

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s):

Title:

Year:

Version:

Please cite the original version:

All material supplied via JYX is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that
material may be duplicated by you for your research use or educational purposes in electronic or
print form. You must obtain permission for any other use. Electronic or print copies may not be
offered, whether for sale or otherwise to anyone who is not an authorised user.

Large Scale Knowledge Matching with Balanced Efficiency-Effectiveness Using LSH
Forest

Cochez, Michael; Terziyan, Vagan; Ermolayev, Vadim

Cochez, M., Terziyan, V., & Ermolayev, V. (2017). Large Scale Knowledge Matching
with Balanced Efficiency-Effectiveness Using LSH Forest. In N. T. Nguyen, R.
Kowalczyk, A. M. Pinto, & J. Cardoso (Eds.), Transactions on Computational Collective
Intelligencev XXVI (pp. 46-66). Springer. Lecture Notes in Computer Science, 10190.
https://doi.org/10.1007/978-3-319-59268-8_3

2017

Large Scale Knowledge Matching with Balanced
Efficiency-Effectiveness Using LSH Forest

Michael Cochez1,2,3, Vagan Terziyan3, and Vadim Ermolayev4

1 Fraunhofer Institute for Applied Information Technology FIT, Schloss Birlinghoven
DE-53754 Sankt Augustin, Germany
michael.cochez@fit.fraunhofer.de

2 RWTH Aachen University, Informatik 5, Templergraben 55
DE-52056 Aachen, Germany

3 University of Jyvaskyla, Faculty of Information Technology, P.O. Box 35 (Agora),
FI-40014 University of Jyväskylä, Finland

vagan.terziyan@jyu.fi
4 Zaporozhye National University, Department of IT, 66, Zhukovskogo st.,

UA-69063, Zaporozhye, Ukraine
vadim@ermolayev.com

Abstract. Evolving Knowledge Ecosystems were proposed to approach
the Big Data challenge, following the hypothesis that knowledge evolves
in a way similar to biological systems. Therefore, the inner working of
the knowledge ecosystem can be spotted from natural evolution. An
evolving knowledge ecosystem consists of Knowledge Organisms, which
form a representation of the knowledge, and the environment in which
they reside. The environment consists of contexts, which are composed
of so-called knowledge tokens. These tokens are ontological fragments
extracted from information tokens, in turn, which originate from the
streams of information flowing into the ecosystem. In this article we in-
vestigate the use of LSH Forest (a self-tuning indexing schema based on
locality-sensitive hashing) for solving the problem of placing new knowl-
edge tokens in the right contexts of the environment. We argue and show
experimentally that LSH Forest possesses required properties and could
be used for large distributed set-ups. Further, we show experimentally
that for our type of data minhashing works better than random hyper-
plane hashing. This paper is an extension of the paper “Balanced Large
Scale Knowledge Matching Using LSH Forest” presented at the Interna-
tional Keystone Conference 2015.

Keywords: Evolving Knowledge Ecosystems, Locality-sensitive Hash-
ing, LSH Forest, Minhash, Random Hyperplane Hashing, Big Data

1 Introduction

Semantic keyword search attempts to find results close to the intent of the user,
i.e., it attempts to find out the meaning behind the keywords provided. Perhaps,
one of the biggest problems when attempting this is that the search system needs

knowledge that is evolving in line with the world it serves. In other words, only
if the search system has an up-to-date representation of the domain of interest
of the user will it be possible to interpret the real world meaning of the keywords
provided. However, this problem becomes very challenging given the wide range
of possible search queries combined with the explosion in the volume of data
available, its complexity, variety and rate of change.

Recently a conceptual approach to attack this challenging problem has been
proposed [1]. The core of that proposal is the understanding that the mechanisms
of knowledge evolution could be spotted from evolutionary biology. These mech-
anisms are enabled in an Evolving Knowledge Ecosystem (EKE) populated with
Knowledge Organisms (KO). Individual KOs carry their fragments of knowledge
— similarly to different people having their individual and potentially dissimilar
perceptions and understanding of their environment. The population of KOs,
like a human society, possesses the entire knowledge representation of the world,
or more realistically — a subject domain. Information tokens flow into such an
ecosystem, are further transformed into the knowledge tokens, and finally sown
there. The KOs collect the available knowledge tokens and consume these as
nutrition. Remarkably, the constitution of an EKE, allows natural scaling in a
straightforward way. Indeed, the fragment of knowledge owned by an individual
KO and the knowledge tokens consumed by KOs are small. Therefore, a well
scalable method of sowing the knowledge tokens is under demand to complete a
scalable knowledge feeding pipeline into the ecosystem.

This paper extends our earlier work [2] in which we reported on the imple-
mentation and evaluation of our knowledge token sowing solution based on the
use of LSH Forest [3] using Jaccard distance. For this extended work we also
experiment with angular distance. We demonstrate that: (i) the method scales
very well for the volumes characteristic to big data processing scenarios, (ii) us-
ing random hyperplane hashing (RHH) for angular distance between knowledge
tokens results in poor precision and recall, while (iii) Jaccard distance yields re-
sults with sufficiently good precision and recall. As a minor result we would like
to highlight the f-RHH method which does not require more computations than
standard RHH, but still improves the results. The rest of the paper is structured
as follows. In section 2 we sketch the concept of EKE and also explain how
knowledge tokens are sown in the environments. Section 3 presents the basic
formalism of Locality Sensitive hashing (LSH) and LSH Forest and introduces
the distance metrics. Also our arguments for using LSH Forest as an appropriate
method are given. Section 4 describes the settings for our computational experi-
ments whose results are presented in section 5. The paper is concluded and plans
for future work are outlined in section 6.

