accomplished through a configuration process (Kirkpatrick

2013).

First, the information about the SDN Controller has to be specified (using the IP address

corresponding to the controller). Next, the connection protocol and the port over which the

connection will occur must be defined. After configuration, the connection is established

between the SDN Controller and the management port of the device.

Usually, the OVSDB server will store and maintain the Open Virtual Switch Database database

schema defined by the hardware. The OVSDB contains the statistical and control informa-

19



tion provided by the Open Virtual Switch Database client on the SDN controllers and the

device. In the scheme, the information is stored in various tables, and the addition, deletion,

or modification of any data on the schema is done by OVSDB client which continually mon-

itors the schema (“OVSDB” 2017). In a Juniper Network, for instance, schema provides the

means for information exchange between the SDN controllers and the devices over the net-

work. Thus, the OVSDB is a virtual switch which offers automation and supports standard

management Protocols and Interfaces such as NetFlow. Additionally, the protocol is also

necessary for distribution across multiple physical servers.

In an OVSDB implementation, a switch daemon and a database server are employed. This

enables the OVSDB protocol used for controlling cluster along with other SDN Controllers

and managers to send configuration data to the switch database server. Moreover, within an

Open vSwitch implementation, the OVSDB can be used by IT experts in determining the

number of virtual bridges. In this way, OVSDB supports the creation, configuration, and

deletion of ports and tunnels from a bridge. Moreover, OVSDB allows engineers to create

and perform other modifications on queues (“OVSDB” 2017).

3.2.3 Interface to the Routing System (i2rs)

The i2rs is SDN Controller protocol developed by the Internet Engineering Task Force

(IETF) with the objective of offering an efficient routing operation. The design of the i2rs

architecture is mainly to enhance the network control and allow applications to build on top

of the system (Bittman et al. 2013).

The most important architectural feature of i2rs protocol is the simplicity. Although it is

often challenging to maintain simplicity particularly when the Protocol has to support access

to multiple data types in a networking system, the i2rs has been made to successfully achieve

simplicity with the ability to support different data types stored on a variety of networking

devices (Benamrane, Mamoun, and Benaini 2017).

Moreover, the i2rs is easily extensible and scalable which makes it ideal for use in high-

performance routing systems where a great number of modifications or operational changes

are frequent.

20



Figure 8. i2rs and OpenFlow Interactions

Major components of i2rs:

Architecturally, i2rs has five main elements for achieving scalability through filterable data

access. The five fundamental i2rs elements include the network application, i2rs server,

client, agent, routing element.

Figure 9. Interaction between i2rs components

The network application: A piece of software which is system oriented with the objective

of manipulating or accessing network states. The network application achieves this goal by

the i2rs client.

21



Client: The i2rs Client is an entity which implements the i2rs protocol and initiates commu-

nication between i2rs and the agents to modify the network information. Primarily, an i2rs

client could be a piece of code or an external i2rs library (Hazboun 2016).

Server: The i2rs server consists of a set of function to support information access and mod-

ification based on the usage policy. The i2rs servers are specified using a particular data

model, for instance, BGP or MPLS services. Agent: The i2rs agent is mainly an entity

which interacts with the subsystem’s routing element to access and modify the states of the

element. The i2rs Agent offers this functionality as a service provided by i2rs to requesting

agents.

Routing element: An i2rs routing element refers to a device which implements some func-

tions related to routing. For example, the path element could involve a traditional router

implementing SDN Controller’s logical control plane.

However, no matter how a particular path element is implemented, the behavior of an i2rs

Agent should remain unaffected. For instance, in a system which is physically distributed,

needs to continue supporting the accessibility of data from the entire element.

Moreover, if multiple i2rs Agents resides within a routing element, the i2rs Agents will en-

sure simplicity, which is a critical design goal of i2rs, by serving separate sets of information

(Hazboun 2016).

Essentially, the type of protocol supported by SDN controller has a significant effect on the

overall network architecture. For instance, the IETF’s Interface to the Routing System (i2rs)

splits the process of making decisions by leveraging the routing protocol. The splitting pro-

vides the i2rs protocol with the capability of performing distributed routing to support the

modification of routing decisions by applications (Benamrane, Mamoun, and Benaini 2017).

However, in OpenFlow protocol, on the other hand, the packet forwarding decision-making

tends to be completely centralized.

3.2.4 OF-Config and Netconf Protocols

Over the time, many paths to Software-Designed Network have been in use. In many net-

working environments, paths to SDN is created by first placing the network management in

a centrally located controller (eg. “OF-Config-OpenFlow-Configuration-and-Management-

22



Protocol” 2017).“The Control strategy of the physical network then unlinked to allow the

centralized controller to route flows between the nodes in the network by use of OpenFlow

as the Southbound protocol” (eg. “OF-Config-OpenFlow-Configuration-and-Management-

Protocol” 2017).

Although this Protocol is often useful for management of flows and controlling of the manner

in which each packet is forwarded to its destination, the OpenFlow does not offer the nec-

essary management and configuration for port allocation and Internet Protocol (IP) address

assignment. This means that in as much the OpenFlow Protocol is critical for managing and

forwarding the packets, an alternative protocol may be required to manage configurations

and assign IP addresses. In this case, the OpenFlow Control Protocol becomes the ideal so-

lution.

In most traditional networking systems, vendor resorted to using branded management and

configuration approaches. Some of these methods depended on Simple Network Manage-

ment Protocol for monitoring devices as well as for product configuration tasks. Addition-

ally, in other systems, command lines were employed for configuring each network device

on the system.

However, SDN enables Networking engineers to view each network component and set up

policies for traffic management across the matrix of the devices. In this case, the OpenFlow

will not provide specifications for the control protocol or switch configuration databases. In-

stead, the OpenFlow will only define the packet flow operation.

OpenFlow Configuration Protocol (also called OF-Config) supports standard approach for

the management and configuration of switches by establishing the relationship between the

network switches and Controllers. It allows the network administrators to choose switches

from their preferred vendors to select the most appropriate devices for particular network

location. Additionally, network engineers can use the OF-config to set communication pa-

rameters between switches and controllers.

OF-Config Basics:

Open Networking Foundation (ONF), the developer of OF-Config designed OpenFlow Con-

figuration Protocol for use with all OpenFlow protocols (“Ethernet OAM enabled Open-

Flow Controller” 2011)."[Thus], OF-Config supports all OpenFlow implementations includ-

ing virtual and physical switches" (“Ethernet OAM enabled OpenFlow Controller” 2011).As

23



SDN Controller protocol, OpenFlow Configuration Protocol has successfully addressed var-

ious controller-switch management components (eg. “Ethernet OAM enabled OpenFlow

Controller” 2011).Some of these include:

• The OpenFlow Logical Switches

• OF-Config Point – OpenFlow Configuration issues command called "OF-Config com-

mands".

• OpenFlow Capable switches "[which] include both virtual and physical devices to sup-

port switching" (“Ethernet OAM enabled OpenFlow Controller” 2011).

• OpenFlow capable Switches has a number of queues and ports (“Ethernet OAM en-

abled OpenFlow Controller” 2011).

