Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition

Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

2017

Please cite the original version:

All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition

Abstract:

The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA genes) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected
in leaf bacterial community composition.
Dear Editor,

Please find attached our second revised version of the manuscript titled "Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition" by Anbu Poosakkannu, Riitta Nissinen, and Minna-Maarit Kytöviita. We thank you for your valuable comments and time. I carefully looked at your comments and I accepted almost all of them. Wherever applicable we used the term AM fungus to make sure we studied only one species. The primer name fITS7 is correct (We used same as in original reference). I have also modified the table legends and figures according to the suggestions. We hope the current version can be accepted for the publication.

Thanking you.

Sincerely yours,

Anbu Poosakkannu
Native arbuscular mycorrhizal symbiosis alters foliar bacterial community

Anbu Poosakkannu*¹, Riitta Nissinen¹, Minna-Maarit Kytöviita¹

1) Department of Biological and Environmental Science, PO Box 35, FI-40014 University of Jyväskylä, Finland.

*Corresponding author

Anbu Poosakkannu

Department of Biological and Environmental Science

PO Box 35, FI-40014 University of Jyväskylä

Finland

Tel: +358 (0) 466137555

Fax: +358 (0) 14 617 239

Email: anbu.a.poosakkannu@jyu.fi

ORCID ID: http://orcid.org/0000-0003-2579-150X
Abstract

The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass *Deschampsia flexuosa* in a greenhouse with or without the native AM fungus, *Claroideoglomus etunicatum*. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA genes) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

Keywords

Arbuscular mycorrhizal fungi; plant-associated microbes; high-throughput sequencing; foliar nitrogen
Introduction

All plants are associated with microbes, and today the importance of microbes for plant performance is well acknowledged. Mycorrhizal symbiosis, nodule forming bacteria and pathogens affect diverse plant species, and these symbiotic systems are relatively well studied. Recently, however, it has become clear that the symbiotic systems are complex in nature and multiple microbial interactions shape plant performance (Faust and Raes 2012). For instance, taxonomically diverse bacteria affect mycorrhizal fungal colonization of host plants and are known as ‘mycorrhiza helper bacteria’ (Frey-Klett et al. 2007; Bonfante and Anca 2009; Xavier and Germida 2003; Duponnois and Plenchette 2003).

The microbes that live in close association with plants are known as plant-associated microbes. The major plant-associated microbes are present in the phyllosphere (leaf surface), rhizosphere (root-attached soil) and endosphere (inside plant). Plant-associated microbes either are acquired from the environment or are passed from one generation to the next through propagules (Hardoim et al. 2008; Ferreira et al. 2008; Hardoim et al. 2012). Many of these microbes have neutral or positive impacts on host plants (Hansen and Moran 2014; Haney et al. 2015, Ludwig-Müller 2015, Panke-Buisse et al. 2015).

Distinct factors such as plant part inhabited, host genotype and soil type affect the plant-associated microbial assemblage (Lundberg et al. 2012; Edwards et al. 2015; Coleman-Derr et al. 2016; Robinson et al. 2016; Poosakkannu et al. 2015; Poosakkannu et al. 2017).

Arbuscular mycorrhizal fungi (AMF) inhabit the plant root endosphere and rhizosphere. The ecological influence of AMF is partly due to their hyphal network that connects the
inside of the host plants to the soil (Miller et al. 1995). AMF may improve host plant
nutrient and water uptake (Finlay 2008). In return, AMF utilize photosynthetically
assimilated carbohydrates from the host plants (Bago et al. 2000). AMF symbiosis is
accompanied by several alterations in gene expression in the roots and shoots of
mycorrhizal plants which are related to a variety of plant physiological functions (Liu et
al. 2007).