2 Big Knowledge — Evolving Knowledge Ecosystems

Humans make different decisions in similar situations, thus taking different
courses in their lives. This is largely due to the differences in their knowledge.
So, the evolution of conscious beings noticeably depends on the knowledge they

possess. On the other hand, making a choice triggers the emergence of new
knowledge. Therefore, it is natural to assume that knowledge evolves because of
the evolution of humans, their decision-making needs, their value systems, and
the decisions made. Hence, knowledge evolves to support the intellectual activity
of its owners, e.g., to interpret the information generated in event observations
— handling the diversity and complexity of such information. Consequently, Er-
molayev et al. [1] hypothesize that the mechanisms of knowledge evolution are
very similar to (and could be spotted from) the mechanisms of the evolution
of humans. Apart from the societal aspects, these are appropriately described
using the metaphor of biological evolution.

A biological habitat is in fact an ecosystem that frames out and enables
the evolution of individual organisms, including humans. Similarly, a knowledge
ecosystem has to be introduced for enabling and managing the evolution of
knowledge. As proposed in [1], such EKE should scale adequately to cope with
realistic and increasing characteristics of data/information to be processed and
balance the efficiency and effectiveness while extracting knowledge from infor-
mation and triggering the changes in the available knowledge.

2.1 Efficiency Versus Effectiveness

Effectiveness and efficiency are the important keys for big data processing and
for the big knowledge extraction. Extracting knowledge out of big data would be
effective only if: (i) not a single important fact is left unattended (completeness);
and (ii) these facts are faceted adequately for further inference (expressiveness
and granularity). Efficiency in this context may be interpreted as the ratio of
the utility of the result to the effort spent.

In big knowledge extraction, efficiency could be naturally mapped to time-
liness. If a result is not timely the utility of the resulting knowledge will drop.
Further, it is apparent that increasing effectiveness means incrementing the ef-
fort spent on extracting knowledge, which negatively affects efficiency. In other
words, if we would like to make a deeper analysis of the data we will have a less
efficient system.

Finding a solution, which is balanced regarding these clashes, is challenging.
In this paper we use a highly scalable method to collect the increments of incom-
ing knowledge using a 3F+3Co approach, which stand for Focusing, Filtering,
and Forgetting + Contextualizing, Compressing, and Connecting (c.f. [1] and
section 3.2).

2.2 Evolving Knowledge Ecosystems

An environmental context for a KO could be thought of as its habitat. Such a
context needs to provide nutrition that is “healthy” for particular KO species —
i.e. matching their genome noticeably. The nutrition is provided by Knowledge
Extraction and Contextualization functionality of the ecosystem [1] in a form of
knowledge tokens. Hence, several and possibly overlapping environmental con-
texts need to be regarded in a hierarchy which corresponds to several subject

domains of interest and a foundational knowledge layer. Environmental contexts
are sowed with knowledge tokens that correspond to their subject domains. It
is useful to limit the lifetime of a knowledge token in an environment – those
which are not consumed dissolve finally when their lifetime ends. KOs use their
perceptive ability to find and consume knowledge tokens for nutrition. Knowl-
edge tokens that only partially match KOs’ genome may cause both KO body
and genome changes and are thought of as mutagens. Mutagens in fact deliver
the information about the changes in the world to the environment. Knowledge
tokens are extracted from the information tokens either in a stream window, or
from the updates of the persistent data storage and further sown in the appro-
priate environmental context. The context for placing a newly coming knowledge
token is chosen by the contextualization functionality. In this paper we present
a scalable solution for sowing these knowledge tokens in the appropriate envi-
ronmental contexts.

3 Locality-Sensitive Hashing

The algorithms for finding nearest neighbors in a dataset were advanced in
the work by Indyk and Motwani, who presented the seminal work on Locality-
sensitive hashing (LSH) [4]. They relaxed the notion of a nearest neighbor to
that of an approximate one, allowing for a manageable error in the found neigh-
bors. Thanks to this relaxation, they were able to design a method which can
handle queries in sub-linear time. To use LSH, one has to create a database
containing outcomes of specific hash functions. These hash functions have to
be independent and likely to give the same outcome when hashed objects are
similar and likely to give different outcomes when they are dissimilar. Once this
database is built one can query for nearest neighbors of a given query point by
hashing it with the same hash functions. The points returned as approximate
near neighbors are the objects in the database which got hashed to the same
buckets as the query point. [5] If false positives are not acceptable, one can still
filter these points.

Formally, to apply LSH we construct a family H of hash functions which map
from a space D to a universe U .

Let d1 < d2 be distances according to a distance measure d on a space D.
The family H is (d1, d2, p1, p2)-sensitive if for any two points p, q ∈ D and h ∈ H:

– if d (p, q) ≤ d1 then Pr [h (p) = h (q)] ≥ p1
– if d (p, q) ≥ d2 then Pr [h (p) = h (q)] ≤ p2

where p1 > p2.
Concrete examples of hash functions which have this property are introduced

in section 3.3. The probabilities p1 and p2 might be close to each other and
hence only one function from H giving an equal result for two points might
not be sufficient to trust that these points are similar. Amplification is used to
remedy this problem. This is achieved by creating b functions gj , each consisting
of r hash functions chosen uniformly at random from H. The function gj is

the concatenation of r independent basic hash functions. The symbols b and r
stand for bands and rows. These terms come from the representation of data.
One could collect all outcomes of the hash functions in a two-dimensional table.
This table can be divided in b bands containing r rows each. (See also [6].) The
concatenated hash function gj maps points p and q to the same bucket if all
hash functions it is constructed from hashes the points to the same buckets.
If for any j, the function gj maps p and q to the same bucket, p and q are
considered close. The amplification creates a new locality sensitive family which

is
(
d1, d2, 1− (1− p1r)b, 1− (1− p2r)b

)
sensitive.

3.1 LSH Forest

The standard LSH algorithm is somewhat wasteful with regards to the amount
of memory is uses. Objects always get hashed to a fixed length band, even if that
is not strictly needed to decide whether points are approximate near neighbors.
LSH Forest (introduced by Bawa et al. [3]) introduces variable length bands and
stores the outcomes of the hashing in a prefix tree data structure.