Mostly, the OF-Conf Point is often located with the OpenFlow controller within the same

workstation or server. Alternatively, the both OpenFlow and the OF-Config can also be

found in a traditional network management product. However, whichever way, the config-

uration points can perform multiple management of multiple OpenFlow Capable switches.

Conversely, in SDN environment, a single configuration point can manage many Capable

Switches. OF-Config is the OpenFlow Management and Configuration Protocol’s version

1.1. (eg. “OF-Config-OpenFlow-Configuration-and-Management-Protocol” 2017).

Additionally, Configuration Flow logical switches which reside within an OpenFlow Capable

Switch can communicate with Configuration Point. For example, the control point supplies

logical switches with port numbers and IP addresses of the OpenFlow Controllers which

manages the flow of packets through the switch. Moreover, the control point also specifies

the protocol (TLS or TCP) to be used for the communication between the Controllers and

the switches. After determining the communication standard, it then performs configuration

to identify, specify and send the certificate to allow the Controllers and the Switches to com-

municate. Primarily, within the same OpenFlow Capable Switch, each OpenFlow logical

switch operates separately and is not dependent on the other logical switches.

The implementation of OF-config in a switch requires that the internal configuration database

of the switch must be modified. Moreover, the NetConf protocol must also be imple-

mented to allow switches to communicate with Configuration Points. Ideally, the Netconf

employs XML encoding system for the configuration of Protocol data and messages (eg.

24



“OF-Config-OpenFlow-Configuration-and-Management-Protocol” 2017).Usually, the con-

figuration of data is retrieved from and sent to switches through a process called remote

procedure calls. “The Netcofig protocol can send/retrieve partial/full configuration descrip-

tion” (eg. “OF-Config-OpenFlow-Configuration-and-Management-Protocol” 2017). At the

same time, the Protocol has the capabilities of conveying asynchronous notifications from

the switch. And because of its extensibility, the Netconfig provides support to the OF-Config

as more capabilities are added.

3.3 Open Source SDN Controllers

These types of Controller versions enables the testing of the applications. Although the open

source SDN Controllers even supports the promotion of Network Virtualization and NTF,

most users are not confident in using the open source software-based networking. According

to (Pol et al. 2011), most companies prefer commercial SDN Controllers to the Open Source

Version for various reasons. For example, in most organizations which are operating super-

sized networks in which high-performance speed is required amidst huge amounts of data

to be handled, commercial SDN Controllers is mainly used because of the perception that

Commercial versions are simpler and easy to manage. The following are some of the most

common open source SDN Controllers

3.3.1 OpenDaylight Open-Source SDN Controller

The OpenDaylight Platform was hosted by Linux foundation as an open source SDN project.

The aim of hosting the Controller was to enhance the SDN by providing an industry sup-

ported and community-led framework for the OpenDaylight platform. Moreover, under the

Linux foundation, the OpenDaylight Platform comprises the OpenFlow Protocol and has

the capabilities to support open SDN Standards. This open source SDN Controller can also

support modular controller framework and is often deployed in various production network

environment (Medved et al. 2014).Moreover, the OpenDaylight Controller has being em-

ployed by various applications for the collection the network data, conducting analytics by

executing algorithms and creating rules within the system (eg. “OVSDB” 2017).

25



The OpenDaylight platform is implemented entirely in software and is stored in its Java

Virtual Machine. In this way, OpenDaylight SDN Controller can be deployed on operating

systems and hardware which supports Java. However, for best performance, it is necessary to

use OpenDaylight SDN Controllers with a Java Virtual Machine (JVM) and a recent Linux

Distribution (eg. “OVSDB” 2017).In regards to its releases, "Hydrogen" was the first soft-

ware code version for the OpenDaylight platform. Hydrogen features three different editions

for users. These include (eg. “opendaylight Controller” 2017).

• Base Edition

• Service Provider Edition

• Virtualization Edition

Figure 10. OpenDaylight Infrastructure

Helium was the second code release for OpenDaylight SDN Controller which offered a new

user interface as well as a more customizable and simplified installation process due to the

use of a special container called “Apache Karaf container.” (Hares and White 2013).Addi-

tionally, Helium version code release also has a higher integration with OpenStack as well

as features such as Distributed Virtual Router, Load Balancing services, and Security Group.

The third launch, Lithium, was realized in 2015 leading to the repositioning of the OpenDay-

light Controller to the OpenDaylight platform. This version was later followed by Beryllium.

26



3.4 OpenContrail SDN Controller

Primarily, OpenContrail SDN Controller product appeared in December 2012 when Juniper

Network acquired Contrail and began to build SDN capabilities. This Open Source SDN

Controller forms part of Apache version 2.0 which is useful for enabling network virtualiza-

tion. Developed by Jupiter Networks, the Contrail Controller is a product for cloud network

automation that employs the SDN-based technology to orchestrate the creation of highly

scalable virtual networks (Hares and White 2013).

Mostly, OpenContrail SDN Controller integrates physical routers, switches, and scale-out

framework to improve the infrastructure beyond the data center of cloud boundaries. In

this way, OpenContrail SDN Controller provides workload mobility in a hybrid environ-

ment. It functions alongside virtual network routers to be located on hypervisor hosts and

is also useful as a network platform for a cloud computing infrastructure (Cui, Yu, and Yan

2016).Additionally, the source code of OpenContrail SDN Controller is hosted across many

software repositories.

Moreover, OpenContrail SDN Controller, as SDN Controller platform which uses Open-

Stack distribution for automation and orchestration aims to improve availability, security,

and flexibility in networking performance. For most companies running big networks, Open

Contrail is the Open Source SDN Controller of choice for various reasons. First, Open-

Contrail SDN Controller is the only SDN Controller which can support nearly all necessary

features for virtualizing network and mobility elements (“OpenContrail as SDN controller”

2017). Secondly, this open source SDN Controller is readily integrated into existing net-

working environment to provide capabilities for faster troubleshooting and committing of

bugs since the Controller is based on highly developed MP-BGP technology (“OpenContrail

as SDN controller” 2017).

3.4.1 Floodlight Open SDN Controller

The Floodlight Controller to function alongside the OpenFlow Protocol for orchestrating

traffic flows in SDN environment. It is an Open Source SDN Controller which was initially

created by “Big Switch Networks” for use by companies and individuals “who intend to im-

prove the functionality of OpenFlow Protocol operated in SDN environment” (Wallner and

27



Figure 11. The use of High-Level OpenContrail SDN Controller in combination with Open-

Stack and Containers in Networking

Cannistra 2013).The Floodlight Controller maintains and controls all the rules within the net-

work in addition to providing the instructions necessary to guide the fundamental infrastruc-

ture on how to handle the data traffic within the network (Cui, Yu, and Yan 2016).Therefore,

the Floodlight Controller provides users with capabilities necessary for better controlling of

the systems through simple adaption approach to the changing needs (Wallner and Cannistra

2013).

Additionally, this Controller as an Open Source SDN Controller offers many advantages

to developers. For example, it allows developers to develop applications through software

adaptation and writing in Java. Moreover, the Floodlight Controller include state transfer

application programs with which Application Developers can readily program interface with

products. The Floodlight website further provides coding examples to help programmers

with building products.

