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Abstract: Detecting anomalies from any image data, especially hyperspectral ones, is not

a trivial task. When combined with the lack of apriori labels or detection targets, it grows

even more complex. Detecting spectral anomalies can be done with numerous methods, but

the detection of spatial ones is vastly more complicated affair. In this thesis a new way to

detect both spatial and spectral anomalies at the same time is proposed. The method has

been designed with hyperspectral data in mind, but should work for conventional images

also. This is achieved works by using 3-d convolutional autoencoders to learn commonly

occurring features both spatial and spectral, across the the test data. By running the test data

through this network, the data is transformed to a feature-space. In this space, the images

can be analyzed for the presence of anomalies by the means of standard anomaly detection

algorithms. A simple real-world use case with unmodified images is presented. Second run

for validation purposes is done with data containing synthetic anomalies.

Keywords: machine learning, anomaly detection, hyperspectral, hdbscan, convolutional

neural network, autoencoder, convolutional autoencoder, CAE, SCAE, deep learning

Suomenkielinen tiivistelmä: Poikkeavuuksien havaitseminen kuvista, erityisesti hyperspek-

traalisista kuvista, on hankalaa. Kun ongelmaan yhdistetään ennalta tuntematon data ja
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poikkeavuudet, muodostuu ongelma vielä laajemmaksi. Spektraalisten poikkeavuuksien

havaitsemiseen on kehitetty useita eri menetelmiä, mutta spatiaalisten poikkeavuuksien havait-

seminen on huomattavasti hankalempaa. Tässä työssä esitellään uudenkaltainen menetelmä

sekä spatiaalisten että spektraalisten poikkeavuuksien samanaikaiseen havaitsemiseen. Menetelmä

on suunniteltu erityisesti spektraaliselle datalle, mutta soveltuu myös perinteisille kuville.

Menetelmässä kolmiulotteisilla konvolutionaalisilla autoenkoodereilla löydetään koulutus-

datassa esiintyviä normaaleja piirteitä. Tätä verkkoa käyttämällä voidaan testidata projisoida

piirre-avaruuteen. Tästä projisoidusta datasta voidaan etsiä poikkeavuuksia käyttäen per-

inteisiä algoritmeja. Työssä esitetään kahdet erilliset tulokset. Ensimmäisissä on esitetty

menetelmän toimivuus todellisuutta vastaavassa tilanteessa, jossa tietoa poikkeavuuksista ei

ole etukäteen. Näiden tulosten lisäksi toinen ajo datalla, johon on lisätty synteettisiä tun-

nettuja poikkeavuuksia suoritetaan. Tämän toisen ajon tulokset voidaan validoida, koska

anomaliat ovat nyt tunnettuja.

Avainsanat: koneoppiminen, poikkeavuus, neuroverkko, hyperspektri, hdbscan, konvolutio,

autoenkooderi
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Glossary

AE Autoencoder.

AUC Area Under ROC-Curve.

BP Back-Propagation.

CAE Convolutional autoencoder.

CNN Convolutional Neural Network.

DBSCAN Density-Based Spatial Clustering of Applications with Noise.

EM Electromagnetic.

ENVI Raster file format used to store hyperspectral images. Uses data file and accompany-

ing header file.

FNR False Negative Rate. FNR = false negative
true positive+false negative

.

FPR False Positive Rate. FPR = false positive
false positive+true negative

.

GLOSH Global-Local Outlier Score from Hierarchies.

HDBSCAN Hierarchial DBSCAN.

HSI Hyperspectral imaging.

MLP Multilayer Perceptron Network.

MSE Mean Squared Error.

MST Minimum Spanning Tree.

RMSE Regulized Mean Squared Error.

ROC Receiver Operating Characteristics.

RX Reed-Xiaoli.

SCAE Stacked Convolutional Autoencoder.

SNAP Sentinels Application Platform, an ESA provided program for handling Sentinel mis-

sion data.

TPR True Positive Rate, also: recall. T PR = true positive
true positive+false negative

.
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1 Introduction

One of these things is not like the others, one of these things does not belong.

Sesame Street

As Sesame Street teaches us, one can give even children an image and ask them to find

something anomalous from it and they would prevail. A deceptively simple process from a

human point of view, but an infinitely complex for a computer. Ever since the field of com-

puter vision was created, people have been creating systems and algorithms, methods and

techniques to combat this problem. Some of these works to a point under certain conditions,

but most are still quite limited. Also one needs to ask what are anomalies in the domain of

images? They might be anomalous shapes, or colors. But anomalous to what? To the picture

in question or in general? As one can see the detection of anomalies in a formal way can get

quite an involved effort.

Trying to detect minute differences between two materials solely on three values (standard

image: red green and blue) is extremely difficult, and in some cases completely impossible.

The use of Hyperspectral imaging (HSI) for image acquisition gives one access to lot more

data, or more accurately a more detailed data about the materials in the image. The more

detailed data one has, the easier it is to detect anomalies from the image. Though one has

to bear in mind the curse of dimensionality. This ability to get fairly accurate spectroscopic

readings from a distance has made HSI something of a trend in recent years. Whether this is

the cause of increased computing power or better imaging technology one cannot say. Most

likely both of these have carried their weigh into the emergence of these technologies. Still

image analysis in general was, for a long time, in a rut. This was changed by the increase

in computing power and the insight of Geoffrey Hinton in 2006 (Hinton, Osindero, and

Teh 2006), giving rise to a new technique: deep learning. This opened a lot of previously

closed roads for image analysis. As an idea deep learning had been conceived around the

turn of the millennial, but it was thought that training such a network was too difficult.

Hinton, Osindero, and Teh 2006 gave an alternative to traditional training methods, and as

a side effect created a new powerful tool for image analysis, and other data scientist alike.

At the same time, advances in manufacturing technology has given us more accurate and
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smaller hyperspectral sensors, and the rise of UAVs1 gave more widespread access to aerial

hyperspectral imaging, a technique previously available to chosen few.

HSI gives access to detailed data, and can be used to identify different materials from the

images. The accuracy of this identification is of course dependent on a variety of parameters

ranging from the used sensor to the properties of the materials, but as a general rule HSI

can identify or at least differentiate them. This gives the ability to detect materials from the

image, but anomaly detection still requires more information. To detect anomalies one has

to know what is normal. Historically this has been achieved for example by using statistics.

The goal of this thesis is to present a new way to detect anomalies in hyperspectral images

in an unsupervised manner.

1.1 Background

Computer vision is one of the most prominent areas of research in computer science at the

moment, and recent years have seen a rise in techniques using HSI data. On top of the stan-

dard use-cases of machine vision (segmentation, classification etc.), HSI technology gives

access to far wider spectra and therefore enhances the abilities of computer vision. This has

caused HSI to be suggested as a magic bullet to anything from quality control to crop main-

tenance. The re-emergence of neural networks/deep learning also gave some new wind in

this field, and catapulted it to an era of neural network based techniques.

Anomaly detection itself is closely related to classification; one cannot detect anomalies if no

normal model exist. To create this model one needs to classify data to normal classes. During

my studies I was heavily interested in anomaly detection, and later I started to work with hy-

perspectral images, specifically detection certain spectral signatures from the image. It was

natural for me to combine these two, and first begun by studying the methods of anomaly

detection for images in general, and later for hyperspectral images specifically. For normal

visible spectrum RGB-images the techniques are mainly shape based, since the spectrum

is rather limited and the detection of spectral anomalies is limited to characterize different

media. For hyperspectral images the techniques can detect both spectral and spatial anoma-

1. Unmanned Aerial Vehicle
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lies. The different techniques themselves are not restricted to any image type. In principle

standard and hyperspectral images don’t differ. The latter has more spectral information, but

the structurally they are same, and therefore same anomaly detection techniques can work

on both settings.

Recent technological advances have been a boon for deep learning. Still after my introduc-

tory studies in image-based anomaly detection, specifically in hyperspectral images, I saw

that these powerful techniques are underrepresented in hyperspectral anomaly detection. The

golden standard for hyperspectral anomaly detection has been the Reed-Xiaoli (RX) algo-

rithm. While functional, it’s quite limited and can detect only spectral anomalies. Some other

techniques have also been introduced in recent years, but most of these still work by statis-

tical and/or probabilistic ways (most are derivatives of the original RX algorithm). Thus, I

decided to focus my studies to leverage the recent advances in deep learning.

1.1.1 Problem setting

The idea for this thesis started with the following problem: imagine a vast dataset of hyper-

spectral images covering a large geographical area. The natural choice would be satellite

images. Now the question is: what does not belong? This question is way too general to be

answerable by the existing methods of hyperspectral anomaly detection. A single technique,

like RX, can be used to detect spectral anomalies, but those cover only part of the answers

to the original question. And the detection of spatial anomalies is in itself quite complicated.

The definition of anomalies also needs to be specified. If the dataset is of a forested area

with a single town, this town in its entirety can be an anomaly, while locally (i.e a single

image in the dataset containing the said town) it’s not. Detecting global anomalies from

local ones is quite different. While the same techniques can be used, the training phase is

different for these two. As a start point I decided to focus mainly on global anomalies, but

with some modification also local ones can be detected. The original idea was to mainly

focus on spectral anomalies, but the technique proposed can also find spatial ones.

3



1.2 Research problem

The problem distills now to a single question: how can one detect any anomalies, spectral

or spatial, from any kind of hyperspectral dataset without any prior knowledge of the said

dataset? Not an easy question by any means, especially when I wanted to create a method

for finding both types of anomalies at the same time. To answer this main question, based on

what I learned during the preliminary research process, I decided to go with neural networks.

Since the raise of deep learning, some interesting advantages have been made on the field of

image analysis by leveraging convolution instead of raw image processing. This will be ex-

plored further in theory chapter, but simply but convolution gives a more natural, fuzzy way

of analysis images. It also more closely resembles the way human vision works. So choosing

to use convolution was a natural choice when trying to detect anomalies from any kind of

images. From the different convolutional neural networks to choose from, I decided on con-

volutional autoencoders, or their deep learning variants stacked convolutional autoencoders

for the reasons explained in chapter 2. With this choice in mind, the research problem can be

now refined to a more suitable one: Can convolutional autoencoders or stacked convolutional

autoencoders be used to detect anomalies from hyperspectral data?

This thesis does not aim to provide a conclusive answers for these questions, but to conduct

an exploratory study of the feasibility of one possible method.

1.3 Structure

The thesis is structured as follows: this chapter provided some background on the topic, and

the origins of the idea to use Convolutional autoencoders (CAEs) for detection. Chapter 2

will go through some basics of hyperspectral imagery and anomaly detection. This chapter

will also present some neural-network models in more detail. After the introduction to the

required theory, chapter 3 will present first preset the data used in this thesis, and secondly

demonstrate an implementation of the proposed method. Results obtained from the proposed

implementation are presented in chapter 4. Chapter 5 will present some discussion on top of

these results, and the thesis in general. Finally in chapter 6 conclusions are drawn based on

all the presented work.
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2 Theory

This chapter will present the theory behind the proposed method, and will start with a short

introduction to HSI in section 2.1. Note that HSI will not be explored in detail. No imag-

ing techniques etc. will be introduced as these are not relevant to the research questions

mentioned. A short primer will be also given to spectroscopy, since it is the field of study

that enables this kind of detection methods. Next will be a very general section on anomaly

detection, and in a little more detail, section 2.2.1 will formally present the used HDB-

SCAN and GLOSH methods. In section 2.3 the theory starts to delve into neural networks.

The previous sections are fairly general in form, but from this point onward a more formal

mathematical approach was taken. The basic building blocks for the proposed method are

introduced. In section 2.3.1 the basics of autoencoders and in section 2.3.2 the convolutional

neural networks are introduced. Lastly, in section 2.3.3 these two are combined to form the

convolutional autoencoder.

At the end of this chapter the reader should have an idea about the possible problems present

in anomaly detection from hyperspectral images, and should be familiar with the basic build-

ing blocks of the method that will be proposed in chapter 3.