The length of the band is reduced by only computing the hash functions if
there is more than one point which is hashed to the same values. Put another
way, in LSH the function gj maps two points to the same bucket if all functions
it is constructed from do so as well. LSH Forest potentially reduces the number
of evaluations by only computing that much of gj as needed to distinct between
the different objects. Alternatively, one can view this as assigning a unique label
with a dynamic length to each point. In the prefix tree the labels on the edges
are the values of the sub-hash functions of gj .

Hashing and quantization techniques have a limitation when considering very
close points. If points are arbitrarily close to each other, then there is no number
of hash functions which can tell them apart. This limitation applies to both
traditional LSH and the Forest variant. Therefore, LSH assumes a minimum
distance between any two points and LSH Forest defines a maximum label length
equal to the maximum height of the tree (indicated as km).

3.2 Sowing Knowledge Tokens Using LSH Forest

The first requirement for knowledge token sowing is that similar tokens get
sown close to each other. This is achieved by adding knowledge tokens to the
forest. Similar ones will get placed such that they are more likely to show up
when the trees are queried for such tokens. Further requirements come from the
3F+3Co [1] aspects. When using LSH Forest:

Focusing is achieved by avoiding deep analysis when there are no similar ele-
ments added to the trees.

Filtering is done by just not adding certain data to the tree.
Forgetting is achieved by removing data from the tree. Removal is supported

by the Forest and is an efficient operation.

Contextualizing happens when different parts of the token are spread over the
trees. A token may therefore belong to several contexts simultaneously.

Compressing the tree compresses data in two different ways. Firstly, it only
stores the hashes computed from the original data and, secondly, common
prefixes are not duplicated but re-used. Note that it is possible to store the
actual data on a secondary storage and keep only the index in memory.

Connecting the Forest is a body which grows incrementally. Since representa-
tions of different tokens can reside together in disparate parts of the trees,
they can be considered connected. However, the real connection of these
parts will be the task of the KOs which will consume the knowledge tokens
which are sown in a tree.

In the next section we will introduce our experiments. In the first experiment
series we show that the Forest is able to fulfill the focusing requirement. The
second one shows that the forest is able to aid the KO to connect concepts
together. Finally, the last series shows that the data structure has desirable
spacial and temporal properties, demonstrating that the tree is able to compress
data meanwhile offering an appropriate efficiency — effectiveness trade-off.

3.3 Distance Metrics and Locality-Sensitive Hash functions

In our previous work [2] we only used Jaccard distance to evaluate the use of
LSH Forests. Typical metrics used in the literature for distance between textual
documents are Jaccard and angular distance. In this work we will also use the
later one and compare their performance.

The Jaccard distance is defined on sets A and B as d (A,B) = 1−sim (A,B).
Here, sim (also referred to as the Jaccard similarity) is defined as the number
of elements the sets have in common divided by the total number of elements in

the sets (i.e, sim (A,B) = |A∩B|
|A∪B|). In the case of text documents the elements in

the set are the words of the text (or are derived from the words in the text). The
angular distance between texts is defined as the angle between vectors where
each dimension encodes the frequency of a specific word (or derivation).

For example, if we have two texts Â = “the cat sits on the table” and B̂ =
“the black cat sits with the other cats”. Then, a preprocessing step could reduce
these texts to “cat sit table” and “black cat sit cat” (removing common words
and stemming, see also the next section). For the Jaccard distance, these texts
will then be converted into sets A = {cat, sit, table} and B = {black, sit, cat}
resulting in a Jaccard distance of 1 − 2

4 = 0.5. For the angular distance we
obtain vectors A = [1, 1, 1, 0] and B = [2, 1, 0, 1] where the dimensions encode
the frequencies of the words cat, sit, table, and black, respectively. The resulting
angular distance (the angle between A and B) is 0.785.

For both distance metrics Locality-Sensitive Hash functions are known. The
LSH function family used for Jaccard distance is minhash from Broder [7]. The
outcome of this hash function on a set is the lowest index (counting from 0)
any of the elements in the set has in a permutation of the whole universe of
elements. In our example from above with two documents the universe consists

of only 4 words. One possible permutation is [black, cat, sit, table] leading to an
outcome of 1 for set A (the word in A with lowest index in the permutation is
cat) and 0 for set B. The range of the outcome space is as large as the size of
the universe. One could in principle first determine the size of the universe and
then decide upon the permutations. However, measuring the size of the universe
beforehand and performing actual permutations would be unpractical. Instead,
we use a normal hash function to perform the permutation by mapping each
original index to a target index. Hence, the outcome space is limited to the
range of that hash function.

For the angular distance we use random hyperplane hashing (RHH) [8]. The
core idea is to project the frequency vector onto a random vector. The result
of the hash function is 1 if the projection is a positive multiple of the random
vector and -1, otherwise. In practice this comes down to finding the sign of
the dot product between the frequency vector and the random vector. Another
way of looking at this is that we are deciding whether the vector in question is
above or below5 the hyperplane on which the random vector is a normal vector.
An intuitive proof for the correctness of both minhash and RHH can be found
from [6].

When using RHH the LSH forest will place the element in the one subtree if
the hash outcome is 1. On the contrary, an outcome of -1 will cause it to direct
the element to the other subtree. However, sometimes this decision seems too
harsh. If the projected vector is only a very small multiple of the random vector
the element is very close to the hyperplane and the binary decision which is
made could cause nearest neighbors to be hashed to different subtrees.

To alleviate this problem, we investigate a slightly different approach which
we will call fuzzy random hyperplane hashing or f-RHH. Instead of only allowing
a binary decision, the hash function can also report that it is unable to decide
well enough on which side of the hyperplane the given vector is (i.e., the out-
come of the projection is small). The result of the hashing can thus be 1, -1, or
both. When the result is both, then we will place the element in both subtrees
essentially ignoring the outcome of the hash function completely.

