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We present the generalized quasiclassical theory of the long-range superconducting proximity effect in
heterostructures with strong ferromagnets, where the exchange splitting is of the order of Fermi energy. In
the ferromagnet the propagation of equal-spin Cooper pairs residing on the spin-split Fermi surfaces is shown
to be governed by the spin-dependent Abelian gauge field which results either from the spin-orbital coupling or
from the magnetic texture. This additional gauge field enters into the quasiclassical equations in superposition
with the usual electromagnetic vector potential and results in the generation of spontaneous superconducting
currents and phase shifts in various geometries which provide the sources of long-range spin-triplet correlations.
We derive the Usadel equations and boundary conditions for the strong ferromagnet and consider several generic
examples of the Josephson systems supporting spontaneous currents.

DOI: 10.1103/PhysRevB.96.094506

I. INTRODUCTION

Effective gauge theories have been introduced in many
condensed-matter systems, including spin-triplet superfluid
3He [1], cold atom systems [2,3], and magnetic materials [4,5].
In spatially inhomogeneous magnetic textures the additional
spin-dependent U(1) gauge field of topological origin affects
the motion of conduction electrons in the same way as the
external electromagnetic field [4,6-9], which results in the
topological Hall effect and emergent electrodynamics [5,10]
observed recently in the chiral magnets with skyrmion lattices
[11-14].

Geometric flux associated with the spin-dependent gauge
field was predicted to generate spontaneous spin and charge
currents in mesoscopic rings with spatially inhomogeneous
texture of the Zeeman field [15-18]. Until now these effects
have not been observed. Experimental detection of persistent
currents in normal metals is in general rather challenging
[19,20], since their magnitude is determined by the single-level
contribution which is rather small and highly sensitive to the
details of disorder potential [21,22].

The situation is completely different in the superconducting
state where the locally broken U(1) gauge symmetry leads
to the Meissner effect, i.e., the generation of persistent
condensate currents in response to the external magnetic
field. However, effects associated with the geometric spin-
dependent flux [15-18] have not been identified in the usual
superconducting systems because the condensate of spin-
singlet Cooper pairs is not sensitive to the Zeeman field
rotations.

In the present paper we show that the superconducting
condensate in fact can be coupled to the spin-dependent gauge
fields emerging in superconductor/ferromagnet (SC/FM) hy-
brids. In such systems the interplay of superconducting and
magnetic orderings results in the generation of the spin-triplet
correlations through the proximity effect [23]. Of particular
interest are the Cooper pairs with spin projections S; = 1 in
the local basis determined by the exchange field k. They are
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formed by equal-spin correlations (ESC) between the electrons
residing on one and the same spin-up/-down Fermi surface
[see Fig. (1a)]. Upon the adiabatic rotation of & such Cooper
pairs pick up geometric phases and generate spontaneous
superconducting currents.

To understand the behavior of ESC we develop the
gauge theory formalism to treat the proximity effect in
SC/FM systems with spin-textured strong ferromagnets. So
far, proximity and transport calculations in SC/FM hybrids
have mostly concentrated on either fully polarized systems,
so-called half metals [24—28], or in the opposite limit of weakly
polarized systems [23,29], where the difference between spin
subbands is completely neglected. However, most FMs have
an intermediate exchange splitting of the energy bands of the
order of but less than the Fermi energy.

By now the quasiclassical theory for this regime has been
formulated for the case of homogeneous magnetization of the
strong ferromagnet [30]. To describe the general situation we
go beyond those limitations and consider SC/FM structures
with arbitrarily large and spatially inhomogeneous exchange
fields.

Our approach relies on the adiabatic approximation for spin
transport [31], which has been extensively used for studying
transport phenomena in spin-textured magnets [4,5]. We
derive the quasiclassical equations describing ESC interacting
with the spin-dependent U(1) gauge field which can be induced
either by the magnetic texture or spin-orbit coupling (SOC).
The phases picked up by the S, = &1 Cooper pairs in response
to this gauge field generate spontaneous superconducting
currents through strong FMs.