2.1 Hyperspectral imaging

In the grand scale of things, hyperspectral imaging (also known as imaging spectroscopy) is

a relatively new technique. While the science behind it has been known from 19th century,

the technology to actually build an imaging spectrometer was not really developed until

the 1970s-80s ( Goetz 2009). Now when we think of a standard image, specifically a color

photograph, it consists of red, green and blue dots. There exists a lot of other color spaces, but

the RGB space is somewhat intuitive to use, since it loosely corresponds to how human brain

interprets colors (fig. 2). Now unlike in RGB-images, the Electromagnetic (EM) spectrum in

reality is continuous (fig. 3). So, to store an image of a scene, all this continuous data needs to

be sampled or otherwise one image would be infinitely large. Different regular cameras may

differ in how they sample the EM spectrum, but in general they work by filtering the image
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to three different detectors (Bayer Filter) and using math to generate the final image (Adams,

Parulski, and Spaulding 1998). Now from figures 2 and 3, one can easily see that with only

three values saved for each pixel, a lot of data about the spectrum is omitted. Depending on

the construction of the sensor and on the math used, some of this data may be included in

the measurements but it cannot be extracted. Say if the sensors blue detector is sensitive to

400-500nm range, then all the data from this spectrum is included in the measurement, but

because the spectral resolution is low (100 to be exact in this case), detailed data from this

area is not recoverable.

Hyperspectral cameras (aka. imaging spectroscopes) are logically like any other camera, but

with a much higher spectral resolution and continuous range. There are no exact definition

on how high the spectral resolution, or how large the spectral range should be for a camera to

be considered hyperspectral, but one crucial aspect is the continuity of measurements on the

spectrum (Goetz 2009). If the captured spectrum is not continuous, then the camera is not

hyperspectral but multispectral (Goetz 2009). This makes standard cameras multispectral

ones, though quite limited ones that save information across only three bands: red, green

and blue generating a collection of three 2-dimensional images. By contrast images created

by hyperspectral cameras contain a lot more of these images, and are often combined to as

single unit, referred as a hyperspectral cube (figure 1). As to the spectral range of hyper-

spectral cameras, these cover a wide range of possibilities from UV to IR, and there are no

industry standards on what the range should be. Technically to be called hyperspectral, the

camera would need to save more than one band. While the hyperspectral cameras do work

on the same principle as any other camera, they are subject to quite complicated details,

like atmospheric calibration (Stein et al. 2002). This makes the use of such a camera fairly

complicated technical operation.

There are two main reasons to use HSI. Firstly the spectral range of the sensor often exceeds

that of a standard camera, and therefore see things otherwise invisible. The second reason

is the continuity of spectral information, and specifically the identification of materials by

means of spectral analysis. Spectral analysis is a technique that was born in 1835, when

Sir Charles Wheatstone proposed, that different metals could be identified by studying the

light they reflect. The basis of this technique is the fact that all material absorbs some EM
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Figure 1: Visualization of hyperspectral image, i.e. a hyperspectral cube (Wikimedia Com-

mons 2007c).

radiation, and this generates a distinct absorption spectrum for each material. HSI was cho-

sen for this thesis because it gives access to a lot more data, and therefore the detection of

anomalies becomes, not simpler but easier as there might be important features outside the

visible spectrum and/or hidden amid the visible range. The anomaly detection method itself

should work on any imaging data, not only hyperspectral.

Figure 2: Normalized response of human cones to different spectras of light (Wikimedia

Commons 2009)
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Figure 3: Electromagnetic spectrum (Wikimedia Commons 2007b)

2.2 Anomaly detection

Anomaly detection is the act of detection anomalous data points from dataset of which distri-

bution is somehow known. It is also closely related to statistics, and more recently machine

learning. Statistical methods to detect anomalies could be, for example the use of probability

distributions and a machine learning one the use of clustering. Anomaly detection is used in

a wide array of fields, from fraud detection to medical imaging. Anomaly detection is also

known as outlier or novelty detection, though novelty detection is associated with previously

unseen event while anomaly detection is necessarily not (Chandola, Banerjee, and Kumar

2009).

To detect anomalies the first question to ask is: what are anomalies. Chandola, Banerjee,

and Kumar 2009 divide anomalies to three main groups: point, contextual and collective.

Point anomalies being the simplest ones: a single data point that is anomalous in either local

or global neighborhood. For example a single large credit card purchase overseas is a point

anomaly in two regards: the abnormally large sum and location, putting these together it

is a large point anomaly. Contextual anomalies are anomalous in a specific context, not

otherwise. To continue the credit card example: say every morning you have a cup of tea at

cafe A, and every evening at cafe B. Now one day the purchase are switched around. In large

scheme of things, neither is anomalous because both cafe’s A and B are visited frequently, but
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in the context of time series they are anomalous. Lastly collective anomalies are anomalous

as a group, but not alone. Again a credit card analogy: a sudden increase in payments in a

short time might indicate stolen credit card, and someone trying to max it out. Any single

purchase itself might not be anomalous, but as a group they are. The border between different

anomalies can be a bit fuzzy in real world applications, but generally anomalies do fall into

one of these categories. Though the interpretation on what is point, contextual or collective

anomaly can be very dependent upon the problem setting.

For the purpose of this thesis, two basic anomalies are viewed: spectral and spatial. These

can, of course, both be present at the same time. The anomalies searched in the current

configuration of the proposed method are global collective anomalies. With modification to

the network it is conceivable, that local ones could also be found. While both are collective

anomalies, they are however a bit different. The way the method works actually finds anoma-

lous areas, making them collective anomalies. Normally spectral anomalies would be point

anomalies, but because the method finds anomalous areas, they are viewed as collective.

Since spatial anomalies are by definition dependent on a collection of data points arranged in

some abnormal way, they are always collective anomalies (Chandola, Banerjee, and Kumar

2009). The size of these areas is dependent on the parameters of the method, and is explained

in detail in chapter 3. The two anomaly types of interest are fairly straightforward: spectral

anomalies are abnormal spectras for a single area, and spatial ones are abnormal shapes in

an area. In this method the two can be intertwined, and for spectral anomaly the spectras

don’t have to be same across all the area, i.e. in RGB-image this kind of anomaly could for

example be a wave-like change in colors. The change in color making it spectral and the

wave-like structure a spatial one.

Anomaly detection in hyperspectral images, or in any images, is not a new idea. Since spa-

tial anomalies are not dependent on hyperspectral data, when studying them there is no need

to use hyperspectral data. In this thesis both are looked for, because the proposed method

can find both of them. Generally when speaking about hyperspectral anomaly detection, the

focus has been spectral anomalies. When searching for spectral anomalies, they are usually

done using statistical methods, specifically anomaly is considered anything abnormal from

the background, either local or global(Stein et al. 2002). On of the more common hyper-
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spectral anomaly detection methods was proposed by Reed and Xiaoli 1990, and has since

achieved the status of a benchmark in hyperspectral anomaly detection (Banerjee, Burlina,

and Diehl 2006). The RX detector is relatively simple one: it operates per pixel basis, com-

paring the pixel under scrutiny to a local background. This background is assumed to follow

Gaussian distribution. The target pixel is then compared to background mean vector and

can be classified as normal or anomalous. RX detector can bee seen as a statistical anomaly

detection method. While widely used it still has a few weaknesses: firstly the assumption of

background distribution is rarely true, and the algorithm computationally costly. Still it has

kept its status as a benchmark, and multiple different variations of the algorithm have been

proposed (e.g Chang and Chiang 2002; Stein et al. 2002).

2.2.1 HDBSCAN/GLOS

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a fairly widely

used unsupervised clustering method. Originally proposed by Ester et al. 1996, it filled a

gap in clustering methods. DBSCAN clustering has two main advantages: firstly unlike

traditional clustering algorithms (i.e. k-means) it does not require apriori knowledge of

clusters in the data. For unlabeled data this provides a large advantage: instead of find-

ing the number of clusters by trial-and-error, the algorithm does this automatically. Sec-

ond main advantage is the ability to find clusters of different shapes. For example: k-

means clustering finds clusters of roughly circular shape and fails with non-linear datasets.

DBSCAN is capable to detect non-linear clusters, or clusters of any arbitrary shape by

basing them on density. Shortly the DBSCAN algorithm works by going through all the

data points, and if they are closer than parameter ε to each other, they are considered

to be in a same cluster. In terms of graph-theory, each node n is considered to be in a

cluster C, if they can be connected with a walk w to any other point in the cluster, and

where the distance between any two adjacent points in the walk is not greater ε . Formally:

∀ni,n j ∈ C∃w = {ni = v1,v2, ...,vn = n j} : dist(vk,vk+1) < ε , and where dist is some dis-

tance function, commonly Euclidean distance. On top of ε , the second parameter required

by DBSCAN is the pmin parameter. Parameter pmin is the minimum amount of points for a

point to be considered a core point. It also determines the minimum amount of points need
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to form a cluster (at least one core point is required to form a cluster). If points are not in any

cluster, they are classified as noise. This idea is depicted in figure 4, blue nodes being noise,

red core (at least pmin) and yellow are non-core points belonging to the cluster (sometimes

border points).

Figure 4: Illustration of DBSCAN (Wikimedia Commons 2007a)

While DBSCAN is straightforward and well performing algorithm, it does require two pa-

rameters both of which depend on the distribution of data. There have been some variations

to the base algorithm to overcome this issue, by estimating these parameters (e.g. Smiti

and Elouedi 2012), and one of these variations is the Hierarchial DBSCAN (HDBSCAN)

algorithm proposed by Campello et al. 2015. HDBSCAN belongs to a group of hierarchi-

cal clustering algorithms. These can be divided into two main groups: agglomerative and

divisive. Both of these work by building a hierarchy of clusters. Agglomerative is a ground-

up method, where each point is its own clusters, and these are then combined to larger and

larger clusters. Divisive is the opposite: each point is in one cluster and this cluster is the be-

ing divided and divided. While HDBSCAN is an improvement upon the standard DBSCAN

method, it still does require one parameter: pmin. However ε is not required anymore.

DBSCAN algorithm starts the clustering by finding core points with respect to ε . HDBSCAN

algorithm starts in a similar way, but instead of finding core points it ask: for how large ε

point is a core point. This value for point xp is called core distance: dcore(xp) and is the

distance to the pmin:th neighbor of point xp. With this value an another important definition

can be made: the mutual reachability distance between two points xp and xq which is defined
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as:

dmreach(xp,xq) = max(dcore(xp),dcore(xq),d(xp,xq)).

This value is the minimum value for ε so that xp and xq are ε-reachable, i.e so that xp ∈Nε(xq)

and xq ∈ Nε(xp), Nε(xp) being the ε-neighborhood of point xp (all points in ε radius from

xp). With these two definitions the third and last one can be constructed: the mutual reacha-

bility graph: Gmpts
. This being a complete weighted graph of the dataset, where the weights

correspond to mutual reachability distances. HDBSCAN algorithm now works by manipu-

lating the graph. Removing all edges from Gmpts
where the weight is greater than some ε ,

a new graph Gmpts,ε is created. Clusters now formed in this new graph are the connected

components of core points of DBSCAN with parameters pmin and ε (Campello et al. 2015).

This graph is the hierarchical representation of DBSCAN, and in practice can be computed

using Minimum Spanning Tree (MST). This MST (figure 5) can then be transformed to an

hierarchy (figure 6).

Figure 5: MST illustration of an Gmpts
graph. (McInnes, Healy, and Astels 2017)

This hierarchy is then pruned to a smaller one using pmin parameter, by considering each

split: if the split creates a new cluster, that has less points than pmin, it is not considered a

true split, but noise removed from the cluster. When the noise is removed we are left with

a smaller tree (figure 7). From this representation final clusters are then chosen based on

their stability: stable clusters that persist longer during the pruning process are preferred

over unstable ones that are discarded quickly. Intuitively this means, that clusters that are
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Figure 6: Hierarchical illustration of figure 5 (McInnes, Healy, and Astels 2017)

"long" in figure 7 are preferred. Note that when selecting one cluster, one cannot select it’s

sub-clusters anymore. To compute clusters stability, a metric is required:

λ =
1

ε

With this metric, the stability (S) of a cluster Ci is computed by

S(Ci) = ∑
p∈Ci

(λmax(p,Ci)−λmin(Ci))

where λmin(Ci) is the minimum density where cluster exists, and λmax(p,Ci) is the density

after which point p does not belong to the cluster anymore.

To select clusters from figure 7, the hierarchy is traversed from bottom-up. Firstly all leaf

nodes are selected as clusters and Stabilities are computed by equation ??. Next the stabilities

of upper-level nodes are compared to the sum of the child-node stabilities. If the stability of

parent is greater than the sum of the stabilities of children, the parent node is selected, and

child nodes deselected as cluster. This is continued up to root node, and selected nodes are

the final clusters (shown in figure 8).