What we need to perform f-RHH is a way to decide whether a frequency
vector is close to the hyperplane. Moreover, this method has to be efficiently
implementable. A first attempt could be to compute the angle between the vec-
tor and the hyperplane. This is a feasible but relatively expensive computation
(especially because it has to happen for all vector-hyperplane pairs). However,
observe that the angle between the vector and the hyperplane is π

2− ‘the angle
between the vector and the normal’. If we call the vector a and the normal n,
then given an angle k 6, a will get assigned both hash outcomes if

π

2
− ân =

π

2
− arccos

(
a · n
‖a‖‖n‖

)
< k

5Above can be defined as on the same side as the normal vector; below is then the
other side of the hyperplane.

6the maximumum angle between a vector and the hyperplane for a to be assigned
both hash outcomes

Which can be rewritten as:

arcsin

(
a · n
‖a‖‖n‖

)
< k

In this expression ‖n‖ is essentially a positive constant7 which we will call R. If
we normalize the vector a before we compute the angle, the angle will remain
the same. We will cal this normalized vector ā where ‖ā‖ = 1. Using these facts,
the previous expression can be rewritten as:

arcsin
(ā · n
R

)
< k

Which can be rearranged to:

|ā · n| < sin(k) ∗R = C

What this expression tells us is that if the angle between a vector a and the
hyperplane is smaller than k, then the absolute value of the dot product of the
normalized vector ā and the normal vector is smaller than a given constant
number C.

This last expression can be implemented very efficiently. In fact, besides the
normalization of each frequency vector (which has to happen only once), the
dot product computation is exactly the same as what we would be computing
anyway for the random hyperplane hashing.

To illustrate the effect of f-RHH, we present a two dimensional example in
fig. 1. The figure shows a random vector −→n and the hyperplane H on which
−→n is a normal vector. The red shaded area contains all vectors for which the
hash outcome will be negative. Conversely, vectors in the blue area will get the
value +1 assigned. All vectors which are in the overlap between the red and blue
are will get both values assigned; causing the hyperplane to not cut the space
sharply in two. In other words, the hyperplane does not strictly subdivide the
space into two subspaces. Instead it creates an overlapping boundary between
the two subspaces in which points are in both of the subspaces at the same time.

One question which remains to be answered is the value of the constant C.
In order to find a reasonable value, we ran several preliminary experiments and
found that a reasonably well working value was 1014. Note that our normal vector
n has its components sampled from the range

[
−263, 263 − 1

]
. We cautiously

assume that this constant value is data and case dependent. Hence, this constant
should not be taken as a general recommendation.

7The norm of a specific random vector, will be the same for all angle computations.
Moreover, since this is a very high dimensional vector and each dimension of the vector
is sampled from a uniform distribution, the expected norm of the random vectors is
constant. In any case, the values are most likely different but will be in the same
ballpark.

Fig. 1: An illustration of fuzzy random hyperplane hashing. Vectors which are in
the area where -1 and 1 overlap have both hash outcomes at the same time.

4 Evaluation

The experiments are designed so that we start from a fairly simple set-up and
more complexity is added in each following experiment. In the first series of
experiments, we feed knowledge tokens created from three different data sources
into an LSH tree and present measure how they are spread over the tree. In the
following series, we use two and later three data sources and measure how the
LSH Forest classifies the tokens and how it is capable of connecting the knowledge
tokens. In that same series we compare the performance of the different hash
functions. Finally, in the third series we add dynamism to the experiment by
sampling the knowledge tokens in different ways and measure how the memory
usage and processing time evolve.

Finding a suitable dataset for the experiment is not obvious. What we need
are small pieces of information (i.e., the knowledge tokens) about which we
know how they should be connected (i.e., a gold standard). Further, the dataset
should be sufficiently large to conduct the experiments. We solved this issue
by selecting three large ontologies for which a so-called alignment [9] has been
created. These particular ontologies are large and have a fairly simple structure.
Further, by using only the labels of the ontology a reasonable alignment can be

found [10]. Therefore, we extract the labels from these ontologies and use them
as knowledge tokens. This is a relaxation of the knowledge token concept. In the
earlier work [1] a knowledge token has an internal structure.

Datasets The Large Biomed Track of the Ontology Alignment Evaluation ini-
tiative8 is the source of the datasets used in our evaluation. The FMA ontology9,
which contains 78,989 classes is the first dataset. The FMA ontology only con-
tains classes and non-hierarchical datatype properties, i.e., no object or datatype
properties nor instances. Secondly, there is the NCI ontology10 containing 66,724
classes, and finally a fragment of 122,464 classes of the SNOMED ontology11.
The NCI ontology contains classes, non-hierarchical datatype and hierarchical
object properties. The classes of all ontologies are structured in a tree using
owl:SubClassOf relations. The UMLS-based reference alignments as prepared
for OAEI 12 are used as a gold standard. From these reference alignments we
only retain the equal correspondences, with the confidence levels set to one.

Preprocessing We preprocess the ontologies by computing as many represen-
tations for each class as it has labels in the ontology. The preprocessing is very
similar to the second strategy proposed in [10]. According to this strategy, for
each label of each class, a set of strings is created as follows: the label is converted
to lowercase and then split in strings using all the whitespace and punctuation
marks as a delimiter. If this splitting created strings of 1 character, they are
concatenated with the string that came before it. In addition to these steps, we
also removed possessive suffixes from the substrings and removed the 20 most
common English language words according to the Oxford English Dictionary13.
This preprocessing results in 133628, 175698, and 122505 knowledge tokens, i.e.,
sets of strings for the FMA, NCI, and SNOMED ontology, respectively.

Implementation The implementation of our evaluation code heavily uses par-
allelism to speed up the computation. From the description of the LSH algorithm,
it can be noticed that the hashing of the objects happens independent of each
other. Therefore they can be computed in parallel using a multi-core system.