II. GENERALIZED QUASICLASSICAL THEORY
A. The model

We consider the Gor’kov equations in the presence of
spin-dependent gradient terms, the exchange field %, and the

©2017 American Physical Society


https://doi.org/10.1103/PhysRevB.96.094506

1. V.BOBKOVA, A. M. BOBKOV, AND M. A. SILAEV

Spin h
up/down
FS ;
ES0 == usc
S S
f
-d/2 0 d/2

FIG. 1. (a, b) Schematic picture of the Cooper pairs forming at
the spin-split Fermi surfaces (FS). (a) The long-range equal-spin
correlations (ESC) between the electrons within the spin-up or
spin-down FS. (b) Mixed-spin correlations (MSC) that involve pairing
between electrons in different spin-up/-down FS. (c) Josephson
junction through the strong ferromagnet (F) with magnetic helix
texture producing the gauge field Z || x, which generates spontaneous
charge currents between superconducting (S) electrodes.

external vector potential A:
(Gy'+1n—32)G =18(r — 1), (1)
. L1 4
Gy = —fi M1 - 61{My;, p;}/2 + (io + &)t (2)

Here I1= p — eAt;, G = G(r,r') is the matrix Green
function (GF) in spin-Nambu space, {,} is the anticommutator
added to have the Hermitian Hamiltonian in the system with
space-dependent field M;;, w is the chemical potential, w is the
Matsubara frequency, m is the effective mass, which is equal
to mp in the ferromagnet and to mg in the superconductor,
e is the electron charge, p = (p,,py,p;) is the momentum
differential operator, and &; and 7; are the spin and Nambu
Pauli matrices. The self-energy term 3 includes the effects
related to disorder scattering as well as the nondiagonal
superconducting potential.

The spin-dependent term Mj; can be associated either
with the SOC or with the pure gauge SU(2) field My; =
—iTr(c?klA]Tlej)/Zm, where the transformation U (r)=
€'99M/2 rotates spin axes to the local frame where h | z. It is
parameterized by the spin vector § = 6n, defined by the spatial
texture of the exchange field distribution h(r) = I§(0(r))h,
where R is the spatially dependent rotation matrix and we
choose h = hz. Therefore, Eq. (1) is written in the local
reference frame, where the quantization axis is aligned with the
local exchange field. We assume that the exchange field rotates
slowly, on the large scales as compared to the atomic distances.
For this reason we neglect second-order spatial derivatives of
the exchange field. In the framework of this approach the
inhomogeneity of the exchange field enters the equations as
the pure gauge SU(2) field.
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In the general case of large exchange splitting || ~ w the
spin-dependent Gor’kov Eq. (1) is rather complicated and most
importantly, one cannot apply here the quasiclassical theory.
The quasiclassical approximation is violated by the mixed-spin
correlations (MSC) residing in spin-split subbands [Fig. 1(b)]
which are characterized by the spatial length scale of the order
of the Fermi wavelength A = /2m /. Therefore MSC yield
a vanishingly small contribution to the momentum-averaged
observables at distances much larger than the atomic length
from the FM/SC interface.

Such correlations can be incorporated to the effective
boundary conditions as the source terms for the ESC
[Fig. 1(a)]. The ESC survive in the ferromagnet at much larger
distances and can be treated within quasiclassics considered
separately for each of the spin-up and spin-down Fermi
surfaces.

B. Adiabatic approximation

To develop the quasiclassical approximation we divide the
GF into the parts corresponding ESC of the spin-up/-down
states [see Fig. 1(a)],

. Go+ G.6. Fi6, + F\6,
Ges=\ ~ . = ~ =~ ) 3
F.6,+ F,6, Go+ G;6;
and the one corresponding to the MSC [see Fig. 1(b)],
. G.6y + G,6y Fy+ F.6.
Gus=( %" =227 005 ) @
Fo+ F.6, G.6,+G,6,

Then from the Gor’kov equation (1) one can see that the
amplitude of MSC is in general proportional to G s
(M;; /A ph)é Es, Where A is the Fermi wavelength. Therefore
the MSC amplitude is small as compared to that of the ESC if
the adiabatic criterion is satisfied |M;; /Aph| < 1.

Within the adiabatic approximation neglecting the MSC in
Eq. (1) and substituting the expansion of momentum operator
p* = p* —2ipV, we obtain the quasiclassical equation for
the ESC part:

iVVRGEs + liots — Mj6,p; — £,Gps1 =0, ()

where Vg = Vg —ieA[%;,-] and V= vy +v_p_. Here
vy = +/2( £ h)/m are the spin-dependent Fermi velocities
determined on each of the spin-split Fermi surfaces labeled
by the subscript o = £. We introduce the projection operators
to spin-up and spin-down states y, = £46; + £,6, and y_ =
46, + 1,67, respectively, where 4, = [fo + (—)%;]/2 and
611y = [60 + (—)6.1/2.

