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Abstract

Kuusela, Petri
Comparison of the Richardson and BCS models of superconductivity based on
calculations of ground state energies
Master’s thesis
Department of Physics, University of Jyväskylä, 2017, 50 pages.

Superconductivity remains an active area of research because there still is no compre-
hensive understanding of the phenomenon despite all the possibilities it offers. In this
thesis I go through the basics of two models for superconductivity, the BCS model
and the Richardson model. The BCS theory is the first and most used successful
microscopic theory of superconductivity. Richardson model is a less used model
which gives the exact eigenstates of the reduced BCS Hamiltonian. I calculate the
ground state energies for both the reduced and the full BCS Hamiltonian for both
models. This is done for a general paired state with fixed number of electrons as well.
For this state I find that the difference between the full and reduced Hamiltonian
energies depends only on the number of electrons, and thus conclude that it does not
matter for comparison between such states which Hamiltonian is used. I find that
in a system with equally spaced energies and in the free-electron three-dimensional
system the ground state energies are very close to each other, with the Richardson
model ground state energy being lower. From this I infer that the BCS model is a
good description of these systems. The ground state energies of a two-level system
however differs considerably, with the Richardson model ground state energy being
significantly lower. This is an indication that the BCS model is not suitable for
describing this system.

Keywords: Thesis, master’s thesis, superconductivity, Richardson model, ground
state energy
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Tiivistelmä

Kuusela, Petri
Suprajohtavuuden Richardsonin ja BCS mallien vertailu perustilojen laskettujen
energioiden perusteella
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2017, 50 sivua

Suprajohtavuus on edelleen aktiivinen tutkimuksen alue, koska sen tarjoamista mah-
dollisuuksista huolimatta sitä ei vielä ymmärretä kokonaisvaltaisesti. Tässä pro gradu
-tutkielmassa käyn läpi perusteet kahdelle suprajohtavuuden mallille, Richardsonin
ja BCS malleille. BCS teoria on ensimmäinen ja käytetyin mikroskooppinen supra-
johtavuuden teoria. Richardsonin malli on harvemmin käytetty malli, josta saadaan
redusoidun BCS Hamiltonin operaattorin tarkat ominaistilat. Lasken molempien
mallien perustilojen energiat sekä redusoidulle että täydelle BCS Hamiltonin operaat-
torille. Sama lasketaan myös yleiselle tarkan määrän vain pariutuneita elektroneja
sisältävälle tilalle. Tälle eri Hamiltonin operaattorien energioiden erotus riippuu
ainoastaan hiukkasmäärästä, ja siten ei ole merkitystä, kumpaa Hamiltonin operaat-
toria sellaisten tilojen energioiden vertailuissa käytetään. Energioiden vertailuista
huomaan, että tasavälisten energiatilojen systeemillä ja kolmiulotteisella vapaiden
elektronien systeemillä Richardsonin ja BCS mallien perustilojen energiat ovat lähellä
toisiaan, Richardsonin mallin antaessa matalamman perustilan energian. Tästä päät-
telen, että BCS malli kuvaa hyvin näitä systeemejä. Kaksitilasysteemillä energioiden
erotus on huomattava, Richardsonin mallin antaessa merkittävästi matalamman pe-
rustilan energian. Tämä on merkki siitä, että BCS malli ei kuvaa tällaista systeemiä
hyvin.

Avainsanat: Opinnäyte, pro gradu -tutkielma, suprajohtavuus, Richardsonin malli,
perustilan energia
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1 Introduction

Superconductivity is the phenomenon of disappearance of electrical resistivity in a
material below a critical temperature. This occurs in many materials, but still is not
an effect seen in everyday life, since the critical temperatures below which different
materials become superconducting are usually of the order of a few Kelvin or below.
The highest temperature in which superconductivity has been observed so far is 203
K, which is the critical temperature for sulfur hydride at a pressure of approximately
90 GPa[1].

A material which is superconducting above or close to 0◦C would no doubt be a
major scientific discovery, since it would allow superconducting applications to run in
a basic freezer instead of requiring cryostats. The most obvious benefits would be the
possibility to decrease losses in electrical devices and possibly transmission lines, thus
creating a more energy efficient society. A room temperature superconductor could be
used for example to increase battery life of any portable device. Besides these a room
temperature superconductor would open up opportunities for bringing into everyday
use applications at the moment requiring cryostats. These applications could be
versatile and new, because a superconducting state is a state with macroscopic
coherence, and as such it exhibits some phenomena with no classical counterparts,
such as the Josephson effect[2].

1.1 BCS theory

The first successful microscopic theory of superconductivity is the Bardeen-Cooper-
Schrieffer (BCS) theory[3]. It seems to work well for most conventional superconduc-
tors, but there are also superconducting compounds which do not behave according
to the BCS theory. Nevertheless it is widely used and the best understood theory
about superconductivity so far.

The BCS theory assumes that there is an attractive interaction between the electrons
in the system. It is worth noting here, that BCS theory can also be applied to systems
containing other fermions, but in this study we are only interested in electrons. The
BCS theory also assumes that, for the perspective of superconductivity, the relevant
interactions of the electrons take place between the time-reversed electron pairs, i.e.
electron pairs of the form (k ↑,−k ↓), where k is the wave vector of the electron
and ↑ and ↓ are the spins of the electrons. By leaving out all other interactions we
get a Hamiltonian usually called the reduced BCS Hamiltonian.
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For this Hamiltonian we can find an approximate ground state or other eigenstates
by applying a mean-field theory. This approximation should hold at least with
weak enough coupling. The mean-field theory results in a model Hamiltonian which
does not conserve the particle number. The average number of particles can still be
regulated by using a chemical potential, meaning essentially just that all energies
are expressed with respect to a Fermi level instead of the vacuum. It is also possible
to project the BCS state into a fixed particle-number state.

The order parameter for superconductivity in the BCS theory is the energy gap ∆,
sometimes also called the pair potential, and it can be solved self-consistently in
the BCS framework. By solving it for different temperatures we can get the critical
temperature Tc above which the order parameter vanishes and the material ceases to
be superconducting. The critical temperature is usually one of the most important
quantities we want to know about a material considering superconductivity.

Because the mean-field approximation is used in the BCS theory it is not expected
to work well for small particle number or strong coupling. Because of that we are
interested in other models to describe superconductivity. In this thesis I consider
the Richardson model as an alternative approach to the BCS model to avoid these
restrictions.

1.2 Flat-band superconductors

One group of superconductors that are not always described well by the BCS model
are the flat-band superconductors. The name flat-band superconductor refers to the
dispersion relation of the system, which is approximately flat on some interval near
zero momentum. This can be achieved for example with a dispersion proportional to
kn, where n is a large constant.

What originally made these superconductors interesting is that the BCS model
predicts high temperature superconductivity for some flat-band systems[4]. Since then
it has been shown that the mean-field approximation used in the BCS model is not
valid for some of the flat-band systems, for example the surface states of rhombohedral
graphite[5]. However, for some flat-band systems there has also been other evidence
pointing towards the possibility of high temperature superconductivity[6][7], so the
systems remain an active area of interest.

There are several different approaches that could be taken in order to approach the
problem of non-linear fluctuations, i.e. failure of the mean field approximation. One
possibility is to add some correction terms to the original theory. There are also a
number of different models that usually have a different perspective on the system
(for example [8][9]). One of these alternatives is the Richardson model[10], which is
studied in this thesis.

In the Richardson model we begin with the reduced BCS Hamiltonian and make an
ansatz state parametrized by the pair energies. It can be shown that, if and only
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if the parameters satisfy the resulting Richardson equations, the ansatz state is an
eigenstate of the reduced BCS Hamiltonian. The Richardson equations are a set of
M non-linear algebraic equations, where M is the number of electron pairs in the
system. Solving this system of equations is usually done numerically, because in
most cases no analytical solutions are known. It is worth noting, however, that the
eigenstates of the system could be solved numerically even without the Richardson
model, but the Richardson equations are computationally much more efficient to
solve than the original eigenvalue problem with eigenvalue solving algorithms.

