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À Amélie, Edith et Mercédès 



ABSTRACT 

Cayol, Claire 
Eco-epidemiology of tick- and rodent-borne pathogens in boreal forests 
Jyväskylä: University of Jyväskylä, 2017, 5  p. 
(Jyväskylä Studies in Biological and Environmental Science 
ISSN 1456-9701; 336) 
ISBN 978-951-39-7205-9 (nid.) 
ISBN 978-951-39-7206-6 (PDF) 
Yhteenveto: Puutiaisten ja jyrsijöiden levittämien taudinaiheuttajien eko-
epidemiologia boreaalisissa metsissä  
Diss. 

Infectious diseases are amongst the ten major causes of human mortality 
worldwide, 60% of them being animal-borne. Variations of abiotic and biotic 
conditions are likely to modify the transmission of parasites and pathogens 
within reservoir species, and, as a consequence, alter the zoonotic risk for 
human. My thesis aims at elucidating the dynamics and mechanisms of the 
maintenance of ticks, tick-borne pathogens (TBPs) and the Puumala hantavirus 
(PUUV) in the reservoir host, the bank vole (Myodes glareolus, BV). In Northern 
Europe, tick-borne diseases are growing in importance to human because of the 
latitudinal expansion of the tick Ixodes ricinus. Field monitoring revealed that I. 
ricinus was the only species found in the vegetation in Central Finland. The 
abundance of immature I. ricinus in nature was positively associated with the 
BV abundance. The highest risk periods for tick bites on humans were May–
June and September. Ixodes ricinus was positively associated with open water 
coverage and human density, which might offer suitable moisture conditions 
and anthropogenic modifications favouring the species. The infection of BV 
with the zoonotic B. burgdorferi s.l. was associated with the abundance of I. 
ricinus at the site, indicating that this tick species was required for the 
transmission and persistence of this pathogen. An experiment revealed, for the 
first time, that B. afzelii can modify the behaviour and the breeding success of its 
host, and these effects are both sex- and size-specific and density-dependent. 
Space-state modelling of longitudinal field data revealed that PUUV infection 
likelihood was the lowest in BV previously infested with vectors in comparison 
to Anaplasma phagocytophilum infected BV, or individuals without any previous 
infections. Altogether, this study shows how seasonality, co-infecting 
pathogens and host population density influence the risk of tick-borne 
pathogens and the zoonotic risk in Central Finland. 

Keywords: Borrelia burgdorferi s.l.; disease ecology; eco-epidemiology; Myodes 
glareolus; Puumala hantavirus; reservoir; tick-borne pathogens. 
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1 INTRODUCTION 

1.1 Epidemiology & ecological epidemiology  

1.1.1 Epidemiology 

The concept of epidemiology appeared in the scientific literature in the early 
1870s and was defined as a ‘method of reasoning about disease phenomena that 
deals with biological inferences derived from observations in populations’ 
(Lilienfeld 1978 p. 89). Epidemiological studies initially targeted humans, and 
progressed secondarily to productive livestock (Lilienfeld 1978, Martin et al. 
1987). Since the early stages of epidemiology, mathematical modelling has been 
used for the prediction and comprehension of epidemiological issues, despite 
imperfect data drawn, for instance, from imperfect diagnosis tests (Nokes and 
Anderson 1988, Keeling 2005). The basic model in epidemiology of infectious 
diseases is the susceptible/infected/recovered model (SIR), which describes the 
transition between infectious states (Fig. 1) (Anderson and May 1979, May and 
Anderson 1979, Anderson 1991). 

 

 

FIGURE 1 An example of the SIR model (after Anderson 1991). 

Basic reproduction number (R0) is another key concept in epidemiology. R0 is 
the maximum reproductive potential of a parasite between one generation and 
the next for a given naïve host population in a given environment. For instance, 
for directly transmitted pathogens, R0 depends on the pathogen transmission 
rate, the host population size, the recovery rate, the mortality rate due to 
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infection and the background mortality level in the host population (Anderson 
1991, Cooch et al. 2012, McCallum 2012). 

1.1.2 Eco-epidemiology 

The alterations that contribute to the development of disease take place at the 
molecular level, at the anatomical level, at the population level, while including 
interactions within and between populations, and the environment. The need 
for epidemiological studies to encompass all these components was theorised in 
the 1990s, with the emergence of the field of eco-epidemiology (Susser and 
Susser 1996). The environment plays a key role in the dynamics of human 
infectious diseases. Indeed, a large majority of pathogens can infect several host 
species. In particular, 60% of human pathogens are naturally maintained in an 
animal species, with the majority of them being found in a wild species (Taylor 
et al. 2001, Woolhouse et al. 2001). The dynamics of a wild host population and 
its pathogens are intertwined in permanent interactions (Anderson and Thresh 
1988, Begon 2009). Understanding the dynamics of a pathogen in its wild host(s) 
and clarifying the circumstances for human exposure and infection is critical, 
especially in the context of fast and global environmental change (Anderson 
1991, Tompkins and Wilson 1998).  

In my thesis, I investigate the ecology of infectious diseases in a natural 
host, with an emphasis on zoonotic pathogens. The aim of my work is to 
understand the ecological processes that lead to the establishment and 
maintenance of zoonotic pathogens in their natural hosts. The host studied is 
the bank vole (Myodes glareolus), and the pathogens are the directly transmitted 
Puumala hantavirus, and the tick-borne pathogen Borrelia burgdorferi s.l. 

1.1.3 The need for eco-epidemiology in an era of biological safety 

After the consolidation of the germ theory of diseases in the 19th century, by 
Louis Pasteur and Robert Koch, the fields of bacteriology and infectious 
diseases rapidly evolved, creating a sense that human infectious diseases would 
be eradicated in the 20th century (Lederberg 2000). The discovery of antibiotics 
in the 20th century, the globalisation of vaccination, the development of 
sterilisation, and pasteurisation fostered a feeling of biological safety 
(Lederberg 2000, Bush 2010). However, recent developments (outlined below) 
have demonstrated that the issue of infectious diseases is more complex than 
expected and far from resolved.  

One of the main uncertainties concerning the future of infectious diseases 
is linked with temperature variations associated with global climate change. 
Temperature is clearly identified as a potential driver of virulence in pathogens 
(Harvell et al. 2002, Blanford et al. 2003, Mitchell et al. 2005, Semenza and Menne 
2009). Nevertheless, predicting the effect of climate change on infectious risk is 
challenging, and, given that the effect of warmer temperatures on hosts and 
pathogens are species-specific and can be divergent (Lafferty 2009), this 
requires in-depth studies for individual host–pathogen systems. In the case of 
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tick-borne pathogens (TBP), the association of a milder climate with increased 
deer populations might modify the geographical distribution of ticks in 
Northern Europe, bringing vectors and their pathogens to naïve populations 
(Jaenson et al. 2012, Medlock et al. 2013). The speed and intensity of human 
movements can favour rapid and large-scale circulation of infectious agents and 
vectors (Tatem et al. 2006, Kilpatrick and Randolph 2012). Specifically, human 
migrations linked with climate change are expected to cause a redistribution of 
pathogens (Martens and Hall 2000, Soto 2009, Black et al. 2011).  

Moreover, socio-economic conditions can participate in the spread of 
infectious diseases (Godfrey and Randolph 2011). For instance, the opening of 
new export markets for berries and mushrooms in Central Europe have 
modified human behaviour, leading to increased human exposure to ticks in 
areas where the tick-borne encephalitis virus (TBE) is prevalent (Randolph 
2010). Furthermore, several factors can result in the emergence of new 
infectious human diseases in an area. Real emergence occurs when pathogens 
affecting animal species jump the species barrier and affect humans (Cleaveland 
et al. 2001, Haydon et al. 2002, Woolhouse et al. 2005, Childs et al. 2007). These 
real emergences can occur when land-cover or land-use are altered and contacts 
between humans and wildlife are increased (Daszak et al. 2001, Bradley and 
Altizer 2007, Karesh et al. 2012, Brearley et al. 2013). On the other hand, 
geographical emergence occurs when pathogens are encountered in new areas, 
after introduction and acclimation of pathogens or their vectors (Randolph and 
Rogers 2010, Kilpatrick and Randolph 2012). 

Additionally, it has been hypothesised that biodiversity loss is likely to 
increase the risk of infectious disease (Keesing et al. 2006, Wood et al. 2014). For 
example, this hypothesis was verified in North America, where an altered 
biodiversity increased the risk of Lyme borreliosis (Ostfeld and Keesing 2000, 
Logiudice et al. 2008). Finally, bacterial resistance to antibiotics and 
immunosuppressive diseases such as AIDS create conditions for the 
maintenance of infectious diseases (Karesh et al. 2012, Lewis 2012). In summary, 
in the 21st century, we are faced with the persistence of old infectious disease 
issues (e.g. tuberculosis), and the emergence and circulation of new infectious 
pathogens on a global scale (e.g. SARS) (Han et al. 2016).  

1.2 A theoretical framework for infection in natural hosts 

Some pathogens affect only their natural host, but the large majority of 
pathogens can affect several host species (Woolhouse et al. 2001). In 
epidemiology, a reservoir can be defined as ‘one or more natural host 
populations epidemiologically connected, where the pathogen is maintained 
and from which the pathogens are transmitted to the “target” population, or 
species of concern, generally human or domestic species (Haydon et al. 2002 p. 
1469).  
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Pathogens that are naturally maintained in a host population are in a 
dynamic balance between exploitation of the host resources and host defences. 
This equilibrium reflects a co-evolutionary process between the host and the 
pathogen (Combes 2001, Schmid-Hempel 2011, Medzhitov et al. 2012). The 
exploitation of the host resource by a pathogen (so-called pathogen virulence) 
and the defence deployed by the infected organism are energetically costly for 
the host (Schmid-Hempel 2011). They can generate fitness loss in the host that 
might be translated into host and pathogen population dynamics (Anderson 
and May 1979, May and Anderson 1979, Hudson et al. 2002, Cattadori et al. 2005, 
McCallum 2012, Patterson et al. 2013). For example, the population cycles 
observed in some red grouse populations are caused by the infestation with the 
parasitic nematode Trichostrongylus tenui (Hudson et al. 1998, Tompkins and 
Begon 1999, Burthe et al. 2006). Nevertheless, the theory of virulence predicts 
that optimal pathogen virulence is a moderate level of host exploitation, which 
allows pathogen transmission, but which does not exclude some detrimental 
effect to the host (Schmid-Hempel 2011). Moreover, pathogen virulence varies 
with host characteristics, with the pathogen itself and with the environment. 
The disease triangle theorises the interaction within this triad (Scholthof 2007 
see Fig. 2). For example, temperature variation or resource availability can affect 
the host–pathogen relationship (Blanford et al. 2003, Wolinska and King 2009). 
As a result, the way a pathogen can alter the Darwinian fitness (survival and 
reproductive success) of its host is not absolute but can vary depending on the 
host and the environment. In my thesis, I explore the effect of abiotic and biotic 
variations on infectious diseases in a wild rodent host, with an emphasis on the 
host population density and parasitic coinfections. 

FIGURE 2 The disease triangle (after Scholthof 2007). 

Environment

Pathogen virulence

Host
Gender, age, reproductive status,
behaviour
Genetics
Immune response
Symbiont
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1.3 Coinfections 

Hosts are typically infected with different parasites and pathogens that can 
coexist in a stable community (May and Nowak 1995, Petney and Andrews 
1998). The composition of the parasite community is not random but depends 
on the host and the environment (Lello et al. 2008). Moreover, the composition 
of the parasite community is structured by interactions among members of this 
community (Petney and Andrews 1998). Ecosystem ecology gives a useful 
framework to study these interactions. In this approach, the host is considered 
as an ecosystem where various species of pathogens and symbionts interact. 
The host constitutes the environment, the resource and the host’s immune 
system constitutes the predator for the species in the community (Rynkiewicz et 
al. 2015). Similar to ecosystems, resource-based interactions (e.g. competition for 
resource or space) and predator-based interactions (by the host’s immune 
system) shape the parasite species community (Graham 2008, Telfer et al. 2010). 
Consequently, current and previous infections determine the physical and 
immunological environment in which a new parasite will attempt to establish 
(Pedersen and Fenton 2007, Behnke 2008, Telfer et al. 2010). 

1.4 The specificities of vectorial transmission 

1.4.1 Vectorial transmission  

Vector-borne transmission is an indirect horizontal transmission route that 
involves a vector, generally a hematophagous arthropod, which transmits 
pathogens among hosts during its blood meal (Antonovics et al. 2017, Wilson et 
al. 2017). Vectors usually have a limited effect on the fitness of their hosts 
(Hersh et al. 2014, Wilson et al. 2017 but see Lehmann 1993, Norte et al. 2013). 
Vectorial transmission introduces a layer of complexity into pathogen 
transmission and dynamics. Indeed, the relationship between vectors and their 
pathogens is likely to influence the transmission of these pathogens to the 
vertebrate host (Sonenshine 1994). Vector competency, i.e. the ability of the 
vector to acquire and transmit an infection, varies with the vector species, the 
pathogen species and with physiological and ecological factors (Sonenshine 
1994). Moreover, the population dynamics of the vector have a direct influence 
on the dynamics of the pathogens transmitted. Vectors are ectothermic, which 
means that they are sensitive to environmental conditions, and their occurrence 
is commonly seasonal and limited to geographical areas that offer optimal 
habitat, abiotic conditions and suitable hosts (Sonenshine 1994, Reisen 2010). As 
a result, the dynamics of vector-borne infections mostly follow the seasonality 
and geographical range of their vectors (Reisen 2010).  
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1.4.2 Ticks as vectors 

1.4.2.1 Life cycle 
Ticks (Acari: Ixodoidea) are considered the primary vector of infectious diseases 
in the Northern Hemisphere in humans and domestic animals (Sonenshine 1994, 
Estrada-Peña and Jongejan 1999). The superfamily Ixodoidea comprises 
approximately 900 species (Guglielmone et al. 2013). Here, we will illustrate the 
characteristics of ticks as vectors, with two examples of hard ticks (Ixodidae): 
Ixodes ricinus, the most important vector in Europe, and I. trianguliceps (de la 
Fuente et al. 2008, Pfaffle et al. 2013). Both species present lifecycles with three 
life-stages (larvae, nymphs and adults), and for both species, the transition from 
one stage to another requires a blood meal on a vertebrate host. Ixodes ricinus is 
a generalist or bridge species, which feeds on various hosts (see Fig. 3), whereas 
all stages of I. trianguliceps feed on small mammals (Cotton and Watts 1967, 
Ulmanen 1972, Randolph 1975a, Gray 1982, Dobson et al. 2011, Schmidt et al. 
2011). The monitoring of small vertebrate species provides an insight into the 
dynamics of immature life-stages of I. ricinus (Pfaffle et al. 2013). 

 

FIGURE 3 Ixodes ricinus life cycle (drawn based on Gray 1982, Randolph 1998, 
Estrada-Peña et al. 2005, Gray et al. 2016). 