Fundamentally, Floodlight Controller Open Source is tested with both Virtual and Physical

OpenFlow Compatible switches. The Controller can function in different network environ-

ments and can be integrated to an existing networking system to support systems in which

OpenFlow Compatible Switches are connected via Non-OpenFlow/traditional switches.

3.4.2 Ryu OpenFlow Controller

Ryu is an Open Source SDN Controller which is designed to provide various software com-

ponents for use in SDN applications. The Ryu OpenFlow Controller supports the creation

28



Figure 12. The working of Floodlight Controller in a SDN-environment

of new networks management and controlling of applications. According to (eg. “Ryu Con-

troller” 2017). Ryu is notably advantageous because of its ability to support different pro-

tocols such as Netconf, OpenFlow, and OF-config for managing the devices in the network.

With these protocols, Ryu allows users to control the "network gear" such as routers and

switches according to the system demands. It provides software components with well-

defined APIs which makes it simple for organizations to customize the deployment to meet

the particular needs of the company. For example, the organization’s developers can easily

and quickly implement new or adapt existing components to ensure that the underlying net-

work is consistent with the changing demands of the key applications (eg. “Ryu Controller”

2017).

3.4.3 FlowVisor OpenFlow Controller

The FlowVisor is a special purpose SDN Controller which operates between multiple Open-

Flow Controllers and OpenFlow Switches. This Controller a useful tool for network virtual-

ization which it performs by converting physical network into multiple logical ones through

network division (Zhong et al. 2016)With FlowVisor Controller each Controller can be made

to touch only the resources and switches assigned to the particular Controller. Additionally,

the FlowVisor Controller supports the partition of flow table and bandwidth resources on

29



Figure 13. How the Ryu OpenFlow Controller fits in SDN Environment

each switch after which each partition can be allocated to the particular Controller. Notably,

the virtualization using FlowVisor Controller essentially works similarly as the virtualization

layer in a computer. The Controller sits between the underlying software and the physical

hardware which it controls (as shown in the figure below). And similar to the case of an

operating system, the FlowVisor controls the network components by use of instruction sets

through OpenFlow SDN Controller protocol. The FlowVisor hosts many OpenFlow con-

trollers, but for each slice, it maintains one Controller. In this way, FlowVisor ensures that

each Controller observes and controls its slice. At the same time, FlowVisor keeps each slice

isolated from other Controllers other than the one which controls it (Zhong et al. 2016).

Therefore, FlowVisor Controller in SDN environment performs the following:

• Defining slice as a set of low which runs on switch’s topology

• Resides between each SDN Controller Protocol –OpenFlow for this case –to ensure

that guest Controllers observe and control only the specific switch it is ought to control.

• Partitions the link bandwidth by setting data rate limit for each set of flow which makes

up a slice.

• Partitioning the Flow-Table in each switch by keeping track of every flow-entry be-

longing to each guest controller.

30



Figure 14. FlowVisor resides between the underlying software and the physical hardware

which it controls

Benefits of using SDN Controllers

• SDN Controllers are used with OpenStack for network virtualization. In this integra-

tion, SDN Controller important in programming switches through OpenFlow Protocol

while OpenStack does the required orchestration.

• SDN Controller provides network engineers with better ways of managing packet for-

warding in a virtual environment. For example, the with SDN controller protocols

such as the OpenFlow Protocol, forwarding packets to physical devices and software

within the network is a simpler process.

• Reduction of system downtime –SDN controllers allows most of the physical net-

working devices to be virtualized. Therefore, upgrading can be performed on selected

pieces. Additionally, recovery from failures due to upgrading tasks is fast. (eg. “Ryu

Controller” 2017).

• Extensibility: various SDN controllers such as I2RS are designed for extensibility

through providing a platform for easy upgrading

31



4 Securing SDN Controllers

4.1 Overview

Software-Defined Networking provides operators with high flexibility in controlling the net-

work. Through SDN capabilities, managing the network has shifted from codifying func-

tionalities in regards to low-level device configurations to building an application which

facilitates the debugging and management of the system (Kreutz, Ramos, and Verissimo

2013), Additionally, SDN offers new techniques for solving long-standing problems such as

routing challenges in the network while simultaneously permitting the application of secu-

rity features including access control. Such capabilities are provided in SDN environment

because SDN allows for the separation of the complexity of state distribution from network

specification. However, the security of SDN system remains an open issue. Initially, SDN

deployments used to be small in size where the SDN environment consisted of a single con-

troller for use-case testing and research (Scott-Hayward 2015).

However,currently enterprises requiring SDN deployment demand, multiple controllers. With

the increasing interfaces and components for evolved SDN implementation, security chal-

lenges associated with SDN Controller design have increased (Scott-Hayward 2015).

This chapter focuses on the security of SDN Controllers. The discussion begins by de-

scribing several threat vectors which may enable for the exploitation of the vulnerabilities

of SDN Controllers. Next, the study focuses on designing a dependable Controller platform

including the requirements for a secure, resilient, and robust SDN Controller. The chapter

also analyzes the state-of-the-art open-source SDN Controllers in as far as the security de-

signs of these Controllers are concerned. The chapter closes by making recommendations

for security improvements for future SDN Controllers. The discussion highlights the existing

gap between the actual security level of the current SDN Controller design and the potential

security solutions.

32



4.2 Threat Vectors

SDN has two features which are a possible sources challenges for operators who are less

prepared and attractive for malicious users (Kreutz, Ramos, and Verissimo 2013). The first

property is the ability to control the network through software which could be subject bugs

and other security vulnerabilities. The other feature is the centralization of “network intel-

ligence” in controllers (Kreutz, Ramos, and Verissimo 2013) that provides abilities for any

party who has accessibility to the servers which host the control software with capabilities to

manage the entire network. In this way, SDN systems are associated with threats of different

nature. Thus the security of SDN and SDN Controllers need to be addressed differently. The

following section describes six security threats related to SDN and SDN Controllers as well

as suggested solution criteria.

4.2.1 Faked or forged traffic flows

In some cases, malicious users or faulty devices fake or forge traffic which they use to attack

SDN Controllers and switches. An example is where attackers use network elements such

as PCs, servers, or switches to launch a Denial of Service attack against Controller resources

and OpenFlow switches. Although a simple authentication mechanism could be useful, it

can be quite difficult to control the problem if the attacker the system allows the attacker to

monitor the application server in which the details of many users are stored.

Possible solution approach: The best way to mitigate faked or forged traffics on SDN system

is to employ a detection system to help in identifying any abnormal flows.

4.2.2 Attacks on vulnerabilities in switches

In this case, attackers use a single switch to slow-down or drop packets in the network.

Alternatively, attackers could inject forged requests or traffic with the aim of overloading

neighboring switches or SDN Controller. Possible solution approach: These kinds of threats

can be mitigated using software attraction mechanisms. Such techniques include automatic

trust management solutions for software components (Yan and Prehofer 2011).