As AMF have fundamental effects on both shoot and root physiology, it is conceivable
that the symbiosis with AMF may affect other host-associated fungal and bacterial
communities. Nevertheless, the effect of AMF on plant-associated microbial
communities is poorly studied. It has been shown that AMF inoculation can positively
or negatively affect leaf and root endophytic fungal community composition (Eschen et
al. 2010; Wearn et al. 2012; Larimer et al. 2012). Also, in return, endophytic fungi
could affect AMF colonization rate (Larimer et al. 2012). In contrast to interactions
between AMF and endophytic fungi, thus far AMF effects have been verified on
bacterial communities in soil (Scheublin et al. 2010, Wamberg et al. 2003; Gryndler
2000; Jeffries et al. 2003) and in the rhizosphere (Marschner et al. 2001; Scheffknecht et
al. 2006; Gupta 2003; Vigo et al. 2000).

Plant physiological status is one of the main factors determining the colonization and
compatibility of plant-associated microbes (Gaiero et al. 2013). It is very well known
that the presence of AMF increases host phosphorous and nitrogen contents
(Karandashov and Bucher 2005; Fellbaum et al. 2012; Hodge and Fitter 2010).
Recently, it has been shown that the rhizosphere bacterial community composition
changes induced by AMF inoculation are related to changes in plant physiology, for
instance, changes in plant phosphorus content (Rodríguez et al. 2017). Similarly plant physiological changes due to AMF inoculation could affect other plant-associated microbes.

It has been shown that AMF hyphae and spores harbor diverse microbial species (Bonfante and Anca 2009; Selvakumar et al. 2016). Also, it is known that different bacterial and fungal species co-occur with AMF (Mansfeld-Giese et al. 2002). Therefore, AMF-associated microbes could be a source for plant-associated microbial consortia and subsequently might affect the microbial species richness of host plants. In order to gain insight into the interactions between AMF and other plant-associated microbes, we asked the following research questions: (i) does inoculation with an arbuscular mycorrhizal (AM) fungus affect leaf and root microbial community composition; (ii) does foliar nitrogen content correlate with microbial community composition; and (iii) do AM fungus-colonized plants harbour more numerous microbial species in leaves and roots than non-colonized plants? We examined microbial community composition by high-throughput sequencing of 16S rRNA (bacteria) genes and internal transcribed spacer (ITS) regions (fungi). We manipulated AM fungus presence in host plants grown in sterilized substrate under greenhouse conditions. As model species, we used the wild circumpolar grass, Deschampsia flexuosa which is considered to be a keystone pioneer plant species in inland sand dune ecosystems in northern Finland (Poosakkannu et al. 2015; Poosakkannu et al. 2016) and a native AM fungus species, Claroideoglomus etunicatum.

Materials and methods

Study organisms
Deschampsia flexuosa is commonly known as wavy hair grass, a cosmopolitan species of temperate and subarctic regions (Scurfield 1954). Seeds of D. flexuosa were collected from inland sand dunes in Northern Fennoscandia (68° 29’ 16” N, 24° 42’ 13” E) in summer, 2012. The seeds were germinated in sterile sand and grown under greenhouse conditions by providing water and Ingestad nutrient solution (Ingestad 1979).

Claroideoglomus etunicatum isolate was prepared from arctic sand dune soil by first proliferating it in pot culture among mixed AMF species, followed by growing a hand-picked single spore and later a mass inoculum in sterilized growth substrate with Plantago lanceolata as the host. C. etunicatum has been isolated previously in different ecosystems from Arctic tundra to tropical regions (http://invam.wvu.edu/the-fungi/classification/claroideoglomeraceae/claroideoglomus/etunicatum; Toomer et al. 2015; Gupta et al. 2014), suggesting that it is a widely distributed species.