Ticks are characterised by a long lifespan (several years), but the relative length 
of interaction with the vertebrate host is short (Randolph 1998). As a result, a 
large part of the tick life cycle is spent in a free stage in the environment. In the 
case of I. ricinus, the environment is the vegetation (during the host-seeking 
phase, so-called “questing”) or the soil or litter (during the moulting, diapause 
or rehydration phases). When I. trianguliceps are in the free stage, they live 
inside rodents’ burrows (Cotton and Watts 1967, Randolph 1998, Dobson et al. 
2011). Ixodid ticks have very limited mobility, and their dispersion relies 
mainly on their host (Randolph 1998). They are extremely sensitive to abiotic 
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conditions, such as temperature (which determines their development rate) and 
humidity (which determines their survival), and depend on host availability 
(Daniel et al. 1977, Randolph and Storey 1999, Estrada-Peña et al. 2004, Ogden et 
al. 2004, Randolph 2004). As a result, their occurrence in time and space is 
extremely scattered (Estrada-Peña 2003, Randolph 2004, Dobson et al. 2011, 
Perez et al. 2016). When abiotic conditions are not favourable, Ixodid ticks can 
enter diapause, which delays their activity (and infectious potential) for several 
months or even years (Gray 1982, Belozerov et al. 2002, Ogden et al. 2004, Gray 
et al. 2016). 

1.4.2.2 Hosts and pathogens 
The distribution of ticks in their host population is not random: generally, 20% 
of the host population carries 80% of the tick population (Randolph 1975b, 2009, 
Randolph et al. 1999). Indeed, host sex, age and immunological status, fitness 
and behaviour modify the exposure and susceptibility to ticks (Nilsson 1988, 
Hughes and Randolph 2001, Randolph 2009, Harrison and Bennett 2012). 
Pathogen transmission occurs during the blood meal from a contaminated host 
to a tick and from a contaminated tick to a naïve host. Moreover, co-feeding 
transmission, i.e. the transmission of pathogens between one infected tick 
(typically a nymph) and one naïve tick (typically a larva) feeding concomitantly 
on the same uninfected host, has been described (Rais and Gern 1996, Labuda et 
al. 1997, Voordouw 2015). This transmission route is essential for the persistence 
of pathogens with transient viremia in the host, such as that which occurs in 
TBE. The synchronous activity of larvae and nymphs dictates the occurrence of 
this pathogen in nature (Rais and Gern 1996, Labuda et al. 1997, Randolph 2008a, 
2009, Nonaka et al. 2010, Voordouw 2015).  

1.4.2.3 Basic reproductive number for TBP 
The singularities of ticks as vectors generates many non-linearities in the tick-
borne transmission route (Randolph 1998, 2008a). The basic transmission rate 
for tick-borne pathogens reflects these non-linearities, and highlights the need 
for knowledge on tick life-cycle and tick and host abundance in an area to 
predict the transmission of tick-borne pathogens in this area:  

 

, 
 

where N/H = ratio vector to host,  = probability of a tick feeding on a 
vertebrate host, VT = pathogen transmission coefficient from vertebrate host to 
tick, TT = pathogen transmission coefficient within the tick, TV = pathogen 
transmission coefficient from tick host to vertebrate host, p = tick daily survival 
probability, n = tick interstadial development period (days), F = tick 
reproduction rate, h = vertebrate host daily mortality rate, r = daily rate of loss 
of infectivity in the vertebrate host (Randolph et al. 1999, Hartemink et al. 2008, 
Harrison et al. 2011, Tonetti et al. 2015). 
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1.4.3 Focus on Borrelia burgdorferi s.l. 

1.4.3.1 The human disease 
Lyme disease caused by Borrelia burgdorferi s.l. is considered the most common 
vector-borne disease of the Northern Hemisphere nowadays (Hubalek and 
Halouzka 1997, Piesman and Gern 2004, Randolph 2009). The disease was 
described in the 1970s in the USA, but it is suspected that it had been present in 
North America before the arrival of the first European settlers (Burgdorfer et al. 
1983, Barbour and Fish 1993). In Europe, erythema chronicum migrans, a 
pathognomonic skin rash that expands centrifugally, was first described in 1908 
by the Swedish physician Arvid Afzelius (Burgdorfer et al. 1983). Since then, 
Lyme disease has been reported in 26 European countries with variations in the 
type of manifestation, severity and frequency of the disease. These diverse 
clinical forms have been linked to the genetic diversity of the B. burgdorferi s.l. 
complex (Piesman and Gern 2004). B. burgdorferi s.s. shows tropism for joints 
and causes arthritis, B. afzelii is responsible for skin diseases and B. garinii 
infects the nervous system and is associated with neurological disease (Wang et 
al. 1999, Piesman and Gern 2004, Stanek et al. 2012). While the cycle of Borrelia 
is maintained in nature by hard ticks and a broad spectrum of vertebrate host 
species, humans are considered as dead-end hosts, and some domestic animals, 
such as dogs, are regarded as incidental hosts not involved in the enzootic cycle 
of the bacteria (Radolf et al. 2012). Larvae are generally disease free, hence 
nymphs appear to be the most effective stage for the transmission of B. 
burgdorferi s.l. to humans due to their small size and short feeding periods 
(Bunikis et al. 2004a, Stanek et al. 2012, Hajdušek et al. 2013).  

1.4.3.2 The bacterium 
The Borrelia burgdorferi sensu lato complex belongs to the spirochetes phylum, 
which is characterised by flagellated helically shaped bacteria (Barbour and 
Hayes 1986). The complex has large genetic diversity, although the genetic 
variation is more important in Europe compared with North America (Piesman 
and Gern 2004, Margos et al. 2011, Franke et al. 2013). Within the Borrelia 
burgdorferi complex, 20 genospecies have been described, and seven are 
involved in public health issues (Piesman and Gern 2004, Wodecka et al. 2010, 
Rudenko et al. 2011, Radolf et al. 2012, Franke et al. 2013). The bacteria is 
transmitted between vertebrate hosts by at least four species of hard ticks 
(Bunikis et al. 2004a, Radolf et al. 2012). Strain diversity is also described, based 
on the polymorphism of the outer protein OspC, for example (Brisson and 
Dykhuizen 2004, Bunikis et al. 2004a). About 20 OspC major groups (oMG) can 
be defined in each Borrelia genospecies, with distinct levels of pathogenicity 
and lack of cross-immunity between strains, which makes vaccination strategies 
complicated (Baranton et al. 2001, Bunikis et al. 2004b, Baum et al. 2012). 
Infection with multiple strains is common in the vertebrate host (Bunikis et al. 
2004a, Andersson et al. 2013, Durand et al. 2015).  
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1.4.3.3 Ecological epidemiology 
The occurrence of Lyme disease in an area requires the presence of competent 
vectors and competent wild reservoir hosts (Barbour and Hayes 1986, Gray 
1998). The maintenance of Borrelia in nature is permitted by permanently 
infected hosts and overwintering ticks (Bunikis et al. 2004b). In the tick vector, 
the infection is maintained transtadially, but there is no transovarial 
transmission (Bellet-Edimo et al. 2005). The observed rate of infection in 
nymphs is 25%, and it is 50% in adult ticks, which can acquire infection from 
the nymph stage or can retain it from the larval stage (Barbour and Fish 1993, 
Randolph 2009). Species community structure is critical when defining the risk 
of Lyme disease in an area. Rodents, insectivores and birds are keystone species 
in Borrelia transmission and maintenance (Franke et al. 2013). In the rodent host, 
the infection with Borrelia is permanent, and it generates an early (IgM) and 
late and permanent (IgG) immune response (Magnarelli et al. 1988, 1997, 2006, 
2013, Schwan et al. 1989). Medium- and large-sized mammals can also be 
involved in the cycle. Lizards play the main role in the cycle of B. lusitaniae, 
whereas the rodent-associated B. afzelii has also been detected in bird-feeding 
ticks (Kurtenbach et al. 1998, Gern 2008, Franke et al. 2013).  

The presence of species competent for ticks but incompetent for borrelia 
modifies the prevalence of the bacteria in ticks, as well as the presence of 
enzootic cycles involving other non-bridge vector species (Barbour and Fish 
1993). For example, deer are important hosts for the dynamics of ticks but are 
incompetent for Borrelia; therefore, they have a negative impact on Borrelia 
prevalence in questing ticks (Tälleklint and Jaenson 1996a, Franke et al. 2013). 
Because of variation in host competence in Borrelia, the concept of the dilution 
effect was defined as the reduced infection prevalence in ticks found in 
ecosystems with high species diversity. As a result, high species diversity 
reduces the risk of disease for humans (Ostfeld and Keesing 2000, LoGiudice et 
al. 2003, Keesing et al. 2006).  

1.5 The bank vole as a reservoir 

1.5.1 Why rodents?  

Rodents are efficient reservoirs of zoonotic pathogens, with around 11% of 
rodent species carrying 85 unique zoonotic pathogens (Meerburg et al. 2009, 
Han et al. 2016). Moreover, around 40% of rodent reservoir species are 
considered hyperreservoirs, i.e. they carry more than one zoonotic pathogen 
(Han et al. 2015). This overrepresentation of rodents in reservoir species is 
explained by the large species richness found in the order and by their 
ubiquitous distribution favouring frequent contact with humans (Han et al. 2015, 
Meerburg 2015). Within the order, species with fast life-history and early and 
frequent reproduction are the most efficient reservoirs of zoonotic pathogens 
(Han et al. 2015, 2016). 
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1.5.2 The bank vole 

The bank vole, Myodes glareolus, is a ubiquitous rodent species widely 
distributed in western Palearctic forests from France to Central Asia and from 
Southern Spain to South-West Ireland (Wilson and Reeder 2005). Bank voles 
occupy a wide range of habitats, but they are commonly found in woodland 
with dense plant cover, which provides food and shelter against predators 
(Tanton 1969, Mazurkiewicz 1994, Bellamy et al. 2000, Torre and Arrizabalaga 
2008). In Northern Europe, they inhabit coniferous spruce forests where they 
feed mainly on epiphytic lichen and to a lesser extent on berries and seeds (Viro 
and Sulkava 1985). Classified as least concern in the IUCN Red List of 
Threatened Species (Amori et al. 2008), the bank vole is considered as a 
potential pest in many European countries, due to damage to seeds and young 
trees (Hansson and Zejda 1977, Huitu et al. 2009). Bank voles are polyandrous, 
and females optimise their fitness by mating several times and with high-
quality males (Oksanen et al. 1999, Ratkiewicz and Borkowska 2000, Klemme et 
al. 2007, 2008, Borkowska 2010). In Fennoscandia, reproduction takes place from 
mid-May to mid-September, and young females can postpone their 
reproduction to the next breeding season (Cayol  et al. unpub., Wiger 1979, 
Kaitala et al. 1997, Prévot-Julliard et al. 1999, Koivula et al. 2003, Kallio et al. 
2015). Male bank voles have large home ranges that connect with other male 
home ranges and that cover the territories of several females. Females are 
mainly territorial, and their territories can be contiguous but do not overlap 
(Bondrup-Nielsen and Karlsson 1985, Ims 1987, Koskela et al. 1997).  

1.5.3 Population dynamics 

In some regions of their geographic range, bank vole populations show large 
cyclic fluctuations of their population size (Middleton 1930, Krebs and Myers 
1978, Hansson and Henttonen 1985). A north–south geographic gradient in 
regularity and amplitude of these fluctuations variation has been described, 
with the northernmost Fennoscandian populations showing the highest 
amplitude of fluctuations (Hansson and Henttonen 1985, Hansson et al. 2000). 
cduring the decline phase of a cycle might participate in the reduction of 
population abundance directly, or through interactions with predators or food 
supply (Soveri et al. 2000, Hakkarainen et al. 2007, Huitu et al. 2007, Forbes et al. 
2015). The mechanism of the cycle consists of lower survival in young 
individuals between the peak and decline phases of the cycle in late summer 
and early autumn (Norrdahl and Korpimäki 2002). Recently, an attenuation in 
the intensity and amplitude of the cycles has been observed in several cyclic 
populations (Ims et al. 2008, Cornulier et al. 2013). 

1.5.4 Population dynamics & reservoir competence 

My thesis tackle the eco-epidemiology of the Puumala hantavirus (PUUV), a 
zoonotic virus hosted by the bank vole, which is responsible for haemorrhagic 
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fever with renal syndrome in humans (Brummer-Korvenkontio et al. 1980, 
Vapalahti et al. 2003). Moreover, more than 100 species of ectoparasites have 
been found in small mammals in Fennoscandia, including ticks and fleas 
(Brinck-lindroth et al. 1975). My study focuses on Borrelia spp., presented above, 
and on three other vector-borne pathogens: Anaplasma phagocytophilum, Babesia 
microti, Bartonella spp. The genus Bartonella encompasses a large group of 
proteobacteria that can be transmitted through both flea and tick bites (Bown et 
al. 2004, Chan and Kosoy 2010, Reis et al. 2011, Buffet et al. 2013). The bacteria 
cause transient infection of erythrocytes (Bown et al. 2004, Telfer et al. 2007). 
Anaplasma phagocytophilum is a Gram-negative obligate intracellular bacteria 
from the family Anaplasmataceae (Doudier et al. 2010, Rar and Golovljova 2011). 
Anaplasma phagocytophilum has the ability to manipulate or highjack the host 
immune response and can then thrive inside the immune cells. The main cells 
targeted are neutrophil granulocytes, the first line of the innate immune 
response against infectious diseases (Bown et al. 2003, Kumar and Sharma 2010, 
Rikihisa 2010, Rar and Golovljova 2011). The protozoa Ba. microti causes 
permanent infection in erythrocytes (Chauvin et al. 2009, Yabsley and Shock 
2013). 

The potential role of infectious diseases on their host population density 
has been discussed above. However, the way a disease will develop and affect a 
host (or level of pathogen virulence) in a particular host population density also 
deserves attention from disease ecologists. First, the transmission of many 
pathogens is density-dependent (Anderson and May 1979). Second, a high host 
population density can generate intra-specific competition for limited resources, 
such as space, food and mating partners (Krebs 1970, Ostfeld 1985, Ostfeld et al. 
1993, Bown et al. 2009). Therefore, in a high population density, more aggressive 
interactions and higher stress levels are expected (Wolff 1993, Koskela et al. 1997, 
Bartolomucci 2007, Kallio et al. 2007, Forbes et al. 2016). High host density is 
therefore expected to exacerbate pathogen virulence (Kallio et al. 2007, 2015, 
Burthe et al. 2008, Beldomenico and Begon 2010). A possible vicious circle 
between host condition (linked, for example, with population density) and 
disease susceptibility has been highlighted (Beldomenico and Begon 2010). 
However, Wilson et al. (1998, 2002) have demonstrated the opposite assumption 
in insect species. For this hypothesis, natural selection should favour 
individuals that invest more in mechanisms of resistance as population density 
increases. Consequently, susceptibility to disease should decline when 
population density is high (Wilson and Reeson 1998, Wilson et al. 2002).  