The paired states on each of the Fermi surfaces are
given by the corresponding parts of the equal-spin correlator:
Cvii = ?i(v}gs. This decomposition allows us to introduce
quasiclassical propagators separately for spin-up and spin-

down blocks,
R d&ps ~
&=—f LA ©)

where §,, = p*/2mp + oh — u, and the notation § means
that the integration takes into account the poles of GF near the
corresponding Fermi surface.
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From Eq. (5) we obtain generalized Eilenberger equations
for the spinless quasiclassical propagators

iV, 0Rgs + [iwTs — 25,8,1 =0, @)
where the covariant operator is

N

dr = Vg +i0Z[t5,-] — ieA[f3,], ®)

Z =My, ,My,M, )mp. 9)

One can see that the Eilenberger-type equations for the spin-
up/-down correlations contain an additional U(1) gauge field Z
which is added to the usual electromagnetic vector potential A
with the opposite effective charges for spin-up and spin-down
Cooper pairs. The U(1) field is obtained by projecting the
initial SU(2) field 63 M}; to the basis of spin-triplet pairing
states: Z = —i(l?’IVU)H.

This reduction means that we neglect spin-flip transitions
between the spin-up and spin-down Cooper pairs induced by
the SU(2) potential. On a qualitative level it is equivalent to
the adiabatic approximation in the single-particle problems
that allows to describe the quantum system evolution in terms
of the Berry gauge fields [31].

Finally, the quasiclassical expression for the charge current
is given by

inT
== Y Y v TEg ). (10)

o=t w

where v, are the spin-resolved DOS and (..) denotes the
averaging over the spin-split Fermi surface.

C. Usadel equation for ESC

Let us consider the system with large impurity scattering
rate as compared to the superconducting energies determined
by the bulk energy gap A. In this experimentally relevant
diffusive limit it is possible to derive the generalized Usadel
theory with the help of the normalization condition g2 =1,
which holds due to the commutator structure of the quasiclas-
sical equations (8).

The impurity self-energy in the Born approximation is given
by £, = (&,)/2i1,. In the dirty limit we have

27, (V5 0R)80 = —[(80).80]- (11
The solution of Eq. (11) can be found as &, = (§,) + gg;i,

where the anisotropic part of the solution 2% is small with
respect to (3,). Making use of the relation {(g,),&%} =0,

which follows from the normalization condition, one obtains

8% = —T,0,(8,)0r(80)- (12)

Substituting to Eq. (7) and omitting the angle brackets we get
the diffusion equation

Dy dr(850r8s) — [w3,8,1 = 0, (13)

where D, are the spin-dependent diffusion coefficients, in the
isotropic case given by D, = 7,02 /3. The current is obtained
by substituting expansion (12) to Eq. (10):

T .
j= ”’2 ¢ DS 0o Do Tr{#380 0r 0 1. (14)

o=t
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Equations (13) and (14), together with the boundary
conditions derived in the next section, provide the frame-
work to study proximity-effect-related phenomena in strong
ferromagnets with a large amount of disorder. This regime
describes a different physical situation as compared to the
previous works, where other approximations have been used,
for example, papers studying the Rashba superconductor with
large SOC [32] and those dealing with weak exchange fields
and SOC within the SU(2)-covariant formulation [33-36].
The applicability condition of our theory requires that the
exchange splitting has to be much larger than all other
energy scales except the Fermi energy. In particular, in the
bulk superconductor we have omitted the spin-flipping terms
produced by various sources like SOC, magnetic texture, or
magnetic impurity scattering. However the spin-flipping terms
are still important in strong ferromagnets/half metals since
they provide the source of ESC. Such correlations appear due
to the conversion of spin-singlet Cooper pairs leaking from the
superconductor electrode into the long-range spin-triplet ones.
Below we study this conversion and boundary conditions for
ESC using a generic model of the SC/FM interface.

III. BOUNDARY CONDITIONS

The quasiclassical Eq. (7) deals with the long-range ESC
transformed adiabatically in space under the action of spin
gauge fields. In FM/SC systems with the usual spin-singlet
superconductors such correlations can appear only as a result
of the nonadiabatic spin-flip which converts MSC into the
ESC [26,28,37]. This process occurs within the thin layer near
the FM/SC interface and can be described by the effective
boundary conditions. To derive them we consider the simple
microscopic model of the boundary with the nonmagnetic
potential barrier. The FM/SC interface is located at x = 0,
the normal n = n,x directed from SC to FM, and n, = *1.
The momentum components p, in the yz plane parallel to the
boundary are conserved. The effective masses mg and m g in
the superconducting and ferromagnet regions are assumed to
be different, and the FM/SC boundary is characterized by the
interfacial potential barrier of the strength V §(x) added to the
Hamiltonian Ga Vin Eq. (1).