To sum up HDBSCAN firstly creates the MST for the data using equation ?? as weight

metric (figure 5). From this tree, a hierarchy is created (figure 6) and further pruned (figure

7). From the pruned hierarchy clusters are then selected based on stability equation 7 (figure

8).
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Figure 7: Condensed version of figure 6 (McInnes, Healy, and Astels 2017)

Figure 8: Selected clusters from figure 7 (McInnes, Healy, and Astels 2017)

HDBSCAN is a clustering algorithm, not an anomaly detection one. To detect anomalies

another one needs to be introduced. Of course one could simply label all noise as anomalies,

but to gain more control over the detector, it should assign anomaly score to each data point.

This value is typically between 0 and 1, and tells how anomalous the point is with 0 being

normal and 1 being an anomaly. By thresholding these scores, a balance point between

False Negative Rate (FNR) and False Positive Rate (FPR) can be chosen. In their paper

Campello et al. 2015 proposed a method called Global-Local Outlier Score from Hierarchies

(GLOSH) built on top of HDBSCAN. Similar to an older anomaly detection algorithm: the
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local outlier factor (LOF), the GLOSH algorithm supports both local and global outliers.

Local outliers being points, that in the large scale dataset are not anomalous, but compared

to local neighborhood are. For any point xi this value is computed by

GLOSH(xi) =
λmax(xi)−λ (xi)

λmax(xi)

where λ (xi) is the lowest density below which xi gets attached to some cluster, and λmax(xi)

the highest density above which all points of the said cluster are considered noise. Value

λmax(xi) translates to the density of the densest are of the cluster, and λ (xi) is the density of

the point (when considered part of the cluster). Note that if xl is the densest core point (i.e

λ (xl) = λmax(xi) ), then

lim
xi→xl

λmax(xi)−λ (xi)

λmax(xi)
=

λ (xl)− limxi→xl
λ (xi)

λ (xl)
=

λ (xl)−λ (xl)

λ (xl)
= 0.

So GLOSH-outlier score of a point is close to 0 when in the dense area, and for points far

from any clusters λ (xi) ≈ 0, since ε(xi) (the distance for xi to be considered in a cluster) is

large and λ (xi) =
1

ε(xi)
, and thus GLOSH(xi)≈

λmax(xi)
λmax(xi

= 1

2.3 Neural networks

The core principle behind the method proposed in this thesis is built on the use of a neural

network, specifically deep neural network (deep nets consisting of multiple layers of standard

networks). Next the building blocks for the networks used in this thesis are presented. Note

that this thesis works under the assumption that the reader is familiar with the basics of neural

networks. If not the book by Haykin 1998 is a good introduction to them.

2.3.1 Autoencoders

Autoencoders (AEs) are one of the oldest manifestations of neural networks. They have

been around since the early days of neural networks. In fact the basic autoencoder is struc-

turally identical to a Multilayer Perceptron Network (MLP) network. Like the name suggests

autoencoders are neural networks whose function is to encode and decode data in a unsu-

pervised manner, though term unsupervised is not strictly true. AEs fall to a class of neural
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networks that are self-supervised. That is, networks that do not require user defined labels,

but generate them from the used data (int the case of AEs the labels are the data itself). To

the outside these networks behave similarly to unsupervised ones. AEs are able to extract

information from the data, and as such are used for example dimensionality reduction or fea-

tures extraction (Goodfellow, Bengio, and Courville 2016). This dimensionality reduction

effect can been seen most prominently, if the activation functions are linear. In this case the

AE learns to span the same subspace as PCA1 (Goodfellow, Bengio, and Courville 2016).

AE network consists of three layers: input, hidden and output. The function between input

and output layer f : Rn → R
k, f (x) = s(Wx+ b) = h is called the encoder function with

parameters θ = {W,b}, where W is the weight matrix, and b is the bias vector. Similarly

function between hidden and output layer g : Rk → R
n,g(h) = s(W ′h+ b′)) = y is called

the decoder function parameterized by θ ′ = {W ′,b′}. Both of the functions contain non-

linear mapping s. Commonly used functions are: tanh, logistic function or ReLU (Chen

et al. 2014). The mappings h ∈ R
k of x ∈ R

n, and y ∈ R
n of h are called the code and

reconstruction respectively. In some cases the matrix W ′ may have constraint W ′ =W ′T , in

this case the autoencoder is said to have tied weights.

Figure 9: Simple under-complete autoencoder

Note that while AEs do contain an output layer, it is seldom used. The output-layer aims

to reconstruct the original input, and as such does not contain any information. However

1. Principle Component Analysis
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there are variations where the reconstruction is the wanted output, for example the denois-

ing autoencoder which aims to remove noise from the input. The number of neurons in

autoencoder networks is also a point of interest; in simple cases hidden layer has less neu-

rons than the input/output layer. In this case the autoencoder is said to be under-complete,

if the number of hidden neurons is greater than that of input/output, then the autoencoder is

over-complete (Goodfellow, Bengio, and Courville 2016). If the dimensions of all the layers

are the same, or if the network is over-complete the activation functions and/or the training

phase need to be modified to prevent the network from learning trivial mappings (identity

mapping), for example sparsity constraints (Goodfellow, Bengio, and Courville 2016).

So far the differences between MLP’s and autoencoders are non-existing, at least in the

structure of the networks. The differences becomes apparent in the use-cases for the two net-

works, and in the training procedure. Autoencoders are symmetrical in respect to the hidden

layer, but so can be MLPs. Since AEs are structurally MLP networks, the training algorithm

is usually the same Back-Propagation (BP) method. However it’s noteworthy to mention,

that autoencoder can be trained with re-circulation algorithm, or it’s variant the GeneRec

(generalized re-circulation algorithm), but this has more to do with neuroscience 2, and no

studies using it were found. The difference in the training phase between autoencoders and

MLP’s is the target of minimization. MLP’s minimize the classification error, whereas au-

toencoders minimize the reconstruction error shown in equation 2.1 (Goodfellow, Bengio,

and Courville 2016). So autoencoders encoder function compresses the input to code, and

decoder decompresses the code to reconstruction the original input. The error between orig-

inal input x and reconstruction y is to be minimized. This way the autoencoder is forced

to learn only the salient features of the input, and ignore the rest, less meaningful features

(Goodfellow, Bengio, and Courville 2016). Note that autoencoder do require a minimum of

three layers to work (input-code-output), and can thus be classified as deep networks (like

in Goodfellow, Bengio, and Courville 2016). However, the number of code layer can be

increased to increase the depth of an autoencoder, and creating a "real" deep network.

2. O’Reilly, R. C. (1996) Biologically plausible error-driven learning using local activation differences: The

generalized re-circulation algorithm. Neural computation, 8(5), 895-938.
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argmin
θ ,θ ′

n

∑
i=1

L(x(i),y(i)) (2.1)

We can now also see why certain changes needs to be made if the layers are same size

or over-complete. In either cases the network can learn identity function, or any bijective

function, and the reconstruction would match exactly to the input. The problem is, that code

vector would also match, and therefore contain no additional information about distribution

of training data.

2.3.2 Convolutional neural networks

Convolutional Neural Networks (CNNs) were first proposed by Cun et al. 1989 and have

since gained a lot of popularity. While originally they were designed to extract information

from images, they work with other types of data also. Specifically if data can be interpreter as

signals, CNNs may be used. For example time-series data, videos, speech, images etc. The

core of CNNs is the mathematical convolution operation. Generally CNNs are standard neu-

ral networks, but instead of simple matrix multiplication, convolution is used at least in one

layer (Goodfellow, Bengio, and Courville 2016 ). Convolution is a linear operation where

two signals x and y are convolved producing a third signal s. Signals meaning functions in

this case. Formally this is

s(t) = (x∗w)(t) =
∫

x(a)y(t −a).

Note that this formal notation does have some restrictions with regards to functions (Good-

fellow, Bengio, and Courville 2016). Function x is often called as input, function y as kernel

and output as feature map, especially when dealing with CNNs these are used. Since data in

neural network applications is rarely truly continuous, this form of convolution is not used

when dealing with CNNs Instead a discrete one is used. In discrete convolution, the integral

is simply replaced with a sum

s(t) = (x∗w)(t) = ∑x(a)y(t −a).

This notation (and the continuous one) can be easily expanded to multiple dimensions, such

as two dimensions for images, or three for images with spectral axis. For image I, and two
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dimensional kernel K the 2-dimensional discrete convolution is

S(i, j) = (I ∗K)(i, j) = ∑
m

∑
n

I(m,n)K(i−m, j−n) =

(K ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j−n)K(m,n).

Since the data used in this thesis contains 3 dimensions (two spatial and one spectral), 3-

dimensional convolution is used.

Also note that when speaking about machine learning convolution can also mean a similar

cross-correlation operation

S(i, j) = (I ∗K)(i, j) = ∑
m

∑
n

I(i+m, j+n)K(m,n).

These two are sometimes used interchangeably (Goodfellow, Bengio, and Courville 2016).

Convolutions are used in neural networks because by making the kernels smaller than the

input they can find features present in a small part of the input data. For images this is espe-

cially useful: traditional neural networks find features that apply across the whole input. This

also allows CNNs to find common spatial features from the images, such as edges. Another

added benefit for this is the reduction in memory consumption. Memory requirements for

a fully connected layers is a lot larger than for a convolutional one. This property is called

spare interactions (Goodfellow, Bengio, and Courville 2016 ), or sometimes local connectiv-

ity; i.e. each neuron in output is connected to some local area, not the whole input as in fully

connected networks. A parameter governing the size of this neighborhood is the size of the

kernel, and is sometimes called receptive field of the output neuron.

Convolution as an operation might not be that clear from the mathematical notation. In figure

10 a simple visualization of a 2-dimensional convolution can be seen. Indistinctly in CNN,

the kernel corresponds to some feature of interest in the image, for example a shape. When

convolution is run with this kernel, the output tells how prominent that feature was in each

section of the input image. Note that the outermost areas of the input in figure 10 are 0’s

this is padding of the image, and is one of the parameters of the convolutional network.

Other parameters include the stride of the kernel. Meaning how much the kernel is moved

across the image. In equation ?? this corresponds to the amount n and m are increased across

19



the sum. Recently one more optional parameter for the convolution is introduced: dilation.

Normally the kernels are continuous, but it it possible that they may have gaps in them,

making kernels checkered" (Yu and Koltun 2015).

Figure 10: Example of 2-D convolution with padding, 3×3 filter and a stride of 2

Usually the convolutional layer in a neural network is divided int three parts. The first one

being the convolution, second being activation, and third pooling (Goodfellow, Bengio, and

Courville 2016 ). As with standard neural networks, in the activation the feature-maps gen-

erated by convolutions are run through some (non-linear) activation function. The third

(optional, e.g. AlexNet) part, often max-pooling is a fairly simple operation, in which for

example 2-dimensional input is shrunk to a smaller size by dividing the input into section,

and for example storing only the largest value from them. An example can be seen in figure

11. Pooling operation also has kernel size and stride parameters. The function of pooling is

to make the convolutional layer invariant with respect to small changes, making the presence

of a feature more interesting than the exact location of it (Goodfellow, Bengio, and Courville

2016). As an added bonus they serve to reduce the size of the feature maps, an important

bonus when making deep networks, with multiple convolutional layers.

Since any neural network, including CNNs, need to be trained convolutional layers alone

are not enough: one needs some output-layer to train the network. Usually after a number

of convolutional layers, with pooling or not, one or two fully connected layers are added.

The last of these being the output layer. The training is done using traditional BP method

with respect to some training targets, for example classification labels. In CNNs the weights

optimized by the training procedure correspond to the convolutional kernels. This way when

training the network for say a classification, kernels that represent some meaningful features
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Figure 11: Max-pooling operation with 2×2 filter and a stride of 2

for these classes are learned. Since the use-case of CNNs is usually fairly complex, convo-

lutional layers are stacked on top of another to form deep CNNs. Since the feature maps

are inputs to the next level of convolutions, each convolutional layer learns more complex

features than the one before. In image 12 this can been seen: first level features are very

simple, and later more complex.