1.5.5 The PUUV 

Puumala hantavirus (PUUV; genus Hantavirus, family Bunyaviridae) is a 
zoonotic virus occurring in large part of Europe and western parts of Russia 
(Vapalahti et al. 2003, Olsson et al. 2010, Heyman et al. 2011). The genus 
Hantavirus contains species associated with different species of micromammals 
from all continents excepted the Oceanian region (Henttonen et al. 2008, 
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Yanagihara et al. 2014). Around 20 species from the genius are considered as 
zoonotic (Jonsson et al. 2010).  

Every year, thousands of human cases of nephropathia epidemica, a mild 
form of haemorrhagic fever with renal syndrome, are recorded in human in 
Europe (Brummer-Korvenkontio et al. 1980, Vapalahti et al. 2003). The disease is 
endemic to Northern Europe, with between 1500 and 2000 human cases 
reported in Finland every year (Rose et al. 2003, Vapalahti et al. 2003). The 
disease pattern reflects the host population dynamics: epidemic events follow 
rodent outbreaks (Mills and Childs 1998, Olsson et al. 2003, Davis et al. 2005, 
Kallio et al. 2009, Voutilainen et al. 2016). Because of possible complication 
during the acute phase of the disease and long term complications, the impact 
of PUUV on public health is non-negligible (Makary et al. 2010, Vaheri et al. 
2013). 

In the rodent host, the virus is horizontally transmitted, by the respiratory 
route or direct contact (Meyer and Schmaljohn 2000, Vapalahti et al. 2003). 
Direct and indirect contacts between individuals, resulting from e.g. mating, 
aggressive encounters, communal nesting or high population density increase 
the likelihood of PUUV infection (Escutenaire et al. 2002, Olsson et al. 2002, 
Voutilainen et al. 2016). Since viral particles can persist in the environment for 
several weeks, transmission can also be delayed (Kallio et al. 2006a). Individuals 
remain infected for their lifetime, and infected individuals mount a lifelong 
antibody response, which peaks 4–5 weeks after infection (Yanagihara et al. 
1985, Voutilainen et al. 2016). Protective maternal antibodies postpone infection 
in young individuals for up to 80 days (Kallio et al. 2006b, 2010, 2013, 
Voutilainen et al. 2016). 

1.6 Aim and scopes of the thesis 

The global scope of my thesis is the ecology of infectious and parasitic diseases 
in nature, with an emphasis on zoonotic pathogens. My ultimate goal is to 
inform about the zoonotic risk and to generate epidemiological knowledge for 
public health purposes. In this respect, this work can be seen as part of the One 
Health initiative, an integrative framework that aims to reduce the risk of 
infectious diseases at the animal–human–ecosystem interface (Zinsstag et al. 
2011, Dantas-Torres et al. 2012). My thesis focuses on host–parasite interactions 
and on the ecological processes that lead to the establishment and maintenance 
of pathogens in their natural hosts. This work will therefore contribute to the 
understanding of infection dynamics in a wild host, in relation to seasonal 
biotic, abiotic variation and cyclic fluctuations of the host population. 
Ubiquitous rodents such as voles are ideal species for epidemiological studies. 
They feed several ectoparasite species and host a large range of potentially 
zoonotic micro-pathogens, including vector-borne pathogens. The geographical 
repartition of the main European tick vector is undergoing both short- and 
long-term changes particularly visible on the northern edge of its distribution, 
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for instance, in Northern Europe. My study contributes to the understanding of 
these dynamics in Fennoscandia, at the edge of geographical range of the main 
European tick species.  

With this in mind, in the first chapter of the thesis, I identify the tick 
species present in the vegetation and on bank voles in our study area of Central 
Finland. I explain their temporal dynamics, while taking into account abiotic 
variation and host population dynamics. I discuss similarities between our 
study system and the nearest systems studied (Southern Finland and Southern 
Sweden) (Tälleklint and Jaenson 1997, Sormunen et al. 2016, Laaksonen et al. 
2017). Since studies concerning ticks in Finland are scarce, I contribute to the 
knowledge of the dynamics of tick vectors in Fennoscandia.  

Since the first chapter characterised the tick species present, in the second 
chapter of this thesis, I explain the local distribution of the two tick species 
found in our study area, with respect to habitat characteristics and anthropic 
pressures. Vector diversity and interactions between coinfesting ectoparasites 
can impact pathogen diversity (Cumming and Guégan 2006); I thus elucidate 
the consequences of co-existing vector species for the circulation of several 
vector-borne pathogens, especially the zoonotic pathogen Borrelia burgdorferi s.l., 
in the rodent host. 

In the third chapter of the thesis, I test experimentally the hypothesis that 
the infection with Borrelia afzelii can impair the fitness of its natural host. In 
doing so, I shed new light on the intimate relationship between the TBP B. afzelii 
and its rodent host. Parasites take advantage of the resources of their hosts and 
can therefore impair the fitness of their host. As a result, they exert a selection 
pressure on the host population. Moreover, altering the host fitness might 
modify the dynamics of the pathogen itself. In this chapter, I clarify the 
consequences of the infection with B. afzelii on the fitness of its main rodent host, 
the bank vole, in varying environmental conditions.  

In the fourth chapter of the thesis, I acknowledge that single infections 
rarely exist in nature and that most hosts are infected with several pathogens 
simultaneously. Concomitant infections modify the physical and 
immunological framework in which a new pathogen will attempt to establish 
(Telfer et al. 2008, 2010). I address the risk of infection of the bank vole with the 
Puumala hantavirus, an endemic zoonotic virus in Finland, while taking into 
account preceding infection status with ticks, fleas and three vector-borne 
pathogens. The study of coinfection is challenging, and there is a dire need for 
new analytical tools. I propose a state-space model with a Bayesian approach, a 
thus-far underused technique in the study of coinfections.  



 

2 METHODS 

2.1 Longitudinal capture-mark-recapture (CMR) 

There are several advantages to repeating capture and sampling of identified 
individuals from a population over time (so-called individual longitudinal 
sampling) (Clutton-Brock and Sheldon 2010). This sampling strategy controls 
for genetic variability and removes some inter-individual noise (Cohen et al. 
2015). Moreover, longitudinal trapping reflects causality well, as the 
observation at a given sampling point can be related to previous observations 
(Telfer et al. 2008, Cohen et al. 2015). These trapping strategies are indispensable 
in disease ecology to unravel patterns of pathogen transmission in the natural 
environment, as an alternative to or together with experimental infections 
(Hofmeister et al. 1999, Birtles et al. 2001, Bunikis et al. 2004b, Telfer et al. 2007, 
2008, Behnke 2008, Fenton et al. 2014). New tools, such as Markov models or 
state-space models, allow hidden processes responsible for the observations to 
be inferred from this longitudinal data (Clark and Bjørnstad 2004, Cooch et al. 
2012, Buhnerkempe et al. 2015).  

Chapters I, II and IV of my thesis are based on longitudinal field 
monitoring of wild populations of bank vole populations from Central Finland. 
Chapter I is based on a four-year longitudinal rodent monitoring study in urban 
forests (2012–2015). Chapter II analyses data from a one-year longitudinal 
rodent monitoring study in urban and semi-urban forests (2012). Chapter IV 
was based on a two-year longitudinal monitoring study, but only one year is 
included in the analysis (See also Fig. 4). All trappings took place between snow 
melt (May) and first snow (November).  

In all longitudinal monitoring studies, bank voles were live-trapped with 
Ugglan Special multiple-capture live traps (Grahnab Company, Sweden) 
monthly (or every 4 weeks in study IV). Each trapped individual was identified 
with a microchip inserted under the skin at the first capture. Biometric 
measurements were taken at each capture. These consisted of body mass and 
head width measurements. Each individual was sampled for blood and tissue. 
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Ectoparasite presence and abundance were assessed (ticks and fleas). In 
Chapters I and II, all the ticks identified from the fur were removed and stored 
in alcohol. In study IV, ticks were counted but not removed. Thereafter, all 
trapped individuals were released back to their capture area.  

In addition, questing ticks were collected from the vegetation using the 
flag dragging technique in Chapters I and II. All ticks collected (from voles or 
vegetation) were identified to species and life-stage levels under a binocular 
microscope, using standard morphological identification keys (Arthur 1963, 
Filippova 1977, Snow 1978).  

 

 

FIGURE 4 Summary of the longitudinal trappings, with locations (Map data2017 
Google). 

2.2 Pathogens identification 

Laboratory screening was performed from the samples collected for the 
detection of infection with PUUV, A. phagocytophilum, Ba. microti, Bartonella spp. 
and B. burgdorferi s.l. The detection of PUUV relied on an indirect test, based on 
antibody detection. DNA of A. phagocytophilum, Ba. microti, Bartonella spp. was 
detected from DNA extracted from blood or skin samples (See Table 1). 
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TABLE 1 Laboratory techniques used for the detection of pathogens from bank voles. 

Pathogen Sample; DNA extraction Detection method Reference 

PUUV Whole blood; No DNA extraction immunofluorescent 
antibody test (IFAT) 

(Kallio-Kokko 
et al. 2006) 

A. phagocytophilum Whole blood; alkaline extraction, 
dilution (1:50) (Bown et al. 2003) qPCR (Courtney et al. 

2004) 

Ba. microti Whole blood; alkaline extraction, 
dilution (1:50) (Bown et al. 2003) qPCR (Bown et al. 

2008) 

Bartonella spp. Whole blood; alkaline extraction, 
dilution (1:50) (Bown et al. 2003) qPCR (Diaz et al. 

2012) 

B. burgdorferi s.l. Skin; Laird extraction  
(Laird et al. 1991) nested PCR (Wodecka et al. 

2009) 

2.3 Covariates and modelling 

In Chapter I, the abiotic conditions during tick flagging days (daily average 
humidity (in percent) and daily average temperature (in °C)) were collected. 
Data originated from records at the nearest meteorological station located few 
kilometres from the study sites. We modelled the abundance of tick life stage by 
tick species on rodents and in the vegetation with general linear mixed models 
(GLMM), as a function of seasonality (Month and Year) or abiotic conditions 
during flagging, of bank vole abundance, and of abundance of other life stages. 
We modelled the tick burden on bank voles while taking into account season, 
individual bank vole characteristics, the presence of other ectoparasite species 
or life-stages, and bank vole abundance.  

For Chapter II, infection with A. phagocytophilum, B. microti and B. 
burgdorferi s.l. were detected. Pathogens detection was cross-sectional and 
occurred only at the first capture. Moreover, we computed the inland open 
water coverage (in ha) or “open water coverage” around the trapping area 
(including lakes, ponds and rivers) in a circular area with a 1 km radius (3.14 
km2) around each trapping area. Within the same circular area, we computed 
the “human density” in humans per km2, using the database LandScan (Dobson 
et al. 2000). We used a GLMM to model the relationship between questing tick 
abundance, human density and open water coverage in an area. We also 
explained tick parasitism on bank voles with the same covariates. At the 
individual level, we explained tick presence and infection on bank voles with 
the three pathogens mentioned above, especially with B. burgdorferi s.l., with 
individual characteristics (sex, body mass), presence of the two tick species 
found and presence of other pathogens.  

In Chapter IV, the infection status with PUUV, A. phagocytophilum, Ba. 
microti, Bartonella spp. and tick and fleas was detected at each capture for each 
individual. A state-space model was computed. The model contained two 
layers. First, an observation level: for instance, the capture of an individual at 
session t infected or uninfected, according to the results of the diagnosis test. 
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Second, a process level, including hidden processes such as the transmission of 
pathogens from their vectors and assay performance. The processes were based 
on SI models for infections and infestations. These models allowed the inference 
of the likelihood of infection with PUUV at time t knowing infection and 
infestation statuses with other pathogens at t-1. Moreover, transmission rates of 
all pathogens, recovery rates, trappability and survival were assessed. Finally, 
prevalence and incidence (for permanent infection) were also derived from the 
model.  

FIGURE 5 (a) Wild-caught bank vole released in its capture area after measurements 
and sampling. (b) Ugglan Special multiple-capture live-traps, prebaited 2 to 3 
days before capture to optimise trapping efficiency. (c) Typical spruce domi-
nated forest. (d) Questing Ixodes tick. (Photographs by C. Cayol). 

2.4 Experimental infection in semi-natural conditions 

In Chapter III, we experimentally infected adult bank voles from a laboratory 
colony with Borrelia afzelii. We monitored infected and uninfected individuals 
(sham-treated) released in vegetated outdoor enclosures for 18 days, in high 

 

 

(a) (b) 

  
(c) (d) 
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and low population densities. We monitored survival, physiological parameters 
(body mass, body fat content, ankle width, haematocrit and Borrelia IgG 
antibody concentration), reproductive success (‘probability of reproduction’, 
‘male siring success’, ‘male fertilization success’, ‘female whelping success’, 
‘female polyandry index’ and ‘parturition delay’) and home range size for each 
individual. We explained the impact of infection and varying population 
density on these factors in GLMMs and LMMs (linear mixed models).  

 

(a) (b) 

FIGURE 6 (a) Aerial view of the outdoor enclosures used in the experimental infection 
(Pukara, Konnevesi, Finland, from https://www.retkikartta.fi/ ). (b) Fence 
between two enclosures (By C. Cayol). 

 



 

3 COMMENTED RESULTS 

3.1 The risk periods for ticks in urban forests 

Ixodes ricinus was the only species found in the vegetation. Larvae were mostly 
found in June. Nymphs as well as nymphs and females were the most abundant 
in May–June and September. This defines the highest risk periods for tick bites 
on humans in the area. Questing adults (males and females) were more 
abundant in May–June and August–September, and their abundance varied 
between years (Chapters I, II). 

Two tick species parasitised bank voles: I. trianguliceps, the vole tick and I. 
ricinus. Approximately 76% of hosts were infested with ticks. We found that I. 
ricinus larvae were the most abundant on bank voles in June, but inter-year 
fluctuations were revealed by the model. Bank vole infestation with I. ricinus 
nymphs was maximal in May and did not show inter-year fluctuations 
(Chapter I). In Chapter II, in which 16 sites were studied, we found a marked 
uneven spatial distribution of I. ricinus on bank voles, whereas I. trianguliceps 
showed an even distribution.  

Overall, our data might indicate that for I. ricinus, the life-history strategy 
observed in our study area consists of an early summer blood meal for larvae 
followed by postponed activity until the next spring when nymph emergence is 
observed after a behavioural diapause (Tälleklint and Jaenson 1996b, Randolph 
2004, Dobson et al. 2011) (Chapter I). Moreover, our study shows synchronous 
early summer questing activity between larvae and nymphs, which is relevant 
from an epidemiological point of view, especially for pathogens transmitted by 
co-feeding (Chapter I).  