Let us outline the general strategy to deriving the boundary
conditions for quasiclassical ESC propagators. We need to
solve the exact Gor’kov equations (1) near the boundary with
accuracy up to the first order in SU(2) terms, which provides
the conversion of MSC to ESC. Therefore we will use an
expansion by the small parameter |M;;p;/h| < 1.

As aresult we will find the slow component of the anoma-
lous function F(x,x") = (G)a1, where the index corresponds
to the Nambu space. This component does not contain fast
oscillations as a function of the center-of-mass coordinate
X = (x + x")/2. Let us denote such components as F(x,x’) .
Below we will show that these correlations have the form

5 0 F
= = . 1
F < F0 > (15)
The spin-up F, and spin-down F_ pairing amplitudes are
given by

Folxx') = 7P =Poe)s, | Ko, (16)
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where py, = \/Zmp(u +oh)— pﬁ, and S, =(M,; +
ioMy;)n;/h is the combination of SU(2) field components
that generate ESC in the ferromagnet near the superconducting
interface. Here the coefficient K, incorporates the dependence
of the pairing amplitude on the interface barrier strength, order
parameter, and effective masses.

By writing Eq. (16) we assume the averaging over the
directions of the in-plane momentum. This is enough in the
dirty limit, although in the clean case additional important
effects resulting from the in-plane gradients of the exchange
field k can be obtained beyond this approximation. Equation
(16) is valid for @ > 0, and for @ < O the amplitude can be
obtained using symmetry relations, as discussed below.

We need to find the GF near the FM/SC interface deter-
mined by the one-dimensional Gor’kov equation (1) along the
x coordinate. Since each GF is the 2 x 2 matrix in spin space
they can be represented in the form of two spinors,

A

G =@

<>

2)s a7

A

F = (0 1), (18)
where the spinor elements are @iy = (ug,ux2)’ and O =
(vk1,vk2)T. Let us consider the components i, U; in detail.
The other pair #i,, D, is given by i, = o, and 0, = 0,1y,
and changing the sign of the fields & and M,,.

For the Nambu spinor 1} = ({11,0;)7T from (1) we obtain the
equation in the ferromagnet,

p ik
F 2mp

— o {Myj,p;}/2 + t3(iw + hUz)]llAf =0,

19)
and in the superconductor,
25 3
[Ms — o +ho+ héz)}ﬁ =0, (20)
2m5

where ugr=pu — pﬁ/ng, r. These equations look similar
to the Bogoliubov—de Gennes equation but are taken at the
imaginary frequency. The boundary conditions are obtained
by integrating Eq. (1) near the singularity points x = x’
and x = 0. In this way we obtain the boundary conditions
atx = x":

(x4 0) =P (' —0), 1)

Vil (x' 4 0) = Vi (6 = 0) = 2mp(1,0)",  (22)

Vxﬁl(x/ +0) — Vxﬁl(x’ —0)=0, (23)
andatx =0,
¥ (4+0) = ¥ (—0), 24)
Vi (=0) Vi (+0)

= (iMy6 — 2V)P(0).  (25)

mpr mg

Here we neglect the impurity scattering and the inverse
proximity effect in the superconducting region. The impurity
self-energy can be included in the consideration in case of the
tunneling limit when the surface barrier is strong enough to
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suppress the inverse proximity effect in the superconductor.
This consideration demonstrates that the impurity scattering
does not change the boundary conditions for quasiclassical
propagators. In the opposite case of weak barriers, strictly
speaking, one should take into account how the impurity
self-energy in the superconductor is modified by the inverse
proximity effect, which in principle can affect the boundary
conditions.

Letus assume thatn, < 0. Then the solution for the electron
wave in the bulk normal ferromagnet can be written as 0 = 0
and

A(x > x') =P A . + e’ A__, (26)

Ax <x)=e P AL e P ALL, @27

where the labels > (<) denote right- and left-going waves,

Pon = /2mp(ur + oh + iw), and we neglect SOC correc-
tions to the momenta. Expression (26) is valid for the half-
metal when & > up as well. In this case one should take
P =is2mp(h — pp).

To the first order by the small parameter [M;;p;/h| < 1
we get expressions for the amplitudes in Eq. (26):

A =alle [ =(pSis + pySIO) . (28)

~

Ao =a e P [(p_,Si—+ pySjo), 117, (29)

Ao =adlLe™ (1, (paSie — pySiON’. (30)

~

A =a e [(pyS)- — puSio). 117, (3D

where S, = (Myy +ioM,y,)/h, and S, is defined above.