In this thesis I first go through the basic procedures of the BCS theory and find
the BCS ground state using the Bogoliubov transformation, after which I explain
the basics of the Richardson model and how to find the Richardson model ground
state. I continue to calculate the ground state energies with respect to the full
BCS Hamiltonian and the reduced BCS Hamiltonian introduced in section 2. Once
comparing numerical calculations of these values in different systems we learn that
in some systems the BCS model gives almost the same ground state energies even
with a strong coupling and with only few dozens of particles, whereas in other
systems the Richardson model gives considerably lower ground state energies with
stronger couplings no matter what the system size is. It would be interesting to
apply the Richardson model to a flat-band system, because it does not have the same
restrictions as the BCS model, and so could describe the flat-band system better.
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2 BCS theory

In this section I go through the basics of the BCS theory starting from specifying
the interactions and formulating the relevant Hamiltonians to finding the ground
state by using the Bogoliubov transformation. The energy of this ground state is
calculated in section 4 and then compared with the Richardson model ground state
energy in section 5.

The BCS theory assumes that there exists an attractive interaction between the charge
carriers, which are throughout this thesis electrons. The origin of such an interaction
is not trivial, as the electrons in free space normally have a repulsive Coulombic
interaction. Usually the attractive interaction arises from the background lattice of
positive ions. In that case we get coupling between phonons and electrons, which
can result in an effective attractive interaction between the electrons. Classically
this is understood as the moving electron attracting the lattice ions thus resulting in
increased positive charge density, which then attracts the other electrons once the
first electron has moved away.

2.1 Interaction Hamiltonian

Let us start by defining the system and forming the relevant Hamiltonians. We start
with a quite general system with a given set of single particle energies and a given
translation invariant two-body interaction potential. Along the way we restrict the
potential to be a contact potential and make some other approximations to get the
full and reduced BCS Hamiltonians and the model Hamiltonian.

Once we take the attractive interaction as given with the two-body potential function
U(r − r′) we can then write the interaction part of the Hamiltonian as

HI = 1
2
∑
σσ′

∫
drdr′U(r − r′)Ψ†σ(r)Ψ†σ′(r′)Ψσ′(r′)Ψσ(r), (1)

where the integrals are over the whole space, the sums are over spins up and down
and Ψσ is the second quantized field operator for the electrons. Now we can transform
this into the momentum space.

The field operator Ψ can be written in terms of the plane waves as

Ψσ(r) =
∑
k

1√
V
eik·rckσ, (2)



14

where now ckσ is the annihilation operator of an electron with wave vector k and
spin σ, and V is the volume of the system. By substituting this into the interaction
Hamiltonian (1) we get

HI = 1
2V 2

∑
σσ′

∑
k1,k2,k3,k4

∫
drdr′U(r − r′)ei((k4−k1)·r+(k3−k2)·r′)c†k1σc

†
k2σ′ck3σ′ck4σ. (3)

Now the exponential factor can be reformulated as

ei((k4−k1)·r+(k3−k2)·r′) = e
i
2 (k4−k3+k2−k1)·(r−r′)e

i
2 (k4+k3−k2−k1)·(r+r′)

= e
i
2 (k4−k3+k2−k1)·∆rei(k4+k3−k2−k1)·R, (4)

where on the second line we introduce new variables ∆r = r−r′ and R = (r+r′)/2.
By changing the integration over these new variables, the interaction Hamiltonian
(3) becomes

HI = 1
2V 2

∑
σσ′

∑
k1,k2,k3,k4

∫
d(∆r)U(∆r)e i

2 (k4−k3+k2−k1)·∆r

×
∫
dRei(k4+k3−k2−k1)·Rc†k1σc

†
k2σ′ck3σ′ck4σ.

(5)

Here we notice that the second integral yields a delta function∫
dRei(k4+k3−k2−k1)·R = V δ(k4 + k3 − k2 − k1). (6)

Let us now define some new variables in order to get rid of the delta function: k = k4,
k′ = k3 and q = (−k4 + k3 − k2 + k1)/2 = k1 − k4 = k3 − k2, where the equalities
hold whenever k4 + k3 − k2 − k1 = 0. Now we may notice that the first integral in
the interaction Hamiltonian (3) is the Fourier transform of the interaction potential

Ũ(q) =
∫
d(∆r)U(∆r)e−iq·∆r. (7)

By using these we get the interaction Hamiltonian

HI = 1
2V

∑
σσ′

∑
k,k′,q

Ũ(q)c†(k+q)σc
†
(k′−q)σ′ck′σ′ckσ. (8)

Now we can write the full Hamiltonian of the system by adding the single particle
energies of the particles

H =
∑
k,σ

εkc
†
kσckσ + 1

2V
∑
σσ′

∑
k,k′,q

Ũ(q)c†(k+q)σc
†
(k′−q)σ′ck′σ′ckσ, (9)

where εk is the single-particle energy of an electron with wave vector k.
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Next we want to simplify the situation a little bit and assume that the interaction
potential is a contact interaction potential, i.e.,

U(r − r) = Gδ(r − r′), (10)

where G is a coupling constant describing the strength of the interaction. It is worth
noting here that for the attractive interaction G < 0. Using the definition of the
Fourier transform we then get

Ũ(q) = G. (11)

With this simplification we get a Hamiltonian below referred to as the full BCS
Hamiltonian

H =
∑
k,σ

εkc
†
kσckσ + G

2V
∑
σσ′

∑
k,k′,q

c†(k+q)σc
†
(k′−q)σ′ck′σ′ckσ. (12)

With the full BCS Hamiltonian we are able to do some calculations already, but
often it is necessary to further simplify the situation. The key element in the whole
BCS theory is the pairing of electrons, and with this in mind we want to consider
only interactions affecting the time-reversed pairs, i.e. state pairs of the form (k, σ)
and (−k, σ̄). Here σ̄ is the spin opposite to σ. When leaving all other interactions
out, we can redefine the summation variables to get

H =
∑
k,σ

εkc
†
kσckσ + G

V

∑
k,k′

c†k′↑c
†
−k′↓c−k↓ck↑. (13)

This is the reduced BCS Hamiltonian, also sometimes called the pairing Hamiltonian.

2.2 Finding the ground state

Now that we have a Hamiltonian for the system, next we would like to see what kind
of eigenstates it has. As far as the ground state is concerned, the conventional BCS
treatment gives us a widely used approximation. This can be obtained for example
by using the original BCS ansatz ground state

|ΨG〉 =
∏
k

(
uk + vkc

†
−k↓c

†
k↑

)
, (14)

where uk and vk are variationally determined constants. However, usually the
approximate ground states are found by applying mean-field theory, and that is
what we do here also. Note that the results are the same either way.

Let us start with the reduced BCS Hamiltonian (13). We want to do mean-field
theory regarding the electron pairs, so let us denote

dk = 〈c−k↓ck↑〉. (15)
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Now we can define the fluctuation of the pair of operators δdk (which is an operator
itself) such that

c−k↓ck↑ = dk + δdk. (16)
From this it trivially follows that

〈δdk〉 = 0. (17)

Let us now substitute our mean-field definition (16) into the pairing Hamiltonian
(13), and we get

H =
∑
k,σ

εkc
†
kσckσ + G

V

∑
k,k′

(
d∗k′dk + d∗k′δdk + δd†k′dk + δd†k′δdk

)
. (18)

Now we assume that the fluctuations of the operator pairs are small, which means
that we can neglect the δd†k′δdk term since it is bilinear in small quantities. Thus we
get the model Hamiltonian

H =
∑
k,σ

εkc
†
kσckσ + G

V

∑
k,k′

(
d∗k′dk + d∗k′δdk + δd†k′dk

)
. (19)

At this point it is worth noting that the model Hamiltonian does not conserve particle
number. However, for bulk metals with a large number of particles this should not
pose a problem, as the relative violation usually gets smaller with increasing particle
number, although this seems not to be the case for all systems, as we find out in
section 5. The BCS ground state can also be projected to a fixed electron number
state[3], to solve this problem, but this also complicates the calculations quite a bit,
and so the unprojected state is often used instead.