Mycorrhizal inoculation and sampling

Deschampsia flexuosa grows by clonally reproduced tillers and therefore the plants are easily divided into genetically identical parts. In our experiment, each of the six different pre-grown plants was divided into three parts. The fresh weights of all three parts were measured (initial value). One part was planted into pots filled with substrate (A 9:1 mixture of sterile sand and perlite with 1 g/L dolomite and 1 g/L bone meal) and inoculated with 250 spores of C. etunicatum. The second part was planted in the same substrate and mock inoculated with filtered AM fungus inoculation solution containing no AM fungus spores as a control (NM, non-mycorrhizal plants). The third part was used to determine the dry weights of the initial plant samples.
The AM fungus inoculum for the present experiment was prepared by soaking the substrate containing spores in water for 2 hours, agitating the suspension vigorously, letting the solution sediment for approximately 5 seconds followed by decanting. The decanted solution containing the spores was used as the AM fungus inoculum. The NM control solution was prepared by additionally filtering the decanted AM fungus inoculum through a regular coffee filter. The filtrate was left to sediment for 2 minutes and decanted. The decanted solution was checked to confirm the absence of any AM fungus spores or hyphae, but was assumed to contain representatives of other microbial community members which accompanied the inoculum. The AM fungus and NM inoculations were applied as 6.4 ml pipetted suspensions onto the growth substrate and plant roots. The experiment was started on 1 May, 2014, and a total of six replicates of NM and AM fungus inoculation treatments each were maintained during the experiment under greenhouse conditions. The plants were watered once a day and fertilized with Ingestad nutrient solution containing 0.9 mM nitrogen and 0.06 mM phosphorous twice a week (Ingestad 1979).

The plants were harvested on 15 October, 2014. The shoot and root dry mass (final values) were measured. Leaves (250 mg) and roots (250 mg) from each plant (3 to 4 representative leaves or roots for each plant) were surface sterilized following the method described in Poosakkannu et al. (2015) for molecular analysis. In brief, leaves and roots of each plant were surface sterilized by soaking in 70 % ethanol for 1 min, in 3 % sodium hypochlorite for 3 minutes, and in 1 % sodium thiosulphate for 3 minutes, followed by a series of three washes with sterile deionized water for 3 minutes each. For determination of AM fungus colonization, a portion of roots was stored in 50 % ethanol until examined for colonization.
Fungal colonization measurements

Roots from each individual were stained after clearing by incubation in 5 % KOH overnight. After 2 h in 1 % HCl, the roots were stained with 0.02 % trypan blue solution for 2 h at 80 °C. The AM fungal root colonization was measured at ×100 magnification from 10 root segments of 1.5 cm length using the cross-hair intersection method (McGonigle et al. 1990). A total of 100 intersections were assessed per root sample.

Foliar nitrogen content analyses

Oven dried (65°C, 24h) leaf samples were ground to powder and samples (1.8 mg each) were measured for total nitrogen using an elemental analyzer (Flash EA1112, Carlo Erba) connected to a Finnigan Deltaplus Advantage (Thermo Electron Corp., Waltham, USA) continuous flow isotope ratio mass spectrometer (CFIRMS). We calculated the nitrogen content of the plants using following formula:

\[
\text{mg nitrogen/plant shoot} = \frac{\text{percentage nitrogen shoot}}{100} \times \text{dry weight mg shoot.}
\]

DNA extraction, library preparation and sequencing

The surface sterilized leaves and roots of each plant were frozen using liquid nitrogen, ground and homogenized. DNA was extracted from the homogenized leaf (100 mg) and root (100 mg) material from each plant using Invisorb Spin Plant Mini Kit (Stratec molecular). We used the M13 system (Mäki et al. 2016) for library preparation as described by Poosakkannu et al. (2017). In brief, a nested approach was used to amplify the partial 16S rRNA genes; the first round of 16S rRNA amplification was performed with primers 799F (5’-AACMGGATTAGATACCCKG-3’) and 1492R (5’-GGYTACTTGTACGACTT-3’) which excludes plant chloroplast amplification
(Chelius and Triplett 2001). The subsequent PCR was performed with M13-1062F (5´-FGTCAGCTCGTGYGGTGA-3´) and P1-1390R (5´-ACGGGCGGTGTTGACAA-3´) primer pairs targeting the V7-V9 region. The ITS region was amplified using the fITS7 (5´-GTGARTGATCATGATCTTTT-3´) and ITS4 (5´-TCCTCCGCTTTATTGATATGC-3´) primer pairs (Ihrmark et al. 2012). We followed Ion PGM Sequencing 400 Hi-Q Kit manufacturer's instructions to carry out the sequencing (Ion 314 chips; Life Technologies, Thermo Fisher Scientific, Waltham, Massachusetts, USA).