3.2 The distribution and occurrence of two tick species explained 

The abundance of larvae and nymphs in the vegetation was positively 
associated with bank vole abundance. This positive relationship might arise 
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from better engorgement success for larvae in high bank vole abundance, but it 
remains unclear for nymphs. Moreover, variations in abiotic conditions 
modified the abundance of questing larvae and adults. The abundance of larvae 
was explained with the abundance of adults in the vegetation in the previous 
flag dragging session. Nymph and adult abundance increased simultaneously 
(Chapter I).  

In Chapter II, we found that the abundance of questing I. ricinus adults 
and nymphs was further explained by the total water coverage and the human 
population density in the area. These areas might constitute the first steps of a 
recent spread of I. ricinus in the region. The area was considered as part of the 
edge of the distribution of the species in Finland as early as 1961 (Öhman 1961), 
while a recent survey provided evidence for the occurrence of Ixodes ticks up to 
550 km north of our study area (Laaksonen et al. 2017). It can be hypothesised 
that areas with large open water, thus able to offer favourable moisture 
conditions, are more likely to be colonised (Gray 1998, Gray et al. 1998, Bunnell 
et al. 2003). Moreover, several anthropic modifications linked with human 
settlements are favourable to tick establishment, including increased 
temperature (Gallo et al. 1996, Bradley and Altizer 2007), garden resource 
provisioning for important hosts such as deer (Kilpatrick and Spohr 2000), and 
lower species diversity, favouring ubiquitous species such as rodents (Bradley 
and Altizer 2007, Brearley et al. 2013). 

Infestation of bank voles with I. ricinus nymphs and larvae was positively 
associated with bank vole abundance. Moreover, infestation with larvae was 
positively associated with the number of questing larvae observed in the 
environment, but this relationship was not observed for nymphs, confirming 
that small rodents are the main host for larvae, but not nymphs, in our study 
area (Chapter I). Infestation with I. ricinus increased with age (in a nonlinear 
manner for nymphs), and males were more frequently infested than females. 
Coinfestation with other life stages of I. ricinus or I. trianguliceps increased the 
likelihood of infestation (Chapter I). The aggregation of species and life-stages 
on the rodent host is particularly relevant to pathogen transmission: pathogen 
transmission from infected nymphs to susceptible larvae can occur via 
simultaneous feeding on the same host, even without systemic infection of the 
host. This co-feeding transmission pathway is important for several zoonotic 
TBP, especially those with short-lived or non-systemic infections in the rodent 
host, such as A. phagocytophilum or tick-borne encephalitis virus (TBEV), 
respectively (Randolph et al. 1996, 2000, Randolph 2008b, Harrison and Bennett 
2012). In Chapter II, we found that the probability of infestation with I. 
trianguliceps larvae was highest in the youngest individuals, whereas nymphs 
infested males more frequently. We further found that open water coverage in 
the area was positively correlated with the burden of bank voles with I. ricinus 
but not with I. trianguliceps. 
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3.3 Vector diversity alters pathogen occurrence  

Infestation with I. trianguliceps mainly concerned young bank voles, whereas 
older individuals were more likely to be infested with I. ricinus (Chapter I and 
II). Moreover, old male bank voles were the most susceptible to be infected with 
B. burgdorferi s.l. The infection was associated with the general abundance of I.
ricinus observed at the site, but I. trianguliceps infestation decreased the
probability of being infected with B. burgdorferi s.l (Chapter III). In addition, B.
burgdorferi s.l. infection did not show any relationship with A. phagocytophilum
or Ba. microti infections, whose local strains have been shown to be transmitted
by I. trianguliceps (Bown et al. 2008, Kallio et al. 2014). Our results do not exclude
that I. trianguliceps may contribute to the transmission of B. burgdorferi s.l.
among rodent hosts (Hubbard et al. 1998). However, another tick species, such
as I. ricinus or I. persulcatus is required to support the transmission and
persistence of this pathogen (Kovalevskii et al. 2013, Korenberg et al. 2015).

3.4 B. afzelii impairs the rodent host fitness 

For the first time, we show evidence of altered fitness in a natural host infected 
with B. afzelii. We found that large uninfected male bank voles had significantly 
higher mating success than large B. afzelii-infected males (Chapter III). 
Moreover, effects of infection on male reproductive success were observed in 
the low population density: infected males sired a lower proportion of offspring 
and fertilised a lower proportion of females than control males. Moreover, in 
the low-density treatment, the home range surface of infected males was much 
smaller compared to uninfected individuals. This density-dependent cost of 
infection at low population density suggests that uninfected males invested 
more energy to explore a larger home range than infected males. As female 
bank voles are territorial and hyperdispersed (Ostfeld 1985, Erlinge et al. 1990, 
Wolff 1993, Koskela et al. 1998), the uninfected control males may encounter 
and mate with more females compared to the infected males. Furthermore, 
infected females reproduced 2.9 days earlier than uninfected females 
independently of the population density. The terminal investment hypothesis 
might explain the faster reproduction in females (Chapter III).  

On the other hand, we found that infection with B. afzelii had little effect 
on host survival, body mass or body fat percentage. Typical symptoms of 
infection, such as swollen joints or haematocrit variation, were not observed 
(Chapter III). 
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3.5 Coinfection matters 

The best model explaining the probability of contracting PUUV at time t was 
the model that took into account the infection status with A. phagocytophilum 
and vectors (ticks or fleas) at time t-1. Based on our finding (Chapter IV), the 
probability of becoming infected with PUUV is the lowest in individuals that 
were previously infested with ectoparasite but not infected with A. 
phagocytophilum. In individuals infected with A. phagocytophilum, the presence of 
vectors did not modify the probability of becoming infected with PUUV. In 
individuals previously infected and uninfested, the probability of contracting 
PUUV was similarly high. 

The incidence rate and prevalence of PUUV showed the same patterns in 
males and females. In particular, the prevalence was highest at the beginning of 
the study period and decreased steadily during the monitoring period. Some 
macroparasitic infections have been shown to alter the susceptibility to 
microparasites. Indeed, the Th2 immune pathway triggered by some 
macroparasites, such as ticks and fleas, and the Th1 pathway triggered after 
many microparasite infections are antagonistic (Cox 2001, Ková  et al. 2002, 
Fenton et al. 2008, Skallová et al. 2008). Our results might suggest that the Th2 
path response observed against ticks might be effective in reducing infection 
risk with PUUV, and open another avenue for research on this issue. 

In summary, while the critical need for new analytical tools and high-
quality datasets in the study of the effect of parasite communities on 
transmission risk is expressed, in Chapter IV, we demonstrated the utility of the 
Bayesian state-space model for studying coinfection (LaDeau et al. 2011, Cooch 
et al. 2012, Buhnerkempe et al. 2015). Hidden processes were revealed: infection 
rates, recovery rates and survival were inferred by the model.  



4 CONCLUSION AND FUTURE DIRECTIONS 

My thesis shows that in Northern European urban forests, the population 
dynamics of bank voles and questing I. ricinus larvae and nymphs are related, 
suggesting higher tick abundance and, consequently, a higher risk of TBP for 
humans during the rodent population peak. Moreover, larvae and nymphs 
showed synchronous activity in the vegetation and on voles. These conditions 
are prerequisite for the maintenance of pathogens such as TBEV. However, our 
study area presents a low caseload of locally acquired TBE in humans. Between 
1996 and 2017, only three cases of TBE were recorded, whereas the number of 
cases of Borrelia infection detected and recorded for Central Finland was 348 
(Anon 2017). Therefore, other parameters, for instance, a tick abundance 
threshold, could be explored to understand the so far absence of TBEV in this 
area. Theoretical modelling and between-systems comparisons might be 
necessary to address this point.  

We propose that anthropogenic factors affect the patchy distribution of I. 
ricinus and that I. trianguliceps alone is not sufficient to support the circulation of 
B. burgdorferi s.l. in the rodent host populations (Chapter II). These results need
to be considered when planning public health policies, by increasing awareness
of the general public to the risk of tick bites in urban areas, close to open water.
Moreover, an avenue for research is the study of cross-immunity between these
tick species (reviewed by Nelson et al. 1977). The effect of an early bank vole
exposure to the nidicoulous I. trianguliceps on late exposure with I. ricinus
requires attention, as it could impact the basic reproductive number of tick-
borne pathogens transmitted by I. ricinus.

The demonstration of a cost of infection of Borrelia pathogens is relevant 
for understanding the evolution of resistance in vertebrate reservoir hosts. 
Indeed, recent field studies of bank voles have suggested that a genetic 
polymorphism for a receptor of the innate immune response (the toll-like 
receptor 2, TLR2), is associated with a varying level of resistance to B. afzelii 
(Tschirren et al. 2011, 2013). A study of the TLR2 polymorphism in bank vole 
populations across Europe found that the resistance allele against B. afzelii (C2) 
was more common in countries with a high incidence of human Lyme disease 
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(Tschirren 2015). Our demonstration that infection with B. afzelii reduces host 
fitness reinforces the hypothesis that this pathogen drives selection on the TLR2 
gene in bank vole populations. 

Moreover, a deeper exploration of the effect of Borrelia infection on sexual 
selection, suggested by our study, is needed. When infected, individuals able to 
afford the cost of both infection and reproduction were small males, but these 
individuals are not favoured by sexual selection when they are uninfected 
(Boraty ski and Koteja 2009). A mate choice experiment could determine the 
outcome of male–male competition and female choice between infected and 
uninfected individuals. Furthermore, the predation risk by small carnivores 
generally increases with vole mobility (Norrdahl and Korpimäki 1998). By 
affecting home range size, infection with B. afzelii could reduce predation risk 
by small carnivores in male bank voles. This directional predation would not 
affect bank vole population dynamics, but it might increase the infection 
prevalence within a bank vole population. 

We have considered the effect of Borrelia infection in isolation and 
without the tick vector. For the sake of completeness, our study would require 
either an experimental infection with the tick vector or the capture of naturally 
infected and control individuals. Both cases raise some experimental issues. In 
the first case, as the transmission from tick to bank vole is not systematic, the 
experimental set-up would require a large sample size to ensure enough 
infected individuals. In the second case, the variation in infection “age” and 
strain diversity in wild-caught individuals could be a source of variability and 
reduced statistical power. Moreover, we have considered the effect of the early 
stages of a Borrelia infection of one particular strain (oMG 3). A similar study 
could be performed with individuals in a chronic stage of infection and infected 
with other strains, and even coinfection with several strains could be 
considered.  

We advocate for the use of state-space models in coinfection studies. These 
models also allow the estimation of hidden processes (so-called 
“epidemiological dark-matter”), such as missing data, lack of capture or 
uncertainty in the detection of pathogens (Lachish et al. 2011, Strelioff et al. 2013, 
Viana et al. 2014, Buhnerkempe et al. 2015).  

Furthermore, to be comprehensive, the study of a catholic tick species such 
as I. ricinus requires the integration of other vertebrate species that participate 
in the tick life cycle. The involvement of migratory birds and seabirds in the 
circulation of Borrelia (Dietrich et al. 2011), as well as in the introduction of new 
strains should be considered. The abundance and the role of deer, other rodent 
species, hedgehogs, lagomorphs and wild carnivores could be assessed in our 
system for example with GPS or ratio-tracking for the large species. The 
participation of domestic animals (dog, cats) should also be estimated. 
Moreover, given the cyclic population dynamics of the bank vole, the main 
rodent species in our study area, longer time series are necessary to complete 
the understanding of our system (Clutton-Brock and Sheldon 2010).  
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Finally, we have only determined a small proportion of the role of factors 
such as landscape level parameters and urbanisation in tick dynamics in our 
system. Habitat connectivity and other landscape attributes, host species 
assemblage and soil characteristics are also important determinants of I. ricinus 
occurrence (Estrada-Peña 2003), but have not been considered in our study. 
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YHTEENVETO (RÉSUMÉ IN FINNISH) 

Puutiaisten ja jyrsijöiden levittämien taudinaiheuttajien eko-epidemiologia 
boreaalisissa metsissä 

Epidemiologian ala tutkii tautien esiintymistä ja runsauden vaihteluita popu-
laatiotasolla, kun taas eko-epidemiologia huomioi tauteihin vaikuttavat tekijät 
molekyyleistä yhteisöihin ja ympäristöön. Huolimatta viime vuosisadan bakte-
riologisten tutkimusten nopeasta kehityksestä tartuntataudit ovat edelleen ih-
misten kuolleisuuden tärkeimpiä syitä maailmanlaajuisesti. Vaikka monet tau-
dinaiheuttajat kiertävät luonnostaan luonnonvaraisissa isäntälajeissa, zoonoot-
tiset taudinaiheuttajat voivat tarttua ihmisen ja eläimen välillä. Onkin arvioitu, 
että noin 60 % ihmisen taudinaiheuttajista on zoonoottisia. Abioottisten ja bioot-
tisten olosuhteiden vaihtelut voivat muuttaa lois-isäntä –suhdetta ja näin ollen 
vaikuttaa zoonoottisten taudinaiheuttajien ihmiselle aiheuttamaan riskiin. 
Luonnonvaraisten eläimien välittämien taudinaiheuttajien kiertokulun tunte-
minen luonnossa on kriittinen askel zoonoosien aiheuttamien sairauksien epi-
demiologian ymmärtämisessä. 

Väitöskirjatyöni tavoitteena oli selvittää zoonoottisten taudinaiheuttajien 
dynamiikkaa ja luonnollista kiertoa säilymöisännissä. Pohjois-Euroopassa zoo-
noottiset puutiaisten välittämät taudit lisääntyvät, mikä johtuu ensisijaisesta 
Ixodes ricinus -puutiaisen levinneisyyden muutoksista, jotka johtuvat pääsään-
töisesti abioottisten olosuhteiden muutoksista. Erityisesti Lymen tauti (Borreli-
oosi), joka on yleisimpiä puutiaisten aiheuttamia sairauksia, on kasvava ongel-
ma taudinaiheuttajan monimutkaisen ekologian sekä sen ihmiselle aiheuttami-
en monimutkaisten oireiden vuoksi. Puutiaisvälitteisten taudinaiheuttajien kier-
tokulku luonnossa tapahtuu tyypillisesti luonnonvaraisten isäntälajien ja puuti-
aisten välillä. Tyypillisesti I. ricinus –puutiaisten nuoruusvaiheet aterioivat jyrsi-
jöissä mahdollistaen puutiaisvälitteisten taudinaiheuttajien kiertokulun. Valta-
osan elämästään puutiaiset kuitenkin elävät riippumattomina isäntäeläimis-
tään. Puutiaiset ovat siten riippuvaisia isännän saatavuudesta, mutta myös erit-
täin herkkiä elinympäristön abioottisille vaihteluille. Puutiaislajit, jotka eivät 
aterioi ihmisellä eivätkä siten levitä taudinaiheuttajia suoraan ihmiseen, saatta-
vat osaltaan vaikuttaa puutiaisvälitteisten taudinaiheuttajien kiertokulkuun 
luonnossa. Jyrsijät ovat avainasemassa useiden puutiaisvälitteisten taudinai-
heuttajien kiertokulussa luonnossa.  