In order to set the average particle number of the system we introduce a chemical
potential µ, which is defined as the derivative of the energy of the system with
respect to the average particle number of the system. Choosing a chemical potential
fixes the average particle number of the ground state, when we take it into account
in our Hamiltonian. Thus we will consider a Hamiltonian

H =
∑
k,σ

εkc
†
kσckσ + G

V

∑
k,k′

(
d∗k′dk + d∗k′δdk + δd†k′dk

)
− µN̂, (20)

where
N̂ =

∑
k,σ

c†kσckσ (21)

is the particle-number operator. Now we can define

ξk = εk − µ (22)

in order to change the model Hamiltonian into its final form

H =
∑
k,σ

ξkc
†
kσckσ + G

V

∑
k,k′

(
d∗k′dk + d∗k′δdk + δd†k′dk

)
. (23)
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We may now notice, that introducing the chemical potential actually corresponds
to simply changing the zero of the energy by µ. However, this achieves the desired
effect of setting the average particle number, as the occupation probability of any
state depends on its energy or, when the chemical potential is introduced, on the
difference between the energy of the state and the chemical potential.

Next we define the pair potential

∆ = −
∑
k

G

V
dk, (24)

which is also called the energy gap, superconducting gap or simply the gap because
in the BCS theory it is directly related to the energy gap in the excitation spectrum
of the superconducting state, as we will see in the end of this section. By using this
definition the model Hamiltonian can be written as

H =
∑
k,σ

ξkc
†
kσckσ −

∑
k

(
d∗k∆ + ∆∗δdk + δd†k∆

)
. (25)

Now we can diagonalize this Hamiltonian by using the Bogoliubov transformation,
which is of the form

ck↑ = u∗kγk↓ + vkγ
†
k↑

c†−k↓ = −v∗kγk↓ + ukγ
†
k↑,

(26)

where uk and vk are constants satisfying |uk|2 + |vk|2 = 1. This transformation is
unitary, so it preserves commutation relations, and thus in this case the operators
γkσ are fermionic operators, sometimes called the bogoliubon operators. Now by
substituting these definitions into the model Hamiltonian (19) we get a lengthy
expression containing different combinations of the γ operators. In order to do
the substitution we need to write the δdk operators as a function of the fermionic
operators using (16).

We want to diagonalize the Hamiltonian, so we fix coefficients uk and vk such that
only constants and terms with γ†kσγkσ remain. With a straightforward calculation
using the fermionic anticommutation relations of the bogoliubon operators we then
get as condition for the diagonalization

2ξkukvk + v2
k∆∗ − u2

k∆ = 0. (27)

With coefficients satisfying this condition we get a Hamiltonian

H =
∑
k

[
ξk
(
2|vk|2 +

(
|uk|2 − |vk|2

) (
γ†k↑γk↑ + γ†k↓γk↓

))
−∆∗

(
u∗kvk − u∗kvkγ

†
k↑γk↑ − vku∗kγ

†
k↓γk↓

)
−∆

(
v∗kuk − v∗kukγ

†
k↑γk↑ − ukv∗kγ

†
k↓γk↓

)
+ dk∆∗

]
,

(28)
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which is indeed diagonal.

At the moment we are more interested in the condition (27) diagonalizing the
Hamiltonian than we are in the Hamiltonian itself, since from the condition we can
calculate the values of the constants uk and vk. We first multiply the condition (27)
by ∆∗/u2

k to get
2ξk∆∗vk
uk

+ (vk∆∗)2

u2
k

− |∆|2 = 0. (29)

This is now a quadratic equation in (vk∆∗)/uk and can be solved as such. We get

vk∆∗
uk

= −ξk ±
√
ξ2
k + |∆|2. (30)

Let us then define Ek = ±
√
ξ2
k + |∆|2, to get a nice form

vk∆∗
uk

= Ek − ξk. (31)

There is a choice in the sign of Ek, because we can diagonalize the Hamiltonian by
creating either electron-like or hole-like quasiparticles. Here we only consider the
case Ek > 0 meaning that we have electron-like bogoliubons.

By squaring (31) and using the condition |uk|2 + |vk|2 = 1 we get

|vk|2 = 1
2

(
1− ξk

Ek

)
. (32)

For uk we get

|uk|2 = 1
2

(
1 + ξk

Ek

)
. (33)

Now that our Hamiltonian is diagonalized by the Bogoliubov transformation, we can
find its eigenstates and especially the ground state with a little bit of work.

Let us first examine the Hamiltonian (28) and using equations (31) and (33) write it
in the form

H =
∑
k

[
ξk − Ek + dk∆∗ + Ek

(
γ†k↓γk↓ + γ†k↑γk↑

)]
. (34)

Now the Hamiltonian consists of a constant part and a weighed sum of different
bogoliubon number operators. Moreover we see that a bogoliubon excitation created
with γkσ contributes an energy of Ek to the system. As we chose that all Ek are
positive, we can infer that the ground state of the system is the vacuum with respect
to the bogoliubon operator. As Ek is now the excitation energy, we see from its
definition that ∆ is the minimum excitation energy, so it is the energy gap between
the ground state and the excited state with the lowest energy. Usually non-zero ∆ is
found only in superconducting systems [11], so it is often an interesting parameter
to study.



19

3 Richardson model

For the reduced BCS Hamiltonian (13) it is also possible to find exact eigenstates.
This was first demonstrated by R. W. Richardson in 1964, as he used an ansatz state
which yields the exacts eigenstates[10]. This method has no limitations regarding the
particle number of the considered system or the strength of the coupling as the BCS
treatment does. However, many calculations become very complicated or unsolvable
using the Richardson model, and so the BCS theory is more often used instead.

Let us now consider a system with M pairs of charge carriers. In the Richardson
model we begin with an ansatz of the form

|Ψ〉 =
M∏
l=1

S†l |0〉, (35)

where |0〉 is the vacuum and

S†l =
∑
k

1
2εk − El

b†k. (36)

Here b†k = c†k↑c
†
−k↓ and El are complex parameters. There are as many parameters as

there are electron pairs in the system, and they are sometimes referred to as the pair
energies, since their sum gives the energy of the state |Ψ〉.

By using the fermionic commutation relations of the creation and annihilation
operators of the electrons, it can be shown that whenever the parameters satisfy the
Richardson equations

1 + G

V

∑
k

1
2εk − El

+ 2G
V

M∑
i( 6=l)=1

1
El − Ej

= 0, ∀l = 1, . . .M (37)

the ansatz state |Ψ〉 is an eigenstate of the reduced BCS Hamiltonian [12]. Equation
(37) constitutes of as system of M distinct equations to be solved in order to get the
parameters.

The Richardson model can be applied also to systems where there are unpaired
electrons occupying known states. In order to handle those, we just need to change
the vacuum in (35) into the state containing the unpaired electrons. An unpaired
electron with momentum and spin kσ blocks the kσ state so that an electron pair
cannot occupy the related pair state (kσ,−kσ̄). Hence in (37) we also have to leave
those states out of the sum over all momenta. Below we assume that there are no
unpaired electrons in the system.
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Solving the Richardson equations can be a difficult task, depending on the system.
Analytical solutions are not known for any practical systems and are likely not to
exist. With the calculational power of computers this is usually not a problem, but
solving the Richardson equations numerically also requires a surprising amount of
work, even though they are a fairly simple looking algebraic system of equations.

Most numerical solving algorithms require a fairly decent initial guess for the solution
of the Richardson equations in order to actually converge. I have tested solving the
system with Levenberg-Marquardt[13], Newton-Krylov[14] and MATLABs trust-
region based [15] algorithms, and none of them performed consistently better than
the others. Moreover, the different sets of solutions of the Richardson equations
describe different eigenstates. Usually we would like to have a certain state, e.g. the
ground state, and this poses some additional work to make sure that the solution
found actually describes the desired state.

In order to tackle these problems it is customary to turn on the coupling G adia-
batically starting from a very small value. With G = 0 it is clear that the solution
is not well-defined. With small values of G, however, the solutions exist and are
known, as in the limit of G→ 0 the pair energies El → 2εk for some k. There is also
an additional constraint that no more pair energies can converge towards a single
value of εk than the degeneracy of that energy state is.

This procedure gives us also a way to characterize the state we are solving, assuming
there are no crossings in the energies as a function of the coupling. With that
assumption the configuration with small G determines also the final state when G is
increased adiabatically. Especially the ground state can then be easily found, as we
place the pair energies close to as low energies 2εk as possible. This is very similar to
filling the lowest states when creating a Fermi sea.