33



4.2.3 Attacks on control plane communications

In some cases, attackers use control plane communication to compromise the controller-

device link. This vulnerability could allow the attacker to leak data while the standard pro-

duction traffic flows by creating virtual black hole network, for instance, through the use

OpenFlow-based slicing approach (Scott-Hayward, O’Callaghan, and Sezer 2013).

Solution criteria: One of the most relevant solution criteria for attacks on control plane com-

munication is for the network operators to "use oligarchic trust models with multiple trust-

anchor certification authorities [such as] one per subdomain or Controller instance” (Kreutz,

Ramos, and Verissimo 2013). Alternatively, the SDN Controller could be secured by using

threshold cryptography across Controllers to secure the communication.

4.2.4 Attack on Controller vulnerabilities

These are possibly the most severe threats to SDN systems where a malicious or faulty

Controller compromises the entire network. In this case, the application of the common

intrusion detection systems may be insufficient due to the difficulty of finding the exact

event-combination which are responsible for triggering a particular behavior and classify the

behavior as malicious. Moreover, since SDN Controllers, in most cases, only provide the

abstractions which translate to the issuing of command configurations to the fundamental

structure, malicious applications can compromise security in any way it pleases (Kreutz,

Ramos, and Verissimo 2013). Solution approach: various methods to mitigate an attack on

Controllers. Examples of typical techniques include:

• Replication (detection, removal, or masking of the unusual behavior)

• Employing diversity of programming language, Controllers, software image or SDN

Controller Protocols.

• Recovery of the system including periodic refreshing of the system to maintain a clean

and reliable state.

34



4.2.5 Lack of mechanisms for ensuring security between the management applica-

tions and Controllers

This vulnerability often results when Controllers and applications are unable to establish

trusted relationships between them. Solution approach: The most important solution criteria

is to employ mechanisms which can create autonomic trust management to verify the trust

of the application during its lifetime.

4.2.6 Attacks on vulnerabilities in administrative stations

The attacks, though most common with traditional networks, are also applicable to SDN

systems to get access to the system Controller (Scott-Hayward 2015) Vulnerabilities at the

central stations are more dangers especially because it becomes easy for malicious users or

applications to cause more damage from a single location. Solution approach: At the admin-

istrator stations, operators can protocols which require double credential verifications can be

a useful solution criteria (Kreutz, Ramos, and Verissimo 2013).

It is notable from the six threats that with SDN, the attack surface is more augmented in

comparison to traditional networks. As such, straight from the design phase, various se-

curity mechanisms, as well as mitigation techniques, must be put in place to secure SDN

Controllers (Kreutz, Ramos, and Verissimo 2013). In particular, an efficient design for SDN

Controllers should address the different security issues to ensure that the network is safe and

dependable.

4.3 Secure Controller Design

The Network Operating System (NOS) or Controller is essentially at the center of SDN. Al-

though many types of Controllers (such as described by (Kreutz et al. 2015) ), have been

deployed in the past since the development of OpenFlow protocol, the focus of most of

these early Controllers was more on developing support for OpenFlow API (Scott-Hayward,

O’Callaghan, and Sezer 2013). And to achieve such design goals, the non-SDN or traditional

network design began to focus on scalability and performance (Kreutz et al. 2015). In par-

ticular, the scalability in non-SDN systems was to produce a controller which is supportive

35



Figure 15. SDN Main Threat Vectors

to increasing number of hosts or switches. On the other hand, performance enhancement

aimed to enable the Controller to achieve low latency but high throughput in regards to con-

trol event processing.

Concerning security and network reliability, early designs were concentrated on the cen-

tralized controller as a single failure point in the system (Scott-Hayward, O’Callaghan, and

Sezer 2013). However, with a centralized controller, attackers can quickly take control of the

network by hi-jacking the device in which the control decision-making occurs. This situa-

tion is significant because central controllers allow control decision-making to be held in one

device. Additionally, the vulnerability of the central Controller is high in regards to denial

of service (Scott-Hayward, O’Callaghan, and Sezer 2013).

However, as SDN evolves, (Scott-Hayward 2015) argues that the vulnerability of the central

controller is no longer a challenge for Controller designers to address in isolation. Instead, a

comparative analysis based on security features of five primary Controllers, namely, ONOS,

OpenDaylight, ROSEMARY, Ryu, and SE-Floodlight shows that modern SDN Controller

designs try to deliver security alongside resilience and robustness. In that regard, (Scott-

Hayward 2015) identifies several approaches to developing a secure, robust, and resilient

36



SDN Controller. These strategies include:

• Control Process (Application) Isolation

• Implementation of Policy Conflict Resolution

• Multiple Controller Instances

• Secure Storage

4.3.1 Control Process (Application) Isolation

In order to provide a secure Controller, designers often separate the applications processes

which are running on the controller. This separation, also called "process isolation," is criti-

cal to support authentication of each application, to apply levels of authentication dependent

on trust, to provide logical segmentation, and to provide logical segmentation. Additionally,

isolating the applications should offer resilience to the controller so that an error or a failure

on a single application does not compromise the Controller (Scott-Hayward, O’Callaghan,

and Sezer 2013). This technique has been used as a security mechanism in all the five con-

trollers analyzed by (Scott-Hayward 2015).

For example, in ROSEMARY SDN Controller, the objective of preventing malicious ap-

plications is achieved through the use of micro-NOS architecture (Scott-Hayward 2015).

This is accomplished by designing each OpenFlow application to run within an independent

ROSEMARY instance. In this way, the application is sandboxed to protect the control layer

from malicious operations or vulnerabilities. In SE-Floodlight Controllers, on the other hand,

Control Process Isolation is achieved by use of northbound API to separate control processes

from applications. Thus, in both ROSEMARY and SE-Floodlight Controllers, the controller

is protected from buggy or malicious applications through a containerized or sandboxed ap-

proach in combination with reliable identification and authorization services.(Scott-Hayward

2015).

37



4.3.2 Implementation of Policy Conflict Resolution

In SDN systems, issues of policy conflicts often emerge when a controller receives incom-

patible flow rules from multiple applications. In regards to this problem,(Scott-Hayward,

O’Callaghan, and Sezer 2013) suggests several solutions. However, in many SDN con-

trollers, the issue of conflict resolution remain unaddressed. (Scott-Hayward 2015), finds

that of the five controllers analyzed for security features, only ES-Floodlight and ONOS

have implemented the Policy Conflict Resolution.

In SE-Floodlight, for instance, an algorithm called Rule-chain Conflict Analysis (RCA) has

been used by SEK for detecting the occurrence of any conflicts between the flow rule in the

flow table and a new flow-rule (Porras et al. 2015). However, in ONOS, (Botelho et al. 2014),

applications define their network requirements as "intents" which are translated by ONOS

according to the system configuration.

4.3.3 Multiple Controller Instances

In SDN, multiple controllers were first required to solve the security issues linked to central-

ized controllers. Solutions have since evolved to distributed controller design from simple

controller replication techniques. However, with the distributed design comes the issues of

consistency, timing, coordination, and synchronization (Scott-Hayward, O’Callaghan, and

Sezer 2013).