For the implementation of the minhash algorithm, we use Rabin fingerprints
as described by Broder [11] instead of computing a real permutation of the
universe. An improvement over earlier work [10] where Rabin hashing was also
used is due to the fact that we invert the bits of the input to the hashing function.
We noticed that small inputs gave a fairly high number of collisions using the
functions normally, while the inverted versions do hardly cause any.

For the random hyperplane hashing we use a hash function to imitate an
infinite random vector. The way this works is that we interpret each word as
a number, which we then take to be the index (in the vector) representing the

8http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2013/
9http://sig.biostr.washington.edu/projects/fm/

10http://www.obofoundry.org/cgi-bin/detail.cgi?id=ncithesaurus
11http://www.ihtsdo.org/index.php?id=545
12http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2013/oaei2013_umls_

reference.html
13http://www.oxforddictionaries.com/words/the-oec-facts-about-the-language

frequency of the word. Then, to find the value of the random vector for that
index, we hash the index with the hash function. This has the practical impli-
cation that there is no need to store a random vector in its entirety, nor is there
a need to know all words of the corpus beforehand. As a hash function we use
murmur3 14. This choice is made because the hash function is fast, it provides
reasonable mixing of the input bits, and has a close to uniform output range.

The outcome of RHH is binary and the trie used will be a binary tree as
well (as opposed to the n-ary trie used for minhash). Because of this difference
we can easily afford checking newly added data for exact duplicates. So, when
we insert a knowledge token using RHH (or f-RHH) we check in the leaf nodes
whether the already existing token has the same source concept and the same
representation we ignore it immediately. This is as opposed to double insertions
which happen in the case of minhash (see also the results in section 5.1).

The experiments are performed on hardware with two Intel Xeon E5-2670
processors (totaling 16 hyper-threaded cores) and limited to use a maximum of
16 GB RAM.

4.1 Single data source — Single Tree

In this series of experiments, we use only one LSH tree and knowledge tokens
from a single dataset. First, the ontology is parsed and all its concepts are
tokenized as described above. The resulting knowledge tokens are hashed (with
the different hash functions — minhash, RHH, and f-RHH) and then fed into an
LSH tree. We then analyze the distribution of the knowledge tokens in the tree
obtained for each hashing option. Concrete, we observe how deep the knowledge
tokens are located in the tree and how many siblings the leaves in the tree have.
Further, for the case of minhash, we investigate chains of nodes which are only
there because of a low number of tokens at the bottom of the tree.

4.2 Connecting Knowledge Tokens using LSH Forest, i.e. Matching

The objective of our the first experiment in this second series is to show how
the ontology matching using LSH Forest compares to standard LSH. Besides
the change in data structure we use the experimental set-up similar to what
was used for testing standard LSH in our earlier research work [10]. In that
work only Jaccard distance and minhashing were used and the best result for
matching the SNOMED and NCI ontologies was obtained using 1 band of 480
rows which corresponds to 1 tree of maximum height km = 480. To keep the
results comparable, we also do not use the reduced collision effect from inverting
before hashing (see Implementation above). It needs to be noted, however,
that we use a slightly different approach for selecting near neighbors compared
to the standard LSH Forest approximate nearest neighbor querying. Since we
are not interested in neighbors if they are to far away, we only take the siblings
of each leaf into account when searching for related concepts. Further, we ignore

14https://code.google.com/p/smhasher/wiki/MurmurHash3

concepts if they their similarity is less than 0.8. Next to the traditional ontology
matching measures of precision, recall, and F-measure, the potential memory
and processing power savings are evaluated.

In the second part of this series we use the properties of the tree and also
experiment with RHH and f-RRH. For minhashing we use our improved version,
applying the inversion before hashing. We also incorporate the knowledge from
the previous experiments to test how LSH Forest can perform when connecting
knowledge tokens using a shorter tree. We measure both runtime performance
and quality metrics for a different number of trees.

In the last part we use the fact that there is no reason to limit ourselves to
only using two data sources. Hence, we demonstrate scalability of the system by
feeding all knowledge tokens created for all three datasets. We also analyze the
time saving compared to performing three separate alignment tasks when pairs
of datasets are used.

4.3 Adding Dynamics

In the final series of experiments we observe how the tree reacts to dynamic
insertion of concepts. In the basic case, we select 106 knowledge tokens (from
the three sets) using a uniform distribution. These are then one by one inserted
into the tree. After every 104 insertions we measure number of hash operations
used to measure the time complexity. The cumulative memory consumption is
measured as the number of edges used in the trees. We also measure the real
elapsed time after the insertion of every 105 knowledge tokens.

On an average system some knowledge tokens will be added much more fre-
quently than others. This is due to the fact that the information or queries
which the system processes are somehow focused on a certain domain. This also
means that the tokens would not arrive according to a uniform distribution. A
more plausible scenario is that certain concepts are very likely to occur, while
others do hardly occur at all. We model this phenomena by using a so-called
Zipf distribution with exponent 1 which causes few concepts to be inserted fre-
quently while most are inserted seldom. Using this set-up we perform the same
measurements as made for the uniform distribution.

It has to be noted that we need to make a minor change to the way our
trees process the tokens. When a token already exists at a node, the standard
implementation would build a chain which can only end at km. This is related
to our above remark about the minimal distance between any two points. To
solve this problem, the lowest internal nodes check whether the newly added
representation is already existing and if so, it will ignore the representation. We
shortly analyzed the effect of this change using the same set-up as in the second
experiment series and noticed that this check does hardly affect runtime perfor-
mance. The main effect is visible in the number of edges and hash operations
which both drop by about 30 %. Further, a marginal decrease of the precision
and a marginal increase of the recall is observable.

5 Results

5.1 Single Data Source — Single Tree

For the first series of experiments, we look at the characteristics of the LSH
tree for the distance metrics and hash functions. We start with the cosine dis-
tance, RHH and f-RHH (the variant described above) because the outcome of
the hashing is binary. This binary tree makes it somewhat easier to analyze.

