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Abstract

This Master’s Thesis concerns using the quasi-particle random phase approx-
imation model in the study of β decay. The study is done for the transition
from the 2−1 state of odd-odd nuclei to the isobaric neighbour’s (even-even
nuclei) ground state and some low-lying excited states. The mass numbers
of the studied nuclei are A=72, 74, 76, 78, 82, 84, 86, 88, 92, 94, 122, 124,
126, 132. The computed comparative β decay half-lives log(ft) values are
compared with the experimental results.



Introduction

The beta decay theory is a good test bench for nuclear models. It is accurate
in describing the most typical beta transitions and the kinematic part of
the theory is fully universal. The realization that neutrinos are massive,
increased the interest in investigating their intrinsic properties and motivate
the scientific community to do more efforts to understand the neutrino mass
generation mechanism. The absolute neutrino mass scale and the neutrino
mass spectrum became the main goal of neutrino experiments. Part of this
work have been used to assist these efforts.

The starting point to calculate the comparative β decay half-life log(ft)
value in this work is choose an even-even nucleus that is used as reference
nucleus. To make the calculation lighter, the configuration space of the
reference nucleus is divided into two parts [1]. The innermost nuclear orbitals
form an inert nuclear core and only the outer orbitals contribute to the
interactions that lead to the formation of excited states of the nucleus. These
active outer nuclear orbitals of the reference is called the valance space.

The ground state of the reference nucleus can be obtained from BCS the-
ory [1, 2]. The excited states of those reference nuclei can then be described
as proton-proton (neutron-neutron) quasi-particles pairs on the top of the
ground state (Charge conserving QRPA). While the ground state and ex-
cited states of neighbouring odd-odd nuclei can then be described as proton-
neutron quasi-particles pairs on the top of the ground state of the reference
nucleus (Charge changing pnQRPA).

This Thesis is organized as follows: The first section of this text con-
centrates on the theoretical description of nuclear states. The second section
provides a brief theory of Unique and Non-Unique first-forbidden beta decay.
In the third section of the text the theoretical framework is applied to the β
decay for selected sets of nuclei. The final section contains the conclusions.

1 Theoretical Description of Nuclear States

In this section the particle nuclear mean field is introduced first. Then
the quasi-particle description is elucidated by briefly summarizing the BCS,
QRPA and the pnQRPA.

1.1 Nuclear Mean Field

The mean field’s concept is broadly used for the description of interacting
many-body systems where the A-nucleon Schrödinger equation can not be
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solved exactly, at least for A > 10. Therefore one has to look for reasonable
approximate methods to solve this many-body problem of strongly inter-
acting system of particles. This could be done in a straightforward way
by converting the strongly interacting system of particles into a system of
weakly interacting quasi-particles. In the first approximation the system of
quasi-particles can be treated as a set of non-interacting quasi-particles. The
standard way to do that is to use the so-called mean field approximation.
The significant idea behind this approximation is to treat the many-body
system and describe the interaction of one particle with the remaining par-
ticles in system by an average potential created by the other ones. Not by
summing up all mutual two-body interactions of the particles. In addition
one should be cognizant that the remaining interactions commonly named
residual interactions, can usually be treated by perturbation theory. The
possible form of the nuclear Hamiltonian is

H = [T + VMF] + [V − VMF] = HMF + VRES, (1)

where

HMF = T + VMF =
A∑
i=1

[t(ri) + v(ri)] =
A∑
i=1

h(ri), (2)

VRES is the residual interaction (In the mean field approach any interaction
that is not accounted for is considered as residual interaction), and h(ri) is
the one-body Hamiltonian.

In the mean-field approximation each nucleon can be viewed as moving
in an external field created by the remaining A − 1 nucleons. This external
potential VMF in Eq. (1) is commonly and simply represented by central
potential known by the name Woods-Saxon potential [1]. This potential has
been used widely, has enjoyed success and its form can be seen below:

vws =
V0

1 + e(r−R)/a
, (3)

where in its usual parametrization the nuclear radius R and the surface dif-
fuseness a are taken to be [1]

R = r0A
1/3 = 1.27A1/3fm ; a = 0.67fm. (4)

The depth V0 of the potential is chosen according to the relation

V0 = (51± 33
N − Z
A

). (5)

The central potential alone does not reproduce the experimentally ob-
served qualitative behaviour of single-particle energies in the mean field. To
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achieve this we need to add an additional term resulting from the spin- orbit
interaction, which we denoted in Eq. (1) as VRES.