3.1 Electrostatic analogy

To help visualising the behaviour of the parameters El in the complex plane in our
minds, there is a useful electrostatic analogy with the Richardson equations [16].
This analogy is often used also when considering the limit M →∞. Let us consider a
two-dimensional classical system consisting of M free positive charges called pairons,
and N fixed negative charges called orbitons, where N is the number of different
energy states in the original system. We position the N orbitons on points (2εk, 0),
each of them having the charge of −dk, with dk being the degeneracy of the state
with momentum k (excluding spin degeneracy). The M pairons all have the same
charge of one unit. We also add a static constant electric field pointing towards
negative x-axis and having a magnitude of 1/(4G).

If we now consider the equilibrium configurations of this system, they can be found
by expressing the electric potential of the system and then finding the zeros of the
derivatives. Let us then define a new quantity in this system El = xl + iyl, where
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(xl, yl) is the position of the l:th pairon. With this definition the equation for the
zeros of the derivatives coincides perfectly with the Richardson equation [16]. So we
know that any solution for the Richardson equations corresponds to an equilibrium
configuration in the aforementioned electrostatic system.

This gives us some intuition on how the pair energies have to be positioned on
the complex plane. It is worth noting though, that the equilibrium point of the
system is not a stable minimum of the potential, but an unstable maximum. With
small coupling G the static electric field strength approaches infinity. Thus in order
to get an equilibrium, all the pairons, which have positive charges, have to get
infinitesimally close to the fixed orbitons with negative charges in order to be able to
cancel the static electric field. Increasing the coupling G decreases the electric field
strength, thus forcing the equilibrium position of the pairons away from the orbitons.

We know that the solutions of Richardson equations come in complex conjugate
pairs whenever they are not real [17]. This transforms into the electrostatic analogy
as a symmetry with respect to x-axis. This on the other hand means that when we
turn on the coupling, a pairon on the x-axis cannot exit the x-axis except when
meeting another pairon. Because the pairons have the same positive charge they
repel each other and cannot meet unless there is a negative charge in between them.
So when we turn on the coupling G continuously and adiabatically, we encounter
points where at least three charges occupy the same point in the two-dimensional
space. This point is then singular, and makes the numerical calculations troublesome.

There are some papers featuring different variable changes in order to get rid of
these singularities [18][12][19]. Using these many systems can be solved using the
basic equation solving algorithms mentioned above. Let us next consider shortly a
couple of examples.

3.2 Example systems

A two-state system with degeneracy of d for both states is one of the simplest systems
concerning solving the Richardson equations. Let the state energies be ±ε. With
small coupling G the pair energies gather in clusters forming arcs around values ±2ε.
Increasing the coupling G widens the clusters and eventually makes the initially two
clusters join into a single arc. In the ground state of a half-filled system all the pair
energies start from around the energy −2ε. The ground-state solutions for a system
with M = d = 30 are shown in figure 1. These results are consistent with the ones in
ref. [20]. One of the excited-state solutions for the same system is shown in figure 2
showing the two arcs around the values ±2ε.

Another system considered here is the system with equally spaced energy levels. Let
us define it so that we have N energy states equally distributed on the interval
[0, 2ω]. Here we consider half filling, so that there are M = N/2 electron pairs.
The solutions of an example system for different couplings are shown in figure 3.
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Figure 1. Ground state solutions of Richardson equations in a two level system
with state energies ±1 and degeneracies d = 30 containing M = 30 pairs of
electrons. The solutions are shown with four different couplings g = −GM .

Excitations of this system are considered in ref [21]. The Richardson equations can
be also solved for a three-dimensional box-normalized system with free electron
dispersion εk = h̄2k2/(2m). The results are shown in figure 4.

It can be shown that in the thermodynamic limit the solutions form arcs very similar
as seen in the examples, but continuous. Furthermore, the endpoints of the arc can be
shown to be 2µ±i2∆, where µ is the chemical potential and ∆ is the superconducting
gap of the system [20]. Using this feature it is easy to recognize superconducting
states once the Richardson equations are solved.
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Figure 2. Solutions of Richardson equations for one of the excited states in
a two level system with state energies ±1 and degeneracies d = 30 containing
M = 30 pairs of electrons and having the coupling constant g = −GM = 1.
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Figure 3. Solutions to the Richardson equations for an equally spaced system
with N = 64 energy states distributed on the interval [0, 2ω], ω = 32, having
M = 32 electron pairs and different coupling constants g = −GN/(2ω) = −G.
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Figure 4. Solutions to the Richardson equations for a three dimensional system
with N = 340 energy states with dispersion εk = h̄2k2/(2m) having M = 170
electron pairs and different coupling constants g = −GN/(V ω) = −G/V . Here
ω is the Fermi energy and V the normalization volume. The energies are in units
of the smallest energy state.
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4 Calculating the ground state energies

The question remains, however, in which cases is the Richardson model a better
description of the system than the BCS model, and when is the difference relevant.
This is a complicated question, and one way to get a guess at it is to calculate the
expectation values of the full Hamiltonian (9) with the ground states of these models.
We can then compare these energies, and as both of the model ground states try to
approximate the ground state of the full Hamiltonian, we can think that the model
with a lower ground state energy is a better approximation. Below we calculate the
energies of the ground states for this comparison.

4.1 Ground state energy of the Richardson model

Now we want to calculate the energy of the Richardson model ground state using
the full BCS Hamiltonian

H =
∑
k,σ

εknk,σ + G

2V
∑
k,k′q

∑
σσ′

c†k+q,σc
†
k′−q,σ′ck′σ′ckσ ≡ H0 +HI . (38)

The energy of the ansatz state is

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 , (39)

where we have to divide by 〈Ψ|Ψ〉 because the ansatz state |Ψ〉 is not normalized.
Before substituting the ansatz let us write it in a little bit different form.

|Ψ〉 =
M∏
i=1

S†i |0〉 =
M∏
i=1

∑
k

b†k
2εk − Ei

|0〉

=
∑
k1

b†k1

2εk1 − E1

∑
k2

b†k2

2εk2 − E2
· · ·

∑
kM

b†kM

2εkM
− EM

=
∑

k1...kM

M∏
i=1

b†ki

2εki
− Ei

|0〉 =
∑
{ki}

(∑
P

M∏
i=1

1
2εkP (i) − Ei

)
M∏
i=1

b†ki
|0〉. (40)

Here now the sum over {ki}means that we sum through all sets containing M distinct
values of k, which are ordered in an arbitrary order and labelled ki accordingly.
Note that the ordering does not matter here, as we speak only of the set of the
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values of k. The different permutations are taken into account in the next sum,
which is over P , a permutation on the set {1, . . . ,M}, meaning that it is a bijection
P : {1, . . . ,M} → {1, . . . ,M}. For the last equality of equation (40) to hold the
operators b†k have to commute, because then they are not affected by the permuting
of the indices. This is the case with electrons, as the electron operators anti-commute,
so the electron pair operators corresponding to different k commute.

Now we can write the ansatz again in a rather compact form

|Ψ〉 =
∑
{ki}

C{ki}

M∏
i=1

b†ki
|0〉, (41)

where we define a coefficient

C{ki} =
∑
P

M∏
i=1

1
2εkP (i) − Ei

. (42)

The latter depends on the set {ki}.

Now we can first calculate 〈Ψ|Ψ〉 using the new form for the ansatz.

〈Ψ|Ψ〉 = 〈0|
∑
{k1

i }
C∗{k1

i }

M∏
i=1

bk1
i

∑
{k2

i }
C{k2

i }

M∏
i=1

b†
k2

i
|0〉

=
∑

{k1
i }{k

2
i }
C∗{k1

i }
C{k2

i }〈0|
M∏
i=1

(
c−k1

i ↓ck1
i ↑

) M∏
i=1

(
c†
k2

i ↑
c†−k2

i ↓

)
|0〉. (43)

Here we use the superscripts on k1
i and k2

i in order to differentiate between the two
sets. It is clear from the context that the superscript does not indicate an exponent.
On the last equality we have now reverted the pair creation and annihilation operators
b†k and bk back to pairs of fermion creation and annihilation operators c†k↑c

†
−k↓ and

c−k↓ck↑.