Väitöskirjatyöni keskittyy (1) metsämyyrän (Myodes glareolus), joka on 
Keski-Suomen runsaslukuisin jyrsijälaji sekä zoonoottisen Puumala hantaviruk-
sen (PUUV) isäntälaji, (2) puutiaisten ja (3) puutiais- ja jyrsijävälitteisten tau-
dinaiheuttajien välisiin vuorovaikutussuhteisiin. Tutkimus tehtiin alueella, joka 
sijaitsee I. ricinus -puutiaisen esiintymisalueen pohjoisrajalla, missä ympäristö-
olot ja myyrätiheydet vaihtelevat suuresti. Siten ensimmäisenä hypoteesinani 
oli, että puutiaisten ja puutiaisvälitteisten taudinaiheuttajien esiintymisessä on 
selviä alueellisia ja ajallisia vaihteluita, jotka liittyvät abioottisiin oloihin ja jyrsi-
jöiden runsauden vaihteluihin (luvut I ja II). Toisena hypoteesinani oli, että yksi 
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Borrelioosin aiheuttajista, Borrelia afzelii, vaikuttaa sen isäntäeläimen kelpoisuu-
teen, ja että tämä vaikutus on isäntäpopulaatiotiheydestä riippuva (luku III). 
Kolmanneksi tunnistin, että luonnossa isäntäyksilöitä infektoi useat taudinai-
heuttajat, jotka voivat olla vuorovaikutuksessa keskenään kilpailemalla resurs-
seista tai epäsuorasti isännän immuunijärjestelmän kautta, ja testasin oletusta, 
että myyrän todennäköisyyteen saada infektio vaikuttaa muut taudinaiheuttajat 
ja ulkoloiset (IV luku). 

Ensimmäistä hypoteesia koskien tarkastelin puutiaisten ajallista runsautta 
4-vuotisen myyrä- ja puutiaispyynnin avulla, joka otteutettiin neljällä tutkimus-
alueella boreaalisissa kaupunkimetsissä. I. ricinus oli ainoa kasvillisuudessa 
löydetty laji, kun taas metsämyyrää loisi kaksi puutiaislajia: Ixodes trianguliceps 
ja I. ricinus. Loisittujen metsämyyräyksilöiden osuus oli 76 %, mutta vanhat koi-
raat olivat useammin I. ricinus -puutiaisen loisimia. Puutiaisten esiintyminen oli 
erittäin kausiluonteista, ja suurin riski ihmiselle tulla puutiaisen puremaksi oli 
touko-kesäkuussa ja jälleen syyskuussa. Puutiaisten nuoruusvaiheet aterioivat 
samanaikaisesti metsämyyrillä vaikuttaen osaltaan puutiaisvälitteisten taudin-
aiheuttajien kiertokulkuun alueella. Puutiaisten määrä korreloi positiivisesti 
metsämyyrän runsauden kanssa.  

Lisäksi tarkastelin puutiaisten ja puutiaisvälitteisten taudinaiheuttajien 
esiintymiseen vaikuttavia tekijöitä käyttäen myyrä- ja puutiaispyynneistä saa-
tua aiheistoa, joka kerättiin 16 näytteenottopaikalta, jotka sijaitsivat erilaisilla 
etäisyyksillä ihmisasutuksesta. Havaitsin, että I. ricinus esiintyi epätasaisesti 
tutkimusalueella, kun taas I. trianguliceps esiintyi kaikilla näytteenottopaikoilla. 
I. ricinus oli runsaampi alueilla, joilla vesistöjä oli runsaasti ja ihmistiheys oli 
korkea. Näillä alueilla kosteusolot ja antropogeeniset tekijät saattavat suosia I. 
ricinus -puutiaisen esiintymistä. Borrelia burgdorferi s.l. esiintyi myyrissä vain 
alueilla, joilla oli runsaasti I. ricinus –puutiaisia. Tämä viittaa siihen, että tämä 
puutiaislaji tarvittiin kyseisen taudinaiheuttajan tarttumiseen ja pysyvyyteen 
alueella, kun taas I. trianguliceps ei ainakaan yksin kyennyt ylläpitämään kysei-
sen taudinaiheuttajan kiertokulkua luonnossa. 

Seuraavaksi tarkastelin hypoteesia, jonka mukaan B. afzelii vaikuttaa isän-
tälajina toimivan metsämyyrän kelpoisuuteen, kokeellisella infektiolla luonnol-
lisissa olosuhteissa, joissa myyrien populaatiotiheys vaihteli. B. afzelii -infektio 
vaikutti metsämyyrän lisääntymiseen, mutta infektion vaikutus riippui isännän 
sukupuolesta ja populaatiotiheydestä. Tämä infektion aiheuttama tiheydestä 
riippuva kustannus havaittiin koirailla, joita pidettiin alhaisessa populaatioti-
heydessä, ja siihen liittyi muuttunut liikkuvuus. Lisäksi havaitsin, että vaikka 
suuri kehon koko suosi lisääntymistä infektoimattomilla koirailla, tämä koko 
tuoma hyöty katosi, jos yksilö oli infektoitunut. Tartunnan saaneita naaraat 
puolestaan lisääntyivät aikaisemmin kuin infektoimattomat naaraat.  

Lopulta tutkin hypoteesia siitä, vaikuttavatko ko-infektiot metsämyyrän 
todennäköisyyteen saada Puumala-virustartunta. Tähän käytin epätavallista 
analyyttistä työkalua, Bayesialaista tila-avaruusmallia käyttäen pitkittäistutki-
musaineistoa. Tämä yhden kenttäkauden kattava aineisto käsitti yksilökohtaiset 
tiedot eri tartuntojen tilasta. Havaitsin, että Puumala-virus tartunta oli epäto-
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dennäköisin yksilöissä, joilla oli aikaisemmin ollut ulkoloistartunta, mutta jotka 
eivät olleet saaneet Anaplasma phagocytophilum tartuntaa. A. phagocytophilum -
infektoiduilla yksilöillä puutiaisten ja kirppujen läsnäolo ei muuttanut toden-
näköisyyttä saada Puumala-virustartuntaa. Esitän, että puutiaisia vastaan ha-
vaittu immuunivaste saattaa olla tehokas infektioriskin pienentämisessä Puu-
mala-viruksen suhteen, kun taas A. phagocytophilum –infektion ja Puumala-
virusinfektion välillä ei havaittu vuorovaikutusta. 

Kokonaisuudessaan väitöstutkimukseni osoittaa kuinka vuodenaikaisuus, 
taudinaiheuttajat ja isäntälajin populaatiotiheys vaikuttavat puutiaisten, puu-
tiais- ja jyrsijävälitteisten taudinaiheuttajien ja niiden isäntinä toimivan metsä-
myyrän väliseen vuorovaikutussuhteeseen boreaalisessa ympäristössä, jossa 
olosuhteet vaihtelevat vuodenaikaisesti. Nämä vuorovaikutussuhteet voivat 
välittyä ihmisen riskiin saada puutiais- tai jyrsijävälitteisiä tartuntatauteja. Tästä 
syystä tuottamani tieto on ensiarvoista ymmärtääksemme zoonoottisten tartun-
tatautien aiheuttamia riskejä eläinten, ihmisten ja ekosysteemin rajapinnassa. 
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Abstract

Background: Tick-borne pathogens pose an increasing threat to human and veterinary health across the northern
hemisphere. While the seasonal activity of ticks is largely determined by climatic conditions, host-population dynamics are
also likely to affect tick abundance. Consequently, abundance fluctuations of rodents in northern Europe are expected to
be translated into tick dynamics, and can hence potentially affect the circulation of tick-borne pathogens. We quantified
and explained the temporal dynamics of the tick Ixodes ricinus in the northernmost part of its European geographical
range, by estimating (i) abundance in vegetation and (ii) infestation load in the most common rodent species in the
study area, the bank vole Myodes glareolus.

Results: Ixodes ricinus nymphs and adult females, the life stages responsible for the most of tick bites in humans, peaked
in May-June and August-September. Larvae and nymphs were simultaneously active in June and abundance of questing
larvae and nymphs in the vegetation showed a positive association with bank vole abundance. Moreover, infesting larvae
and nymphs were aggregated on bank voles, and the infestation of bank voles with I. ricinus larvae and nymphs was
positively associated with bank vole abundance.

Conclusion: Our results indicate early summer and early autumn as periods of increased risk for humans to encounter
I. ricinus ticks in boreal urban forests and suggest a 2 years life-cycle for I. ricinus with two cohorts of ticks during the same
year. Moreover, we identified a simultaneous activity of larvae and nymphs which allows co-feeding on the rodent host,
which in turn supports the transmission of several important zoonotic tick-borne pathogens. Finally, we showed that a
high density of the rodent host may enhance the risk that ticks and, potentially, tick-borne pathogens pose to
human health.

Keywords: Ixodes ricinus, Rodent host, Seasonality, Public health, Population dynamics

Background
Tick-borne pathogens are a growing burden for European
public health policies [1–3]. The current observed in-
crease in tick-borne disease incidence in Europe may be
explained by the geographical expansion of Ixodes ricinus,
the growing share of space between humans and wild ani-
mals, and the improvement of diagnostics tools [4–6].
The epidemiology of tick-borne zoonoses, such as
Lyme borreliosis, anaplasmosis or tick-borne enceph-
alitis (TBE), depends on tick abundance and popula-
tion dynamics, infection prevalence within the tick

population, and land use that may affect human ex-
posure to ticks [7, 8]. In order to predict the risks
that tick-borne diseases pose to humans, an assess-
ment of factors underlying the temporal variation of
tick abundance is necessary.
The abundance of I. ricinus varies in time and space

and is highly dependent on environmental conditions,
including habitat quality, host availability, and abiotic
conditions [9–12]. In northern Fennoscandia, at the
northernmost part of the European range of I. ricinus,
abiotic conditions undergo extreme seasonal variation;
there are 145 to 160 days of snow cover with short day-
lengths, during which ticks are not active. This is
followed by a quick elevation in temperature leading to
a short summer with long day-lengths [13]. In these
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conditions, I. ricinus activity is likely to show distinctive
seasonal patterns, which have not been characterized to
date (but see [14] for southwest Finland).
Ixodes ricinus is dependent on vertebrate hosts to

complete its life-cycle. Larvae typically feed on small
vertebrates, such as rodents; nymphs, the more common
biting stage for humans, parasitize mostly medium-sized
mammals; and adults feed mainly on large hosts, such as
deer [15, 16]. The population dynamics of ticks and
rodents are expected to be linked: some studies have in-
dicated delayed density dependence of questing nymphs
on rodent abundance, suggesting that high rodent abun-
dance provides augmented opportunities for successful
larvae feeding and nymph development [17, 18]. The
bank vole (Myodes glareolus) is a common rodent
species throughout Europe [19]; this species is
commonly infested by immature I. ricinus [16, 20, 21].
In northern Europe, vole population abundance shows
both seasonality, driven by seasonal breeding, and multi-
annual density fluctuations shaped by predation, food
availability and food quality [22–24]. These seasonal and
multiannual density fluctuations are likely to be trans-
lated into the dynamics of ticks, and consequently, into
the epidemiology of tick-borne pathogens. To date, there
are few studies that have investigated the association
between the dynamics of cyclic small rodents and
ticks [25].
The bank vole is also an important reservoir host for

many tick-borne pathogens, such as Borrelia afzelii, tick-
borne encephalitis virus (TBEV) and Babesia microti
[26, 27]. Typically, tick larvae acquire infections from an
infected rodent host that has become infected while
feeding infected nymph(s) [10]. Alternatively, larvae ac-
quire infections via simultaneous feeding with infected
nymphs without systemic infection of the host [28, 29].
Infectivity is transstadially maintained in the tick to the
following life stage [30].
Here, we present results from a 4 years of longitu-

dinal bank vole monitoring and tick sampling in cen-
tral Finland at the northernmost part of the European
range of I. ricinus, where abiotic conditions undergo
extreme seasonal variation. Our primary aim is to
characterize temporal dynamics and quantify the im-
portance of host related factors and abiotic conditions
on temporal dynamics of I. ricinus. We also aim to
identify seasonal patterns that are relevant for tick-
borne pathogen circulation, with the ultimate goal of
providing information concerning the risk of tick-
borne diseases in our study area.

Methods
Study area
Sampling took place monthly from May to October in
2012 − 2015 in four periurban forests in the Jyväskylä

area in Central Finland: (Kylmänoro (62°13′36.220″, 25°
45′1.739″); Jyskänlaakso (62°13′55.398″, 25°49′
34.269″); Hämeenlahti (62°12′40.119″, 25°47′11.052″);
and Sippulanniemi (62°11′9.019″, 25°44′58.147″) [31].
One trapping period within a month will be referred to
as “session” in the following paragraphs. Forests were
dominated by Scots pine (Pinus sylvestris) and silver
birch (Betula pendula) or by spruce (Picea abies). The
herbaceous stratum was typically composed of
Vaccinium myrtillus, V. vitis-idaea, Maianthemum
bifolium, Linnaea borealis and Oxalis acetosella.

Tick dragging
Monthly tick dragging was performed during or within a
few days of the vole trapping, using a 1 × 1 m cotton
flannel flag sewed to a wooden rod [12]. The fabric was
randomly dragged over the vegetation for 300 − 500 m
per site around the rodent trapping transects and
checked every 20−25 m for ticks, which were removed
with tweezers and stored in alcohol at -20 °C. No
dragging was performed during rain. In October 2014,
due to early snow cover, dragging was not performed.
Due to the duration, coverage and interval of the drag-
ging (less than 30 min, 300–500 m2 once a month in
each site) it is unlikely that the flag dragging affected the
overall tick population abundance and it should not have
interfered with the ticks parasitizing rodents in the area.