Figure 12: Example of kernels learned by a 3-layer CNN (Lee et al. 2009)

Comprehensive study of CNNs would constitute a thesis on its own, and this section only

aims to provide some basics. CNNs being a very interesting field of study a lot of different

variations and tweaks exists, and not included in this section. The reader should however

have now basic knowledge of CNNs, and be ready to move to the next part.

2.3.3 Convolutional autoencoders

CAEs are the combination of the convolutional operations and autoencoder networks. This

kind of network was proposed Masci et al. 2011 in an attempt to develop an unsupervised
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neural network that could efficiently work with image data. Any image can be converted

to one dimensional vector which in turn can be fed into an appropriate neural network, for

example an autoencoder. The problem is that this kind of transformation on the image loses

most of the positional relationships between the points of the image (Du et al. 2017). Masci et

al. 2011 wanted to develop a model for neural network where this information is preserved.

By combining CAEs with AEs, one is left with a neural network that can learn the best

features (kernels in the case of CAE) for the current task. These networks are useful when

training large CNNs, which cannot be trained in traditional methods because of the vanishing

gradient problem. The kernels learned by CAEs can be transferred to CNN’s with similar

topology, and further trained using traditional methods (Masci et al. 2011; Du et al. 2017).

Logically the structure of CAE is exactly what one would expect: the two networks stacked

on top of one another. An autoencoder which gets the output of a convolution operation as an

input. The input is in vector form, but as the input itself is a feature map it already contains

positional information about the original image, and the transformation to vector form does

not lose as much information as on the raw data. It does lose some information, higher level

abstraction of the data (i.e. features of features), and it’s up to the user to decide which level

of abstraction is wanted. Like with CAEs, pooling operation can, and should be used in

CAE networks (Masci et al. 2011). In the encoder phase pooling works the same as with

CNNs. Problems arise in decoder phase. As pooling is not an injective operation and thus

not invertible, one needs to reverse it somehow. This is called unpooling (also up-sampling),

and it functions to reverse the pooling operation (Zeiler, Taylor, and Fergus 2011). Like with

pooling, unpooling can be done in different ways. The way used in this thesis is depicted in

figure 13. Note that pooling operation does lose some of the information contained in the

input. No matter what method for pooling is used, this lost information can be recovered

only in special cases (e.g. the feature maps has only single values).

Logically a CAE (without pooling) is two networks stacked on top of another, but mathemati-

cally it is an autoencoding network in which the input and code vectors are convolved (Masci

et al. 2011). The encoding function is shown in 2.2 and decoding in 2.3. δ is some activation

function, ∗ is 2-dimensional convolution, x,y and z are the input, code and reconstruction

vectors, W,b,W ′,b′ are the weight matrices and bias vectors. Note that mathematically the
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Figure 13: unpooling operation

decoding, i.e. de-convolution is also a convolution. So in practice CAE network is a col-

lection convolutional layers arranged to form an autoencoding structure (i.e. the network

contain two mirrored parts). CAEs are trained similarly to standard autoencoder: using BP

method with some error function, for example Regulized Mean Squared Error (RMSE)).

yk = δ (x∗W k +bk) (2.2)

zk = δ (∑
k∈H

yk ∗W ′k +b′k) (2.3)

Like with standard autoencoder, there exists variations for CAEs. Masci et al. 2011 pro-

posed one of these: the Stacked Convolutional Autoencoder (SCAE), which is analogous to

stacked autoencoder. In these networks the output of previous layer is the input of the next

layer. Du et al. 2017 proposed a variation of CAE in which autoencoder were replaced with

denoising autoencoder (DAE, the resulting network (convolutional denoising autoencoder

(CDAE) being less prone to noise. Du et al. 2017 also included additional processing in their

network, namely whitening layers. Whitening is an operation that removes correlation from

the data. The topology of the network proposed by Du et al. 2017 is shown in figure 14. The

network in question uses several CDAE networks and as such forms a deep network called

stacked convolutional denoising autoencoder (SCDAE).
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network

Figure 14: SCDAE-network (Du et al. 2017)

In the first section of this chapter some basic background information on hyperspectral

imaging and anomaly detection was provided. More detailed presentation of the HDB-

SCAN/GLOSH anomaly detection algorithm was also included. In the second part three

neural networks were formally introduced. The first two, AEs and CNNs being the building

blocks for the third: the CAE. The main goal of this chapter was two provide the reader, first

some background knowledge on the problem, but more importantly the two main tools used

in this thesis: HDBSCAN and GLOSH algorithms and CAE neural networks.
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3 Materials and methods

The previous chapter presented the basic building blocks of the proposed method for the

detection of anomalies. And this chapter will continue to combine these blocks to form

one possible configuration of the method. The chapter is divided to two parts: the first part

will present the imaging data used in this thesis: where and how it was gathered and how it

was processed, and the second part will construct block by block the method used to detect

anomalies from the data. The order of these sections is not arbitrary; the structure of the data

creates some constrains for the method, and the data is presented first (though the reverse

also holds in some parts).At the end of this chapter the reader should have an understanding

how the method works and how the experiment was designed. The results of this experiment

will be presented in chapter 4

All of the techniques and algorithms presented in this paper were implemented on Python 3.

Convolutional autoencoders were build with Keras framework, using Google’s Tensorflow

with GPU backend.

3.1 Materials

Since the fundamental purpose of the proposed method is to detect anomalies from a large

datasets the data gathering process was a bit problematic. There isn’t that many readily

available HSI datasets, and with the added restrictions of size and the type of data, choices

drop to zero. The type of data in this case means the kind that isn’t too heterogeneous. If the

images in the dataset are for example of distinct objects then the data would probably be too

heterogeneous and most, if not all, images would be classified as anomalies. Thesis advisor

did propose the use of openly available satellite data, specifically data from ESA’s Sentinel

2 satellites. Thankfully this data is freely available through ESA’s Copernicus Open Access

Hub, and with the provided Sentinels Application Platform (SNAP)-application fairly easily

transformed to usable format.

ESA’s Sentinel 2 satellite system consist of two identical satellites: Sentinel 2A and 2B in

the same polar orbit phased 180 degrees apart. Both satellites contain MSI instrument, which
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is technically not a hyperspectral sensor, but as the name implies a multispectral one. These

MSI sensors collect data from 13 bands ranging from VIS1 to SWIR2. Information about

these bands can be seen in table 1. Other specifications are: radiometric resolution (i.e.

bitdepht) of 12 bits, temporal resolution (i.e. revisit time) of 5 days on equator and swath

width of 290km (European Space Agency (ESA) 2017).

Table 1: Sentinel 2 satellites MSI instrument specifications (European Space Agency (ESA)

2017).

Sentinel 2 data is categorized to different products, depending on how much the raw data is

processed. The raw sensor data (level 1B) is not provided to public at large. Instead the data

is compiled to top-of-atmosphere reflectance in 100km×100km cartographic geometry3 (Eu-

ropean Space Agency (ESA) 2017). This data is further processed to bottom-of-atmosphere

reflectance (level 2A) product on the SNAP program.

All imaging data used in this thesis was gathered through Copernicus Hub, specifically S-2B

1. Visual light, portion of EM spectrum ranging from about 390nm to 700nm

2. Short Wave infrared, portion of EM spectrum ranging about 1000nm to 2500nm

3. UTM/WGS84 projection
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PreOps Hub4, based on some rough criteria (mainly homogeneity of data). After some rough

visual scanning of the data, a dataset consisting of 13 images was chosen. Geographically

all these images are from the Alaska Peninsula, and locations of the used images can be

seen in figure 15. RGB color images of the used data are listed in appendix A The data is

loaded to SNAP and exported to ENVI format. Like shown in table 1, the bands are of three

different spatial resolutions: 10m, 20m and 60m, these correspond to different size layers:

10980× 10980, 5460× 5460 and 1830× 1830 pixels respectively. Before exporting data

from SNAP, layers were resized based on the most restrictive: 1830×1830. Downsampling

was done using mean method. From this point onward all processing is done using Python.

Figure 15: Geographical location of the used data

Since SNAP exports each band as it’s own image, some further processing was required to

combine each band to a single image cube. At this point the images are also relatively large,

and each of these was further split into windows of 128× 128 pixels. Since the dimension

of the images are not divisible by this window size, there is some overlap on the right and

lower edges. The window size of 128 was decided after some reflection on performance,

number of images and the depth of the network. Since convolutional layers are coupled with

pooling layer, the dimensions of the images need to be chosen with this in mind. Specifically

4. https://scihub.copernicus.eu/s2b
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the dimension should be divisible by the "size" of the pooling times the number of pooling

layers. Each of the max-pooling layers divide the dimensions of the input data. So by using

two max-pooling layers, both dividing the dimensions by two, the input data dimensions

need to be twice divisible by two. At this point the data consists of 2925 npy files (each

image is windowed to 225 windows), each containing a single 128×128×13 matrix. While

these files do contain all 13 bands, only 12 are used because of the pooling operations, band

9 being the unused one. With 12 bands, the depth of the network is also to 2 layers, or more

precisely the number of pooling layers is limited to 2. With further reduction of bands to 9,

this could be increased to 3, but to preserve as much data as possible, this was disregarded.

This data will constitute the training dataset for the network.

One of the more difficult problems when dealing with unsupervised methods, is the valida-

tion of results. For labeled data it’s simple to calculate different performance metrics, but

when no labels are available values such as True Positive Rate (TPR) or FPR cannot be com-

puted: what is positive value when there are no labels? There are some methods to overcome

this problem on some cases. Depending on the method/algorithm used, one might have a

feasible method of validation, but no such luck for this case. One could manually search

anomalous areas using SNAP, in effect label the data, but this method does not work that

well for hyperspectral images. Since human eye cannot see beyond visual range, it would

require massive amounts of labor to both learn what is normal and then to find abnormal

areas in hyperspectral images. One of the purposes of the proposed method was to outsource

this kind work to a machine.

To combat the problem caused by the lack of labels, a method to synthetically add anomalies

to the used data was proposed. As mentioned before, the definition of anomaly is not as clear

cut as it would seen. The first task of creating this synthetic anomalous data, was to decide

upon what kind and how to generate these synthetic anomalies. A relatively simple way was

chosen: increase the values of pixels based on the distribution of the raw values. This method

does not differentiate between spatial and spectral anomaly, but instead creates ones that are

both. This process began by studying the distribution of each band. Distribution of bands

can be seen in figure 16, and information about the mean and error of the bands in figure

17. Note that raw values in band 10 are a lot smaller than in other bands. Because of this
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the standard deviation of this band is not visible in figure 17. the method for adding these

anomalies to the data is fairly rough, and based on relatively simple statistics. Still it was

thought to be adequate, but since the purpose of this thesis is to provide proof-of-concept

implementation for the method.

Figure 16: Distribution of raw pixel values per band

Figure 17: Means and standard deviations of raw values per band

The first step in the actual generation of the synthetic data was to decide on some parameters

and to calculate vectors ~vmean and ~vstd containing the means and standard deviations for all
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bands. Parameters for the generation algorithm were: panom = probability of anomalous

image, sanom = size of anomaly and [cmin,cmax]. Also values [cmin and cmax] were chosen to

give the multiplication coefficients on how many standard deviations are to be used for the

anomaly. these values were chosen as follows: panom = 0.05, sanom = 20 and [cmin,cmax] =

[3,5]. The process of generating the synthetic data is as follows: Firstly from the 2925

images a random subset was chosen based on panom. Next for each anomalous image Mimg

a location of the anomaly was randomly chosen, and a mask was created containing zeroes

everywhere except at the position of the anomaly where the values were 1. For example if

images were of size 3x3 and sanom = 2 the mask could be

maskanom =









1 1 0

1 1 0

0 0 0









The next step is to create matrix

Mrand ∈ R
sanom×sanom×12,Mrandi, j,k ∈ [cmin,cmax),∀i, j ∈ {1, . . . ,sanom} and k ∈ {1, . . . ,12}

and

M̂coe f f = Mmean +(Mstd ⊙Mrand)

Mmeani, j =~vmean,∀i, jin ∈ {1, . . . ,sanom}

Mstdi, j
=~vstd,∀i, jin ∈ {1, . . . ,sanom}

where ⊙ denotes element-wise multiplication. Matrix M̂coe f f is an anomaly specific matrix,

that contains information on the magnitude and shape of the said anomaly. The next step is

to expand matrix M̂coe f f to a new matrix Mcoe f f with same shape as Mimg,. This new matrix

contains 1, except for the masked area where it contains the old Mcoe f f matrix. That is

Mcoe f fi, j =











~0, if maskanomi, j = 0

M̂coe f fî, ĵ
, if maskanomi, j = 1

Next the this matrix is divided element-wise with the original image matrix, and we get the

final multiplication matrix M f = Mcoe f f ⊘Mimg. The final anomalous image is generated

with the help of this matrix

Msynthetic = Mimg ⊙Mcoe f f
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In this matrix original data is preserved, except for the location masked by maskanom, where

pixel values are increased based on the random factor explained above. Labels for the val-

idation phase, and the location of anomalies are saved (figure 18). Full scale binary masks

are also created for visualization purposes. One of these can be seen in figure 19.