Including the Woods-Saxon potential υWS the one-body Hamiltonian is
[1]

h(r)|nl1
2
jm〉 =

[
− ~

2mN

(∇2
r −

L2/~2

r2
) + υWS(r) + υc(r) + υLS(r)L · S

]
|nl1

2
jm〉,

= εnlj|nl
1

2
jm〉,

(6)

the symbol∇2
r denotes the usual radial derivative, υc(r) is Coulomb potential

and it applies to protons only and υLS(r) is the spin-orbit term

vLS(r) = v
(0)
LS (

r0
~

)2
1

r

[
d

dr

1

1 + e(r−R)/a

]
, (7)

v
(0)
LS = 0.44V0. (8)

The latter part VRES in Eq. (1), the residual interaction, containing all the
two-body interaction, is effectively suppressed by maximizing the first part
HMF, and it can then be treated as small perturbation. This procedure effec-
tively replaces the A strongly interacting nucleons with weakly interacting
mean-field quasi-particles and this is called nuclear mean-field approxima-
tion.

1.2 BCS Model

In the BCS theory the basic constituents of nuclei are not particle or holes but
rather quasi-particles that have both particle and hole component. In other
words they are in fact generalized fermions which they are simultaneously
partly particles and partly holes with certain amplitudes. Since these hybrid
particles or what we called before quasi-particles, are moving in an additional
field - the pairing field - generated by the short-range forces. One can easily
recognize the importance of the pairing phenomena in nuclei and it makes
the BCS theory essential in describing the nuclear structure. The starting
point in this formalism is the ansatz for the BCS ground state [1]

|BCS〉 =
∏
α>0

(ua − υac†αc̃†α)|HF〉. (9)

The notation here is α = (a,mα) and a = (na, la, ja) for the quantum number
of a single-particle orbital, ua and va are the occupation amplitudes. The
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creation and annihilation operators a†α and aα are defined via the Bogoliubov-
Valatin transformation [1]

a†α = uac
†
α + υac̃α, (10)

ãα = uac̃α − υac†α. (11)

The standard nuclear Hamiltonian in quasi-particle representation is

H = H0 +
∑
b

ĵbEb[a
†
bãb]00 + VRES. (12)

In this Hamiltonian the first two terms carry most of the nucleon-nucleon
short-range interaction. The information in this model is condensed in the
BCS equations below which arise from a variational procedure :

ua =
1√
2

√
1 +

ηa
Ea

(occupation amplitudes),

va =
1√
2

√
1− ηa

Ea
(occupation amplitudes),

Ea =
√
η2a + ∆2

a (quasiparticle energy), (13)

2ĵa∆a = −
∑
b

ĵb∆b√
η2b + ∆2

b

〈aa; 0|V |bb; 0〉 (gap equation),

n̄ =
∑
a

ĵa
2
v2a =

1

2

∑
a

ĵa
2
(1− ηa

Ea
) (average particle number).

Where ηa and ∆a are abbreviations for certain blocks of terms, are called the
effective single-particle energy and paring gap respectively [1]. In practice
the parameters of the BCS calculation are adjusted to reproduce the experi-
mental paring gaps. Here in this thesis the empirical paring gaps have been
computed from the three-point formula [1]

∆p =
1

4
(−1)Z+1(Sp(A+ 1, Z + 1)− 2Sp(A,Z) + Sp(A− 1, Z − 1)), (14)

∆n =
1

4
(−1)N+1(Sn(A+ 1, Z)− 2Sn(A,Z) + Sn(A− 1, Z)), (15)

by using the proton (Sp) and neutron (Sn) separation energies [3], where Z
and N are the numbers of protons and neutrons respectively of the even-even
reference nucleus.
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1.3 QRPA & pnQRPA

The quasiparticle random-phase approximation (QRPA) is adopted to con-
struct the excited states of the even-even nuclei. And the proton-neutron
quasiparticle random-phase approximation (pnQRPA) is also adopted to con-
struct the excited states of the odd-odd nuclei. The first step in both the
QRPA and pnQRPA formalism is to solve the BSC equation. After that we
start the construction for the nuclear states by forming all two-quasiparticle
states with good angular momentum Jω and parity πω. The state vector for
excitation ω = (Jω, πω, kω) is then given by [1]

|ω〉 = Q†ω|(pn)QRPA〉, (16)

here |(pn)QRPA〉 denotes the vacuum state of either the QRPA or pnQRPA.
The excitation operator Q†ω is defined in QRPA as [1]

Q†ω =
∑
a≤b

[
Xω
abNab(Jω)[a†aa

†
b]JωMω + Y ω

abNab(Jω)[ãaãb]JωMω

]
, (17)

where the indices a, b run over all two-proton and two-neutron configuration
within the chosen valance space, so that non of them is counted twice. The
quantity Nab is a normalization constant [1].