Vole trapping and tick infestation on voles
As the active tick population consists in parasitizing,
questing and resting ticks, sampling targeted questing
ticks and parasitizing ticks on their rodent host. This lat-
ter buffers the effects of microclimate changes and ro-
dent sampling, in particular, also buffers the effect of the
patchy distribution of larvae [32].
Vole trapping was carried out with two lines of 10

Ugglan Special multiple-capture live traps (Grahnab
Company, Sweden), positioned 10 − 15 m apart, located
near to rodent burrows. Traps were prebaited for 1−3
nights with sunflower seeds (Helianthus annuus), after
which traps were set with sunflower seeds (for food) and
a piece of potato (for water) for two consecutive nights.
Wood shavings were provided as bedding in wet or cold
weather. Traps were checked once per day and trapped
voles were handled and sampled before release close to
their capture site. Bycatch of species other than voles, as
well as recapture of the same individual during the same
session, were released immediately on site.
All trapped voles were marked individually with elec-

tronic identification chips (microchip Trovan Unique™),
which were injected subcutaneously at their first capture.
During each capture, voles were identified, body mass
was measured as a proxy for age (as in e.g. [33]), and sex
and reproductive condition were recorded. The presence
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of fleas was recorded and all voles were examined for
ticks, with special attention to the area around the ears
and face. All ticks were removed with tweezers and
stored in alcohol at -20 °C until further identification.
All ticks - both those removed from rodents and those
collected from vegetation - were identified to species
level and life stage under a dissection microscope using
morphological identification keys [34–36]. Species iden-
tification of seven ticks identified as I. ricinus and three
as I. trianguliceps was further confirmed with PCR
following a method described elsewhere [37]. Briefly,
PCR targeted the mitochondrial 16S rRNA gene and the
amplicons obtained were successfully sequenced for
eight of the ten ticks. Thereafter sequence identity was
determined by BLAST search against the NCBI Nucleotide
database and the obtained sequences confirmed our
morphological tick identification.
We assessed the overall bank vole population abun-

dance by computing the overall minimum number of
voles alive (MNA) at a given trapping session (t) as
follows: total number of individuals caught at a given
trapping session (t) summed with the total number of
individuals marked when caught during subsequent ses-
sions, but not caught at (t) [38].
We trapped 658 bank voles, an average of 1.53 times

(range 1–6), for a total of 1007observations for which all
variables described above were available. The minimum
number of voles alive per session varied from 5 (in May
2013) to 120 individuals (in September 2014). Three
other rodent species were bycaught, consisting of 52 ob-
servations of yellow-necked mouse (Apodemus flavicollis),
one observation of field vole (Microtus agrestis), and two
observations of house mouse (Mus musculus) (Additional
file 1: Figure S3).

Statistical analysis
Ticks in vegetation
We characterized the temporal activity of I. ricinus in
the vegetation (i.e. collected by flagging), by examining
tick questing activity separately for each life stage, i.e.
larvae, nymphs, adults (males and females), in relation
to the following variables: year (2012 − 2015), month
(May-October), estimated bank vole abundance per
given session (MNA), abundance of other life stages
present during the same session (number of ticks/
100 m2), and the abundance of previous tick life stages
collected during the previous session (for larvae: adult,
for nymph: larvae, for adults: nymphs). To further iden-
tify the effect of current climatic conditions on tick ac-
tivity, we computed the mean daily saturation deficit
(SatDef, in millimetres of mercury) during tick flagging
days, based on daily average humidity (in percent) and
daily average temperature (in °C) [9, 39, 40] recorded at
the meteorological station of Nenäinniemi in Jyväskylä,

located 0.72−3.7 km from the study sites (http://
www.jyv-weather.info/index.php) (Additional file 1:
Figure S1). SatDef was used as an explanatory variable
rather than month, with which it showed collinearity.
Thus, the second set of models included SatDef and its
second-degree polynomial term SatDef2, MNA, current
and previous tick abundances as described above.
Furthermore, the abundance of nymphs and females
pooled together was also modelled with two sets of
models: the first one included vole abundance, month
and year and the second one included year, vole
abundance, SatDef and SatDef2.
Models were fitted using generalized linear mixed

models (GLMM) with a negative binomial error dis-
tribution (with log-link function) and site was in-
cluded as a random effect to control for potential
pseudoreplication [41]. To take into account the vari-
ation in the distance flags were dragged, an offset
term (log(distance flagged)/100) was introduced in the
models. The model selection (provided in Additional
file 1: Table S2) was an automated selection process
starting from the full model and based on AICc
(Akaike Information Criteria corrected for small
sample size [42]), using dredge function in R soft-
ware. We kept the most parsimonious model that lay
within 2AICc difference from the best model fitted
[42] (Additional file 1: Tables S1 and S2).

Ticks infesting voles
Ixodes ricinus infestation load on bank voles was exam-
ined separately for larvae and nymphs. We assessed
whether tick infestation showed seasonality and/or be-
tween year variation and whether it was affected by indi-
vidual host characteristics or by concomitant parasitism
(by other tick stages, other tick species or fleas). For that
purpose, we fitted a GLMM with a negative binomial
error distribution to test the fixed effects of month, year,
vole sex, body mass (centred value) and its second order
polynomial term, presence of fleas, presence of other life
stages of I. ricinus and I. trianguliceps, body mass*vole
abundance (MNA) interaction term and body mass*sex
interaction term. ‘Trapping site’ and ‘vole individual
nested in the trapping site’ were included as random ef-
fects in the models. Model selection was performed as
described before except that we utilized the function
drop1 in R software (Additional file 1: Tables S4 and S5).
All statistical analyses were performed with R version

3.2.3 (2015, The R Foundation for Statistical Computing),
and using the packages stats (http://www.R-project.org/),
MASS (https://cran.r-project.org/web/packages/MASS/
index.html), glmmADMB (http://glmmadmb.r-forge.r-
project.org/) and MuMIn (https://cran.r-project.org/
web/packages/MuMIn/index.html).
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Results
Ticks in vegetation
We sampled and identified 943 I. ricinus larvae, 867
nymphs, 239 (adult) females and 294 males from the
vegetation. The mean abundance of I. ricinus per session
and per area varied from 0 to 22.7 ticks/100 m2 when
considering all tick life stages and from 0 to 6.25 ticks/
100 m2 when taking into account only female adults and
nymphs. Overall, the density of questing ticks collected
from vegetation was 7.1/100 m2 (Additional file 1:
Figure S2). The ratio between I. ricinus larvae, nymphs
and adults was 3.5:3.3:2.0. In addition, one I. trianguliceps
nymph was identified.
Models revealed unimodal questing patterns for larvae,

which were mostly found in June. Conversely, a bimodal
questing pattern was found for nymphs as well as
nymph and females modelled together, with the highest
abundances found in May-June and September, which
therefore appears as the higher risk period for tick bites
on humans. Questing adults (males and females) were
more abundant in May-June and August-September, and
their abundance varied with year, with the highest abun-
dance found in 2015 (Table 1, Fig. 1).
For any given month, the abundances of questing I.

ricinus larvae and nymphs showed positive associations
with vole abundance (Tables 1, 2; Fig. 2; Additional file 1:
Figure S4). For each addition of one individual to the bank
vole population, an increase of larvae abundance by
approximately 3% and of nymph abundance by 1% was
predicted (Fig. 2; Additional file 1: Figure S4).
The abundance of questing larvae was positively asso-

ciated with saturation deficit, while the abundance of
questing adults showed a non-linear relationship with
saturation deficit. The number of adults found in vegeta-
tion was positively associated with saturation deficit
until an optimal value (3.16 mm Hg), after which the
abundance of adult ticks was negatively affected by any
further increase in saturation deficit. Nymph abundance
was not associated with saturation deficit in the best
model selected (Table 2).
We found a positive relationship between the number

of questing larvae and the abundance of adults observed
in the vegetation one session before. Nymph abundance
increased with adult abundance during the same flagging
session whereas adult abundance showed a negative rela-
tionship with nymph abundance during the previous ses-
sion (Table 2).

Ticks infesting voles
From bank voles, two tick species were identified: I.
trianguliceps, the vole tick and I. ricinus. The proportion
of infestation with either of these tick species was 75.8%.
The ratio of I. ricinus larvae to nymphs found feeding
on bank voles was 13:1. The total number of ticks

Table 1 Selected best model for the abundance of tick
questing in the vegetation with estimated coefficients (in log
scale), explained by vole abundance, month (May taken as
reference) and year (2012 as reference)

Y = Larva abundance Estimate (SE) z-value P-value

Intercept -1.424 (0.667) -2.13 0.033

June 1.891 (0.742) 2.55 0.011

July 0.003 (0.778) 0.00 0.997

August -1.100 (0.974) -1.13 0.259

September -0.987 (1.035) -0.95 0.340

October -1.707 (0.979) -1.74 0.081

Vole abundance 0.028 (0.013) 2.14 0.032

Random effect: site σ2 = 0.46 (SD = 0.68)

Negative binomial dispersion parameter 0.38 (SE = 0.07)

Y = Nymph abundance Estimate (SE) z-value P-value

Intercept 0.193 (0.375) 0.52 0.607

June -0.401 (0.275) -1.46 0.145

July -1.571 (0.313) -5.02 <0.005

August -1.312 (0.351) -3.74 <0.005

September -0.628 (0.390) -1.61 0.107

October -2.730 (0.404) -6.76 <0.005

Vole abundance 0.013 (0.004) 2.99 0.003

Random effect: site σ2 = 0.38 (SD = 0.62)

Negative binomial dispersion parameter 2.88 (SE = 0.70)

Y = Adult (male + female) abundance Estimate (SE) z-value P-value

Intercept -0.766 (0.393) -1.95 0.051

June -0.203 (0.226) -0.90 0.368

July -0.600 (0.238) -2.52 0.012

August 0.395 (0.215) 1.84 0.066

September 0.279 (0.214) 1.30 0.192

October -1.082 (0.292) -3.71 <0.005

2013 0.288 (0.196) 1.47 0.142

2014 0.306 (0.202) 1.51 0.131

2015 0.923 (0.191) 4.82 <0.005

Random effect: site σ2 = 0.39 (SD = 0.63)

Negative binomial dispersion parameter 7.48 (SE = 2.81)

Y = Female + Nymph abundance Estimate (SE) z-value P-value

Intercept 0.514 (0.350) 1.47 0.142

June -0.422 (0.227) -1.86 0.063

July -1.509 (0.258) -5.84 <0.005

August -1.021 (0.282) -3.62 <0.005

September -0.599 (0.324) -1.85 0.064

October -2.430 (0.323) -7.53 <0.005

Vole abundance 0.012 (0.004) 3.04 0.002

Random effect: site σ2 = 0.37 (SD = 0.60)

Negative binomial dispersion parameter 4.42 (SE = 1.10)

σ2 is the variance attributable to random effect. Number of observations:
Total = 88; Site = 4
Abbreviations: SD standard deviation, SE standard error
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sampled from voles was 3564, out of which 14 ticks
could not be identified due to poor condition
(Additional file 1: Table S3 and Figure S5).
Models revealed a clear seasonal pattern in the infest-

ation burden of I. ricinus larvae on bank voles (Table 3,
Fig. 4): larval infestation underwent seasonality, with a
peak in June and a trough in August-October. The high-
est infestation level was in 2013 and the lowest in 2014.
In addition, bank vole infestation load with I. ricinus
nymphs underwent seasonal variation, with a peak in
May, but was stable between years (Table 4, Fig. 3).
For any given month, nymph infestation on voles was

positively associated with bank vole abundance (Table 4).
Similarly, larval infestation level increased with bank
vole abundance, but the increase was more pronounced
among female bank voles than among males (Table 3,
Fig. 4). Moreover, infestation with larvae was positively
associated with the amount of questing larvae observed
in the environment (Table 3), whereas the bank vole
infestation load with nymphs was not associated with
the amount of questing nymph (i.e. the abundance of
questing nymphs was not selected in the best model,
Additional file 1: Table S5).
Tick infestation intensity on a host varied with individual

characteristics such as age, sex and co-infestation. The
oldest male bank voles (i.e. those with highest body mass)
were the most intensely infested with larvae (Table 3).
Moreover, bank vole infestation load with I. ricinus larvae
was positively associated with co-infesting I. trianguliceps
females and nymphs and I. ricinus nymphs (Table 3),
whereas the infestation with I. ricinus nymphs increased
with the presence of I. trianguliceps larvae and females
(Table 4). In addition, the infestation load with nymphs

showed a non-linear relationship with body mass: infest-
ation load increased until voles reached 32.4 g, whereupon
any further increase in body mass led to a reduction of the
infestation burden (Table 4).

Discussion
In this study, we characterized the temporal dynamics of
I. ricinus by assessing its abundance in the vegetation
and its infestation load in one of its main host in the
northernmost part of its range. We focused on bank
voles, which parasitism provides insightful information
concerning the local immature tick communities.

Fig. 1 Predicted number ± standard error (SE) of larvae, nymphs and
adults in 100 m2 of vegetation per month. Predictions are based on
GLMM shown in Table 1

Table 2 Selected best model for the abundance of ticks
questing in the vegetation with estimated coefficients (in log
scale), explained by the vole abundance, the amount of ticks in
other stages in vegetation during the previous session and/or
during the current session, and the saturation deficit (SatDef)
and its second degree polynomial term (SatDef2)

Y = Larva abundance Estimate (SE) z-value P-value

Intercept -5.426 (1.002) -5.41 <0.005

Vole abundance 0.029 (0.009) 3.11 0.002

Amount of adult ticks during
the previous session

1.007 (0.308) 3.27 0.001

SatDef 0.969 (0.192) 5.03 <0.005

Random effect: site σ2 = 4.59e-06 (SD = 0.002)

Negative binomial dispersion
parameter

0.34 (SE = 0.06)

Y = Nymph abundance Estimate (SE) z-value P-value

Intercept -0.279 (0.233) -1.20 0.232

Amount of adult ticks during
the same session

0.381 (0.167) 2.28 0.023

Random effect: site σ2 = 0.098 (SD = 0.31)

Negative binomial dispersion
parameter

1.12 (SE = 0.21)

Y = Adult (male + female) abundance Estimate (SE) z-value P-value

Intercept -1.294 (0.461) -2.81 0.005

SatDef 0.621 (0.239) 2.60 0.009

SatDef2 -0.098 (0.037) -2.63 0.009

Amount of nymph during
the same session

0.222 (0.075) 2.97 0.003

Amount of nymph during
the previous session

-0.135 (0.071) -1.91 0.056

Random effect: site σ2 = 0.33 (SD = 0.57)

Negative binomial dispersion
parameter

3.04 (SE = 0.81)

Y = Female + nymph abundance Estimate (SE) z-value P-value

Intercept 0.011 (0.316) 0.04 0.971

Vole abundance 0.006 (0.003) 1.98 0.048

Random effect: site σ2 = 0.27 (SD = 0.52)

Negative binomial dispersion parameter 1.53 (SE = 0.29)

σ2 is the variance attributable to random effect. Number of observations:
Total = 88; Site = 4
Abbreviations: SD standard deviation, SE standard error
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Moreover, we identified risk periods - when humans are
likely to encounter tick bites - in boreal forests and sea-
sonal patterns that might be relevant for tick-borne
pathogen circulation.