Bioinformatics and statistics

The processing of bacterial 16SrRNA gene sequences was performed following a standard procedure in Mothur v.1.35.0 (Schloss et al. 2011). The parameters are minlength = 200; maxambigs = 0; maxhomop = 8; qwindowaverage = 25; qwindowsize = 50; and bdiffs = 1). The fungal sequences were processed as described by Tedersoo et al. (2015) using the same parameters as for the 16S rRNA genes. One of the AM fungus-inoculated root samples was not included in further downstream analyses because of not having enough good-quality sequences. The good-quality bacterial and fungal sequences were clustered at 97 % sequence similarity. Samples were normalized to their lowest number of reads for further statistical analyses. The observed species richness, estimated species richness (Chao1), Shannon and Inverse Simpson diversity indices were calculated using the normalized data. Raw data were submitted to the sequence read archive (SRA accession number: SRP087758).

The clustering pattern of bacterial and fungal community composition by treatment was visualized using unconstrained principal coordinate analysis (PCoAs) and the statistical significance of clustering patterns were estimated by Permutational Multivariate...
Analysis of Variance (PERMANOVA; Anderson 2005). To test the correlation between microbial community composition and plant parameters (total, shoot and root dry weight and foliar nitrogen content), we performed distance-based linear model (DistLM) statistical analyses. All the above statistical analyses were performed in PRIMER software V6 (Clarke and Warwick 2001). Generalized linear model statistics were used to find the significance of diversity indices between treatments in R software (v 1.0.44). One-way analysis of variance was carried out for the plant biomass and foliar nitrogen content analyses after testing the homogeneity of variances using SPSS software (IBM SPSS 24).

Results

We obtained 94,836 and 45,628 good quality bacterial and fungal sequences, respectively. These sequences resulted in 2,300 bacterial OTUs and 1,460 fungal OTUs. We excluded OTUs with less than five sequences, which resulted in 487 (92,418 sequences) bacterial OTUs and 418 (43,925 sequences) fungal OTUs. In one sample, there were between 1168 and 7,541 bacterial sequences and between 220 and 1,920 fungal sequences. The normalization of samples resulted in 468 and 385 OTUs of bacteria and fungi. A total of 14 bacterial and 3 fungal phyla were found in the two compartments of the NM and AM fungus-inoculated plants (Figure 1). Because of the primers used, we were not able to detect the fungal phyla Glomeromycota and Zycomycota in this experiment (Figure 1B).

Effect of AM fungus inoculation on plant growth and foliar nitrogen content
At the end of the experiment, no AM fungal colonization was found in NM plants, while all the AM fungus-inoculated plants were colonized. The average hyphal colonization rate was 42 ± 6%.

The total plant dry weight was significantly (p<0.05) higher for AM fungus-colonized plants (569.05 ± 195.71 mg) than for NM plants (211.33 ± 100.69 mg). Also, AM fungus inoculation significantly increased the foliar nitrogen content of AM fungus-colonized plants (7.6 ± 2.7 mg / plant shoot) versus NM plants (4.7 ± 1.7 mg / plant shoot).

Effect of AM fungus inoculation on bacteria

AM fungus inoculation did not affect the species richness (observed and estimated) or diversity indices (Shannon and Inverse Simpson) of bacteria in either leaf or root (Table 1). AM fungus and NM plant leaf bacteria clustered strongly according to the AM fungus inoculation treatment, and the first axis of the PCoAs explained 18.1% of the variation (Figure 2). The PERMANOVA analysis confirmed the significance of the AM fungus treatment on leaf bacterial community composition (Figure 2). In contrast to leaf bacteria, AM fungus colonization did not affect the root bacterial community composition (Figure 2). A total of 90% bacterial sequences were shared between NM and AM fungus-inoculated plants (Supplementary figures: Supplementary figure 1). They accounted for 47% of the total bacterial OTUs.