Figure 18: Location of synthetic anomaly for image_01, section 4

Figure 19: Location of synthetic anomalies for image_01

3.2 Methods

The foundation of this method is the use of CAEs, especially the deep variety. The method

itself is quite simple: by using convolutional autoencoders to extract common meaningful

features from the data, and by analyzing these features one can estimate which images or

areas of images are normal, and which are not. The method itself works in three phases:

in the first phase the SCAE is trained. In the second phase the trained network is used to

extract the raw feature-maps, which further distilled into the final feature. In the third phase
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these features are run through some anomaly detection algorithm, in the case of this thesis

HDBSCAN/GLOS.

Neural networks themselves are a vast field of study. Without any prior knowledge on the

performance of CAEs, the build of the method would be trial-and-error. Because of this,

some preliminary testing of CAEs was required, and worked as a starting point. The first step

were to study the performance of the SCAEs networks on simple black-and-white images.

The point of these test were to establish some base knowledge on network sizes, optimization

methods, loss functions and kernel sizes. Detailed results of these test are not presented since

they are outside the domain of this thesis, but based on these tests the optimizer was chosen to

be Adadelta and as a loss function: Mean Squared Error (MSE). Some tests were also made

with the number and size of kernels, and the number of convolutional layers. In the end

these did not weight much on the final structure of the network due to practical restrictions

imposed by the structure HSI data, and by computer performance. Especially the number of

bands in the data restricted the use of max-pooling layers. Though these pooling layers are

not always essential (for example: Du et al. 2017),

3.2.1 Phase 1: structure and training

After the preliminary test, the actual encoder to be used was decided to consist of 2 convolu-

tional layers, both containing 48 kernels of size 5×5×5. Since the data used is hyperspectral,

it was deemed best to use 3-dimensional kernels to capture both spatial and spectral features

at the same time. Other methods could also have been used, for example: 2-dimensional

kernels over different bands learning spatial features. Each convolutional layer was coupled

with a max-pooling layer, all of which divided the dimensions of input by 2. All the convo-

lutional layers used padding so, that input and output shapes of each layer are the same. No

bias was used on any layer. Feature scaling was also applied to dataset before the training

Dtrain =
Draw −min(Draw)

max(Draw −min(Draw)
.

The corresponding decoders structure is a mirror of the encoder with max-pooling layers sub-

stituted for up-sampling layers, and the one extra convolutional layer at the end.The structure

of this network is summarized in table 2. Total number of trainable parameters was 876,193.
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As the purpose of this network was to only demonstrate the feasibility of this method, the

net was trained only with 10 epochs5. Even with the low number of epochs, it was able to

achieve reconstruction error of 0.0017. Testing showed that this could be reduced further if

required. The network trained using the full 2925 (non-modified) images. The training of

this network is the single most time consuming operation and something that can be done

before the actual application of the method. During the creation of thesis the network was

trained beforehand on a more suitable computer and then stored for later use.

Table 2: Summary of used neural network

Layer Output shape Parameters

Input (128, 128, 12) 0

Conv1 (128, 128, 12, 48) 6048

MaxPool1 (64, 64, 6, 48) 0

Conv2 (64, 64, 6, 48) 288048

MaxPool2 (32, 32, 3, 48) 0

Deconv1 (32, 32, 3, 48) 288048

Upsampling1 (64, 64, 6, 48) 0

Deconv2 (64, 64, 6, 48) 288048

Upsampling2 (128, 128, 12, 48) 0

Deconv3 (128, 128, 12, 1) 6001

Since the innate property of any autoencoder is the ability to learn meaningful features from

the data, the network should now have an idea of what is normal in the training dataset. Note

that unlike most unsupervised anomaly detection methods, the training data itself is not as a

whole thought as normal. Like with any method in the domain of machine learning, what is

considered normal is widely reliant upon the used training data. But the way this network

works allows it to learn commonly occurring features from the data, and so the data itself can

contain anomalies. This makes the method quite robust in terms of training data. Normally

it would require a fair amount of manual work to go through the training data, and make

sure that there are no anomalies in it, or to label them. This also enables the method to use

5. One forward pass and one backward pass of all the training examples.
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same data in train and detection phases, often anomaly detection uses distinct train and test

datasets.

Note that, unlike in figure 12, the kernels learned by this network cannot be visualized in

any meaningful manner. Since the convolution is 3-dimensional, the kernels are also 3-

dimensional, and thus any visualization would be meaningless to human eye. This makes

the manual observation of the internal workings of this network impossible, a property com-

monly observed with deep neural networks.

3.2.2 Phase 2: feature extraction

After the training of the SCAE is done, this network can be used to extract feature-maps

from the data. Note that since it’s the encoder part of the network that actually learn the

features, the decoder is unused after the initial training, and if necessary could be discarded

completely. Before the actual feature-map generation, the test data was scaled similarly to

the training data:

Dtest =
Dtest_raw −min(Dtest_raw)

max(Dtest_raw −min(Dtest_raw)

The feature extraction can, and was done in parallel for all images at the same time, but next

the road of a single image is explained.

The image is run through the network, and feature-maps (also: activation maps) are collected.

For each of the convolutional kernel a single map is created. Since each convolutional layer

in a this network is a collection of multiple separate networks (one for each kernel in the

layer), the total number of feature-maps is the total number of kernels in all the convolutional

layers of the encoder part of the network. In the network used in this thesis that means, that

a total of 96 feature-maps were collected for each image. Each feature-map itself is a two

dimensional matrix, the shape of which is dependent on it’s location on the network ( the

pooling causes layers to decrease in size the deeper they are in the network). The sizes of

feature-maps is shown in table 2. After the image is run through the network, a total of

128 · 128 · 12 · 48+ 64 · 64 · 6 · 48 = 10616832 features per image are collected. Now this is

a lot of information, and the storage alone for all images takes 276GB using 64bit floating

point numbers. 10 Million features per data point is also quite impractical for any anomaly
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detection algorithm; the sheer amount of computing power required to analyze dataset of this

size in a practical amount of time is massive. This moves us to the second function of phase

two: to take these raw feature-maps, called fc1 ∈ R
128×128×12×48 and fc2 ∈ R

64×64×6×48,

and to extract more compact feature-vectors from them. There is a lot of different ways

to extract these features, and for demonstration purposes two were used in this thesis. The

feature-vectors themselves were stored in 32bit format.

Each of the feature-maps tells on how largely each feature is represented in an area of im-

age, and themselves can be considered as images. Therefore they need to be transformed

to vector form. Since each feature, by the definition CAEs, is a commonly occurring fea-

ture, abnormally large values in the feature-maps are generally not interesting. They can

of course contain anomalies, but from the point of view of this thesis they are not to be

considered anomalies. The smallest values of feature-maps are also not interesting: there

might be a portion of a image, say cloud cover, in which some features can be completely

absent, but who do occur in the rest of the image. Under this reasoning storing information

about the largest values of each feature-map gives the information we want. Large maximas

are considered normal, but small maximas are anomalous: a small maxima across a single

feature-map tells that this image did not have some feature that is considered common. both

of these features were extracted for each image, are based on this reasoning.

At the beginning only two features were extracted. A low-dimensional simple one for general

features, and a higher-dimensional one for complex features. For both of features, feature-

maps from both convolutional layers were concatenated along the fourth axis, forming a

single feature matrix fc ∈ R
128×128×12×96. Since the dimensions of these feature-maps mis-

match (table 2), matrix fc2 was up-sampled to match the dimensions of matrix fc1. Up-

sampling was done simply with Kronecker product (i.e. the operation shown in figure 13).

The first feature vector ~f1 was then computed by

~f1l
= max( fci, j,k,l

)























i, j ∈ {1, . . . ,128}

k ∈ {1, . . . ,12}

l ∈ {1, . . . ,96}

~f1l
∈ R

96

So feature ~f1 contains information about the maximas of each feature-map across all bands.
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The creation of the second feature was a bit different. It is essentially the same as ~f1, but

it does not compute the maxima over all the bands. Instead a maxima is computed for each

band individually. The second, more drastic feature is the fact, that each 128×128 is image

further subdivided int 16 regions in a 4-by-4 grid. So feature 2 is not actually a vector but a

matrix instead. This matrix is created by using max-pooling layer of size 2×2 with a stride

of 2 along the first and second dimensions. This max-pooling layer functions as both the

maximum function to collect feature data and as a tool to section the image to 16 regions at

the same time. From the raw feature matrix this produces a matrix of shape 4×4×12×96

which is then resized to the final shape. Programmatically this feature is handled in a same

way as the full images in section 3.2. Meaning that is each image is split into smaller images

of size 32×32(128/4), and they are handled as their own images. The values of this feature

matrix are

f̂2i, j,k,l
= max( f̂ i, j

ck,l
)























i, j ∈ {1,2,3,4}

k ∈ {1, . . . ,12}

l ∈ {1, . . . ,96}

, f̂2 ∈ R
4×4×12×96

where f̂
i, j
c ∈ R

12×96 is a submatrix of fc given by

fc =















f̂
1,1
c f̂

1,2
c f̂

1,3
c f̂

1,4
c

f̂
2,1
c f̂

2,2
c f̂

2,3
c f̂

1,4
c

f̂
3,1
c f̂

3,2
c f̂

3,3
c f̂

3,4
c

f̂
3,1
c f̂

4,2
c f̂

4,3
c f̂

4,4
c















By reshaping we get f̂2 → f2 ∈ R
4×4×1152, where 1152 = 12 · 96. The use of sectioning

increases the accuracy of features. Since each atomic area (essentially a single data point),

is smaller, there is less change that anomalies are drown in the normal data.

At this point, it was thought that since the used network is deep one or meant to be, features

from the second layer should be considered individually. This called for two more features.

These third and fourth features basically duplicates of first and second, with the exception

that they only took as a raw features (though up-sampled to mach the input size) from the

second convolutive layer. The size of all features is summarized in figure 20.

Like mentioned at the beginning, this feature extraction was done in parallel for all images,
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~f1 ∈ R
96

f2 ∈ R
4×4×1152

~f3 ∈ R
48

f4 ∈ R
4×4×576

Figure 20: Summary of extracted features

not for single ones as explained here. As such, the features ~f1 and ~f3 are no actually vectors,

but matrices, where each row corresponds to a single image. Similarly, features f2 and f4,

which are already matrices, gain one additional dimension to mark the image from which of

the original 2925 images they belong to. The output of phase 2 was thus a collection of 4

matrices, one for each feature.

3.2.3 Phase 3: anomaly detection

In the third and last phase of this method, the extracted features from phase two are run

through some anomaly detection algorithm. since each phase is more or less independent

from the others, the anomaly detection algorithm can be chosen freely, depending on the

problem setting and goals. It’s conceivable to even use supervised algorithms if labeled data

is available, though in this thesis the point is in unsupervised methods.

Considering the problem setting proposed in this method, the choice for the anomaly detec-

tion algorithm was not a clear cut problem. Most of the anomaly detection algorithms, even

unsupervised ones depend on some parameters that are data-specific. Since this in this thesis

aims to demonstrate anomaly detection method that works out-of-the-box, most algorithms

were ruled out because they require data-specific optimization of parameters. The choice

of anomaly detection algorithm was GLOSH/HDBSCAN introduced in section 2.2.1. While

HDBSCAN still requires parameter pmin, it can be fairly easily calculated from data (say size

of data), and this was deemed fine. The implementation of the used algorithms was provided

by McInnes, Healy, and Astels 2017.