In a similar fashion the pnQRPA creation operator Q†ω is given by[1]

Q†ω =
∑
pn

[
Xω
pn[a†pa

†
n]JωMω + Y ω

pn[ãpãn]JωMω

]
, (18)

where the sum runs over all possible proton-neutron configurations in the
adopted valence space. In both the QRPA and pnQRPA the amplitudes Xω

and Y ω can be found from the matrix equation [1](
A B
−B∗ −A∗

)(
Xω

Y ω

)
= Eω

(
Xω

Y ω

)
(19)

where Eω is the excitation energy of the state |ω〉. Here A is a hermitian
matrix known as the quasiparticle Tamm-Dancoff (QTDA) matrix in the
QRPA and the pnQTDA matrix in the pnQRPA. B is a symmetric matrix
which accounts for the ground-state correlations (correlation matrix).

2 First-Forbidden Beta Decay

In this section we briefly introduce the theory of first-forbidden beta decay. In
first-forbidden beta decay modes leptons are emitted in p-wave and there are

5



also contributions coming from the small components of the relativistic Dirac
wave function. There are four types of nuclear matrix element that emerge
from p-wave leptons, and there are two types of nuclear matrix element that
emerge from the small components of Dirac spinors. All these six matrix
elements contribute to the first-forbidden nuclear beta decay. Each of the
operators changes the parity. This means that the initial and final nuclear
states must have opposite parities, i.e. πiπf = −1 .

2.1 First-Forbidden Unique Beta Decay

An appropriate simplification can be achieved when ∆J = 2. Then there
is only the tensor-axial matrix element from six matrix elements (the one
with the largest total angular momentum content) which contributes. The
shape function of a first-forbidden unique β± transition which contains the
tensor-axial nuclear matrix element and the appropriate lepton kinematics
can be taken [4]

S
(∓)
1u (Zf , ε) = F1u(±Zf , ε)pε(E0 − ε)2 (20)

= [F0(±Zf , ε)(E0 − ε)2 + F1(±Zf , ε)(ε2 − 1)]pε(E0 − ε)2,
where the functions F0(±Zf , ε) and F1(±Zf , ε) are Fermi functions taking
into account the coulomb interaction between the final-state lepton and the
residual nucleus. The endpoint energy E0 is given by

E0 =
Qβ− +mec

2

mec2
(for β− decay), (21)

and

E0 =
Qβ+ +mec

2

mec2
=
QEC −mec

2

mec2
(for β+ decay). (22)

Where the Q values (Qβ+, Qβ− and QEC) of nuclear beta decays were defined
in [1] as the total kinetic energies of the final-state leptons. The phase space
factor is now

f
(∓)
1u =

∫ E0

1

S
(∓)
1u (Zf , ε)dε. (23)

The ft value for the first-forbidden unique beta decay can be defined as

ft ≡ f1ut1/2 =
κ

1
12
B1u

;B1u =
g2A

2Ji + 1
|M1u|2, (24)
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with κ given by

κ ≡ 2π3h7ln2

m5
e(2π)7c4G2

F

= 6147s, (25)

and

f1u ≡ f
(−)
1u (for β− decay); f1u ≡ f

(+)
1u + f

(EC)
1u (for β+/EC decay). (26)

The ft value in Eq. (24) is a phase-space independent and depends only on
nuclear structure.

2.2 First-Forbidden Non-Unique Beta Decays

In the first-forbidden non-unique beta decay all the six decay operators are
available to produce a given transition. The shape functions of a first-
forbidden non-unique β± transition which contains these six nuclear matrix
element with the appropriate phase-space factors of the lepton kinematics
have a complicated formula. In compact fashion they are denoted as the
following:

SK=1 =

{
S
(−)
K=1, for β− decay

S
(+)
K=1 + S

(EC)
K=1 , for β+ / EC decay.

(27)

The convenient definition for ft value can be as follow [5]

ft ≡ f
(−)
0 t1/2 =

κ

SK=1

, (28)

where the f
(−)
0 is scaling quantity to normalize the integrated phase-space

factors present in Eq. (27).