In the assessment performed by (Scott-Hayward 2015), both SE-Floodlight and ROSE-

MARY do not consider multiple controller instances. On the contrary, ONOS has been

designed for fault tolerance and through distributed architecture where an ONOS cluster can

be formed by linking some ONOS instances. "Each instance is an exclusive cluster of a

set of switches" (Scott-Hayward 2015). Thus, the connection of multiple ONOS instances

is critical for ensuring that a new message is elected for each affected switch by remaining

ONOS instances in case of failure of one ONOS instance.

38



4.3.4 Secure Storage

Since critical network information about the state of the system is contained within con-

trollers, the controllers must be secured. This protection required the application of various

security practices. For example, in some controllers, secure storage is achieved by enforcing

a default permission on the log file. These log files ensure that owners both write and read

privileges but read-only and not write to others. Moreover, more security measures are em-

ployed to individual controllers. In ROSEMARY, for instance, the controlling of the internal

storage is achieved by limiting the ability of applications to perform certain operations in the

internal storage. At the same time, data structures have privilege set with which accessibility

to internal storage is controlled. (Scott-Hayward 2015).

4.4 Secure Controller Interfaces

In SDN Controllers, there are three potential interfaces. These include D-CPI, I-CPI, and

A-CPI for Data-Controller, Intermediate-Controller, and Application Controller respectively.

However, of these three, the D-CPI is the only standardized interface (eg. “Open Flow Switch

Specification” 2014) In the OpenFlow Switch Specification, the use of Transport Layer Se-

curity (TLS) is recommended although this is optional. Besides, Graphical User Interface

(GUI) is another commonly used interface to the controller. GUI is often provided to sim-

plify the management and to offer network device information, a network topology viewer,

and flow table details (Scott-Hayward 2015). For all these interfaces, whether D-CPI, ICPI,

A-CPI, TLS, or GUI, sensitive communication has to be protected.

4.4.1 Secure Control Layer Communication

In most modern SDN-controllers, TLS is supported across D-CPI. Secure communication

with SSL/TLS defines the authentication of the communicating parties by use of X.509 cer-

tificate with subsequent data encryption between the parties across the interface of commu-

nication (Scott-Hayward 2015). In SE-Floodlight, for instance, secure communication is

supported across A-CPI. On the other hand, both OpenDaylight and Ryu Controllers sup-

port SSL/TLS although other Controllers such as ROSEMARY and ONOS do not support

39



SSL/TLS.

However, according to (Liyanage, Ylianttila, and Gurtov 2014), Controllers should be pro-

vided with additional protection against TCP Synchronization, IP spoofing, and DoS es-

pecially when the SSL/TLS-based communication is unable to protect the SDN Controller

from IP-based attacks on control channels. In such as case, a protocol equivalent to TLS

should be used for protecting the communication between the control layer and the applica-

tion/data layers to prevent interference with message exchanges (Liyanage, Ylianttila, and

Gurtov 2014). Additionally, key or certificate materials must be appropriately managed to

ensure that the security of Public Key Infrastructure (PKI) is underpinned (Scott-Hayward

2015).

4.4.2 GUI/REST API Security

In SDN controllers, there is always a possibility of manipulating the network state through

controller Graphical User Interface. Accordingly, it essential to protect GUI by requiring

authorization or authentication from users before accessing the controller via the GUI. For

example, in OpenDayLight Controller, security is provided in which a username or password

or both, are required to log into the controller Graphical User Interface. Similarly, in ONOS,

GUI API Security is applied but without the requirement for authorization or authentication

to access GUI. Instead, ONOS requires the IP address of the machine in which the controller

is hosted (Scott-Hayward 2015).

4.5 Controller Security Services

Apart from protecting the control platform and interfaces, it is also important to introduce

security services into SDN controllers. For example, many controllers have IDS/IPS inte-

gration, authorization and authentication, resource monitoring, and logging/security audit

services. Introducing these techniques into a controller is useful for enhancing the security

framework of the controller.

40



4.5.1 IDS/IPS Integration

Intrusion Detection Systems IDS) and Intrusion Prevention Systems (PSI) can be introduced

into SDN Controller for detection and prevention of potential threats (Yan and Prehofer

2011). The IPS and IDS are implemented so that all traffics are directed via IPS. The IPS

will evaluate the traffic then allow or block them based on the policy (Yan and Prehofer

2011). Additionally, traffic monitoring can be provided through an authentic installation of

traffic counting at selected nodes in the network. Next, the associated controllers generate

traffic statistics for detecting attacks. The detection is determined by assessing the extent to

which the traffic statistics deviate from the standard or predetermined traffic baseline (Scott-

Hayward 2015). This controller self-defending mechanism has been employed Ryu and

ES-Flooding, controllers.

In ES-Flooding controller, for instance, IDS/IPS integration has been accomplished by use

of SDN Security Actuator and SRI BotHunter applications (Porras et al. 2015). The BotH-

unter monitors the data traffic and identifies the consistency of the communication patterns

with coordination-centric malware. Ones the communication pattern has been defined by

BotHunter, another application called BHResponder checks the identified asset and decides

whether it needs to be isolated from the system. Finally, the SE-Floodlight connects with

the SDN Security Actuator to implement the isolation. The quarantine is accomplished by

the SDN Actuating generating OpenFlow rules which will then redirect the suspicious traffic

flows. (Porras et al. 2015).

4.5.2 Authentication and Authorization

In SDN Controller design, Authentication, Accounting, and Authorization (AAA) are im-

portant aspects which provide efficient Access Control to resources, users, and applications.

Although some Controllers such as ONOS lack specific AAA implementation, these features

are well-evident in other Controllers like ROSEMARY and SE-Floodlight. In ROSEMARY,

for instance, AAA system is implemented in which individual applications are allowed ac-

cess to particular resources of the controller. For privileged system calls, the authorization

status of an application is assessed by the application’s authorization module through inves-

tigating the signed key corresponding to the application.

41



However, controllers such as the ES-Floodlight, applications are authorized to access Con-

troller resources during the procedures of authenticating the application. An application

authentication process involves generating a runtime credential for unique identification of

the application (Kreutz, Ramos, and Verissimo 2013). For each message produced by the ap-

plication, a credential is added, and without the credential, the application cannot be allowed

to run (Scott-Hayward 2015).

4.5.3 Resource Monitoring

In certain occasions, a single controller may have multiple functions and applications run-

ning in the control framework. When this situation occurs, all the running applications and

functions must be monitored in regards to how the controller resources are used. Thus, re-

source monitoring is essential to ensure that no any one application or service excessively

consume resources. Although different strategies are used to manage resources in various

controllers, a resource manager is most preferred for controlling resource (such as CPU, file

descriptor, and memory) utilization by different applications. The resource management by

a resource manager consists of a resource table to manage to maximum resources to which

applications are assigned.

Therefore, resource monitoring helps in managing the available controller resources, and this

is important in different ways. First, it helps in monitoring of the system to determine anoma-

lous behaviors and detect buggy or malicious applications (Kreutz et al. 2015). Secondly,

proper resource management ensures that the controller resources support the maximum

number of applications (Kreutz, Ramos, and Verissimo 2013).