The GLOSH/HDBSCAN algorithm requires two parameters: in addition to the already men-
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tioned pmin for the minimum number of points, an another one for the threshold of anoma-

lies. Since GLOSH/HDBSCAN algorithm assigns outlier scores (also: anomaly scores)

sglos ∈ [0,1] for each point in the dataset, this another value: tanom is required for a decision

boundary between normal and anomalous point. The first parameter pmin was chosen during

some preliminary testing to be 100. Another values were tested but this seemed to work well

with this data. This value meaning that at least 3% of all data points need to be "close" to

one another to be considered a cluster. Again this value is dependent on the definition of

anomaly, but for the purpose of this thesis this was fine. The second value tanom was chosen

after manually going through results of GLOSH/HDBSCAN algorithm to be 0.7. These re-

sults contain both the sglos scores and real labels for each file. Boundary value of 0.7 worked

well: it detected most of the anomalies, while classifying bulk of the data as normal. Note

that as previously mentioned, these images do contain non-synthetic anomalies, and these

cannot be prevented. There were some synthetic anomalies that were not detected, but a

lower tanom value would have resulted in a lot more non-synthetic anomalies. So much so

that they were deemed to be false positives, even though no labels for these were available.

The detection phase itself was relatively simple: the extracted features from phase two were

loaded, and again values were scaled to [0,1]. Without scaling choosing tanom would be

difficult and would have to be re-chosen for every new dataset. The scaling for each feature

was done simply by

fi =
fi −min( fi)

max( fi)−min( fi)
, i ∈ {1,2,3,4}

After the features are scaled they are run through HDBSCAN clustering, and GLOSH values

are extracted. Each data point for which sglos ≥ tanom was labeled as anomaly, and the rest as

normal. Since features f1 and f3 are vectors per image and f2 and f4 are matrices image, two

different runs of anomaly detection were required. Features f1 and f3 are straightforward

clustering and labeling for each image, but features f2 and f4 required additional processing

to split each image into sections. These section were then processed as individual images

and labeled. For the purpose of validation performance metrics were also calculated. These

were done using the smallest divisible element, i.e. for features f1 and f3 whole images and

for f2 and f4 sections of images. All of the results were saved for later analysis. Note that

since synthetic labels exist only for whole images, the labels for each section needed to be
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calculated using position of synthetic anomalies (the positions were saved in generation of

synthetic data: figure 18).

In this chapter, we first started by introducing the data used in this thesis. This dataset

consistent 13 100km× 100km multispectral satellite images from Alaska. Another dataset

based on this was also introduced. This dataset contained synthetic anomalies, and was cre-

ated for validation purposes. After the data was introduced, the used method was proposed.

This method consists of three different phases. Each of these phases is a distinct compo-

nent of the whole process, and can be customized for the problem. This makes the method

very adaptable, and only the first method: the convolutional autoencoder is, to some degree,

fixed. The feature selection can be done in innumerable different ways, and the algorithm in

phase three can be chosen based on the goals. In this thesis four features were extracted and

GLOSH/HDBSCAN was used for phase three. These are only to demonstrate the feasibility

of the core idea, i.e. using convolutional autoencoder to learn normal model for images and

thus gaining knowledge on what is not normal.
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4 Results

In this chapter, results from a total of four different runs of the method introduced in the

previous chapter are presented. In section 4.1 results from the unlabeled original data, i.e.

the same data used to train the network are presented. In section 4.2 corresponding results

for the synthetic data from section 3.2 are presented. Two runs were conducted for both of

these datasets. One for full datasets and on for partial.

The structure of the method was described in section 3.2.1, the used features in section 3.2.2,

and the anomaly detection phase in 3.2.3. Since the used net, features and anomaly detection

algorithm are more or less static parameters (changing them require re-training and re-feature

extraction), the optimizable parameters are the two parameters for the HDBSCAN/GLOSH

algorithm. To recall these two parameters were chosen to be: pmin = 100 and tanom = 0.7,

and all of the results were gathered using these same parameters.

4.1 Unmodified data

After some preliminary testing of the method, the very first results gathered were the anoma-

lies detected from the unmodified images. These results correspond most closely to the

originally visioned use-case of the method: a large amount of unlabeled data from where

anomalies are searched. Anomalies being something on the outskirts of the distribution of

the same data from where they are searched. This result gathering process was started by

running all of the 2925 unmodified images through the method and saving the results. These

small images were then combined back to original full-scale images. In these images each

anomaly was masked by a red area. This resulted in a total of 72 images for the original

data: two runs, one for all 13 images and another for 5 images. Both containing results from

four different features (4 · 13+ 4 · 5). Only a select few of these images are presented for

demonstration purposes.

Since the unmodified data does not have any labels, nor does the method give out any

human-readable explanation of the anomaly, no real validation of these results was done.

The anomalies are overlaid to the full RGB images, but since each image is hyperspectral,
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these visualizations are subject to personal interpretation, and thus this section does contain

a fair amount of speculative conclusions.

The first results were gathered by running all of the 2925 unmodified image through the

method, and generating the masked RGB-images where location of anomalies are portrayed.

One of these masked images can be seen in figure 21a.

(a) features f1 (b) features f2

Figure 21: Anomalies found in original image_02 using features f1 and f2.

From visually inspecting these images some conclusions were drawn. Firstly most of the

uniform areas of the images were labeled as normal, and anomalies were mostly restricted to

areas with heavy could-cover (e.g. figure 22) or mountains (e.g. figure 23). Interestingly the

frequency of cloud cover anomalies decreased when switching to features f3 and f4 (the ones

using only second convolutive layer). This might indicate, that generally the clouds were

thought of being normal , but the network could not find any common low level features,

only more general ones (and thus not prominent when considering only second layer). This

same effect was not noticed for the mountainous anomalies.

Anomalies from the cloud-cover are probably reason to the fact, that only one of the images

contained a large amount of clouds (figure 31d). As for the anomalies in mountain areas,

no definitive reason was thought of. Although considering the working principle of CAEs

(they aim to learn common features across all images), one reason was thought to be plausi-
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ble. Most of the anomalies across mountainous areas seem to be centered around the peaks

and ridges. Areas which form fractal-like jagged forms. These forms are all, while visually

similar, mathematically distinct from each another and thus the CAE cannot find any com-

mon features for them. This would result in areas where all of the feature-maps would have

abnormally low values compared to the rest of the images (i.e. anomalies).

Figure 22: Anomalies found in original image_04 using features f1

It was also noticed, that since the more detailed features f2 and f4 retain the information

of each kernel across all bands, they found anomalies not present in the more generalized

features f1 and f3. This was predicted behavior, and is likely caused by the small anomalies

drowning in the surrounding data when features f1 and f3 were created. This effect can been

seen by comparing images 21a and 21b. With some images this actually produced so much

more anomalies, that they could even be considered as noise. Such as in image 24a.

It was noted that images was ordered as such that image from the original 1− 5 did not

contain as many anomalies as images from the original 6− 13. This corresponds to the

geographical location of the images, with 6− 13 containing more mountains and as such,

anomalies. Since the anomaly detection phase is based on clustering and is sensitive to the

input data, there was a change that these later images masked some more subtle anomalies

from the earlier images. Based on this reasoning, a second set of results was collected by
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Figure 23: Anomalies found in original image_11 using features f1

running only images 1-5 through the method.

The results of this second, partial clustering were mixed. Generally the idea was to remove

the heavily anomalous images to produce more anomalies from the rest of the images. The

effect however was opposite. The second partial clustering produced less anomalies in gen-

eral. This was most heavily seen with the images using features f2 and f4 (images with

these anomalies being more anomalous in general). The exact reasons for this was not clear.

Considering that the single step in the method that is sensitive to input data is the clustering

phase, it’s likely, that removing the "noisy" data the hierarchical part of HDBSCAN was able

to generate more compact cluster and/or more clusters in general. This in effect would result

in a less of the data points having a high anomaly scores from the GLOSH algorithm. This,

again is speculation, but would be one possible explanation for these effect.

While the original reason for reducing the dataset size to the first five images was not accom-

plished. The results were actually "better", though better being an subjective property. The

images contained less anomalies, and generally the anomalies were located in visually better

areas. This can be seen by comparing figures 24b and 24a. The former image being quite

noisy, and in the latter anomalies detected only in cloud cover and mountains. Similar results

were gathered for other images also: most anomalies were removed with partial clustering
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leaving mainly cloud-cover and mountain anomalies.

(a) Full clustering (b) Partial clustering

Figure 24: Full and partial clustering of original image_05 using features f2

All in all these results were not gathered as a proof of the method, but to give some sense

on the workings of the method. By visually inspecting the resulting masked images, first

soft hints were given that the method could work. This was considered a success since the

up to this point there have not been any evidence that the method would work outside the

theoretical framework. The resulting images will also be of use later with the synthetic data

as a comparison point.

4.2 Synthetic data

In the previous section some exploratory results were introduced, and in this section a more

valid results are presented. Two runs were done based on the results presented in the previous

section by using the synthetic data created in section 3.2. The resulting anomalies are also

visualized, but unlike in the previous sector, RGB images are not used as the base for the

visualizations. Since the images from which the synthetic data was created are same as used

in the previous section, the RGB images are the same (excluding the synthetic anomalies).

As such the base images for visualizing the results with synthetic data are the ground-truth

masks generated in parallel with the synthetic data. One of these masks was depicted earlier
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in figure 19.

For the synthetic data, validation can be run as the data is now labeled. Receiver Operating

Characteristics (ROC)-curves were drawn and five different metrics were gathered:

• TPR

• FNR

• Precision = true positive
true positive+false positive

• F-score = 2 · precision·recall
precision+recall

• Area Under ROC-Curve (AUC)

Note that labels only contain synthetic anomalies; that is, all non-synthetic images are la-

beled as normal, event though the method labels them as anomalies. These anomalies are

referred to as "natural" anomalies. Now this does affect some of the metrics. TPR- and

FNR-values can be calculated accurately with respect to the synthetic labels, but precision

cannot. With precision false positives cannot be calculated, or more precisely all positive

results that were not synthetic anomalies are considered as false positives regardless if they

are actual anomalies or not. To correct this would require a considerable amount of manual

labor to go through all of these images, and label them. This manual labeling would also be

subjective. This causes precision to be lower that it might be, and as an extension f-score.

TPR and FNR should be self-explanatory. F-score is a single-valued measure of the "good-

ness" of the detector, with higher the better. ROC-curves are graphs where on the x-axis is

the FPR and on y-axis the TPR. ROC-curves are closely linked to the tanom parameter and

answer the question: "If I lower the threshold by this much, how much my true positive and

false positive values change?" In an essence they give the trade-off between better TPR and

worse FPR. AUC is the area under the ROC-curve, 1 being maximum (= the detector has

the ability to detect all anomalies with any FPR rate, especially 0).

The result gathering process for the synthetic data itself is identical to the unmodified data,

with the single exception that visualization images are generated on top of the ground-truth

masks. The first results collected were those for full clustering. Event though the clustering

phase is sensitive to input data, the introduction of synthetic anomalies did not change the

detection of natural anomalies. One of the questions before the results were collected, was
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whether or not these synthetic anomalies will mask the natural ones. Luckily this was not

the case (as seen by comparing figures 21a and 25a). This effect was observed for all of the

used features.

(a) Feature f1 (b) Feature f2

(c) Feature f3 (d) Feature f4

Figure 25: Anomalies found in image_02 of synthetic data using full clustering

After the results from full clustering in previous section, similar results were expected with

the synthetic data. Especially since the synthetic anomalies did not mask the natural ones,

no drastic changes were excepted. Because of this, the results obtained from the full clus-

tering were not excepted to very good. By visually inspecting the resulting images gained
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two conclusion were drawn. Firstly, consistent with the earlier results, features f1 and f3

two produced a lot less noisy results. Feature f1 worked decently in detecting the synthetic

anomalies (figure 25a), while feature f3 did not (figure 25c). Features f2 and f4 gave fairly

noisy data, and did not perform well (figures 25c and 25d). Since synthetic anomalies are

created by increasing the values of the anomalous areas, and because feature f1 stores the

largest values across each feature and band it is more likely that it would catch these anoma-

lies. Interestingly, while features f2 and f4 also store max-values (across sections for each

band and features) they did not catch these anomalies (as seen by comparing figures 25a and

25b). This might be because the full clustering masks these anomalies. The reason for the

bad behavior of feature f3 was not clear. It might be due to the reason how convolutional

layers work. Since f3 contains anomalies only from the second convolutional layer, the "sim-

ple" anomalies generated by increasing the values of the anomalous areas might not traverse

to the more generalized deeper convolutional layer.