3 Results and Discussion

In this section the theoretical framework is put into a test. Here we have
performed calculations of log(ft) for the sets of nuclei listed in Table1 (The
sets of nuclei in the Table 1 are classified according to valance space of the
single particle orbitals for the reference nuclei). The listed nuclei decay by
β channels from the 2−1 state of odd-odd nucleus, to the two groups of states
of the reference nucleus. First group consists of the 0+ ground state, 0+

2

and 4+
1 excited states where the corresponding decays are first-forbidden

unique beta decays. Second group includes the 2+
1 and 2+

2 states where the
corresponding decays are first-forbidden non-unique beta decay. We have
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done QRPA and pnQRPA calculations to build up the appropriate nuclear
structures for participant initial and final states. We compare our results
with the experimental results to see how well the chosen pnQRPA framework
works.

Table 1: The nuclei discussed in the present work classified according to their
decay channels. The reference nuclei are denoted in parentheses.

Set’s name Decaying via β− Decaying via β+

Set1 72As(Ge)
74As(Se) 74As(Ge)
76As(Se) 76As(Ge)
78As(Se)
82Br(Kr)
84Br(Kr)
84Rb(Sr) 84Rb(Kr)
86Rb(Sr) 86Rb(Kr)
88Rb(Sr)
92Y(Zr)
94Y(Zr)

Set2 122Sb(Te) 122Sb(Sn)
124I(Te)

126I(Xe) 126I(Te)
132La(Ba)

3.1 Single-Particle States

The single-particle energies were computed by using the Woods-Saxson po-
tential. The adopted valance space for the reference nuclei in the set 1 (see
Table1) consists of proton single-particle orbitals 0f, 1p, 0g, 1d, 2s and 0h11/2

and the neutron single-particle orbitals are the same as the proton ones. The
adopted valance space for the nuclei in the set 2 (Table1) consists of the
proton single-particle orbitals 0f, 1p, 0g, 1d, 2s, 0h, 1f and 2p and the neu-
tron single-particle orbitals are the same as the proton ones. The obtained
single-particle energies for protons and neutrons as functions of the atomic
number ”A” are plotted in Figs 1-10. The energies vary gradually and that is
consistent with the smooth evolution of the Woods-Saxon energies with the
presently used parametrization. We should mention that in the set 1 we cor-
rected the energies of the level 1d5/2 for the references elements 76Ge, 84Kr,
86Kr, 86Sr manually relative to the 2s1/2 level to produce a smooth trend of
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energies. And also we did the same in set 2 for the reference element 122Sn
by changing the 0h9/2 orbit manually relative to the 1d3/2 orbit.
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Figure 1: Neutron energy levels for the 1st set of nuclei excluding 84Kr (same
mass number as 84Sr) decaying via β−.
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Figure 2: Proton energy levels for the 1st set of nuclei excluding 84Kr (same
mass number as 84Sr) decaying via β−.
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Figure 3: Neutron energy levels for the 1st set of nuclei excluding 84Sr (same
mass number for 84Kr) decaying via β−.
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Figure 5: Neutron energy levels for the 1st set of nuclei decaying via β+.
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Figure 6: Proton energy levels for the 1st set of nuclei decaying via β+.
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Figure 7: Neutron energy levels for the 2nd set of nuclei decaying via β− in
addition to 120Te nucleus.

−10

0

E
/M

eV

120 121 122 123 124
A

0f7/2

0f5/2

1p3/2

1p1/2

0g9/2

0g7/2

1d5/2

1d3/2

2s1/2

0h11/2

0h9/2

1f7/2

1f5/2

2p3/2

2p1/2

Figure 8: Proton energy levels for the 2nd set of nuclei decaying via β− in
addition to 120Te nucleus.
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Figure 9: Neutron energy levels for the 2nd set of nuclei decaying via β+.
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Figure 10: Neutron energy levels for the 2nd set of nuclei decaying via β+.
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3.2 BCS Calculation

In this step the quasi-particles were defined by performing BCS calculations
for protons and neutrons. We considered the Zcore = 20 and Ncore = 20 for
all nuclei. The interaction was scaled by a constant gpairp for protons and gpairn

for neutrons, so that the energy of the lowest quasi-particle state was roughly
equal to the empirical pairing gap ∆p and ∆n computed from the three-point
formulas (14) and (15), by using separation energy for the proton (Sp) and
for neutron (Sn) obtained from [3]. Table 2 show the adjusted values gpairp ,
gpairn to reproduce the empirical pairing gaps ∆p and ∆n.

Table 2: The adopted values gpairn and gpairp to make the energy of the lowest
quasi-particle state roughly equal to the empirical paring gaps ∆n & ∆p.