4.6 Improving the Robustness of a Secure and Dependable SDN

In modern Controller design, emphases are shifting toward methodologies to address various

threat vectors including those discussed in section 4.2 of this chapter. In this regard, (Kreutz,

Ramos, and Verissimo 2013) presents some of the most efficient mechanisms which are

useful for mitigating the various threats associated with SDN Controllers. Approaches such

as replication, diversity, self-healing, and dynamic device association have been considered.

42



4.6.1 Replication

Replication is a crucial technique both for improving the dependability of SDN systems and

enhancing the network security. Specifically, replicating controllers is useful for achieving

a secure and dependable network (Kreutz, Ramos, and Verissimo 2013). For example, as

illustrated in the figure below, the controller is replicated with three instances. Additionally, a

mixed replication approach has been accomplished in this example by replicating application

B to ensure that tolerance of both software and hardware accidents malicious faults.

Figure 16. Secure and Dependable SDN

4.6.2 Diversity

Diversity is an important mechanism for enhancing the robustness of a secure SDN. Mostly,

is necessary to replicate with diverse controllers for the avoidance of common mode faults

(Kreutz, Ramos, and Verissimo 2013), including vulnerabilities and software bugs. For ex-

ample, often, off-the-shelf Operating Systems from different families, are characterized by

a limited number of intersecting vulnerabilities. Thus diversifying OS constraints the com-

bined impact of attacks on common vulnerabilities (Garcia et al. 2014). In a Software-

Defined Network environment, the same management program can run on different con-

trollers. For simplification, a common abstraction for applications can be defined.

43



4.6.3 Self-healing Mechanisms

Reactive and proactive recoveries can restore the system to a healthy state and keep the net-

work virtually functional by replacing the compromised components in the event of persis-

tent adversary circumstances. However, for effective self-healing, it is necessary to replace

the compromised components with new and diverse versions (Scott-Hayward, O’Callaghan,

and Sezer 2013). In essence, diversity should be explored in the recovery process to strengthen

the defense of the system against threats which target specific vulnerabilities in the net-

work(Kreutz, Ramos, and Verissimo 2013).

4.6.4 Dynamic device association

There are situations in which a switch is associated with only one SND Controller. In such

scenarios, the control plane of the particular switch will not tolerate faults. Thus, if the

controller which is linked to the switch fails, there will be a failure in the control operations of

the switch which means that the switch has to be associated with a different controller. So, to

avoid such failures, it critical to ensure that each switch dynamically and securely associates

with multiple controllers. In this case, the necessary security can be achieved through the

use of threshold cryptography for detecting malicious controllers that could hinder attacks

such as man-in-the-middle.

4.6.5 Trust between Controllers and Devices

Establishing a trust between controllers and devices is a crucial requirement for enhanc-

ing the trustworthiness of the overall control plane. T protect controllers; network devices

should associate with controllers dynamically without causing unreliable relationships. A

typical approach is to trust all controllers and the network devices until the trustworthiness of

the Controller is substantially questionable (Scott-Hayward, O’Callaghan, and Sezer 2013).

Additionally, the controllers should be set to report malicious or misbehaving controllers

according to failure or anomaly detection algorithm. The malicious Controller should be

automatically isolate when its trustworthiness falls below an unacceptable threshold.

44



4.6.6 Trust between controllers and application software

In this case, a dynamic trust model should be used for a Controller or a software component

which is presenting a changing behavior as a result of attacks or bugs (Yan and Prehofer

2011). In this article, the authors propose the usefulness of a model which supports automatic

trust management for software systems (component based). It involves a holistic notation

trust where the trustworthiness of a trustee is evaluated by a “trustor.” The trustor observes

the behavior of the trustee and also measures the trustee based on specific quality attributes

such as reliability, availability, confidentially, maintainability, safety, and integrity. Thus, the

model can be applied to assess the relationship between controllers and software application

and identify malicious behaviors.

4.6.7 Security domains

Different types of systems use isolated security domain technique to secure the network

from attackers. In operating systems, for example, user level applications are denied access

to kernel level systems (Barth et al. 2008). The trick may involve the use of sandboxes for

isolating the rendering engine from the browser kernel (Barth et al. 2008). In this way, the

impact of most attacks will not penetrate past the rendering engine. So, the isolation protects

the security of the browser kernel. In SDN Controllers, a security domain is achieved using

mechanisms such as virtualization of sandboxing (Scott-Hayward, O’Callaghan, and Sezer

2013). With this design, an active isolation mode can be established using a well-defined

interface which allows minimal communication and operation sets between the isolated do-

mains.

4.7 Security Requirements for SDN Controllers

Notably, SDN controller needs to meet certain security requirements. Below is a discussion

of some of the requirements for a secure SDN Controller

• Authentication: -SDN Controllers must be designed with authentication which is sup-

portive to the existing credentials including those which are likely to be applied at the

datacenters.

45



• Authorization: SDN controller must have an interface which supports the authoriza-

tion of specific network resources and applications. Additionally, the interface must

support the manipulation of authorizations.

• Facilities for Isolation: SDN controllers need to offer various utilities through which

one application can be isolated from the others. This separation may be necessary

where a malicious application has to be isolated to avoid compromising the security of

the entire system.

• The interface of SDN controller needs to support the controller which is operating as a

proxy in place of an application. In this case, the SDN controller must favor a method

of associating tracking IDs such as an audit ID. This is critical when a proxy is acting

on behalf of applications. It allows requests to correlate with the original application.

• The controller interface should offer an approach for applications and operators to

enforce privacy.

• Delegating accessibility to subnet resources: The interface of the Controller needs

to support this access to allow for the supply of new privacy and authorization con-

straints. When SDN provide this requirement, it will facilitate inter-organization use

and support various security needs of debugging Use Case.

• The interfaces of the SDN Controllers must support the control of authorization for

nested applications.

• SDN Controller interface must provide a way through which outer applications can

learn about the policies associated with nested applications. This is necessary for

information to be shared between instances.

• SDN Controller must support authorization accounting and auditing by allowing nested

applications to authenticate on behalf of associated outer applications.

4.8 Recommendations for Future security improvements on SDN Con-

trollers

It is evidently from this literature review that there is a need to provide more security en-

hancement on existing SDN Controllers. Specifically, additional security features are nec-

essary for the current and future SDN controllers to be robust, secure, and resilient. In this

46



regard, the following are three design recommendation to improve security in SDN Con-

trollers:

• Design based on software security principles: SDN controllers should be designed

according to secure software design elements including privilege limitation, sensitive

data encryption, and secure defaults (Chandrasekaran and Benson 2014). Additionally,

controller’s security should be tested using static analytic tools.

• Secure default controller setting: All SDN Controllers should employ safe mode boot

processes to ensure that controllers are secure during the entire lifecycle of the system.

• Application Future-Proofing: Applications should be designed outside controllers to

enhance transferability across the controllers.