The vacuum expectation value in (43) is now essentially of the form

〈0|c1c2c3c4 . . . cn−1cnc
†
2c
†
1c
†
4c
†
3 . . . c

†
nc
†
n−1|0〉, (44)

with even n. Assuming that ci 6= cj for all i 6= j this expectation value evaluates to

〈0|c1c2c3c4 . . . cn−1cnc
†
2c
†
1c
†
4c
†
3 . . . c

†
nc
†
n−1|0〉 = 1, (45)

because every state considered is created once and then destroyed once, so in the
end we are left with only 〈0|0〉. Note however that for this to hold, all the indices of
annihilation operators have to have a counterpart creation operator and vice versa.
If this is not the case, the vacuum expectation value is equal to zero. This property
is used in the calculations below.
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Let us now apply this to our calculation of 〈Ψ|Ψ〉.

∑
{k1

i }{k
2
i }
C∗{k1

i }
C{k2

i }〈0|
M∏
i=1

(
c−k1

i ↓ck1
i ↑

) M∏
i=1

(
c†
k2

i ↑
c†−k2

i ↓

)
|0〉

=
∑

{k1
i }{k

2
i }
C∗{k1

i }
C{k2

i }δ
{k2

i }
{k1

i }
, (46)

where we defined

δ
{k2

i }
{k1

i }
=

1 {k1
i } = {k2

i }
0 {k1

i } 6= {k2
i }
. (47)

It results from the fact that the same indices have to be found on both creation
and annihilation operators in order for the result to be non-zero. This delta function
has a similar effect on the sum as ordinary Kronecker delta (indeed it is actually a
Kronecker delta on space of all subsets of the wave vector space). Note that as the
operator pairs in (46) commute, we can reorder them so that the situation is the
same as in equation (45). Now

∑
{k1

i }{k
2
i }
C∗{k1

i }
C{k2

i }δ
{k2

i }
{k1

i }
=
∑
{ki}

C∗{ki}C{ki} =
∑
{ki}

∣∣∣C{ki}

∣∣∣2 . (48)

So we found
〈Ψ|Ψ〉 =

∑
{ki}

∣∣∣C{ki}

∣∣∣2 . (49)

This result is expected, because the state |Ψ〉 is just a linear combination of orthogonal
states with coefficients C{ki}.

Let us then calculate the energy of the ansatz |Ψ〉. First we calculate the contribution
of HI defined in (38)

〈Ψ|HI |Ψ〉 =
∑

{k1
i }{k

2
i }
C∗{k1

i }
C{k2

i }〈0|
M∏
i=1

(
c−k1

i ↓ck1
i ↑

)

×

 G

2V
∑

k,k′,q,σ,σ′
c†k+q,σc

†
k′−q,σ′ck′,σ′ck,σ

 M∏
i=1

(
c†
k2

i ↑
c†−k2

i ↓

)
|0〉

= G

2V
∑

{k1
i }{k

2
i }

∑
k,k′,q,σ,σ′

C∗{k1
i }
C{k2

i }

×〈0|
M∏
i=1

(
c−k1

i ↓ck1
i ↑

)
c†k+q,σc

†
k′−q,σ′ck′,σ′ck,σ

M∏
i=1

(
c†
k2

i ↑
c†−k2

i ↓

)
|0〉.

(50)
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Now we can use the Wick’s theorem to calculate the expectation value. Hence we
get

G

2V
∑

{k1
i }{k

2
i }

∑
k,k′,q,σ,σ′

C∗{k1
i }
C{k2

i }

×
[ ∑
k1∈{k1

i }

∑
k2∈{k2

i }
δ
{k2

i }\k2
{k1

i }\k1

(
δk1(k+q)δ−k1(k′−q)δk2kδ−k2k′δ↑σδ↓σ′

+δk1(k′−q)δ−k1(k+q)δk2k′δ−k2kδ↑σ′δ↓σ

)

+δ{k
2
i }

{k1
i }

∑
k1,k′

1∈{k
1
i }

k1 6=k′
1

∑
k2,k′

2∈{k
2
i }

k2 6=k′
2

(
δ(k+q)k1δ(k′−q)k′

1
δk′k2δkk′

2
δσσ′

(
δk1k′

2
δk′

1k2 − δk1k2δk′
1k

′
2

)

+δ(k+q)k1δ(k′−q)(−k′
1)δk′(−k2)δkk′

2
δσ↑δσ′↓δk1k′

2
δk′

1k2

+δ(k+q)(−k1)δ(k′−q)k′
1
δk′k2δk(−k′

2)δσ↓δσ′↑δk1k′
2
δk′

1k2

)]
.

(51)

By calculating the sums we get

G

V

∑
{ki}′

∑
k1,k2 /∈{ki}′

k1 6=k2

C∗{ki}′∪{k1}C{ki}′∪{k2} +
∑
{ki}
|C{ki}|2M +

∑
{ki}
|C{ki}|2

(
M2 −M

)
(52)

= G

V

∑
{ki}′

∑
k1,k2 /∈{ki}′

k1 6=k2

C∗{ki}′∪{k1}C{ki}′∪{k2} +
∑
{ki}
〈Ψ|Ψ〉M2

 . (53)

Here we denote a set of M − 1 k-vectors by {ki}′, and the prime separates it from a
set with M elements.

What remains to be done is to calculate the contribution of H0 to the energy.

〈Ψ|H0|Ψ〉

=
∑

{k1
i }{k

2
i }

∑
k,σ

C∗{k1
i }
C{k2

i }〈0|
M∏
i=1

(
c−k1

i ↓ck1
i ↑

)
εkc
†
k,σck,σ

M∏
i=1

(
c†
k2

i ↑
c†−k2

i ↓

)
|0〉

=
∑
{ki}

∣∣∣C{ki}

∣∣∣2 M∑
i=1

(εki
+ ε−ki

) . (54)



31

Now we can finally write down the total energy of the ansatz state

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 = 1

〈Ψ|Ψ〉
∑
{ki}

∣∣∣C{ki}

∣∣∣2 M∑
i=1

(εki
+ ε−ki

) + G

V
M2

+ G

V 〈Ψ|Ψ〉
∑
{ki}′

k1 6=ki 6=k2
k1 6=k2

C∗{ki}′∪{k1}C{ki}′∪{k2}.
(55)

This equation is already calculable, but for further calculations we would like to get
rid of the constants C{ki}. This can be achieved by using the fact that the Richardson
ansatz is an eigenstate of the reduced BCS Hamiltonian HR with an energy of sum
of the pair energies Ei which determine the ansatz state.

So let us next calculate
〈Ψ|HR|Ψ〉
〈Ψ|Ψ〉 , (56)

where
HR =

∑
k,σ

εknk,σ + G

V

∑
k,k′

c†k↑c
†
−k↓c−k′↓ck′↑ (57)

is the reduced BCS Hamiltonian. We can easily see that the difference to the full
BCS Hamiltonian is the lack of some of the interaction terms, so the calculation
is very similar to the one above. We can get the reduced BCS Hamiltonian from
the full BCS Hamiltonian by restricting the second sum in (38) by requiring that
k = −k′ and σ is the opposite spin to σ′

If we now consider equation (51), we notice that the latter sum vanishes. Thus we
get from the sums

G

V

∑
{ki}′

∑
k1,k2 /∈{ki}′

k1 6=k2

C∗{ki}′∪{k1}C{ki}′∪{k2} +
∑
{ki}
〈Ψ|Ψ〉M

 . (58)

This leads to the total energy of

〈Ψ|HR|Ψ〉
〈Ψ|Ψ〉 = 1

〈Ψ|Ψ〉
∑
{ki}

∣∣∣C{ki}

∣∣∣2 M∑
i=1

(εki
+ ε−ki

) + G

V
M

+ G

V 〈Ψ|Ψ〉
∑
{ki}′

k1 6=ki 6=k2
k1 6=k2

C∗{ki}′∪{k1}C{ki}′∪{k2}.
(59)

But on the other hand we know that

〈Ψ|HR|Ψ〉
〈Ψ|Ψ〉 =

M∑
i=1

Ei, (60)
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where Ei are the pair energies defining the ansatz state, which can be solved from
the Richardson equation. Thus for the full BCS Hamiltonian energy we now get

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 =

M∑
i=1

Ei + G

V

(
M2 −M

)
. (61)

Whenever we can solve the pair energies El we can use equation (61) to calculate
the full Hamiltonian energy of the system.