Nucles ∆n gpairn ∆p gpairp
72Ge 1.826 1.0845 1.488 1.0215
74Ge 1.776 1.2385 1.570 1.0635
74Se 1.813 1.1506 1.815 1.1214
76Ge 1.570 1.2006 1.521 1.0390
76Se 1.715 1.2212 1.710 1.0913
78Se 1.653 1.2464 1.618 1.0575
82Kr 1.647 1.2575 1.633 0.7900
84Kr 1.614 1.2295 1.432 0.9487
84Sr 1.616 1.2482 1.871 1.1000
86Kr 1.771 1.2390 1.355 0.9108
86Sr 1.507 1.1970 1.622 1.0265
88Sr 1.86 0.9640 1.382 0.9635
92Zr 0.72 0.9640 1.265 0.9389
94Zr 0.811 0.9530 1.303 0.9491
122Sn 1.379 1.071 1.76 0.9865
122Te 1.376 1.017 1.326 1.037
124Te 1.338 1.052 1.251 0.9865
126Te 1.343 1.0934 1.169 0.9525
126Xe 1.3 1.0394 1.302 0.998
132Ba 1.24 1.0705 1.377 1.0014
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3.3 QRPA Calculation

In this step we constructed the exited states 2+
1 , 2+

2 , 0+
2 and 4+

1 for even-
even nucleus by using the QRPA. In the QRPA matrix the particle-hole
part as scaled by a parameter called gph. We adjusted gph to get roughly the
experimental energy value for the 2+

1 state. The adopted values are presented
in Table 3.

Table 3: The gph values for the even-even refrence nuclei.

E(2+
1 ) (MeV)

Nucles Experimental Theoretical gph
72Ge 0.834 0.835 0.954
74Ge 0.596 0.596 0.869
74Se 0.644 0.634 0.921
76Ge 0.563 0.593 0.801
76Se 0.560 0.559 0.837
78Se 0.614 0.613 0.833
82Kr 0.777 0.777 0.799
84Kr 0.882 0.882 0.886
84Sr 0.793 0.794 0.916
86Kr 1.565 1.565 1.202
86Sr 1.077 1.108 1.008
88Sr 1.836 1.837 0.780
92Zr 0.935 0.934 0.660
94Zr 0.919 0.918 0.737
122Sn 1.141 1.142 0.872
122Te 0.564 0.564 0.731
124Te 0.603 0.602 0.725
126Te 0.666 0.667 0.727
126Xe 0.389 0.389 0.665
132Ba 0.465 0.464 0.658
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3.4 pnQRPA Calculations

In this step we constructed the 2−1 state of the odd-odd nuclei by using the
pnQRPA. In the pnQRPA matrix the particle-particle part was scaled by the
particle-particle interaction parameter gpp. We adjusted gpp to reproduce
roughly the experimental energy gap values between the 2−1 state and the 1+

1

state. We present these gaps as functions of gpp in Figs 11-13. For example,
we present in Fig. 13 the energies of the 2−1 and 1+

1 states of 132La as functions
of gpp. The experimental gap between 2−1 and 1+

1 states is 182.62 keV which
correspond to gpp=1.272.

In some cases we could not determine the gpp values and one of them is
74As. The computed 1+

1 state is lower than 2−1 state for any gpp values in the
range 0.2-1.3, opposite to the experimental situation, see Fig 11. For some
nuclei like 82Br, it was impossible to find a suitable gpp value even if the
2−1 state was lower than 1+

1 state like in experiment because the energy gap
was extremely large compared with the experimental energy gap, see Fig 12.
Another reason is that there is no experimental data, like for 124I. For these
nuclei we study, as you will see in section 3.5, how much gpp affects the log
(ft) values and which gpp values are suitable for each. Tables 4 and 5 show
the adopted gpp values.

Table 4: The values of gpp parameter for nuclei decaying via β+.