Tick seasonality
We identified that the highest tick abundance was in
early summer (May-June) and early autumn (August-
September), which are consequently the periods of
increased risk for humans to encounter I. ricinus ticks in
boreal forests. The same pattern of bimodal questing ac-
tivity was previously found in southern Finland for
nymph and adult ticks in coniferous and deciduous
forests, whereas larvae showed a bimodal occurrence
with a larger peak in September than in June [14]. Over-
all, two types of tick questing activity patterns have been
described in Europe: in highly seasonal climates, such as
those in central Europe, a bimodal questing activity with
early spring and autumn peaks has been described for all
life stages of I. ricinus [43]. However, in milder climates,
with less climatic variation between seasons, only one
peak of activity was observed for all life stages; in either
spring or early summer [43]. In the present study,
nymphs and adults showed bimodal activity, whereas lar-
vae showed a unimodal activity pattern. This unimodal
activity pattern could arise from egg production during
the preceding year, the product of which overwintered
as eggs or as larvae [44] or from egg production during
the same spring. It could be argued that the inclusion of
a year*month interaction term in the model would have
captured between year seasonal variations suggested by
the raw data (Additional file 1: Figure S1), and would
have revealed both unimodal and bimodal activity

patterns for larvae. However, data from a longer time
series would be needed in order to clarify this point.
Our results seem to indicate the coexistence of two

age cohorts of ticks during the same year. Larvae de-
tected on bank voles and in the vegetation in early sum-
mer become nymphs in autumn, which can exhibit two
different behaviors: immediate questing behavior in au-
tumn; or activity postponed until the next spring after a
behavioral diapause [45–47]. In our study, the largest
peak of nymphal activity was observed in spring,

Fig. 2 Predicted number ± standard error (SE) of larvae and pooled
nymphs and females in 100 m2 of vegetation explained by vole
abundance. Predictions are based on GLMM shown in Table 2

Table 3 Selected best model for I. ricinus larvae infestation load
on an individual bank vole with estimated coefficients (in log
scale) explained by month (from May to October, with May as a
reference), year (from 2012 to 2015, with 2012 as a reference),
sex (female as a reference), body mass in grams (centred
values), presence of I. trianguliceps females and nymphs,
presence of I. ricinus nymphs, vole abundance during the same
session, questing larvae in vegetation during the same session,
the interaction between centred body mass and sex and the
interaction between sex and vole abundance. We defined site
and individual nested in site as nested random structure

Estimate (SE) z-value P-value

Intercept -0.923 (0.318) -2.91 0.004

June 0.477 (0.243) 1.96 0.050

July -0.691 (0.277) -2.49 0.013

August -0.900 (0.342) -2.63 0.009

September -1.734 (0.413) -4.20 <0.005

October -2.768 (0.376) -7.36 <0.005

2013 0.720 (0.150) 4.79 <0.005

2014 -0.688 (0.275) -2.50 0.012

2015 -0.248 (0.169) -1.47 0.142

Male 0.996 (0.219) 4.55 <0.005

Body mass 0.020 (0.010) 2.03 0.043

Presence of I. trianguliceps
female

0.402 (0.154) 2.61 0.009

Presence of I. trianguliceps
nymphs

0.202 (0.101) 2.00 0.046

Presence of I. ricinus nymphs 0.526 (0.132) 3.97 <0.005

Vole abundance 0.033 (0.005) 6.43 <0.005

Amount of questing larvae
during the same session

0.027 (0.009) 2.86 0.004

Interaction: Sex(Male)*Body
mass

0.048 (0.016) 3.02 0.003

Interaction: Sex (Male)*Vole
abundance

-0.009 (0.003) -3.20 0.001

Random effects

Site σ2 = 0.06 (SD = 0.25)

Individual nested in site σ2 = 0.22 (SD = 0.47)

Negative binomial dispersion parameter 1.70 (SE = 0.24)

σ2 is the variance attributable to random effect. Number of observations:
Total = 1007; Site = 4, Site:Individual = 658
Abbreviations: SD standard deviation, SE standard error
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suggesting that the second behavior was predominant
[45]. In addition, we found a peak in questing adults
2 years after the largest larval infestation, indicating a
probable 2-year period between larvae blood meal
and adults, and suggesting a 2 to 3 year life-cycle
from egg to adult for I. ricinus in our study area. Fur-
thermore, in an additional model, the amount of
questing nymphs was explained, amongst others ex-
planatory variables, by the total amount of larvae that
fed on bank vole the year before (GLMM negative bi-
nomial: estimate (± SE) = 0.005 ± 0.002, P = 0.0071, see
Additional file 1: Tables S6 and S7). This model con-
firmed firstly, that the variation in bank vole larval
infestation was translated into nymph abundance and
secondly, a 1 year delayed relationship between bank
vole larval infestation and questing nymphs.
We observed an effect of saturation deficit on larval

and adult questing behavior, but not on nymphs, as de-
scribed in other studies [40, 45]. Ticks respond to micro-
climate, but climatic variations measured in this study
presumably reflect only roughly microclimatic variations
and could explain the lack of association between satur-
ation deficit and nymph activity found in our study. On
the other hand, nymphs might also be acclimatized to
local conditions and therefore their questing behavior
may vary compared to nymphs studied in other locations
[48, 49]. This is further supported by the optimal satur-
ation deficit value of 3.16 mm Hg over which the adult
questing activity decreased, when an optimum of
4.4 mm Hg has been previously noted elsewhere [9].

Table 4 Selected best model for I. ricinus nymph infestation
load on an individual bank vole with estimated coefficients (in
log scale) explained by month (from May to October, with May
as reference), sex (female as reference), presence of I.
trianguliceps larvae and females and presence of I. ricinus larvae,
centered body mass and its squared value. We defined site and
individual nested in site as nested random structure

Estimate (SE) z-value P-value

Intercept -2.994 (0.617) -4.86 <0.005

June -1.325 (0.385) -3.44 <0.005

July -1.360 (0.429) -3.17 0.002

August -2.103 (0.518) -4.06 <0.005

September -3.043 (0.643) -4.73 <0.005

October -2.956 (0.732) -4.04 <0.005

Male 1.787 (0.298) 6.00 <0.005

Body mass 0.219 (0.036) 6.14 <0.005

Body mass2 -0.009 (0.003) -2.80 0.005

Presence of I. trianguliceps larvae 0.709 (0.247) 2.87 0.004

Presence of I. trianguliceps female 1.012 (0.318) 3.18 0.002

Vole abundance 0.014 (0.006) 2.30 0.021

Random effects

Site σ2 = 0.75 (SD = 0.87)

Individual nested in site σ2 = 0.01 (SD = 0.09)

Negative binomial dispersion parameter 1.00 (SE = 0.46)

σ2 is the variance attributable to random effect. Number of observations:
Total = 1,007; Site = 4; Site:Individual = 658
Abbreviations: SD standard deviation, SE standard error

Fig. 3 Predicted number ± standard error (SE) of larvae and nymphs
on a vole per month. Predictions are based on GLMM shown in
Tables 3 and 4

Fig. 4 Predicted number ± standard error (SE) of larvae per bank
vole (male and female separated) by vole abundance. Predictions
are based on GLMM shown in Table 3
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Our ratio larvae:nymph:adult was 3.5:3.3:2.0 and was
therefore different from theoretical biological expect-
ation (100:10:2) [30], indicating a possible underestima-
tion of nymphs, and particularly of larvae, which show
an important patchiness in distribution. Indeed, the
blanket dragging technique is limited by variability in
sampling efficiency given the nature of the substrate, the
wind speed during sampling, and the height, type and
growth stage of the vegetation [50, 51]. Moreover, the
total tick population is not accessible by flagging given
that diapausing ticks, parasitizing ticks, quiescent ticks
or rehydrating individual are not questing in vegetation.
Associating bank vole screening to the blanket dragging
provided a broader view of immature ticks’ population
by beneficiating from the buffer effect that the host of-
fers against the larvae patchiness and the drop of activity
in case of unfavourable microclimate [32]. The two
approaches are complementary and had led to similar
results supporting further the idea that bank voles play
an important role as host for immature ticks in the area.

Dynamics of tick in immature stages and bank vole
population are related
Questing and parasitizing abundances of larvae and
nymphs showed positive associations with bank vole
abundance during a given session. Regarding nymphs,
this positive relationship might arise from better
engorgement success for larvae in high bank vole abun-
dance. However, regarding larvae, this correlation does
not imply a causative relationship since bank voles do
not contribute to larvae production, which relies on
large mammal availability [52]. Consequently, this posi-
tive relationship between the abundance of larvae and
bank voles might reflect large-mammal density varia-
tions or might reveal a functional response: larvae may
increase questing behavior in response to increased
chemical signals produced by large bank vole popula-
tions [53]. This hypothesis requires further attention and
needs to be experimentally quantified. Additionally,
abundance of other species known to host adult stages
needs to be quantified.
The largest burden of nymph parasitism in voles was

observed in May, whereas peaks of questing nymphs in
the vegetation were observed in May-June and September.
In May, vole populations are mainly composed of over-
wintered sexually active adults; highly mobile males
exhibit large home ranges in their search for receptive
females [54]. Therefore, the probability of encountering
questing nymphs present at a low level in the recovering
spring vegetation is increased [55]. In September, bank
vole contact rate with nymphs might be lower due to taller
vegetation, which allows nymphs to quest higher on
plants, where they can contact larger mammal hosts [47].
Moreover, the bank vole develops an acquired resistance

to ticks, leading to a significant reduction of infestation
success after the first infestation [56, 57], which could lead
to poor infestation success during the second nymph peak
in September. However, our data (Table 3) provide little
support for this hypothesis as regards larvae infestation
that increases with animal weight, which is used here as a
proxy for age, when a decrease in the relationship was
expected under acquired immunity hypothesis. As a
consequence, the main period for larval and nymph
co-infestation on bank voles is in early summer. The
epidemiological consequences of these co-infestations
are discussed below. Concerning larvae, we identified an
infestation peak in June, which is in accordance with the
peak of larvae questing activity and in accordance with
previous surveys [58].
Male bank voles were more commonly infested with

nymphs than females and the infestation increased
with bank vole abundance. This sex-specific infest-
ation load has been described previously [59] and
may not only be due to the immunosuppressing role
of testosterone [60–62], but also to sex-specific be-
havioral differences, e.g. in home range sizes [63].
Surprisingly, we found larvae infestation differs with
population density; females carried more larvae at
high population density, whereas males carried more
nymphs at any population density. A different use of
vertical space by bank vole males and females in high
population densities can be hypothesized, leading
males to come into contact with more nymphs that
quest higher in vegetation, whereas females, which
exhibit aggressive defensive behavior against intruders
during the reproductive season [64], would stay close
to the ground, i.e. at larvae level. More attention
should be paid to the use of vertical space by bank
voles in order to clarify the potential role of vertical
space use causing differences between individuals in
their tick infestation load.
Our data show a concomitant early summer questing

activity between larvae and nymphs, and a parasitic ag-
gregation between larvae and nymphs of I. ricinus on
bank voles, which are relevant from an epidemiological
point of view. The simultaneous activity of larvae and
potentially infected nymphs occurs when rapidly rising
temperatures in spring allow the simultaneous emer-
gence of larvae and nymphs from overwintering dia-
pause. In these conditions, pathogen transmission from
infected nymphs to susceptible larvae can occur via sim-
ultaneous feeding on the same host, even without
systemic infection of the host. This co-feeding transmis-
sion pathway is important for several zoonotic tick-
borne pathogens, especially those with short-lived or
non-systemic infections in the rodent host, such as
Anaplasma phagocytophilum or tick-borne encephalitis
virus (TBEV), respectively [65–68].
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Synchronous infestations on bank voles
In addition to aggregation between I. ricinus life stages on
bank voles, we found a significant aggregation between
tick species, with I. ricinus infestation load increasing with
the presence of I. trianguliceps. I. trianguliceps is a nidi-
colous species associated with rodents and insectivores,
which does not quest in the vegetation and hence does
not come into contact with humans [69]. Even if it is
not involved in zoonotic transmission, I. trianguliceps is
responsible for maintaining the enzootic cycle of poten-
tial zoonotic pathogens such as Anaplasma phagocyto-
philum [70, 71] or Babesia microti [72, 73]. Both of
these pathogens have been identified in Finnish bank
voles [74]. Ixodes trianguliceps could contribute to the
sylvatic cycle of pathogens that the generalist I. ricinus
could transmit to humans, who are considered as dead-
end hosts. Hence, the between-species ectoparasite ag-
gregation is also relevant from an epidemiological point
of view.

Conclusion
In northern European urban forests, population dy-
namics of bank voles and questing I. ricinus larvae
and nymphs are related, suggesting higher tick abun-
dance and consequently higher risk of tick-borne
pathogens for human during the rodent population
peak. Larvae and nymphs showed synchronous activi-
ty, which increases the transmission opportunity for
several pathogens and which are the prerequisite con-
ditions for the maintenance of some pathogens such
as TBEV. Further studies should focus on assessing
the prevalence of tick-borne pathogens in the bank
vole and in questing ticks in order to specify the zoo-
notic risk. Recent models demonstrate a dampening
of vole population cycles in northern Europe [75],
which could therefore be translated into the popula-
tion dynamics of ticks.
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Additional file 1 

Content: Figure S1. Average (± SE) monthly saturation deficit and temperature during the 

monitoring years, measured in the weather station. Figure S2. Observed mean abundance of ticks 

in vegetation per session, from May 2012 to October 2015 (NB: in 2014 ticks were not dragged in 

October, due to poor weather conditions).Figure S3. Mean number of vole captured per trap-night 

at each session and in each site, from May 2012 to October 2015. Table S1. Model selection table 

for the abundance of ticks questing in the vegetation explained by vole abundance (MNA), month, 

year, abundance in other stages during the same session (nymph (Ny), adult (Ad), larva (Larv)), 

abundance of ticks in a previous life-stage collected during the previous session (lag(Ad), Lag(Ny), 

Lag(Larv)), total amount of larvae that fed on voles during the previous year (LagY(Larv)), total 

amount of larvae that fed on bank vole during the same early summer (May and June) 

(LagS(Larv)). Figure S4. Predicted number (± SE) of larvae, nymphs and pooled nymphs and 

females per 100 m2 of vegetation explained by bank vole abundance. Predictions are based on 

GLMM showed in Table 1. Table S2. Model selection table for the abundance of ticks questing in 

the vegetation, explained by vole abundance (MNA), Saturation deficit (SatDef) and Saturation 

deficit2 (SatDef2), abundance in other stages during the same session (adult (Ad), nymph (Ny), 

larva(Larv)), abundance of ticks in a previous life-stage collected during the previous session 

(lag(Ad), Lag(Ny), Lag(Larv)). Table S3. Total number of ticks (per species and stage) collected on 

voles, with the minimum and maximum tick infestation per vole, the percentage of vole infested 

with a particular tick stage or species, the mean number of ticks infesting a vole and the mean 

number of ticks per infested vole. Figure S5. Vole infestation per session (± SE) with I. ricinus 

larvae and nymphs from May 2012 to October 2015. Table S4. Model selection table for the 

abundance of infesting larvae, explained by month, year, bank vole sex, centered body mass (cBm) 

and cBm2, infestation with ticks in other species or other stages (ItL (I. trianguliceps larvae), ItF (I. 

trianguliceps female), ItN (I. trianguliceps nymph), IrN (I. ricinus nymph)) and with fleas, 