4.2 Energy of a general paired state containing fixed num-
ber of electrons

It turns out we can extend our treatment to apply to any system containing only a
fixed number of paired electrons. If we now take a closer look on the form

|Ψ〉 =
∑
{ki}

C{ki}

M∏
i=1

b†ki
|0〉 (62)

we notice that with a suitable choice of constants C{ki} it can describe any given
state with a fixed number of electrons occupying only time-reversed state pairs.
Furthermore the calculations above do not depend on the Richardson ansatz state
definition of the constants (42). So the total energy of any paired state with fixed
number of electrons is given by equation (55). In general this equation is not
very useful in calculations, because the number of terms to calculate can increase
exponentially with the number of one-particle states.

From equation (61) we can now deduce that the difference between the reduced
Hamiltonian and the full Hamiltonian energies of any normalised state containing
M pairs of electrons is

〈Ψ|H −HR|Ψ〉 = G

V
(M2 −M). (63)

If we now find the ground state of the reduced BCS Hamiltonian with Richardson
ansatz with M electron pairs we have also found the ground state of the full BCS
Hamiltonian under the restriction that all the electrons are paired. If some of the
electrons are allowed not to be paired then there might be states with lower energies.

We can get the result (63) with a less mathematical method as well. Let us consider
an arbitrary state |Ψ〉 having exactly M paired electrons. For this state we now
want to evaluate

〈Ψ|H −HR|Ψ〉 =

〈Ψ| G2V

 ∑
k,k′,q
k 6=−k′

∑
σσ′

c†k+q,σc
†
k′−q,σ′ck′σ′ckσ +

∑
k,q

∑
σ

c†k+q,σc
†
−k−q,σc−kσckσ

 |Ψ〉.
(64)
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First we notice that any interactions between electrons having the same spin di-
sappear, since for any given k, k′ and q we have a term c†k+q,σc

†
k′−q,σck′σckσ in the

sum, but we also have summation indices k, k′ and q′ = k′ − k − q resulting in
a term c†k′−q,σc

†
k+q,σck′σckσ. This term is otherwise identical, but the two creation

operators have switched places. As they anti-commute it means that the two terms
cancel each other. Thus there are no interactions between electrons having the same
spin. Physically this is due to the contact interaction requiring the electrons occupy
the same point in space to interact and Pauli exclusion principle forbids that if the
electrons have the same spin.

So we are left with

〈Ψ|H −HR|Ψ〉 = G

2V 〈Ψ|
∑
k,k′q
k 6=−k′

∑
σ 6=σ′

c†k+q,σc
†
k′−q,σ′ck′σ′ckσ|Ψ〉. (65)

Next we note that the state |Ψ〉 contains only paired electrons. This means that the
interaction terms considered cannot scatter any of the electrons, as this would result
in breaking one of the electron pairs. So in the end we have

〈Ψ|H −HR|Ψ〉 = G

V
〈Ψ|

∑
k,k′

k 6=−k′

c†k,↑c
†
k′,↓ck′↓ck↑|Ψ〉. (66)

Now even if the state |Ψ〉 was a superposition of several different states they all have
M electron pairs and do not interact with each other via the terms considered here.
Now for all of them we effectively have interactions between all electron pairs, so
there are M2 −M interactions, and thus for a normalised state we have

〈Ψ|H −HR|Ψ〉 = G

V

(
M2 −M

)
, (67)

just as we conclude above.

4.3 Energy of the BCS ground state

Let us next calculate the energy of the BCS ground state. Because we want to compare
the energy to that of the Richardson ground state, we use the same Hamiltonian,
i.e. the canonical one without the chemical potential. However we use the chemical
potential in the definition of the ground state in order to set the average number of
electrons.

We define the BCS ground state now as the normalized state |ΨG〉 for which

γk↑|ΨG〉 = γk↓|ΨG〉 = 0, (68)

for all γkσ, where γkσ are the bogoliubon operators. They are defined by equations
(26). Then we want to calculate the expectation value of the full Hamiltonian (38).
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Here I go through the calculation in parts. Let us start with the single-particle
Hamiltonian H0.

The expectation value of H0 is now

〈ΨG|H0|ΨG〉 = 〈ΨG|
∑
k,σ

εknkσ|ΨG〉 =
∑
k,σ

〈ΨG|εkc†kσckσ|ΨG〉

=
∑
k

〈ΨG|εk(ukγ†k↓ + v∗kγk↑)(u∗kγk↓ + vkγ
†
k↑)

+(−v∗−kγ−k↓ + u−kγ
†
−k↑)(−v−kγ

†
−k↓ + u∗−kγ−k↑)|ΨG〉.

(69)

When we open the brackets in this expression we get different terms with two γ
operators. Only terms with γkσγ

†
kσ give a non-zero contribution to the sum, since

the Bogoliubov operators are fermionic operators with the BCS ground state as their
vacuum. So in the end we get

〈ΨG|H0|ΨG〉 = 2
∑
k

εk |vk|2 , (70)

which was to be expected, as |vk|2 is the probability that state k is occupied.

Next let us tackle the interaction Hamiltonian. Its expectation value is

〈ΨG|HI |ΨG〉 = 〈ΨG|
G

2V
∑
k,k′,q

∑
σ,σ′

c†k+q,σc
†
k′−q,σ′ck′σ′ckσ|ΨG〉. (71)

We now divide the sums over the spins into separate cases in order to use the
Bogoliubov transformation. First we examine the contribution of the case σ = σ′ =↑.

G

2V
∑
k,k′,q

〈ΨG|c†k+q,↑c
†
k′−q,↑ck′↑ck↑|ΨG〉

= G

2V
∑
k,k′,q

〈ΨG|(uk+qγ
†
(k+q)↓ + v∗k+qγ(k+q)↑)(uk′−qγ

†
(k′−q)↓ + v∗k′−qγ(k′−q)↑)

×(u∗k′γk′↓ + vk′γ†k′↑)(u∗kγk↓ + vkγ
†
k↑)|ΨG〉.

(72)

Multiplying open all the parenthesis gives us now 16 terms, but luckily we can again
remove all those which have γ† as the leftmost operator, γ as the rightmost operator
or do not have the same number of γ and γ† operators. As a result we get

G

2V
∑
k,k′,q

〈ΨG|v∗k+qγ(k+q)↑
(
uk′−qγ

†
(k′−q)↓u

∗
k′γk′↓ + v∗k′−qγ(k′−q)↑vk′γ†k′↑

)
vkγ

†
k↑|ΨG〉

= G

2V
∑
k,k′,q

〈ΨG|v∗k+quk′−qu
∗
k′vkγ(k+q)↑γ

†
(k′−q)↓γk′↓γ

†
k↑

+v∗k+qv
∗
k′−qvk′vkγ(k+q)↑γ(k′−q)↑γ

†
k′↑γ

†
k↑|ΨG〉.