Difference between energy levels 1+
1 and 2−1

Nucleus Experimental Theoretical gpp

(keV) (keV)
72As 46.025 46.025 0.862
74As 206.559 206.15 1.351
76As 44.425 1756.4 0.9
84Rb 1007.6 1007.27 1.3483
86Rb 488.24 488.37 1.439
122Sb 121.497 594.99 0.9
124I - 606.67 0.9
126I 56.43 669.63 0.9
132Ba 182.073 182.62 1.272

3.5 Beta Calculation

In this step we show results of the beta calculations. We also studied how our
calculated results depend on gpp and the value of the axial vector coupling
constant gA, this is done in Tables 6-8 for the transition form 2−gs to 0+

gs (other
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Figure 11: The energies of the 1+
1 and 2−1 states for 74As relative to the ground

state of 74Se as functions of the gpp parameter. This scheme shows how some
times it is impossible to determine the gpp value because the energy level 1+

1

is lower than 2−1 , opposite to the experimental result.
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Figure 12: The energies of the 1+
1 and 2−1 states for 82Br relative to the ground

state of 82Kr as functions of the gpp parameter. This scheme shows how some
times it is impossible to determine the gpp value because the energy level 1+

1

is higher than 2−1 in the calculations.
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Figure 13: The energies of the 1+
1 and 2−1 states for 132La relative to the

ground state of 132Ba as functions of the gpp parameter. This scheme shows
how some times it is possible to determine by this procedure the gpp value.
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Table 5: The values of gpp parameter for nuclei decaying via β−.

Difference between energy levels 1+
1 and 2−1

Nucleus Experimental Theoretical gpp

(keV) (keV)
74As 173.136 -615.67 0.9
76As 44.425 44.04 1.1605
78As 277.33 277.77 1.3481
82Br 29.113 1583.67 0.9
84Br 408.24 2025.38 0.9
84Rb 1007.6 1006.5 0.66
86Rb 488.24 488.29 1.1588
88Rb 2391.7 1492.22 0.9
92Y 1384.914 1443.6 0.9
94Y 1427.717 40.31 0.9
122Sb 121.149 121.15 1.119
122I 56.43 58.62 1.169

transitions have a similar behaviour). Fig 14 shows the relation between
log(ft) and gpp values . It is clear that log(ft) is only weekly dependent on
gpp values.

We present in Tables 9 - 12 the computed log(ft) values. In these tables
we notice a difference between experimental and theoretical values. This
difference can be explained by the fact that nuclear matrix elements predicted
by pnQRPA are much larger than the observed ones [6].

Table 6: The log(ft) values for β− transition 94Y−→ 94 Zr for gpp=0.7 and
different gA values.

gpp=0.7 and gA=0.75 log(ft)
Transition 94Y−→ 94Zr Theoretical Experimental
(2−1 ) −→ (0−gs) 9.506 9.35

gpp=0.7 and gA=1.00 log(ft)
Transition 94Y−→ 94Zr Theoretical Experimental
(2−1 ) −→ (0−gs) 9.2562 9.35

gpp=0.7 and gA=1.25 log(ft)
Transition 94Y−→ 94Zr Theoretical Experimental
(2−1 ) −→ (0−gs) 9.0623 9.35
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Table 7: The log(ft) values for β− transition 94Y−→ 94Zr for gpp=0.8 and
different gA values.

gpp=0.8 and gA=0.75 log(ft)
Transition 94Y−→ 94Zr Theoretical Experimental
(2−1 ) −→ (0−gs) 9.4936 9.35

gpp=0.8 and gA=1.00 log(ft)
Transition 94Y−→ 94Zr Theoretical Experimental
(2−1 ) −→ (0−gs) 9.2438 9.35

gpp=0.8 and gA=1.25 log(ft)
Transition 94Y−→ 94Zr Theoretical Experimental
(2−) −→ (0−gs) 9.05 9.35

Table 8: The log (ft) values for β− transition 94Y−→ 94Zr for gpp=0.9 and
different gA values.

gpp=0.9 and gA=0.75 log(ft)
Transition 94Y−→ 94Zr Theoretical Experimental
(2−1 ) −→ (0−gs) 9.4877 9.35

gpp=0.9 and gA=1.00 log(ft)
Transition 94Y−→ 94Zr Theoretical Experimental
(2−1 ) −→ (0−gs) 9.2379 9.35

gpp=0.9 and gA=1.25 log(ft)
Transition 94Y−→ 94Zr Theoretical Experimental
(2−1 ) −→ (0−gs) 9.044 9.35

The results are depicted in Figures 15a -18b to make the picture clearer.
Let us take first a look at the Figures 15a-15c where both the experimental
and theoretical log(ft) values for first forbidden unique beta-decay transitions
are depicted (when both are available). The computed log(ft) values for the
unique β− transition to the states 0+

gs and, 0+
1 have a general tendency. In this

tendency the theoretical values are smaller than the experimental ones. Only
in two cases, 82Br and 88Rb, the theoretical log(ft) are slightly larger than
the experimental ones. This general tendency can be explained by the fact
that the nuclear matrix elements predicted by pnQRPA are much larger than
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Figure 14: The relation between log(ft) and gpp for the decay of 74As to 74Se.