The performance metrics for the full clustering can be seen in table 3, and the ROC-curves

in figure 26. From these values the TPR and FNR should be considered most, since they

are the only values that can be accurately computed with only synthetic anomalies. Like

predicted, these values are not very good. Especially the effects of the noise in features f2

and f4 can be seen clearly. Features f1 and f3 did fare a little better, but not still falling short.

However, while visually inspecting the result, they did seem to work fairly well for the earlier

images. This would hint that partial cluster would give better results, as with the unmodified

images. The ROC-curves in figure 26 are also not very promising. But since the x-axis of

the ROC-curve itself cannot be correctly computed, the whole figure needs to be taken with

a grain of salt. The x-axis should not be considered as a FPR meter, but a general natural

anomaly rate. This would greatly increase the usability of the ROC-curve for the purpose

of this thesis: since the function of the method is to generally find these natural anomalies,

a metric such as FPR does not really exist from this point of view. Though one could argue

that TPR also loses meaning then; the anomalies are in fact synthetic. All of the ROC-curves

except the one for feature f3, tend to act in a similar manner: a slow steady rise on diagonal

until about 0.2 FPR, and then a rise to 0.8 TPR with different steepness. This effect is most

prominent with feature f1. Comparing the TPR value for feature f1 presented in table 3

with the corresponding ROC-curve, would place the FPR-value of f1 in about 0.11. With
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this in mind the performance of full clustering with respect to feature f1 could be increased

by lowering the tanom parameter until the TPR takes the sharp turn shown in figure 26 and

raises to level 0.8. This would still present a FPR of less than 0.2. Same kind of increase

of TPR cannot be gained for the rest of the features without significant rise FPR. This effect

can also be seen in figure 27: by lowering the plane corresponding to the tanom value, more

of the synthetic anomalies (marked on the floating plane as red) would be above it, and thus

classified as anomalies.

Figure 26: ROC-curves for full clustering of synthetic data

Table 3: Performance metrics for full clustering of synthetic data

Feature TPR FNR Precision F-score AUC

f1 0.143 0.857 0.796 0.242 0.709

f2 0.001 0.999 0.003 0.001 0.579

f3 0.061 0.939 0.07 0.065 0.680

f4 0.001 0.999 0.006 0.002 0.594

Based on these somewhat disappointing results of the full clustering and the results from

unmodified data, the second partial clustering of synthetic data was also done by using the
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Figure 27: Anomaly scores of image_01, f1 using full clustering

same images as with unmodified data. These results should be better if the same effect can

be observed as with unmodified data.

Based on the visual inspection of the resulting mask from partial clustering of features f1

and f2, similar conclusion were drawn as with the unmodified data. Anomalies generated

by features f1 were mostly the same, though full clustering did found a few more natural

anomalies (as with the unmodified data) but otherwise identical. Feature f2 did likewise

perform as excepted: the data contained a lot less anomalies with partial clustering and the

synthetic anomalies were detected a lot more likely. This can bee seen from figures 25b and

28b. One change with respect to the partial clustering of unmodified images was with feature

f3. With synthetic data, f3 behaved opposite to how it behaved with the unmodified data.

With unmodified data, no great change was observed with f3, but with the synthetic data f3

worked a lot better with partial clustering. This can been seen by comparing figures 25c and

28c. Feature f4 likewise performed differently from unmodified data: it found significantly

less anomalies with partial clustering than with full clustering. Like with feature f4 it also

performed better with the detection of synthetic anomalies, as seen by comparing figures 25d

and 28d.

So mostly partial clustering worked as excepted: the already decent feature f1 stayed more or

less the same, and the rest of the features preformed better. This was all predicted behavior,

but the fact that features f3 and f4 performed a lot better with partial clustering was not. This

is especially interesting since both of these features work only on the second convolutional
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layer, and the reason for the bad behavior of these with full clustering was postulated to be

that the synthetic anomalies have little to no effect on the second convolutive layer. These

results however seem to invalidate this reasoning. These results would indicate, that images

6-13 seem to have some features on the second convolutional layer that masked the existence

of the synthetic anomalies. This could be plausible since these images, in general, do contain

a lot of anomalies, especially in the mountainous areas.

(a) Feature f1 (b) Feature f2

(c) Feature f3 (d) Feature f4

Figure 28: Anomalies found in image_02 of synthetic data using partial clustering

As with the full clustering, ROC-curves were drawn and performance metrics were gathered.
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The ROC-curves can be seen in figure 29, and the metrics in table 4. These are in line with

the results observed through visually scanning the the resulting masks. By analyzing the

ROC-curves two conclusions can be drawn. Firstly by noticing that the ROC-curve for each

of the features very sharply, almost vertically, to TPR level of 0.7, one can infer that the

partial clustering is able detect a fair amount ( 70% to be exact) of the anomalies with few

to none natural anomalies. Also by comparing the TPR values of features f1 and f3 to

the corresponding ROC-curves, the performance of these two features could be raised to

TPR-level of 0.7 without any meaningful increase of FPR. This can also be seen in figure

30. From the same image one can also observe, that some synthetic anomalies did not

produce any increase in sanom (higher left-hand anomaly shown in figure 30). The second

conclusion drawn from the ROC-curves is the shape of each of the curves. Meaning that even

by lowering tanom parameter, no gains cannot be gained over the TPR-value of 0.7 without a

drastic rise in FPR to 0.6− 0.7. This is interesting since with full clustering the TPR-value

could be raised to a higher level (up to 0.8) with lower FPR-values. This effect is not true for

feature f3 which performed quite badly in full clustering. This makes the partial clustering

generally better than full, but if one is ready to accept higher levels of FPR-values say 0,3

then full clustering might perform better. This is especially true when using feature f1.

All in all the method did produce decent results for the synthetic data. As predicted from the

results of the unmodified data, the partial clustering did perform better, but if on is willing to

accept a higher FPR value, full clustering could also work.

Table 4: Performance metrics for partial clustering of synthetic data

Feature TPR FNR Precision F-score AUC

f1 0.307 0.693 0.722 0.431 0.766

f2 0.632 0.368 0.705 0.431 0.757

f3 0.275 0.725 0.722 0.431 0.755

f4 0.89 0.11 0.698 0.431 0.764

In this chapter we presented the results gathered from the method proposed in chapter 3.

This was begun by presenting the results from two different sets of the unmodified images.

One for all the images, and one for a subset. These first results aimed to provide some basic
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Figure 29: ROC-curves for partial clustering of synthetic data

Figure 30: Anomaly scores of image_01, f1 using partial clustering

knowledge of the performance of the method before moving to validation phase. They also

simulate a possible real-world use-case of the method and provide some comparison point

for the later runs. In the second part of this chapter we presented the similar results for the

synthetic data. These now included validation metrics.
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5 Discussion

The goal was to present a method capable to detect anomalies from large sets of HSI data.

This was achieved by leveraging the innate property of autoencoder, one is able to learn

the distribution of the encoded data. This was cornerstone upon which the whole method

was built on. By combining auto encoding networks and convolution, the resulting network

can now learn not only spectral distribution, but also spatial. This is an important point

of the method. Detecting spectral anomalies can be done fairly easily by using existing

anomaly detection algorithms, such as RX or even by simple statistical analysis. However,

the detection of spatial anomalies is a lot more complex affair. So much so, that before

the wide-spread application of CNNs, it was not feasible. The adaptation of CNNs making

it possible to learn meaningful spatial features without the need to manually define them.

By expanding this feature from two to three dimensions, the proposed method is now able to

learn both spatial and spectral features at the same time. This being one of the most important

features of the method. While CNNs have been used to learn features from images, even in

unsupervised manner by using CAEs (Du et al. 2017; Masci et al. 2011), no studies were

shown where CAEs were used for anomaly detection specifically. Masci et al. 2011 and Du

et al. 2017 used their implementation to initialize CAEs for classification purposes. One

study however was found, where convolutional autoencoders were used to detect anomalies

from videos, i.e. spatio-temporal anomalies (Chong and Tay 2017). This lack of previous

studies would indicate the proposed method does fill a hole in the field of anomaly detection.

The data used in this thesis was hyperspectral. This was due to the fact that I was working

with hyperspectral images at the time of the writing, but also: HSI data gives the ability to

learn spectral features on top of spatial ones. While the idea was to use a massive dataset

for this method ,13 images is not that massive. Even by splitting them to smaller images,

the nearly 3000 images generated while adequate, is not a very large dataset. However,

like mentioned in section 3.1, there are no readily available hyperspectral dataset that would

have filled all the criteria for this thesis. Luckily ESA does provide the Sentinel 2 data freely,

but the collection, and transformation to usable format did require a fair amount of manual

labor. This caused the dataset used in this thesis to be on the smaller side. The images
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themselves should have been selected more carefully also. This would have been apparent

by more carefully inspecting the images. The latter halve of the dataset did contain images

not exactly suitable for experimentation. Because of this, the method was run with smaller

dataset also: the so-called partial clustering. This could have been prevented also by simply

using more data. The choice of geographical area for the data could have also be though in

more detail. There was no particular reason why Alaska was chosen. The Copernicus-hub

probably gave it as one of he first areas when searching for usable data. However the data

in there is quite heterogeneous. Yes, this was one of the original criteria for the data, but

after viewing the results a little more homogeneous data would have worked better. Saudi-

Arabia, or any desert environment was a brief consideration, though this would have been

a double-edged sword. While the results would have most likely been better, the reliability

of the results would have been suspicious (the detection of anomalies would have been too

easy).

While hyperspectral data was used, it does not have to be. By reducing the size of the spectral

dimension of the convolutional kernels, this method should work for any spectral dimension.

Reducing the size of this dimension to one, will essentially produce a 2-dimensional con-

volutive network. That is, a network capable of learning spatial features only. Either for

one grayscale layer, or for multiple layers (e.g HSI). This makes the proposed method ex-

tremely versatile. Also the current structure and training method for network makes it learn

global features, but with small modification, it should be able to learn local also. This can be

achieved by either training each network for single images (time consuming and computa-

tionally expensive), or by making the network two-part. One part that is pre-trained to learn

global features, and one that is trained for each image individually. So instead of training

the whole network again for each image, say the last few layers are retrained. This idea was

something that was thought at the earlier phases of this thesis, but to keep the scope man-

ageable it was discarded. Other ideas were also thought of. For example: more complicated

structures for the network. Such as more layers or different ones, like the ones presented by

Du et al. 2017. These were also discarded mainly due to practical reasons, and partly due to

the data. The number of bands restricted the number of possible pooling layers. Though in

hindsight, the pooling operation could have been done across spatial dimensions only, thus

removing this restriction. Still the point of this thesis was to provide proof-of-concept of
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the method. It was deemed, that further studies of the different networks would have made

the process unnecessary complicated. Taking in mind that the depth and type of layers are

not the only changeable parameters in the network: size and number of kernels, pooling,

activation function etc. making the number of possible variations for the network countless.

However, this does open a possible road for future research. Especially using deep networks

might provide better results. Maybe not with hyperspectral images, but I would be interested

to study the application of this method to the detection of spatial anomalies.

The second phase of the method is also suspect to countless variations. How the features are

extracted, how many features to use, what dimensionality reduction techniques should/could

be used etc. At the beginning of the result gathering process, only two features were meant

to be used: f1 and f2. However, since this neural network used in this method could be char-

acterized as deep network, (though whether or not two layers is deep is subject to debate)

it was thought that using this "deep representation" (i.e. features f3 and f4 from the second

convolutional layer) was required to full understand the potential of the method. With more

convolutional layers these would have been more meaningful, but considering the results

from these features particularly from the partial clustering, these still contained useful in-

formation. The importance of these deep features would probably increase when searching

for spatial anomalies. With more layers more complex features (i.e. forms, as was shown

in figure 12) can be learned, and more complex anomalies detected. When searching for

spectral anomalies, one convolutional layer could be enough, but when searching for say a

building in wilderness this kind of anomaly would probably not be present in the lower-level

feature-maps. Considering that the used dataset was from Alaskan wilderness, this would

likely have been a wasted effort in this thesis, though there is one city in the dataset. In

figure 32c, one can see an airport runways in the middle of the image (at the middle of the

image, intersection of three rivers). It would have been interesting to see if the method could

have detected this area as anomalous. Although resolution of the image quite poor for this.