Cosine Distance — RHH, f-RHH When measuring the frequencies of the
depths of the leafs in the tree we obtain the results shown in fig. 2. To obtain this
figure we placed all knowledge tokens from a given dataset into a tree with km =
80 after hashing them using RHH and f-RHH, respectively. Then we measure
the number of leaves at a given height. From the figure it can be seen that there
are only slight differences between the way the different datasets are spread over
the tree. From the exect numbers we observed that the fRHH histograms are
slightly skewed to the right when compared to their RHH counterparts. This
is as expected since fRHH will insert extra elements into the tree whenever
the outcome of the hashing has both values at the same time. The tail of the
histogram decays pretty fast for all data sets indicating that the tree is able to
differentiate between the majority of the tokens after about 40 hashings.

0 10 20 30 40 50 60 70 80 90
0

5000

10000

15000

20000

25000

30000

35000

NCI-RHH
NCI-fRHH
FMA-RHH
FMA-fRHH
SNO-RHH
SNO-fRHH

Depth of Leaves

A
bs

ol
ut

e
F

re
qu

en
cy

Fig. 2: The frequency of a leaf occurring at a given height for the knowledge
tokens derived from the different data sets.

Jaccard Distance — Minhash After feeding the minhashed knowledge tokens
of each data set into their own single LSH Tree with km = 80, we find clusters of
leaves as shown in fig. 3. The figure shows how often a group of n siblings occurs
as a function of the depth in the tree. Note that this figure is more complex than
the figure we obtained for the (f-)RHH case. The reason for this complexity is
that we are not dealing with a binary, but an n-ary tree.

(a) FMA ontology (b) NCI ontology

(c) SNOMED ontology

Fig. 3: Frequency of sibling groups of a given size at a given level in one LSH
Tree. Note the logarithmic scale.

What we notice in the figures is that most of the concepts are fairly high
up in the tree. After roughly 30 levels all the concepts, except these residing at
the bottom of the tree, are placed. It is also visible that most knowledge tokens
are located in the leaves which either have very few siblings or are located high
up in the tree. This indicates that the tree is able to distinguish between the
representations fairly fast. In both the FMA and NCI ontologies, we notice a high
amount of knowledge tokens at the bottom of the tree, i.e., at level km = 80. We
noticed that the same amount of concepts end up at the bottom of the tree even
if km is chosen to be 1000, which indicates that hashing might be incapable to
distinguish between the representations, i.e., they are so close that their hashes
virtually always look the same. After further investigation, we found that the
Jaccard similarities between the sibling concepts at the bottom of the tree are all
equal to 1. This means that there are concepts in the ontology which have very
similar labels, i.e., labels which (often because of our preprocessing steps) get
reduced to exactly the same set of tokens. One problem with this phenomenon
is that the tree contains long chains of nodes, which are created exclusively for
these few siblings. We define an exclusive chain as the chain of nodes between
an internal node at one level above the bottom of the tree, and another (higher)
node which has more than one child. The lengths of these exclusive chains are
illustrated in fig. 4a.

We notice that mainly the NCI ontology causes long exclusive chains. The
most plausible cause for this is that NCI has a higher average number of repre-
sentations per concept (2.6) than the other two ontologies (1.7 — FMA and 1.0

0 10 20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

5000

6000

7000

8000

FMA
NCI
SNOMED

Chain length

F
re

qu
en

cy

(a) Frequency of a given exclusive chain
length for nodes at km

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.1

1

10

100

1000

10000

100000

Number of classes

F
re

qu
en

cy

(b) Frequency of a given number of classes
represented in a leaf at level km for each
ontology. Note the log scale.

Fig. 4: Analysis for the leaf nodes

— SNOMED). To investigate this further, we plot the number of classes which
the siblings at the lowest level represent. The result of analyzing the number of
classes represented by the leaves in each sibling cluster can be found in fig. 4b

From the figure we notice that, indeed, very often there is a low number of
classes represented by the siblings of the final nodes. We also notice that the
NCI ontology has the most severe representation clashes.

5.2 Connecting Knowledge Tokens using LSH Forest, i.e. Matching

Part 1 When matching the SNOMED and NCI ontologies using a single tree of
height 480, we obtain the precision of 0.838, recall of 0.547, and hence F-measure
of 0.662. These results are similar to the results of the standard LSH algorithm
which attained the precission of 0.842, recall of 0.535, and F-measure of 0.654.

The LSH Forest algorithm, however, uses only 30 % of the amount of hash
function evaluations compared to the standard LSH algorithm. Furthermore, the
Forest saves around 90 % of the memory used for storing the result of the hash
evaluations. This is because the tree saves a lot of resources by only computing
and storing the part of the label which is needed. Further, a result is stored only
once if the same outcome is obtained from the evaluation of a given hash function
for different representations. It should, however, be noted that using LSH Forest
also implies a memory overhead for representing the tree structure, while the
standard algorithm can place all hash function evaluations in an efficient two
dimensional table.

The speed of the two algorithms with the same set-up is very similar. Using
the Forest, the alignment is done in 20.6 seconds, while the standard algorithm
completes in 21.5 seconds.
Part 2 As can be seen in the distribution of the ontologies over the tree in our
previous experiment series (fig. 3) non-similar concepts remain fairly high up
in the tree. Hence, when using the improved Rabin hashing technique described
above, we can reduce the maximum height of the tree. Based on this information,
we now choose the maximum height of the tree to be 30. We also use 10 as the

highest level of interest and ignore all representations which are unable to get
a lower positions in the tree. We vary the number of trees used between 1 and
10 and show the impact on the precision, recall and F-measure in fig. 5a and
timing in fig. 5b.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision
Recall
F-measure

Number of trees

(a) Quality measurements minhash

0 1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

Runtime

Number of trees

tim
e

(m
s)

(b) Runtime for minhash

Fig. 5: Quality measurements and runtime behavior for an ontology matching
task using different number of trees for minhash.