In order to gain insight into the effect of AM fungus treatment on the relative abundance of individual OTUs, we performed Kruskal-Wallis tests with log transformed (log [X+1]) relative abundance data to identify the OTUs that are responsible for community
separation between the NM and AM fungus treatments. We considered only OTUs with
greater than 1% relative abundance in at least three samples of leaves or roots. There
were three bacterial OTUs that were statistically significantly (p<0.05) more abundant
in AM fungus-inoculated plant than in NM plant leaves (Figure 3). As an example,
these included the OTU 00006 in the bacterial family “Bacillaceae” belonging to the
Firmicutes phylum. There were six bacterial OTUs statistically significantly (p<0.05)
more abundant in NM than AM fungus-inoculated plant leaves (Figure 3). For instance,
the OTU 00001 classified as the bacterial genus “Pseudomonas” belonging to the
Proteobacteria phylum was significantly more abundant in NM than in AM fungus-
inoculated leaves. In contrast, there was no significant difference in any root bacterial
OTUs between NM and AM fungus-inoculated plants.

Effect of AM fungus inoculation on fungi

The AM fungus inoculation did not affect the species richness (observed and estimated),
Shannon diversity and Inverse Simpson diversity of fungi in either leaves or roots
(Table 1). Also, fungal community composition was not affected by the AM fungus
inoculation (Figure 4). A total of 93 % fungal sequences were shared between NM and
AM fungus-inoculated plants (Supplementary figures: Supplementary figure 1). They
accounted for 55 % of total fungal OTUs. Furthermore, there were no significant
differences in any leaf or root fungal OTUs between NM and AM fungus-inoculated
plants.

Correlation between microbial community composition and plant parameters

Significant correlations were observed between the dry weights (Total, shoot and root)
and leaf bacterial community composition (p<0.05; Table 2). Similarly, significant
correlations were observed between the plant dry weights (Total and shoot) and leaf fungal community composition (p<0.05; Table 2).

Foliar nitrogen content and leaf bacterial community composition also were correlated significantly (p<0.05; Table 2). The correlation explained 13% of the variation in leaf bacterial community (Table 2). In contrast, there was no significant correlation observed between foliar nitrogen content and leaf fungal community composition (p>0.05; Table 2). Also, there was no significant correlation between foliar nitrogen content and root microbial community composition (p>0.05; Table 2).

Discussion

To our knowledge, this is the first study to consider the effect of AM fungus colonization on foliar bacteria. In our study, the bacterial community composition in *Deschampsia flexuosa* leaves but not roots was altered by arbuscular mycorrhiza formation. Consistent with our study, Groten et al. (2015) showed that AM fungus colonization did not affect the root-associated bacterial community composition of *Nicotiana attenuata*.

In our study, phylogenetically diverse bacterial OTUs in the phyla Proteobacteria, Firmicutes and Bacteroidetes were differentially regulated in the leaves of NM and AM fungus-colonized plants. The presence of AMF has been shown to increase relative abundance of the members of the phylum Firmicutes in soil (Nuccio et al. 2013).

Similar results for leaves were observed in this study and three OTUs classified as *Unclassified Bacillaceae* (OTU00006), *Paenibacillus* (OTU00020) and *Brevibacillus* (OTU00028) belonging to Firmicutes were significantly more abundant in AM fungus-
inoculated plant leaves. The bacterial genera *Paenibacillus* and *Brevibacillus* are described as mycorrhiza helper bacteria which increase mycorrhizal colonization of roots (Frey-Klett et al. 2007). Also, these bacterial genera are known to be closely associated with mycelia of AMF (Mansfeld-Giese et al. 2002). The present results warrant further targeted experiments to understand whether the bacterial genera *Paenibacillus* and *Brevibacillus* could have an ecological function in the leaves of arbuscular mycorrhizal plants.