While the four features used in this thesis were still fairly simple; one low dimension and

one high dimensional both simply storing the largest values. These features are also grand-

fathered by the original idea. At the very beginning when there was only an inkling of an

idea, I thought of a simple way to detect anomalies by scaling all the feature-maps to same

size, and layering them on top of another and then storing the largest value. In this case a
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small value would indicate an area where there are no commonly found features. While this

form of anomaly detection was later refined to the currently used, the idea of max-valued

features still survived. Another ways to extract were also thought of, but were dropped from

the scope of this thesis. Some were simply differently chosen values, such as means or min-

imums instead of maximums, but some of these would have required the existence of labels.

With labels, one could have chosen meaningful features based on them. This however would

change the method from unsupervised to supervised. Since when selecting the used features

this way, they tend to represent the anomalies present in the labeled data. In this case novelty

detection (anomalies not present in the training data) would suffer. But if this is what is

required, the method could certainly be changed for supervised one. Although in this case

a simple CNN with fully-connected classification layer might be all that is needed, (making

it essentially a classification problem). Any number of the already proposed methods would

be suitable for this, like the one in Li, Zhang, and Shen 2017. However, by using CAE, one

would still retain the option for novelty detection. While the methods requiring labeled data

were overruled, there was one method that might have been able to choose more meaning-

ful features. The RELIEF method proposed by Kira and Rendell 1992. This was ruled out

because of two reason. Firstly the method is computationally heavy, and works by dropping

out a random set of features and seeing if the results are better. This would have significantly

increased the time required to run the method. The second reason has again to do with labels.

RELIEF does need some metric on how the method performs, and in the case of this thesis

they are based on the synthetic labels. This would have caused RELIEF to choose features

representing the synthetic anomalies. Not exactly hoped for behavior. But taking the idea

behind RELIEF a working feature extraction/refining algorithm might have been devised.

For example one removing redundant features from the data. Somewhat similar to PCA, but

automatically choosing the dimensions for the projected data. Another inkling of an idea I

had was to use the features extracted in phase 2 to segment the dataset into similar parts.

Since the first part should extract meaningful features, similar areas should have some com-

monalities in these. This could be leveraged to segment the dataset to different areas, and

retraining a new network for each of the areas. Then when actual data is driven through the

method, first it’s classified to one of these segments, and then the segment-specific network

is used to extract features. This way the anomalies detected in an image, would not be that
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of the whole data, but of similar areas to the image. This should reduce the FPR value. This

was only an idea and not explored further. It might improve the performance of the method

with the cost of computation time and resources.

As with the first and second phase of the method, the internal structure an algorithms of the

third phase is also the subject to choice. In this thesis the used HDBSCAN method was

chosen for ease-of-use and the ability to work without extensive parameter optimization.

Different algorithm were thought of, but ruled out. One of the ideas I had during the early

process was to modify a previously used method to use multiple different algorithms for

anomaly detection. This worked by grading each algorithm based on their accuracy, and

using this factor as a weight for the prediction each of the algorithms would give. However,

since the method already had a lot of moving parts, this was rejected (as it would have

introduced more of them). However it does give an another road for possible future research.

While no complex multi-algorithm was chosen for this thesis, the used HDBSCAN might

have still benefited from some optimization for the pmin. The chosen value of 100 was

determined very early in the research process, and was not revisited. HDBSCAN algorithm

is quite care-free, and the phase three of the method is the simplest in the configuration of

methods presented in this thesis. Still it caused no small amount of problems. The largest

of which being the validation. Like already mentioned multiple times, the data does not

contain labels, and as such no validation can be done. This, of course, is not true for the

synthetic data. Because of this the validation results presented in chapter 4 are not completely

reliable. They are correct, however one needs to understand the limitations caused by the

lack of labels for the natural part of the image, and interpret these results with this in mind.

This is a common problem in unsupervised learning, and cannot be resolved easily. One

way would be to manually label the data. This being immensely laborious and subject to

the labelers interpretation of an anomaly. During the validation process, it was thought to

use the natural anomalies found from the unmodified data as labels for the synthetic data.

This would however have some quite serious limitations. Firstly the labels would not be

absolute, but would depend on the parameters for the method. The second more serious

flaw would be the resulting circular thought: the method itself would be used to validate

itself. What if the method would not have worked? In this case the labels used for validation

might have been wrong, the worst case scenario being that the validation results would have
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proved that the method works while it actually does not. It was also debated whether or

not a comparison of the methods performance to some other algorithm, such as RX, should

be done. While this would have been interesting to see, it would not have been without

problems. The main problem being the different premise on which the proposed method and

RX works. The purpose of RX is to find spectral anomalies from local neighborhoods, while

the proposed method finds both spectral and spatial anomalies from global normal model

(i.e. "global" neighborhood). While some conclusions could have been done by comparing

the performance of these two, it was thought that in general they are not comparable. The

possibility of this kind of comparison is included in the future research, and at some point,

when the method is refined to its final form this could be conducted. However, in the view of

this thesis it was omitted as to not present more results not based on solid ground. While no

comparable analysis was done, and the used validation method is flawed, at least the flaws

are known and can be taken into account when analyzing the results.

All in all, while the validation results cannot be conclusively proven, I feel confident that

the original purpose of this thesis was fulfilled. That is, to provide a proof-of-concept that

the method would have at least the possibility of working. The validation results are for the

described configuration of the method and might not be generalization to all, or any configu-

rations. However there is no proof that the method would not work in different configuration.

With this in mind, and considering that each of the three phases are more or less independent

of each other, there is a plethora of possible roads for future research. Following the flavor

of the month, I’m especially interested in the possibilities provided in deep learning, and as

it pertains to the performance of the first phase of this method.
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6 Conclusions

In this thesis a novel unsupervised anomaly detection method for the detection of spectral

and spatial anomalies from hyperspectral data was proposed. A proof-of-concept implemen-

tation was also suggested. This implementation uses a two-layer convolutional autoencoder

to learn a total of 96 commonly occurring features from the data. Feature-maps generated

by this network is then distilled into 4 feature-vectors. Lastly using HDBSCAN/GLOSH

algorithm, these vectors are used to detect anomalies. Any of the three phases of the method

can be modified to suit the problem in hand. While convolutional neural networks and even

convolutional autoencoders have been studied, no methods for detecting anomalies in this

manner has been proposed previously. The detection of spatial anomalies in general is a

difficult task, and thus this method does seem to fill a void. In this thesis the method was

proposed with hyperspectral data in mind, but it does work out-of-the-box for any data con-

taining multiple spectral dimensions (such as RGB images). With small modifications it can

also be applied for images with only one spectral dimension.

While the idea was to use hyperspectral images, no available datasets of the required size

and type were found, and method was tested with multispectral one. This data was gathered

by ESAs Sentinel 2 -satellite, and collected from ESAs Copernicus-hub. The dataset is

a collection of 13 geographically adjacent multispectral images from central Alaska (each

sized 100km× 100km). These full-sized images where then split into 225 smaller images

to form the final dataset of 2925 images. Two runs were conducted for the detection of

anomalies. First with the full dataset, and a second one with a partial dataset. This was

because of suspicion, that some of the images had a masking effect.

A second test was conducted for validation purposes with data containing programmatically

generated synthetic anomalies. Since the location of each of the synthetic anomaly is known,

performance metrics were calculated. As with the unmodified dataset, two runs were con-

ducted. One for full dataset and one for partial dataset. While the reliability of these results

is not great, they do provide reasonable proof to support the idea behind the method. That

is, convolutional autoencoders can learn a normal model for hyperspectral dataset, and by

using this model anomalies or outlier can be detected. In order to get more valid results, the
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method should be tested with fully labeled data. However, this is not as straight-forward as it

seems. Firstly the definition of an anomaly in an image is subject to interpretation. Secondly,

suitable fully labeled hyperspectral datasets do not exist, and manually labeling a dataset, as

small as the one used in this thesis, requires a massive amount of work.

In the view the original research questions: "Can CAEs or SCAEs be used to detect anomalies

from hyperspectral data?", and the more general one: "Wow can one detect any anomalies,

spectral or spatial, from any kind of hyperspectral dataset without any prior knowledge of

the said dataset?", this thesis can be considered an success. At the beginning there was no

indication if the original idea might work, and the goal was to execute an exploratory study

of whether or not it would. The first question is answered by the results introduced in chapter

4 indicating a success. The second research question answered in chapter 3 by proposing a

method for unsupervised detection of spatio-spectral anomalies. With these two question

both answered, the possibility to move forward from exploration research to actual empirical

one is opened, to study and refine the three different phases of the proposed method.
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Masci, Jonathan, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. 2011. ”Stacked con-

volutional auto-encoders for hierarchical feature extraction”. Artificial Neural Networks and

Machine Learning–ICANN 2011: 52–59.

McInnes, Leland, John Healy, and Steve Astels. 2017. ”hdbscan: Hierarchical density based

clustering”. Journal of Open Source Software 2 (11): 205. doi:10.21105/joss.00205.

http://joss.theoj.org/papers/10.21105/joss.00205.

Reed, I. S., and Yu Xiaoli. 1990. ”Adaptive multiple-band CFAR detection of an optical

pattern with unknown spectral distribution”. IEEE Transactions on Acoustics, Speech, and

Signal Processing 38, number 10 (): 1760–1770.

Smiti, A., and Z. Elouedi. 2012. ”DBSCAN-GM: An improved clustering method based on

Gaussian Means and DBSCAN techniques”, 573–578. IEEE. doi:10.1109/INES.2012.

6249802.

Stein, D. W. J., S. G. Beaven, L. E. Hoff, E. M. Winter, A. P. Schaum, and A. D. Stocker.

2002. ”Anomaly detection from hyperspectral imagery”. IEEE Signal Processing Magazine

19, number 1 (): 58–69.

Wikimedia Commons. 2007a. ”DBSCAN-Illustration”. Visited on October 24, 2017. https:

//commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg.

. 2007b. ”EM spectrum”. Visited on October 24, 2017. https://commons.

wikimedia.org/wiki/File:EM_spectrum.svg.

. 2007c. ”HyperspectralCube”. Visited on October 24, 2017. https://commons.

wikimedia.org/wiki/File:HyperspectralCube.jpg.

. 2009. ”Cone-fundamentals-with-srgb-spectrum”. Visited on October 24, 2017. https:

//commons.wikimedia.org/wiki/File:Cone- fundamentals- with-

srgb-spectrum.svg.

Yu, Fisher, and Vladlen Koltun. 2015. ”Multi-Scale Context Aggregation by Dilated Convo-

lutions”. CoRR abs/1511.07122. http://arxiv.org/abs/1511.07122.

63

http://dx.doi.org/10.21105/joss.00205
http://joss.theoj.org/papers/10.21105/joss.00205
http://dx.doi.org/10.1109/INES.2012.6249802
http://dx.doi.org/10.1109/INES.2012.6249802
https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg
https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg
https://commons.wikimedia.org/wiki/File:EM_spectrum.svg
https://commons.wikimedia.org/wiki/File:EM_spectrum.svg
https://commons.wikimedia.org/wiki/File:HyperspectralCube.jpg
https://commons.wikimedia.org/wiki/File:HyperspectralCube.jpg
https://commons.wikimedia.org/wiki/File:Cone-fundamentals-with-srgb-spectrum.svg
https://commons.wikimedia.org/wiki/File:Cone-fundamentals-with-srgb-spectrum.svg
https://commons.wikimedia.org/wiki/File:Cone-fundamentals-with-srgb-spectrum.svg
http://arxiv.org/abs/1511.07122


Zeiler, M. D., G. W. Taylor, and R. Fergus. 2011. ”Adaptive deconvolutional networks for

mid and high level feature learning”. In 2011 International Conference on Computer Vision,

2018–2025.

64



Appendices

65



A ESA raw data RGB images

This appendix contains the RGB projection for each of the used hyperspectral images. These

images are are generated directly by the SNAP-application. The projection is done by choos-

ing the red values from band 4 ( 665nm), green values from band 3 ( 560nm) and blue values

from band 2 ( 490nm).
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Figure 34: image_13.jpg
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