From the quality measurements, we see that the number of trees has little
effect. It is hard to see from the figure, but the precision lowers ever so slightly
when more trees are used. Concretely, it goes from 0.836947 when using one tree
to 0.831957 with 10 trees. The recall has the opposite behavior growing from
0.546824 to 0.550616. The net effect of these two on the F-measure is a slight
increase when more trees are used, namely from 0.661472 to 0.662662. It needs
to be noted that also these results are in the same range as the measures in the
previous experiment. Hence, we can conclude that constraining the height of a
tree does not affect the quality much, if at all. However, as can be seen in the
timing chart, the tree works much faster when its height is reduced. When only
one tree is used, roughly 3 seconds are needed to obtain results. Increasing the
number of trees to 10 only doubles the time, most likely because the system is
better able to use multiple threads or the virtual machine might do a better
just-in-time compilation. In any case, we note that using the forest and better
hashing, we can create a system which is roughly 7 times faster and produces
results of similar quality.

Next, we experimented using the RHH and f-RHH hash functions. The qual-
ity measurements for these for trees with depth 80 are shown in figs. 6a and 6b.
Surprisingly and seemingly contradicting to the findings of [12] the performance
of RHH and f-RHH are pretty low when compared to minhash. The reason for
this low performance seems to be that in the case of the earlier work [12] the
comparison was performed between a large set of complete web pages. The docu-
ments which we are working with in these experiments are much smaller, namely
tens of words, instead of hundreds or thousands in the case of web pages. Further,
we are looking for a high similarity in order to classify something similar, while
the earlier work is focused on finding near-duplicate web pages. Finally, when
comparing web pages there will often be a large impact from the frequencies

of words. In the current work, however, the frequencies are usually very small
numbers. Since these results are not satisfying for the setting we are developing,
we will not continue using RHH and f-RHH for further experiments. However,
we would still like to highlight the performance difference between RHH and
f-RHH. As can be seen from the graphs, f-RHH achieves a much better precision
compared to RHH Also the recall and hence F-measure are always higher than
what we obtained using RHH. Hence, it would be worth investigating further
whether f-RHH works better compared to normal RHH in other use cases.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision
Recall
F-measure

Number of trees

(a) Quality measurements RHH

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision
Recall
F-measure

(b) Quality measurements f-RHH

Fig. 6: Quality measurements of an ontology matching task using different num-
ber of trees using RHH and f-RHH.

Part 3 To try whether we can also use the tree for bigger datasets, we now
feed all knowledge tokens created from all three ontologies into the system and
present similar measurements in fig. 7.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision
Recall
F-measure

Number of trees

(a) Quality measurements

0 1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

Runtime

Number of trees

tim
e

(m
s)

(b) Runtime

Fig. 7: Quality measurements and runtime behavior for a three way ontology
matching task using different number of trees.

Now, we notice the effect on the precision and recall more profoundly. Also
the runtime increases faster when the input is larger. We do however see only
a three-fold increase when the number of trees is ten-folded. When comparing
these results to our earlier work [10] we can see the speed-up of using LSH Forest

and performing multiple alignments at once. In our previous work we used 45.5
seconds for doing three 2-way alignment tasks. Using the LSH Forest we can
perform the 3-way alignment in less than 10 seconds. When using a single tree,
we measured a time of 3.2 seconds yielding roughly a ten-fold speed-up.

5.3 Adding Dynamics

The results of adding knowledge tokens according to a uniform distribution are
in fig. 8. From the figures we note that the number of edges needed grows sub-

0 100 200 300 400 500 600 700 800 900 1000
0

200000

400000

600000

800000

1000000

1200000

1400000

Inserted representations (*1000)

U
se

d
ed

ge
s

(a) Edges

0 100 200 300 400 500 600 700 800 900 1000
0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

Inserted representations (*1000)

C
om

pu
te

d
ha

sh
es

(b) Hashes

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

Inserted representations (*1000)

T
im

e
(m

s)

(c) Time needed to insert the previous 100000 concepts

Fig. 8: Cumulative number of edges and hashes; and time needed for uniform
adding of knowledge tokens

linear. This is as expected since both the fact that certain knowledge tokens
will be selected more than once and the reuse of edges decreases the number
of new edges needed. The number of hashes shows an initial ramp-up and then
starts growing linear. We also note that the time used for adding is growing,
but the growth slows down when more concepts are added. Moreover, if we try
to fit a linear curve trough the cumulative runtime measurements, we notice
that we can obtain a Pearson product-moment correlation coefficient of 0.9976,
indicating that the increase is actually very close to linear.

When choosing the representations using a Zipf distribution instead, we ob-
tain the results as depicted in fig. 9. When comparing the charts for insertion
using the normal and Zipf distribution, we notice that the later puts much less
of a burden upon the system. This is a desirable effect since it means that the

0 100 200 300 400 500 600 700 800 900 1000
0

200000

400000

600000

800000

1000000

1200000

1400000

Inserted representations (*1000)

U
se

d
ed

ge
s

(a) Edges

0 100 200 300 400 500 600 700 800 900 1000
0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

Inserted representations (*1000)

C
om

pu
te

d
ha

sh
es

(b) Hashes

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

Inserted representations (*1000)

T
im

e
(m

s)

(c) Time needed to insert the previous 100000 concepts

Fig. 9: Cumulative number of edges and hashes; and time needed for adding of
knowledge tokens according to a Zipf distribution

system is likely to work well with more organic loads. Also here, we can fit a lin-
ear curve trough the cumulative runtime measurements with a high correlation
coefficient of 0.9968.

6 Conclusions and Outlook

When trying to understand and follow what is happening around us, we have to
be able to connect different pieces of information together. Moreover, the amount
of information which we perceive does not allow us to look at each detail, instead
we need to focus on specific parts and ignore the rest. When we want to built
a system capable of embodying evolution in knowledge, similar challenges have
to be tackled. In this paper we investigated one of the first steps needed for this
type of system, namely bringing related pieces of knowledge together.