Table 9: The log(ft) values for the nuclei decaying via unique β−.

gA = 1.00 log(ft) (2−1 to 0+gs) log(ft) (2−1 to 0+1 ) log(ft) (2−1 to 4+1 )
Nucleus gpp Theoretical Experimental Theoretical Experimental Theoretical Experimental

74As 0.9 8.6337 9.371u 11.01 - 12.65 -
76As 1.1605 8.7818 9.731u 10.33 10.291u 12.03 11.161u
78As 1.3481 9.1568 9.641u 10.08 10.511u 11.83 10.261u
82Br 0.9 8.9836 8.881u 10.47 10.401u 12.20 10.51u
84Br 0.9 8.9599 9.461u 10.23 10.81u 11.90 >9.81u
84Rb 0.66 8.8615 9.41u - - - -
86Rb 1.1838 9.1259 9.43991u - - - -
88Rb 0.9 9.1206 9.24551u 11.05 - 13.85 -
92Y 0.9 9.0281 9.271u 12.12 9.581u 12.83 9.751u
94Y 0.9 9.2379 9.351u 11.39 9.871u 12.13 9.391u
122Sb 1.119 9.4999 9.6541u 10.36 10.321u 11.93 10.831u
126I 1.169 9.4952 9.6491u 9.91 - 11.50 -
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Table 10: The log(ft) values for the nuclei decaying via non unique β−.

gA = 1.00 log(ft) (2−1 to 2+1 ) log(ft) (2−1 to 2+2 )
Nucleus gpp Theoretical Experimental Theoretical Experimental

74As 0.9 9.39 7.63 10.61 >7.1
76As 1.1605 8.19 8.12 8.70 8.21
78As 1.3481 7.15 7.91 8.13 7.61
82Br 0.9 7.48 7.91 9.08 7.93
84Br 0.9 6.58 7.70 7.10 7.21
84Rb 0.66 7.37 - - -
86Rb 1.1838 6.97 7.932 - -
88Rb 0.9 7.84 7.768 9.34 7.512
92Y 0.9 7.46 8.56 8.34 8.73
94Y 0.9 6.61 7.181 7.76 7.87
122Sb 1.119 8.51 7.614 7.55 7.70
126I 1.169 7.52 7.833 7.25 7.551

Table 11: The log(ft) values for the nuclei decaying via unique β+.

gA = 1.00 log(ft) (2−1 to 0+gs) log(ft) (2−1 to 0+1 ) log(ft) (2−1 to 4+1 )
Nucleus gpp Theoretical Experimental Theoretical Experimental Theoretical Experimental

72As 0.862 9.4123 9.841u 10.57 10.561u 12 10.341u
74As 1.3518 8.9731 9.71u 10.09 10.341u 11.51 11.281u
76As 0.9 8.7390 - - - - -
84Rb 1.3483 9.1526 9.5091u 6.39 - 6.39 -
86Rb 1.4390 9.0703 9.781u - - - -
122Sb 0.9 8.4017 8.991u - - - -
124I 0.9 8.5020 9.271u 10.69 10.301u 12.05 11.171u
126I 0.9 8.3852 9.2011u 6.6 0 10.151u 6.60 ≥12.41u
132Ba 1.272 8.4538 9.481u 10.34 10.01u 11.89 9.61u

Table 12: The log(ft) values for the nuclei decaying via non unique β+.

gA = 1.00 log(ft) (2−1 to 2+1 ) log(ft) (2−1 to 2+2 )
Nucleus gpp Theoretical Experimental Theoretical Experimental

72As 0.862 7.51 7.208 8.10 7.692
74As 1.351 6.9 6.96 7.23 8.247
76As 0.9 - - - -
84Rb 1.3483 6.80 7.114 6.38 8.085
86Rb 1.439 - - - -
124I 0.9 6.81 7.49 7.58 7.87
126I 0.9 7.13 7.452 6.59 7.629
132Ba 1.272 6.35 7.5 7.42 7.2
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the observed ones [6]. In contrast if one takes a look at the computed values
of the transitions to the 4+

1 state, the previous general tendency becomes
reversed: the theoretical values became bigger than the experimental ones.
Only in one case ,124I, the theoretical log(ft) is larger than the experimental
one. This general tendency can be explained by the fact that the nuclear
matrix elements predicted by pnQRPA are smaller than the observed ones
[6].
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(a) Transition from 2−1 to 0+gs
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(c) Transition from 2−1 to 4+1

Figure 15: Experimental and theoretical log(ft) values for the unique β−

transitions.
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(c) Transition from 2−1 to 4+1

Figure 16: Experimental and theoretical log(ft) values for the unique β+

transitions.
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Second feature one can notice by looking at the Figures 15a-15b, for the
β− transitions to the 0+ ground states and 0+

1 , is that the differences between
theoretical and experimental values become smaller by increasing the mass
number. This features is not present for the transition to the 4+

1 state.