A total of six OTUs belonging to Proteobacteria (Alpha, Beta and Gamma) and Bacteroidetes were significantly more abundant in NM than in AM fungus-inoculated plant leaves. Notably, the most abundant OTU in this study belonging to the genus *Pseudomonas* (OTU00001) was significantly more abundant in NM than AM fungus-inoculated plant leaves. The genus *Pseudomonas* is well-known for denitrifying capacity and responds negatively to AMF presence in the rhizosphere and soils (Ravnskov et al. 1999; Amora-Lazcano et al. 1998; Meyer and Linderman 1986). The OTUs belonging to potential nitrogen fixing genera such as *Pseudomonas* and *Bradyrhizobium* were significantly more abundant in NM than in AM fungus-inoculated plant leaves. It has been shown that different bacteria genera and *Pseudomonas* in particular may fix atmospheric nitrogen in grass leaves (Besems 1973; Pimentel et al., 1991). It also is known that many species of the bacterial genus *Pseudomonas* possess phosphate mobilization capacity in *D. flexuosa* plants (Poosakkannu et al. 2016). In contrast to our study, Ordoñez et al. (2016) showed that an AMF species (*Rhizophagus irregularis*) may have a synergistic effect with phosphate solubilizing *Pseudomonas* species. The more abundant *Pseudomonas* and other bacteria in NM than in AM fungus-
inoculated plants might fix atmospheric dinitrogen and mobilize phosphate for plant use in the absence of efficient AM fungus-mediated nutrient transfer from soil.

In this study, the fungal community composition of *D. flexuosa* leaves and roots was not altered by arbuscular mycorrhiza formation. This is in contrast with previous studies which have shown that AMF colonization can affect the fungal community composition of foliar and root fungi in different plant species such as *Cirsium arvense*, *Plantago lanceolata* and *Rumex acetosa* (Eschen et al. 2010; Wearn et al. 2012). It is worth noting that both NM and AM fungus-inoculated starting plant tillers in the present study were of the same clone at the same plant growth stage and most likely contained similar initial microbial communities which was not the case in previous, related studies (Eschen et al. 2010; Wearn et al. 2012; Larimer et al. 2012). Plant genets may harbour distinct microbial communities (Korkama et al. 2007), therefore the clone identity and growing history should be accounted. The effect of AMF on microbial community composition has been shown to be plant and AM fungus species dependent (Söderberg et al. 2002; Larimer et al. 2012). The host plant and AM fungus species of the present study are additional potential reasons for the difference in the effect of mycorrhizas on fungal community composition observed between our study and earlier studies. Also, the plants in this experiment were grown in sterilized substrate and the major source of microbes may have been seeds, AM fungus and NM inocula, water or air. Another explanation for differences may be the choice of methods. Eschen et al. (2010) and Wearn et al. (2012) relied on culture methods for microbe detection in contrast to our high-throughput sequencing. It is well known that culture methods and high-throughput sequencing give different results (Zhang and Xu 2008; Van Elsas and Boersma 2011).
Plant mass and microbial community composition correlated significantly in our experiment. This is in agreement with reports that have shown that rhizosphere bacterial community composition may correlate with plant biomass (Rodríguez et al. 2017). In the present study, a significant correlation also was observed between bacterial community composition and foliar nitrogen content. In contrast, shoot nitrogen content did not correlate with rhizosphere bacterial community composition in the study by Rodríguez et al. 2017. The difference between the studies could be due to the compartments studied (rhizosphere soil vs surface-sterilized tissues). We did not measure any other foliar elements than nitrogen in this study, and it is possible that other nutrients mediated by AM fungus affected the foliar bacterial community.

Furthermore, we cannot rule out the possibility that AM fungus-inoculated plants possibly provided more carbon compounds to foliar bacteria because of high net photosynthesis. Although we did not measure photosynthesis rates, we previously have shown that AMF-inoculated arctic plants with higher foliar nitrogen content than NM plants also photosynthesize at higher rates (Ruotsalainen & Kytöviita 2004). The current study together with that by Rodríguez et al. (2017) shows that the mycorrhizal status of plants alters plant physiology and subsequently could change the community composition of bacteria intimately associated with plants.