The system we envision is an Evolving Knowledge Ecosystem in which Knowl-
edge Organisms are able to consume Knowledge Tokens, i.e., pieces of knowledge,
which have been sown in the environment. In this paper we looked at the appli-
cation of LSH Forest to dynamically sow knowledge tokens in the environmental
contexts.

We found out that LSH Forest is a suitable approach because it is able to
balance well between efficiency and effectiveness. This can be observed from the
fact that the method scales well, both from a space and runtime perspective;
and from the fact that the quality measures are sufficiently high when using
minhash. Further, the Forest makes it possible to focus on these parts which

need further investigation and it allows for connecting between the knowledge
tokens. We also investigated the use of cosine distance using random hyperplane
hashing. From our observations we noticed that this approach performs poorly
in comparison to minhash. This seems contradictory to earlier findings [12], but
is likely because of the fact that the documents which are being compared are
very different in nature (short labels vs. complete web pages).

There are still several aspects of using LSH Forest which could be further
investigated. First, the problem caused by exclusive chains could be mitigated
by measuring the distance between knowledge tokens when they reach a certain
depth in the tree. Only when the concepts are different enough, there is a need
to continue; this however requires to parametrize the inequality. Another option
to reduce at least the amount of used memory and pointer traversals is using
PATRICIA trees as proposed by Bawa et al. [3].

Secondly, we noted that the LSH tree allows for removal of concepts and that
this operation is efficient. Future research is needed to see how this would work
in an evolving knowledge ecosystem. Besides, as described in [1], the knowledge
tokens do not disappear at once from an environmental context. Instead, they
might dissolve slowly, which could be thought of as a decreasing fuzzy member-
ship in the context. One straightforward method for achieving this would be to
use a sliding window which has an exponential decay. Also more complex ideas
could be investigated, perhaps even providing a bonus for concepts which are
queried often or using hierarchical clustering techniques to remove tokens from
areas which are densely populated [13]. This would mean that some tokens re-
main in the system even when other (less popular or more common) concepts
with similar insertion characteristics get removed.

Thirdly, we observed that f-RHH performed better than the traditional RHH.
The improvement was still not enough to warrant its use in the context of this
paper, however. As a further direction it would definitely be beneficial to see a
large scale comparison between standard RHH, f-RHH, and perhaps multi-proble
LSH [14].

Lastly, it would be interesting to see how the Forest would react when the
input data becomes that big that it is impossible to keep the tree in the physical
memory available. Then, using a distributed setting, ways should be found to
minimize the overhead when concepts are added and removed from the tree. One
promising idea is the use of consistent hashing for the distribution of knowledge
tokens as proposed in [15].

7 Acknowledgments

The authors would like to thank the faculty of Information Technology of the
University of Jyväskylä for financially supporting this research. Further, it has
to be mentioned that the implementation of the software was greatly simplified
by the Guava library by Google, the Apache Commons MathTM library, and the
Rabin hash library by Bill Dwyer and Ian Brandt.

References

1. Ermolayev, V., Akerkar, R., Terziyan, V., Cochez, M.: Towards Evolving Knowl-
edge Ecosystems for Big Data Understanding. In: Big Data Computing. Taylor &
Francis group - Chapman and Hall/CRC (2014) 3–55

2. Cochez, M., Terziyan, V., Ermolayev, V.: Balanced large scale knowledge matching
using LSH forest. In Cardoso, J., Guerra, F., Houben, G.J., Pinto, M.A., Velegrakis,
Y., eds.: Semantic Keyword-based Search on Structured Data Sources: First COST
Action IC1302 International KEYSTONE Conference, IKC 2015, Coimbra, Portu-
gal, September 8-9, 2015. Revised Selected Papers. Volume 9398 of Lecture Notes
in Computer Science. Springer International Publishing, Cham (2015) 36–50

3. Bawa, M., Condie, T., Ganesan, P.: LSH forest: self-tuning indexes for similarity
search. In: Proceedings of the 14th international conference on World Wide Web,
ACM (2005) 651–660

4. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the thirtieth annual ACM symposium
on Theory of computing, ACM (1998) 604–613

5. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM 51(1) (January 2008) 117–122

6. Rajaraman, A., Ullman, J.D.: 3. Finding Similar Items. In: Mining of massive
datasets. Cambridge University Press (2012) 71–128

7. Broder, A.Z.: On the resemblance and containment of documents. In: Compression
and Complexity of Sequences 1997. Proceedings, IEEE (1997) 21–29

8. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Comput-
ing. STOC ’02, New York, NY, USA, ACM (2002) 380–388

9. Ermolayev, V., Davidovsky, M.: Agent-based ontology alignment: Basics, appli-
cations, theoretical foundations, and demonstration. In: Proceedings of the 2Nd
International Conference on Web Intelligence, Mining and Semantics. WIMS’12,
New York, NY, USA, ACM (2012) 3:1–3:12

10. Cochez, M.: Locality-sensitive hashing for massive string-based ontology match-
ing. In: Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2014
IEEE/WIC/ACM International Joint Conferences on. Volume 1., IEEE (2014)
134–140

11. Broder, A.: Some applications of rabin’s fingerprinting method. In Capocelli, R.,
Santis, A., Vaccaro, U., eds.: Sequences II. Springer New York (1993) 143–152

12. Henzinger, M.: Finding near-duplicate web pages: a large-scale evaluation of algo-
rithms. In: Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval, ACM (2006) 284–291

13. Cochez, M., Mou, H.: Twister tries: Approximate hierarchical agglomerative clus-
tering for average distance in linear time. In: Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data, ACM (2015) 505–517

14. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe lsh: efficient
indexing for high-dimensional similarity search. In: Proceedings of the 33rd inter-
national conference on Very large data bases, VLDB Endowment (2007) 950–961

15. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the world wide web. In: Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing. STOC ’97, New York, NY, USA, ACM
(1997) 654–663