2 

abundance of questing larvae (Larv), vole abundance (MNA), and the interaction between sex and 

vole abundance and the interaction between sex and body mass. Table S5. Model selection table 

for the abundance of infesting nymphs, explained by month, year, bank vole sex, centered body 

mass (cBm) and cBm2, infestation with ticks in other stages or other species (ItL (I. trianguliceps 

larvae), ItF (I. trianguliceps female), ItN (I. trianguliceps nymph), IrL (I. ricinus larvae)) and with 

fleas, abundance of questing nymphs (Nymph), vole abundance (MNA), the interaction between 

sex and vole abundance and the interaction between sex and body mass. Table S6. Additional 

model for the abundance of nymphs questing in the vegetation. Table S7. Model selection table 

concerning the abundance of questing nymphs, explained by month, year, vole abundance (MNA), 

the total amount of larvae that fed on voles the year before (LagY(Larv)), the total amount of 

larvae that fed on voles during the same summer (May and June) (LagS(Larv)), the amount of 

larvae (Larv) and adult (Ad) in vegetation during the same session  

List of variables in the datasets associated with this manuscript: Date; Month; Year; Session: 

trapping period within a month; Av_temp, Av_hum, Av_baro: daily average temperature, 

humidity, atmospheric pressure recorded at the meteorological station of Nenäinniemi; 

Vole_MNA_general: minimum number of voles alive during the session; areas: location of the 

sampling areas: 1= Kylmänoro, 2= Sippulanniemi, 3= Hämeenlahti, 4= Jyskänlaakso; ticks: 

presence/absence of tick in vegetation during the session; irl, irn, irf, irm, irnf, ad, irtot: total 

number of I. ricinus larvae, nymphs, females, males, females and nymphs, males and females, all 

stages pooled together collected with the flagging method; it: number of I.trianguliceps all stages 

pooled together collected with the flagging method; m: number of meters flagged; satdef: mean 

saturation deficit during the sampling day; trap: vole trap location; ind: vole identification number; 

sex: vole sex (1: female, 2: male); weight: vole weight (g); head: vole head width (mm); ticks: 

presence/absence of ticks on the vole; fleas: presence/absence of fleas on the vole; IrL_TOT, 
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IrN_TOT, IrF, Ir_TOT: total number of I. ricinus larvae, nymphs, females and all stages pooled 

infesting an individual vole; IrL_PA, IrN_PA, Ir_PA: presence/absence of larvae, nymphs and all 

stages of I. ricinus infesting an individual vole; ItL_TOT, ItN_TOT, ItF_TOT, M_It, It_TOT: total 

number of I. trianguliceps larvae, nymphs, females, males, and all stages pooled infesting an 

individual vole; ItL_PA, ItN_PA, ItF_PA, It_PA: presence/absence of I.trianguliceps larvae, nymphs, 

females and all stages pooled infesting an individual vole, NoN.identified.ticks: total number of 

ticks non identified at species level sampled from an individual vole; Tot_Ticks: total number of 

ticks all stages and all species pooled together infesting an individual vole; irl_100, irn_100, 

irf_100, irm_100, irnf_100, irtot_100: total number of I.ricinus larvae, nymphs, females, males, 

nymphs and females, all stages pooled together flagged in 100m2 of vegetation during a session; 

it_100: total number of I.trianguliceps flagged in 100m2 of vegetation during session 
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Figure S1. Average (± SE) monthly saturation deficit and temperature during the monitoring 

years, measured in the weather station 
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Figure S2. Observed mean abundance of ticks in vegetation per session, from May 2012 to 

October 2015 (NB: in 2014 ticks were not dragged in October, due to poor weather conditions). 
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Figure S3. Mean number of vole captured per trap-night at each session and in each site, from 

May 2012 to October 2015. 
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Table S1. Model selection table for models showed in Table 1. The abundance of ticks questing 

in the vegetation was explained by vole abundance (MNA), month, year, abundance in other 

stages during the same session (nymph (Ny), adult (Ad), larva (Larv)), abundance of ticks in a 

previous life-stage collected during the previous session (lag(Ad), Lag(Ny), Lag(Larv)), total 

amount of larvae that fed on voles during the previous year (LagY(Larv)), total amount of larvae 

that fed on bank vole during the same early summer (May and June) (LagS(Larv)). Full model and 

all models laying at 2 AICc difference from the lowest AICc are showed with their degree of 

freedom (Df).  

Questing larvae Df AICc  Delta 
FULL  Lag(Ad)+ Ny+Ad+Year+Month+MNA  
Best  Month+MNA 
  Month+Ny+MNA 
  Month+MNA+lag(Ad) 
  Month+Ny 
  Ad+MNA+Month+Ny 
  Ad+MNA+Month 

15 
9 
10 
10 
9 
11 
10 

491.8 
484.1 
484.4 
485.3 
485.4 
485.5 
485.8 

7.73 
0.00 
0.30 
1.18 
1.30 
1.40 
1.73 

Questing nymphs    
FULL  Lag(Larv)+Larv+Ad+Year+Month+MNA 
Best   Month+MNA 
  Lag(Larv)+Month+MNA 

15 
9 
10 

521.8 
510.8 
510.1 

11.71 
0.71 
0.00 

Questing adults     
FULL  Lag(Ny)+Larv+Ny+Year+Month+MNA 
Best  Month+Year 
   Larv+Month+Year 
   Larv+Month+Year+Ny 
   Month+Ny+Year 
   Larv+MNA+Month+Year 

15 
11 
12 
13 
12 
13 

451.8 
447.0 
446.4 
446.5 
447.5 
448.3 

5.34 
0.58 
0.00 
0.11 
1.09 
1.91 

Questing (female+nymph)    
FULL  Month+Year+MNA 
Best  Month+MNA 

12 
9 

552.0 
546.0 

6.04 
0.00 
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Figure S4. Predicted number (± SE) of larvae, nymphs and pooled nymphs and females per 100 

m2 of vegetation explained by bank vole abundance. Predictions are based on GLMM showed in 

Table 1.  
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Table S2. Model selection table for models showed in Table 2. The abundance of ticks questing 

in the vegetation was explained by vole abundance (MNA), Saturation deficit (SatDef) and 

Saturation deficit2 (SatDef2), abundance in other stages during the same session (adult (Ad), 

nymph (Ny), larva(Larv)), abundance of ticks in a previous life-stage collected during the 

previous session (lag(Ad), Lag(Ny), Lag(Larv)). Full model and all models laying at 2 AICc 

difference from the lowest AICc are showed with their degree of freedom (Df). 

Questing larvae Df AICc  Delta 
FULL  Lag(Ad)+SatDef+SatDef²+MNA+Ny+Ad+Year 
Best  Lag(Ad)+SatDef+MNA 

Lag(Ad)+SatDef+SatDef²+MNA 
Lag(Ad)+SatDef+SatDef²+MNA+Ny 
Lag(Ad)+SatDef+ MNA+Ny 

12 
6 
7 
8 
7 

485.6 
477.10 
477.1 
477.6 
478.6 

8.62 
0.00 
0.07 
0.64 
1.55 

Questing nymphs 
FULL  Lag(Larv)+SatDef+SatDef²+MNA+Larv+Ad+Year 
Best  Ad 

Ad+SatDef+MNA 
Ad+Larv 
Ad+MNA 
Ad+MNA+Larv 
Ad+SatDef²+MNA 
Ad+Larv+SatDef+MNA 
Ad+Larv+Year 
SatDef²+SatDef+MNA+Ad 
SatDef²+ MNA+Ad+Larv 
Ad+Year 

12 
4 
6 
5 
5 
6 
6 
7 
8 
7 
7 
7 

565.5 
555.8 
555.1 
555.4 
555.9 
556.0 
556.0 
556.2 
556.8 
556.8 
556.9 
557.0 

10.35 
0.69 
0.00 
0.25 
0.77 
0.83 
0.89 
1.05 
1.66 
1.67 
1.77 
1.89 

Questing adults 
FULL  Lag(Ny)+SatDef+SatDef²+MNA+Larv+Ny+Year  
Best  Satdef+SatDef²+Ny+Lag(Ny)+Year 

Satdef+SatDef²+Ny+Lag(Ny)+Year+Larv 
Satdef+SatDef²+Ny+Lag(Ny)+Year+MNA 

12 
10 
11 
11 

459.0 
458.9 
458.5 
460.0 

0.47 
0.37 
0.00 
1.48 

Questing (female+nymph) 
FULL  SatDef+SatDef²+MNA+Year 
Best  MNA 

Satdef+Satdef²+MNA 
Year 
Satdef+MNA 
MNA+Year 

9 
4 
6 
6 
5 
7 

603.7 
600.3 
600.0 
600.1 
601.3 
601.8 

3.70 
0.31 
0.00 
0.04 
1.25 
1.72 
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Table S3. Total number of ticks (per species and stage) collected on voles, with the minimum 

and maximum tick infestation per vole, the percentage of vole infested with a particular tick 

stage or species, the mean number of ticks infesting a vole and the mean number of ticks per 

infested vole (SE=standard error, N=1007 observations).  

 Range Total 
number 

% Vole 
infested 

Mean per vole 
(SE) 

Mean per vole infested by the 
tick stage and species (SE) 

I. ricinus
Larvae [0; 46] 2290 59.19 2.27 (0.13) 3.84 (0.20) 
Nymph [0; 13] 178 9.83 0.18 (0.03) 1.80 (0.04) 
Female [0; 1] 1 0.099 - - 
Total [0; 50] 2469 61.17 2.45 (0.15) 4 (0.22) 

I. trianguliceps
Larvae [0; 27] 718 28.40 0.71 (0.06) 2.51 (0.17) 
Nymph [0; 8] 275 18.47 0.27 (0.02) 1.48 (0.08) 
Female [0; 4] 84 5.86 0.08 (0.012) 1.42 (0.10) 
Male [0; 2] 4 0.40 0.004 (0.002) 1.33 (0.33) 
Total [0;27] 1081 42.9 1.07 (0.07) 2.50 (0.13) 
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Figure S5. Vole infestation per session (± SE) with I. ricinus larvae and nymphs from May 2012 to 

October 2015 
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Table S4. Model selection table for models showed in Table 3. The abundance of infesting larvae 

was explained by month, year, bank vole sex, centered body mass (cBm) and cBm2, infestation 

with ticks in other species or other stages (ItL (I. trianguliceps larvae), ItF (I. trianguliceps 

female), ItN (I. trianguliceps nymph), IrN (I. ricinus nymph)) and with fleas, abundance of 

questing larvae (Larv), vole abundance (MNA), and the interaction between sex and vole 

abundance and the interaction between sex and body mass 

Model AIC Df 
Full Model: 
Month + Year + Sex + cBm + cBm² + Sex *cBm + ItL + ItF + ItN + IrN + MNA + Larv + 
Fleas + Sex*MNA 

3469.0 19 

Month + Year + Sex + cBm + cBm² + Sex *cBm + ItL + ItF + ItN + IrN + MNA + Larv + 
Sex*MNA 3467.0 18 

Month + Year + Sex + cBm + Sex *cBm + ItL + ItF + ItN + IrN + MNA + Larv + Sex*MNA 3465.1 17 
Month + Year + Sex + cBm + Sex *cBm + ItF + ItN + IrN + MNA + Larv + Sex*MNA 3464.0 16 

 

Table S5. Model selection table for models showed in Table 4. The abundance of infesting 

nymphs was explained by month, year, bank vole sex, centered body mass (cBm) and cBm2, 

infestation with ticks in other stages or other species (ItL (I. trianguliceps larvae), ItF (I. 

trianguliceps female), ItN (I. trianguliceps nymph), IrL (I. ricinus larvae)) and with fleas, 

abundance of questing nymphs (Nymph), vole abundance (MNA), the interaction between sex 

and vole abundance and the interaction between sex and body mass 

Model AIC Df 
Full model: 
Month + Year + Sex + cBm + cBM2 + ItL + ItN + ItF + IrL + Sex * Bm + Sex * MNA + 
MNA + Nymph + Fleas 

708.55 19 

Month + Sex + cBm + cBM2 + ItL + ItN + ItF + IrL + Sex * Bm + Sex * MNA + MNA + 
Nymph + Fleas 702.82 16 

Month + Sex + cBm + cBM2 + ItL + ItN + ItF + IrL + Sex * Bm + Sex * MNA + MNA + 
Nymph 700.83 15 

Month + Sex + cBm + cBM2 + ItL + ItF + IrL + Sex * Bm + Sex * MNA + MNA + Nymph 698.93 14 
Month + Sex + cBm + cBM2 + ItL + ItF + IrL + Sex * Bm + Sex * MNA + MNA 697.15 13 
Month + Sex + cBm + cBM2 + ItL + ItF + IrL + Sex * Bm + MNA 695.96 12 
Month + Sex + cBm + cBM2 + ItL + ItF + Sex * Bm + MNA 695.16 11 
Month + Sex + cBm + cBM2 + ItL + ItF + MNA 695.57 10 
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Table S6. Additional model for the abundance of nymphs questing in the vegetation  

Y = Nymph abundance in vegetation Estimate(SE) z-value p-value
Intercept -0.108(0.28) -0.38 0.7028
2014 -0.709(0.38) -1.85 0.0637 
2015 -1.051(0.40) -2.62 0.0089 
June -0.542(0.28) -1.96 0.0498 
July -2.132(0.40) -5.29 <0.005 
August -1.446(0.49) -2.94 <0.005 
September -0.924(0.62) -1.50 0.1331 
October -2.802(0.54) -5.23 <0.005 
Tot amount of larvae that fed on voles the year before 0.005(0.002) 2.69 0.0071 
Amount of tick larvae questing at the same session -0.078(0.03) -2.69 0.007 
Vole abundance 0.021(0.008) 2.55 0.0109 
Random effect: site 0.1161 (SD =0.34) 
Negative binomial dispersion parameter 5.6955 (SE = 1.80) 
AIC 390.2 

Additional model for the abundance of I. ricinus nymphs questing in the vegetation with estimated 

coefficients (in log scale), explained by month (from May to October, with May as a reference), year (from 

2013 to 2015, with 2013 as a reference), the total amount of larvae that fed on voles the year before, the 

amount of larvae in vegetation during the current session and the vol 2 is the variance 

attributable to random effect. Number of observations: total = 68, Site = 4 

Table S7. Model selection table concerning the model showed in table S6. The abundance of questing 

nymphs was explained by month, year, vole abundance (MNA), the total amount of larvae that fed on 

voles the year before (LagY(Larv)), LagS(Larv): the total amount of larvae that fed on voles during the 

same summer (May and June), the amount of larvae (Larv) and adults (Ad) in vegetation during the same 

session  

Questing nymphs (2) Df AIC  
FULL  Year+Month+MNA+LagY(Larv)+LagS(Larv)+ Larv+Ad 
Best  Month+MNA 

Larv+Month+MNA 
Larv+Year+Month+MNA+LagY(Larv) 
Larv+MNA+Month+ LagS(Larv) 

15 
9 

10 
13 
11 

400.2 
396.9 
395.6 
396.9 
397.5 

4.61 
1.29 
0.00 
1.31 
1.89 
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