In our study, bacterial and fungal species richness and diversity indices were not affected by the presence of an AM fungus in either leaves or roots of D. flexuosa. This is consistent with an earlier finding that non-mycorrhizal transgenic Nicotiana attenuata plants harbour similar root-associated fungal and bacterial species richness to that of mycorrhizal transgenic N. attenuata plants (Groten et al. 2015). Likewise, inoculation with AMF has been shown not to alter bacterial species richness in the rhizosphere
(Rodríguez et al. 2017). Furthermore, while AMF spores harbour microbes (Selvakumar et al. 2016), in our study, most microbial sequences were shared between NM and AM fungus-inoculated plants. This suggests that mock inoculation of spore-washing water to NM plants most likely transferred at least part of AM fungus-associated microbes. In conclusion, this study demonstrates that AM fungus inoculation can modify leaf microbial composition under semi-sterile greenhouse conditions. Further targeted studies are needed to understand the mechanisms involved and the functional aspects in the interaction between leaf microbes and AM fungus.

Acknowledgement

The authors wish to acknowledge funding from the Maj and Tor Nessling foundation (grant # 201300249), Finnish cultural foundation, Centre for International Mobility, Oskar Öflunds Stiftelse and Department of Biological and Environmental Science, University of Jyväskylä and Academy of Finland (grant # 259180, #287545). We especially thank The Ella and Georg Ehrnrooth Foundation for awarding the sequencing cost.
References

Bessems EPM (1973) Nitrogen fixation in the phyllosphere of Gramineae. Centre for Agricultural Publishing and Documentation

Ingestad T (1979) Mineral nutrient requirements of *Pinus silvestris* and *Picea abies* seedlings. Physiol Plantarum 45:373-380

Larimer AL, Bever JD, Clay K (2012) Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos 121:2090-2096

changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem. Sci Total Environ

Scheublin TR, Sanders IR, Keel C, van der Meer, Jan Roelof (2010) Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. The ISME journal 4:752-763

Figure legends

Fig. 1. Phylum-level distribution based on (A) the bacterial 16S rRNA gene, and (B) fungal internal transcribed spacer region sequences of *Deschampsia flexuosa* leaf and root samples expressed as relative abundance in non-mycorrhizal and arbuscular mycorrhizal (AM) fungus-inoculated plants. Values mean of six (except for AM fungus-inoculated root fungi with five replicates) replicates from each sample. OTUs were clustered at 97% similarity.

Fig. 2 Clustering pattern of bacterial (16S rRNA gene) community composition in *Deschampsia flexuosa* (A) leaves, and (B) roots in the non-mycorrhizal and arbuscular mycorrhizal fungus-inoculated plants. OTUs were clustered at 97% similarity. The weighted and constrained principal-coordinate analysis (PCoA) based on Bray-Curtis dissimilarity on standardized and square-root transformed data was performed in PRIMER software v6. The pseudo-F and p values were obtained from PERMANOVA.

Fig. 3 Log-transformed relative abundances of the significantly different (p<0.05) bacterial (16S rRNA gene) OTUs in arbuscular mycorrhizal (AM) *Deschampsia flexuosa* leaves compared to non-mycorrhizal (NM) plant leaves. The number of replicates is six. Only OTUs with a relative abundance more than 1% in at least three samples were included in the analysis. Three bacterial OTUs (OTU 00006, 00020, 00028 belonging to bacterial phylum, Firmicutes) were significantly more abundant in AM fungus-inoculated *D. flexuosa* leaves compared to NM *D. flexuosa* leaves. Another six bacterial OTUs (OTU 00001, 00010, 00017, 00033, 00035 belonging to phylum Proteobacteria and OTU 00046 belonging to bacterial phylum, Bacteroidetes) were
significantly more abundant in NM *D. flexuosa* leaves than in AM fungus-inoculated *D. flexuosa* leaves.