47



5 Conclusion

Software-Defined Networking (SDN) is a new source of the networking standard, which

makes a communication network programmable. Network operators can run their infras-

tructure more proficiently, supporting faster deployment of new services while enabling key

features such as virtualization. This approach useful to wireless mobile networks that will

not only help from the same features as in the wired case, on the other hand will also have

a control on the distinct features of mobile deployments to push improvements even further.

Software Defined Network Architecture and OpenFlow protocol comes up with a solution to

current problems in computer networks. Though the new change in SDN made the basis for

further research, important changes in computer network technology have not been in use

yet. SDN has combined the most motivating and interesting ideas in one architecture that to-

tally separates centralized logic of control layer from data layer. This group of layers opens

the path for new changes and advances in computer network technology independently of

device manufacturers.

SDN provides operators with high flexibility in controlling the network. Through SDN ca-

pabilities, managing the network has shifted from codifying functionalities in regards to

low-level device configurations to building an application which facilitates the debugging

and management of the system. Furthermore, SDN offers new techniques for solving long-

standing problems such as routing challenges in the network while simultaneously permitting

the application of security features including access control. Such capabilities are provided

in SDN environment because SDN allows for the separation of the complexity of state dis-

tribution from network specification.

SDN is important in today’s modern datacenters as it deals with big data, help in maintenance

of cloud-based traffic, manage traffic towards many IP addresses and virtual machines, make

the infrastructure scalable and agile and also handle the managing policy and security. SDN

deals with new techniques for solving long-standing problems such as routing challenges in

the network while simultaneously permitting the application of security features including

access control. Such competencies are provided in the SDN environment because SDN al-

lows for the separation of the complexity of state distribution from network specification.

48



It is evidently from the literature review done in this thesis we can conclude that there is a

need to provide more security enhancement on existing SDN Controllers. Precisely, addi-

tional security features are necessary for the current and future SDN controllers to be robust,

secure, and resilient. Design recommendation to improve security in SDN Controllers can be

Design based on software security principles, Secure default controller setting and Applica-

tion Future-Proofing. Precisely, SDN can deal with more protected network if it is properly

secured. SDN has the ability to transform the network industry.

49



Bibliography

Arbettu, Ramachandra Kamath, Rahamatullah Khondoker, Kpatcha Bayarou, and Frank We-

ber. 2016. “Security analysis of OpenDaylight, ONOS, Rosemary and Ryu SDN controllers”.

In Telecommunications Network Strategy and Planning Symposium (Networks), 2016 17th

International, 37–44. IEEE.

Barth, Adam, Collin Jackson, Charles Reis, TGC Team, et al. 2008. “The security architec-

ture of the Chromium browser”. Technical report.

Benamrane, Fouad, Mouad Ben Mamoun, and Redouane Benaini. 2017. “New method for

controller-to-controller communication in distributed SDN architecture”. International Jour-

nal of Communication Networks and Distributed Systems 19 (3): 357–367.

Bittman, Thomas J, George J Weiss, Mark A Margevicius, and Philip Dawson. 2013. “Magic

quadrant for x86 server virtualization infrastructure”. Gartner, June.

Botelho, Fábio, Alysson Bessani, Fernando MV Ramos, and Paulo Ferreira. 2014. “On the

design of practical fault-tolerant SDN controllers”. In Software Defined Networks (EWSDN),

2014 Third European Workshop on, 73–78. IEEE.

Chandrasekaran, Balakrishnan, and Theophilus Benson. 2014. “Tolerating SDN application

failures with LegoSDN”. In Proceedings of the 13th ACM Workshop on Hot Topics in Net-

works, 22. ACM.

Cui, Laizhong, F Richard Yu, and Qiao Yan. 2016. “When big data meets software-defined

networking: SDN for big data and big data for SDN”. IEEE network 30 (1): 58–65.

“Ethernet OAM enabled OpenFlow Controller”. 2011. Visited on September 12, 2017. htt

p://nrg.sara.nl/presentations/SC11-SRS-8021ag.pdf.

Garcia, Miguel, Alysson Bessani, Ilir Gashi, Nuno Neves, and Rafael Obelheiro. 2014.

“Analysis of operating system diversity for intrusion tolerance”. Software: Practice and Ex-

perience 44 (6): 735–770.

50

http://nrg.sara.nl/presentations/SC11-SRS-8021ag.pdf
http://nrg.sara.nl/presentations/SC11-SRS-8021ag.pdf


Godanj, Igor, Krešimir Nenadić, and Krešimir Romić. 2016. “Simple example of Software

Defined Network”. In Smart Systems and Technologies (SST), International Conference on,

231–238. IEEE.

Hares, Susan, and Russ White. 2013. “Software-defined networks and the interface to the

routing system (I2RS)”. IEEE Internet Computing 17 (4): 84–88.

Hazboun, Elias. 2016. “The Interface to the Routing System”. Network 25.

Hu, Fei, Qi Hao, and Ke Bao. 2014. “A survey on software-defined network and openflow:

From concept to implementation”. IEEE Communications Surveys & Tutorials 16 (4): 2181–

2206.

Hu, Yannan, Wang Wendong, Xiangyang Gong, Xirong Que, and Cheng Shiduan. 2013.

“Reliability-aware controller placement for software-defined networks”. In Integrated Net-

work Management (IM 2013), 2013 IFIP/IEEE International Symposium on, 672–675. IEEE.

Keller, Eric, and Jennifer Rexford. 2010. “The" Platform as a Service" Model for Network-

ing.” INM/WREN 10:95–108.

Kirkpatrick, Keith. 2013. “Software-defined networking”. Communications of the ACM 56

(9): 16–19.

Kreutz, Diego, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve Rothenberg,

Siamak Azodolmolky, and Steve Uhlig. 2015. “Software-defined networking: A comprehen-

sive survey”. Proceedings of the IEEE 103 (1): 14–76.

Kreutz, Diego, Fernando Ramos, and Paulo Verissimo. 2013. “Towards secure and depend-

able software-defined networks”. In Proceedings of the second ACM SIGCOMM workshop

on Hot topics in software defined networking, 55–60. ACM.

Lara, Adrian, Anisha Kolasani, and Byrav Ramamurthy. 2014. “Network innovation using

openflow: A survey”. IEEE communications surveys & tutorials 16 (1): 493–512.

Liyanage, Madhusanka, Mika Ylianttila, and Andrei Gurtov. 2014. “Securing the control

channel of software-defined mobile networks”. In World of Wireless, Mobile and Multimedia

Networks (WoWMoM), 2014 IEEE 15th International Symposium on a, 1–6. IEEE.

51



McKeown, Nick, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jen-

nifer Rexford, Scott Shenker, and Jonathan Turner. 2008. “OpenFlow: enabling innovation

in campus networks”. ACM SIGCOMM Computer Communication Review 38 (2): 69–74.

Medved, Jan, Robert Varga, Anton Tkacik, and Ken Gray. 2014. “Opendaylight: Towards

a model-driven sdn controller architecture”. In World of Wireless, Mobile and Multimedia

Networks (WoWMoM), 2014 IEEE 15th International Symposium on a, 1–6. IEEE.