(73)
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Now the terms with four Bogoliubon operators can be calculated by using the Wick’s
theorem. Thus

〈ΨG|γ(k+q)↑γ
†
(k′−q)↓γk′↓γ

†
k↑|ΨG〉 = δ(k+q)(k′−q)δk′kδ↑↓ = 0 (74)

〈ΨG|γ(k+q)↑γ(k′−q)↑γ
†
k′↑γ

†
k↑|ΨG〉 = δ(k+q)kδ(k′−q)k′δ↑↑ − δ(k+q)k′δ(k′−q)kδ↑↑. (75)

Using these in equation (73) yields

G

2V
∑
k,k′,q

v∗k+qv
∗
k′−qvk′vk

(
δ(k+q)kδ(k′−q)k′δ↑↑ − δ(k+q)k′δ(k′−q)kδ↑↑

)

= G

2V
∑
k,k′

(v∗kv∗k′vk′vk − v∗k′v∗kvk′vk) = 0. (76)

Very similarly now returning to the Hamiltonian (71) the term σ = σ′ =↓ gives
a zero contribution. Let us then next calculate the case σ =↑, σ′ =↓. By similar
reasoning as above we get

G

2V
∑
k,k′,q

〈ΨG|c†k+q,↑c
†
k′−q,↓ck′↓ck↑|ΨG〉

= G

2V
∑
k,k′,q

〈ΨG|(uk+qγ
†
(k+q)↓ + v∗k+qγ(k+q)↑)(−v∗−k′+qγ(−k′+q)↓ + u−k′+qγ

†
(−k+q)↑)

×(−v−k′γ†−k′↓ + u∗−k′γ−k′↑)(u∗kγk↓ + vkγ
†
k↑)|ΨG〉

= G

2V
∑
k,k′,q

〈ΨG|v∗k+qγ(k+q)↑

×
(
v∗−k′+qγ(−k′+q)↓v−k′γ†−k′↓ + u−k′+qγ

†
(−k+q)↑u

∗
−k′γ−k′↑

)
vkγ

†
k↑|ΨG〉

= G

2V
∑
k,k′,q

(
v∗k+qv

∗
−k′+qv−k′vk

(
δ(k+q)kδ(−k′+q)(−k′)δ↑↑δ↓↓ − δ(k+q)(−k′)δ(−k′+q)kδ↑↓

)

+v∗k+qu−k′+qu
∗
−k′vkδ(k+q)(−k′+q)δ−k′kδ↑↑

)

= G

2V
∑
k,k′

v∗kv
∗
−k′v−k′vk + G

2V
∑
k,q

v∗k+quk+qu
∗
kvk

= G

2V
∑
k,k′
|vkvk′ |2 + G

2V
∑
k,k′

v∗k′uk′u∗kvk (77)

where we changed some indexing on the last line.
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With some indexing renaming also the case σ =↓, σ′ =↑ gives the same result, so in
the end we get

〈ΨG|H|ΨG〉 = 2
∑
k

εk |vk|2 + G

V

∑
k,k′
|vkvk′ |2 + G

V

∑
k,k′

v∗k′uk′u∗kvk. (78)

For further processing we want to calculate ∆ as a function of uk and vk. Let us
start from the definition (24) and use the Bogoliubov transformation

∆ = −
∑
k

G

V
dk = −G

V

∑
k

〈ΨG|c−k↓ck↑|ΨG〉

= −G
V

∑
k

〈ΨG|
(
−vkγ†k↓ + u∗kγk↑

) (
u∗kγk↓ + vkγ

†
k↑

)
|ΨG〉.

(79)

Now we can use the property of the BCS ground state that it is the vacuum for the
bogoliubon operators, hence only expectation values of operator pairs γkσγ†kσ will
give a non-zero contribution. Thus we get

∆ = −G
V

∑
k

〈ΨG|u∗kγk↑vkγ
†
k↑|ΨG〉 = −G

V

∑
k

u∗kvk (80)

By using equation (80) and M̄ = ∑
k |vk|2 equation (78) can be reformulated into

〈ΨG|H|ΨG〉 = 2
∑
k

εk |vk|2 + G

V
M̄2 + V

G
|∆|2, (81)

where now M̄ is the expectation value for the number of electron pairs.

Next we would like to know how this energy relates to the expectation value of the
reduced BCS Hamiltonian. In order to easily see it from this result, we write the
reduced BCS Hamiltonian HR in the form

HR =
∑
k,σ

εknk,σ + G

2V
∑
k,k′,q

∑
σ,σ′

c†k+q,σc
†
k′−q,σ′ck′σ′ckσδ−k′kδσ′σ̄, (82)

where σ̄ is the spin opposite to σ. By following the above calculation with this change
we get

〈ΨG|HR|ΨG〉 = 2
∑
k

εk |vk|2 + G

V

∑
k

|vk|4 + G

V

∑
k,k′

v∗k′uk′u∗kvk. (83)

Now we know that |vk|4 = |vk|2 − |vkuk|2 and 2vku∗k = ∆/Ek. To get the latter
equation we solve ∆ from equation (31) to get

∆ = u∗k
v∗k

(Ek − εk) . (84)
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Then we substitute this into ∆/Ek to get

∆
Ek

= u∗k
v∗k

(
1− εk

Ek

)
(85)

and then using equation (32) we get the desired result

∆
Ek

= 2vku∗k (86)

Now we can reformulate equation (83) as

〈ΨG|HR|ΨG〉 = 2
∑
k

εk |vk|2 + G

V

(
M̄ − 1

4
∑
k

|∆|2
E2
k

)
+ V

G
|∆|2. (87)

Thus

〈ΨG|H −HR|ΨG〉 = G

V

∑
k 6=k′
|vkvk′ |2 = G

V

(
M̄2 − M̄ + 1

4
∑
k

|∆|2
E2
k

)
. (88)

We can get this equation also by using the result from section 4.2 stating that for
any fixed electron number state the difference between the energies is proportional to
M2 −M . In the BCS ground state we now have an ensemble of such fixed electron
number states |ΨM〉 with exactly M electron pairs, and we calculate the expectation
value

〈ΨG|H −HR|ΨG〉 (89)

over those states. For each of those states we know that

〈ΨM |H −HR|ΨM〉 = G

V

(
M2 −M

)
. (90)

Therefore

〈ΨG|H −HR|ΨG〉 = G

V

(
〈ΨG|M2 −M |ΨG〉

)
= G

V

(
〈ΨG|M2|ΨG〉 − 〈ΨG|M |ΨG〉

)
.

(91)
We know also that the variance of the BCS ground state is [11]

〈ΨG|M2|ΨG〉 − 〈ΨG|M |ΨG〉2 =
∑
k

|ukvk|2 = 1
4
∑
k

|∆|2
E2
k

. (92)

By substituting equation (92) into (91) we get the result (88).
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4.4 Self-consistency equations

In order to calculate the BCS ground state energy we need to be able to calculate a
value for ∆ and µ. This can be done by formulating self-consistency equations for
them. We can obtain one equation by substituting u∗kvk solved from equation (86)
into (80) to get

∆ = − G

2V
∑
k

∆
Ek

= − G

2V
∑
k

∆√
ξ2
k + |∆|2

. (93)

Now as ∆ does not depend on k we can divide both sides of the equation with it
and substitute the definition of ξk into the equation to get the first self-consistency
equation

1 = − G

2V
∑
k

1√
(εk − µ)2 + |∆|2

. (94)

To get the second equation we start from

M̄ =
∑
k

|vk|2. (95)

Next we substitute (32) to get

M̄ = 1
2
∑
k

1− εk − µ√
(εk − µ)2 + |∆|2

 . (96)

This is our second self-consistency equation. From equations (94) and (96) ∆ and µ
can now be solved numerically.
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5 Comparison of the ground state energies

Now we would like to compare the ground state energies of the two models in order
to determine which of them approximates the true ground state better. This poses a
problem, however, as the Richardson ansatz is a canonical ensemble, whereas the
BCS ground state is a grand canonical ensemble, and so it is not meaningful to
compare their energies.

The BCS ground state should be projected to a fixed number state whenever possible,
as was done in the original treatment [3], so we try to change the BCS ground state
into a canonical ensemble. The projected state |ΨM〉 with M electron pairs can be
formulated as a superposition of BCS ground states (14) with a help of an extra
phase factor φ. This is done using the equation

|ΨM〉 = 1
2π

∫ 2π

0
dφe−iMφ

∏
k

(
uk + eiφvkc

†
k↑c
†
−k↓

)
|0〉. (97)

Note how the exponentials make sure that only states with M electron pairs do not
vanish. Each of the states inside the integral are valid BCS ground states, as the
equation (14) gives the BCS ground state for suitable coefficient vk with any phase.

Calculations are usually much more complicated using the fixed electron number
ground state (97) instead of the grand canonical ground state (14), and thus the
grand canonical ground state is more often used. In principle we can calculate the
ground state energy for the fixed electron number ground state using the equation for
general fixed particle number state energy (55) as deduced in section 4.2. However
the formula is too inefficient for calculations with particle numbers we compare, and
so is not used here.