By looking at the Figs 16a-16c the obtained results for unique β+ tran-
sition. One can notice clear feature for the computed log(ft) values for the
transitions to the 0+

gs. These theoretical values are always smaller than the
experimental ones. This feature can be explained by fact that the nuclear
matrix elements predicted by pnQRPA are much larger than the experimen-
tal ones. For the transitions to the 0+

1 and 4+
1 one can not notice any clear

feature. In general one can mention that the theoretical and the experimental
results are much closer comparing with the analogous unique β− transition.

In the Figures 17a-18b both the experimental and theoretical log(ft) val-
ues for first forbidden non-unique beta decays transitions are depicted (when
both are available). One can notice that the differences between theoretical
and experimental values have less fluctuations. In the other words the differ-
ences between theoretical and experimental values are closer to the average
of differences. Also one can mention that the results for larger masses are
somewhat better.
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(b) Transition from 2−1 to 2+2

Figure 17: Experimental and theoretical log(ft) values for the non-unique
β− transitions.
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Figure 18: Experimental and theoretical log(ft) values for the non-unique
β+ transitions.

4 Conclusion

In this thesis the first-forbidden (both unique and non-unique) beta decays
were studied. The ground state of the even-even nucleus is obtained from
the BCS theory [1, 2], where the interaction was scaled by a constant gpairp

for protons and gpairn for neutrons. The quasiparticle random-phase approx-
imation (QRPA) was adopted to construct the excited states of the even-
even nuclei. There the QRPA matrix was scaled by parameter called gph.
The proton-neutron quasiparticle random-phase approximation (pnQRPA)
was also adopted to construct the excited states of the odd-odd nucleus.
The particle-particle part of the pnQRPA matrix was scaled by the particle-
particle interaction parameter gpp. The results of this work are comparative
β decay half-lives, log(ft), for the transitions from the 2− ground states of
the odd-odd nuclei to the 0+ ground states, 0+

1 , 4+
1 , 2+

1 and 2+
2 states of the

even-even nuclei. These theoretical estimates are given in Tables 9-12.
Finally the obtained results are compared with experimental data, when

they are available and depicted in Figures 15a -18b. Two features had been
noticed for the first forbidden unique β− transition. First one, the computed
log(ft) values for transition to the states 0+ ground states and 0+

1 have gen-
eral tendency. It was found that the theoretical values are smaller than the
experimental ones. This tendency is explained by the fact that the nuclear
matrix elements predicted by pnQRPA are much larger than the observed
ones [6]. This previous feature was noticed also for the transitions to 4+

1
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states but it was inverse. The computed log(ft) values for transition to the
0+ ground states and 0+

1 showed that the differences between theoretical and
experimental values become smaller by increasing the mass number. Where
as these features are not clear for the transition to the 4+

1 state. For the first
forbidden unique β+ transitions there are also two features had been noticed.
First feature the computed log(ft) values for the transitions to the 0+

gs were
always smaller than the experimental ones.This feature is explained by the
fact that the nuclear matrix elements predicted by pnQRPA are much larger
than the observed ones. Second feature noticed that the theoretical and the
experimental results are much closer comparing with the analogous unique
β− transitions. For first-forbidden non-unique beta decays transitions the
obtained results had less deviation from data than the results of the first-
forbidden unique beta decays transitions.

In the end, one can mention that the obtained results for the transition 2−gs
to 0+

gs are used in analysing the suppression of spin-dipole (SD) nuclear matrix
elements (NMEs) for these β decays, and this was done in article [6]. These
NMEs are associated with the Jπ = 2− component of 0νββ matrix element
and the cross sections of the medium-energy neutrino-nuclear interactions.
Now the 0νββ decays of several isotopes are under extensive experimental
and theoretical study to access the Majorana properties of neutrinos and
their absolute mass scale [7, 8, 9, 10]. Then a reliable value of 0νββ NME
is required to design an optimum 0νββ detector and to deduce the neutrino
mass from the measured 0νββ decay rate in case it is observed.
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