Fig. 4 Clustering pattern of fungal (internal transcribed spacer region) community composition in *Deschampsia flexuosa* (A) leaves, and (B) roots in the non-mycorrhizal and arbuscular mycorrhizal fungus-inoculated plants. OTUs were clustered at 97% similarity. The weighted and constrained principal-coordinate analysis (PCoA) based on Bray-Curtis dissimilarity on standardized and square-root transformed data was performed in PRIMER software v6. The pseudo-F and p values were obtained from PERMANOVA.
Figure 2: Scatter plots showing the relationship between PCO1 and PCO2 for two different treatments. The upper plot shows a significant difference between non-mycorrhizal leaf and AM leaf with a Pseudo-F = 2.0005; p = 0.044. The lower plot shows a non-significant difference between non-mycorrhizal root and AM root with a Pseudo-F = 0.8195; p = 0.582.
Figure 4

PCO2 (21.8% of total variation)

PCO1 (22.3% of total variation)

- Treatment: Non-mycorrhizal leaf
- Treatment: AM leaf

Pseudo-F = 1.1823; p = 0.308

PCO2 (16.5% of total variation)

PCO1 (37.3% of total variation)

- Treatment: Non-mycorrhizal root
- Treatment: AM root

Pseudo-F = 0.93135; p = 0.473
<table>
<thead>
<tr>
<th>Taxa</th>
<th>Diversity indices</th>
<th>Treatment</th>
<th>Leaf (mean ± SE)</th>
<th>Root (mean ± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td>Observed OTU richness</td>
<td>NM</td>
<td>62.50±7.01</td>
<td>87.67±11.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AM</td>
<td>59.17±5.70</td>
<td>75.67±5.38</td>
</tr>
<tr>
<td></td>
<td>Estimated OTU richness</td>
<td>NM</td>
<td>81.03±14.86</td>
<td>122.15±15.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AM</td>
<td>76.37±8.24</td>
<td>107.56±5.31</td>
</tr>
<tr>
<td></td>
<td>Shannon diversity index</td>
<td>NM</td>
<td>2.80±0.32</td>
<td>2.50±0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AM</td>
<td>2.77±0.21</td>
<td>2.55±0.36</td>
</tr>
<tr>
<td></td>
<td>Inverse Simpson index</td>
<td>NM</td>
<td>10.74±2.58</td>
<td>8.16±2.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AM</td>
<td>9.12±2.30</td>
<td>8.65±2.84</td>
</tr>
<tr>
<td>Fungi</td>
<td>Observed OTU richness</td>
<td>NM</td>
<td>42.33±7.49</td>
<td>30.17±2.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AM</td>
<td>38.50±6.21</td>
<td>36.20±6.70</td>
</tr>
<tr>
<td></td>
<td>Estimated OTU richness</td>
<td>NM</td>
<td>62.44±8.32</td>
<td>46.39±6.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AM</td>
<td>75.62±11.53</td>
<td>57.48±15.27</td>
</tr>
<tr>
<td></td>
<td>Shannon diversity index</td>
<td>NM</td>
<td>2.51±0.38</td>
<td>2.23±0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AM</td>
<td>2.16±0.29</td>
<td>2.28±0.30</td>
</tr>
<tr>
<td></td>
<td>Inverse Simpson index</td>
<td>NM</td>
<td>10.79±4.51</td>
<td>5.73±0.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AM</td>
<td>4.72±0.95</td>
<td>6.06±1.43</td>
</tr>
</tbody>
</table>

Table 1. Observed OTU richness, estimated OTU richness, Shannon-wiener index and Inverse Simpson index of bacterial OTUs (16S rRNA gene) and fungal OTUs (internal transcribed spacer region) in Deschampsia flexuosa leaf and root in non-mycorrhizal (NM) and arbuscular mycorrhizal (AM) fungus-colonized plants. OTUs were clustered at 97 % similarity level. Generalized linear model analyses showed that none of the differences are statistically significant between NM and AM fungus-colonized plants.
Table 2. Distance based linear model statistical test (DistLM) for correlation between microbial community composition and plant parameters (total, shoot, root dry weight and foliar nitrogen content) in *Deschampsia flexuosa* leaves (A and C) and roots (B and D). Bold letters indicate the significant correlation (p<0.05).