Instead we make an approximation so that we can make use of the grand canonical
BCS ground state |ΨG〉. We assume that the BCS ground state |ΨG〉 is close to an
eigenstate of the reduced BCS Hamiltonian HR. This is supported by the assumption
that the BCS ground state is a valid approximation of the true ground state of the
reduced BCS Hamiltonian. Thus we can approximate that

HR|ΨG〉 ≈ E|ΨG〉, (98)

where E is the energy of the state |ΨG〉. As |ΨM〉 is as superposition of BCS ground
states, as can be seen from definition (97) it follows that

HR|ΨM〉 ≈ E|ΨM〉. (99)
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Using these we get

〈ΨG|HR|ΨG〉 ≈ 〈ΨM |HR|ΨM〉. (100)

So the energies of the grand canonical and fixed electron number ground states
are approximately the same, and so we can just use the energy of the BCS ground
state given by (87). Furthermore, because of equation (63) we can calculate the
full Hamiltonian energy for the fixed electron number ground state. However, as
the difference between the full Hamiltonian and reduced Hamiltonian energies is
the same for all fixed particle number states, we can simply compare the reduced
Hamiltonian energies to determine the energy difference of two different states.

Now we have the means to compare the BCS ground state and Richardson model
ground state energies. We know that the Richardson model ground state has a lower
energy since it is the true ground state of the reduced Hamiltonian. In systems
with a strong coupling G we expect to see differences in the ground state energies
of the BCS and Richardson models, as we have linearised the fluctuations in the
BCS model, which should then in general be a better approximation for weaker
couplings. Furthermore we also expect a higher energy difference in systems with a
small number of particles, as the BCS ground state does not conserve the particle
number, and the violation is supposedly more relevant in a small system.

The comparisons presented below are in general calculated in the following way. We
first solve the Richardson equations with the methods briefly discussed in section 3 in
order to get the parameters El. The reduced Hamiltonian energy for the Richardson
ansatz state is then calculated by summing these parameters El. To calculate the
energy of the BCS ground state we first solve numerically the superconducting gap
∆ and chemical potential µ from equations (94) and (96). With these values we can
then calculate the BCS ground state energies for the reduced Hamiltonian (87).

We first consider the equally spaced system introduced in section 3. We start with
a small system containing N = 8 spin-degenerate energy states and half-filling, i.e.
M = 4 electron pairs. The energies of the ground states are shown in figure 5. We
notice that the BCS model and Richardson model full energies stay relatively close
to each other even with such a small number of electrons. However, the Richardson
model energy is slightly lower with all values of g considered.

The energies of the ground states are shown in figure 6 for an otherwise similar
system, but with N = 200 and M = 100. We notice that the Richardson model and
BCS ground state energies are practically indistinguishable. In figure 7 the energy
difference between the Richardson and BCS ground states is plotted as a function
of the number of the electron pairs. The energy difference is given in the units of
the condensation energy Ec, i.e. the energy difference between the non-interacting
ground state and the BCS ground state, because this defines an energy scale for the
system. From the figure we see, that the energy difference seems to approach zero at
higher electron numbers.
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Figure 5. Energies of the BCS and Richardson model ground states obtained
from the reduced BCS Hamiltonian as a function of the coupling g = −GN/(2ω).
The system considered has N = 8 equally spaced spin-degenerate energy levels
divided on interval [0, 2ω] and M = 4 electron pairs. The energies are in units of
the Fermi energy, which is now equal to ω.

Let us next consider a three-dimensional box system with dispersion

εk = h̄2k2

2m . (101)

We consider a system with M = 16 electron pairs and N = 32 energy states. The
results are shown in figure 8. They are very similar to those of the equally spaced
system. Again the energies are close to each other with all couplings. Increasing the
number of particles and states results again quickly in indistinguishable energies
between the models.

In a two level system with energies −ε and ε we can see a larger difference between
the two ground states. The results for a system with M = 32 electron pairs and
N = 64 states are shown in figure 9. The results are very similar even for M = 100
electron pairs. The energy difference between the two ground states as a function of
number of electron pairs is plotted in figure 10. The difference between the energies
seems to approach a non-zero constant with increasing particle number with the
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Figure 6. Energies of the BCS and Richardson model ground states obtained
from the reduced BCS Hamiltonian as a function of the coupling g = −GN/(2ω).
The system considered has N = 200 equally spaced spin-degenerate energy levels
divided on interval [0, 2ω] and M = 100 electron pairs. The energies are in units
of the Fermi energy, which is now equal to ω.

Richardson model yielding a lower ground state energy, as it should. Because of the
difference in ground state energies it seems that in this case using the BCS model
can result in a significant error.
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Figure 7. The energy difference ∆E between the Richardson and BCS ground
states for the reduced Hamiltonian as a function of number of electron pairs
M . The energies are in units of the condensation energy Ec and the system
considered has 2M spin degenerate energy states equally distributed on interval
[0, 2ω]. The system has a coupling constant g = −G/ω = 1.



44

0 0.5 1 1.5 2 2.5
0

200

400

600

800

1000

1200

1400

g

E

 

 
Richardson Reduced Hamiltonian
BCS Reduced Hamiltonian

Figure 8. Energies of the BCS and Richardson model ground states with
respect to the full and reduced BCS Hamiltonians as functions of the coupling
g = −GN/(V ω), where ω is the Fermi energy and V the normalization volume.
The system considered is a box-normalized three-dimensional system with M = 16
electron pairs, N = 32 spin-degenerate energy states. The energies are in units
of ω.
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Figure 9. Energies of the BCS and Richardson model ground state with respect
to the reduced BCS Hamiltonian as a function of the coupling g = −GM/ε. The
system considered is a two level system with M = 32 electron pairs, N = 64
spin-degenerate energy states, half with energy −ε and the rest with energy ε.
The energies are expressed in units of ε.
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Figure 10. The energy difference ∆E between the Richardson and BCS ground
states for the reduced Hamiltonian as a function of number of electron pairs
M . The energies are in units of the condensation energy Ec and the system
considered is a two level system where the states have energies −ε and ε and
have degeneracy M . The system has a coupling constant g = −GM/ε = 1.
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6 Conclusions

I have calculated the expressions for the energies of the BCS model and Richardson
model ground states with respect to both the full BCS Hamiltonian and the reduced
BCS Hamiltonian. We also introduced a formula for the energy of any state with fixed
number of electron pairs. We found that the difference between the two Hamiltonians
is proportional to M2 −M for all paired states with fixed number of electrons. In
the BCS model ground state there is in addition a term proportional to ∆2/E2

k.

Analytical comparison of the energies of the two model ground states is very difficult,
as for most systems there are no known analytical solutions for the Richardson
equations. For the Richardson model both energy expressions have the sum ∑

lEl as
an important part, and as we have no analytical expression for the El, the analytical
treatment can usually be done only on some limits, e.g. thermodynamic limit[20].

However, numerical comparison can be done for systems for which we can solve
the Richardson equations numerically. From the numerical results we see that in
the equally spaced systems and box normalized free electron systems the difference
between the energies of the Richardson model ground state and the BCS model
ground state are small or negligible, depending on the system size. In small systems
there is a small difference, but with already M = 100 electron pairs the energies of
the two models are practically indistinguishable. So based on this evidence we argue
that the BCS model works well in the equally spaced system and the box normalized
free electron system.

It is surprising that the BCS model seems to be nearly as good of a description as the
Richardson model almost independent of the strength of the coupling and for very
small number of particles already. With respect to the particle number we can see
the expected trend that BCS model works better with a larger number of particles.
However, we are missing the trend that BCS model would work better with small
coupling strengths, which would have been possible because the BCS model is based
on a mean-field approach.

The two-level system exhibits a clear difference between the two models, suggesting
that Richardson model would be more accurate description of this system. This can
be due to the two-level system being a very non-linear system, and so we would
expect that linearising the fluctuations in the BCS model may give rise to a significant
error.

Next it would be interesting to solve the Richardson equations for a flat-band system
introduced in 1.2 and compare the ground state energies of the Richardson and BCS
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ground states using the methods presented in this thesis. This comparison could
possibly validate the expectation that the Richardson model describes the flat-band
systems significantly better than the BCS model.
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