Nunes, Bruno Astuto A, Marc Mendonca, Xuan-Nam Nguyen, Katia Obraczka, and Thierry

Turletti. 2014. “A survey of software-defined networking: Past, present, and future of pro-

grammable networks”. IEEE Communications Surveys & Tutorials 16 (3): 1617–1634.

“OF-Config-OpenFlow-Configuration-and-Management-Protocol”. 2017. http://sear

chsdn.techtarget.com/definition/OF-Config-OpenFlow-Configurat

ion-and-Management-Protocol.

“Open Flow Switch Specification”. 2014. Visited on August 12, 2017. https://www.

opennetworking.org/sdn-resources/onf-specifications.

“OpenContrail as SDN controller”. 2017. https://www.nanog.org/sites/defau

lt/files/3_Gorbunov_Opencontrail_As_Sdn_Controller.pdf.

“opendaylight Controller”. 2017. https://www.sdxcentral.com/sdn/definit

ions/sdn-controllers/opendaylight-controller/.

“OVSDB”. 2017. http://searchsdn.techtarget.com/definition/OVSDB-

Open-vSwitch-Database-Management-Protocol.

Pol, Ronald van der, S Boele, F Dijkstra, J Mambretti, J Chen, FI Yeh, M Savoie, B Ho,

and L Sun. 2011. Monitoring and Troubleshooting OpenFlow Slices with an Open Source

Implementation of IEEE 802.1 ag.

Porras, Phillip A, Steven Cheung, Martin W Fong, Keith Skinner, and Vinod Yegneswaran.

2015. “Securing the Software Defined Network Control Layer.” In NDSS.

“Ryu Controller”. 2017. https://www.sdxcentral.com/sdn/definitions

/sdn-controllers/open-source-sdn-controllers/what-is-ryu-

controller/.

52

http://searchsdn.techtarget.com/definition/OF-Config-OpenFlow-Configuration-and-Management-Protocol
http://searchsdn.techtarget.com/definition/OF-Config-OpenFlow-Configuration-and-Management-Protocol
http://searchsdn.techtarget.com/definition/OF-Config-OpenFlow-Configuration-and-Management-Protocol
https://www.opennetworking.org/sdn-resources/onf-specifications
https://www.opennetworking.org/sdn-resources/onf-specifications
https://www.nanog.org/sites/default/files/3_Gorbunov_Opencontrail_As_Sdn_Controller.pdf
https://www.nanog.org/sites/default/files/3_Gorbunov_Opencontrail_As_Sdn_Controller.pdf
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/opendaylight-controller/
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/opendaylight-controller/
http://searchsdn.techtarget.com/definition/OVSDB-Open-vSwitch-Database-Management-Protocol
http://searchsdn.techtarget.com/definition/OVSDB-Open-vSwitch-Database-Management-Protocol
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/open-source-sdn-controllers/what-is-ryu-controller/
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/open-source-sdn-controllers/what-is-ryu-controller/
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/open-source-sdn-controllers/what-is-ryu-controller/


Scott-Hayward, Sandra. 2015. “Design and deployment of secure, robust, and resilient SDN

Controllers”. In Network Softwarization (NetSoft), 2015 1st IEEE Conference on, 1–5. IEEE.

Scott-Hayward, Sandra, Gemma O’Callaghan, and Sakir Sezer. 2013. “SDN security: A sur-

vey”. In Future Networks and Services (SDN4FNS), 2013 IEEE SDN For, 1–7. IEEE.

“Software-Defined-Networking”. 2017. https://www.sdxcentral.com/sdn/def

initions/what-the-definition-of-software-defined-networking-

sdn/.

Wallner, Ryan, and Robert Cannistra. 2013. “An SDN approach: quality of service using

big switch’s floodlight open-source controller”. Proceedings of the Asia-Pacific Advanced

Network 35:14–19.

Wang, Richard, Dana Butnariu, Jennifer Rexford, et al. 2011. “OpenFlow-Based Server Load

Balancing Gone Wild.” Hot-ICE 11:12–12.

Yan, Zheng, and Christian Prehofer. 2011. “Autonomic trust management for a component-

based software system”. IEEE Transactions on Dependable and Secure Computing 8 (6):

810–823.

Yoon, Bin Yeong, and Younghawa Kim. 2015. “Interworking model of transport SDN con-

trollers”. In Information Science and Security (ICISS), 2015 2nd International Conference

on, 1–3. IEEE.

Zhong, Xuxia, Ying Wang, Xuesong Qiu, and Wenjing Li. 2016. “FlowVisor-based cost-

aware VN embedding in OpenFlow networks”. International Journal of Network Manage-

ment 26 (5): 373–395.

53

https://www.sdxcentral.com/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/
https://www.sdxcentral.com/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/
https://www.sdxcentral.com/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/

	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Thesis Outline

	2 SDN Concept
	2.1 Three layers in SDN architecture
	2.2  Northbound API
	2.3 Southbound API
	2.4 OpenFlow protocol
	2.4.1 Overview
	2.4.2 OpenFlow Architecture
	2.4.3  Flow and group tables 
	2.4.4 Flow types

	2.5 SDN Applications

	3  SDN Controllers
	3.1 Overview of SDN Controllers
	3.2 SDN Controller Protocols
	3.2.1 The OpenFlow Protocol
	3.2.2 The Open Virtual Switch Database (OVSDB)
	3.2.3 Interface to the Routing System (i2rs)
	3.2.4 OF-Config and Netconf Protocols

	3.3 Open Source SDN Controllers 
	3.3.1 OpenDaylight Open-Source SDN Controller

	3.4 OpenContrail SDN Controller
	3.4.1 Floodlight Open SDN Controller
	3.4.2 Ryu OpenFlow Controller
	3.4.3 FlowVisor OpenFlow Controller 


	4 Securing SDN Controllers
	4.1 Overview
	4.2 Threat Vectors 
	4.2.1 Faked or forged traffic flows
	4.2.2 Attacks on vulnerabilities in switches 
	4.2.3 Attacks on control plane communications
	4.2.4 Attack on Controller vulnerabilities
	4.2.5 Lack of mechanisms for ensuring security between the management applications and Controllers
	4.2.6 Attacks on vulnerabilities in administrative stations

	4.3 Secure Controller Design 
	4.3.1 Control Process (Application) Isolation
	4.3.2 Implementation of Policy Conflict Resolution
	4.3.3 Multiple Controller Instances 
	4.3.4 Secure Storage

	4.4 Secure Controller Interfaces
	4.4.1 Secure Control Layer Communication
	4.4.2 GUI/REST API Security 

	4.5 Controller Security Services
	4.5.1 IDS/IPS Integration 
	4.5.2 Authentication and Authorization
	4.5.3 Resource Monitoring 

	4.6 Improving the Robustness of a Secure and Dependable SDN
	4.6.1 Replication
	4.6.2  Diversity 
	4.6.3  Self-healing Mechanisms 
	4.6.4 Dynamic device association
	4.6.5 Trust between Controllers and Devices
	4.6.6 Trust between controllers and application software
	4.6.7 Security domains 

	4.7 Security Requirements for SDN Controllers
	4.8 Recommendations for Future security improvements on SDN Controllers

	5 Conclusion
	Bibliography