The zero-order amplitudes are given by

all =al. = —imp/pin. (32)

We neglect the second term in Eq. (26), A,>, since its
amplitude is much smaller than afl due to the prefactors
Pon SO'J_ and PyScrH'

Therefore up to the first order in these small parameters
we should take into account the reflected holes generated by
A_.. without spin-flip which have the same wave vector as the
incident wave and therefore do not contribute to the slowly
varying correlation (15).

The solution (26) can be considered as the incident
electronic wave at the FM/SC interface. The reflected wave
consists of electronic i, and hole 0, components having the

form
4,(x,x") = e P+ D (x") + e P D_(x'), (33)
0,.(x,x") = P> B, (x) + eP+* B_(x'). (34)
Here the structure of D(,, is similar to that of A(,<:
D)y = dre P (1, (paSis — pySiOT. (39

D_(x)=d e """ [(pyS- — p-uS1), 11".  (36)
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The reflected holelike wave is given by (34) with the
amplitudes

By(x') =bie P 1, (Sippt, + Siepl’. 37

B_(x"y=b_e P [=(SL_pl, + Sj-py) 117, (38)

We are interested in wave B_ because the corresponding
contribution to the reflected hole amplitude 0, given by the
second term in Eq. (34) does not contain fast oscillations
as the function of X = (x + x’)/2. Hence it provides the
source of the long-range superconducting correlations. On a
qualitative level wave B_ determines the spin-flip Andreev
reflection leading to the generation of spin-triplet Cooper pairs.

Hence we obtain the component of the ESC in the
form F,(x,x") = b_e!P»*=P1*) The other component is
obtained from the other pair of spinors (it,,7,) and has the
form F_(x,x") = b, e’ P-*~P=~)_ Averaging over the in-plane
momentum directions, we get (b;) = S, K, in accordance
with Eq. (16) where we putn, = —1.

General expressions for the amplitudes K, are rather
involved (see Appendix). However, in the tunneling limit they
read
O PsnVsn

PATEI
where Fjo; = A/ 0?4+ |A|? and vg, = +/2us/mg. For the
half-metal Eq. (39) is valid with the imaginary momentum
P =ivV2mp(h — p) + p.

The other Nambu component of the anomalous function
F(x,x") = (G)1, can be obtained from the general particle-
hole symmetry

Ko = n.Fp, (39)

F(w) = 6,[F(@)]*6,. (40)

Now, having in hand the expression for the slowly varying
amplitude (16), we can derive the boundary conditions for
the components of the quasiclassical propagator. Following
Ref. [38] we write them in the form

8o =8t + foli + foto, 41

where £ = (£, & i%,)/2. The quasiclassical propagators can
be obtained by taking the Fourier transform of the slowly
varying exact GF components (16) and then use the definition
(6). In this way we obtain the propagators as functions of the
momentum direction p,, which determines the quasiclassical
trajectories in each of the spin subbands. We use the notations
fo,in(om) for the “incoming” (“outgoing™) trajectories with
Psn < (>)0. Then Eq. (16) yields the quasiclassical ESC
propagators at the interface x = 0:

ﬁf.in(w > 0) = 2iv<7nKaS(7La (42)

where v, = psn/mp is the spin-dependent Fermi velocity.
At the same time fa,out(x =0,0>0)=0.

The other anomalous Green’s functions can be obtained
from ﬁ,(x = 0,w > 0, ps) according to the following sym-
metry relations [39]: fg(x =0,w <0,ps) = —ﬁ,(x =0,w >
0’ - ﬁo‘) and f(T(-x = O,Cl),ﬁo-) = f:(-x = 07 - waﬁa) The
normal part of the GF is given by g inouy = 1 due to the
normalization condition. Thus Eq. (42) gives the value of
the ESC, generated by the magnetic inhomogeneity/SOC

PHYSICAL REVIEW B 96, 094506 (2017)

at the FM/SC interface. To find this equal-spin GF in the
ferromagnetic region we solve in general the transport equation
(7) with the boundary condition (42).

The advantage of the boundary conditions (42) is that
they give an explicit value of the Green’s function at the
ferromagnetic side of the interface. The price which we have
paid for it is that, strictly speaking, they are valid only for
an isolated interface, because the asymptotic conditions at the
infinity were essentially used in the derivation. However, they
can be safely applied to the dirty systems with more than one
interface if the distances between the interfaces are large as
compared to the mean free path. Below we are only interested
in the dirty case.

The boundary conditions to the Usadel equations can be
obtained from Eq. (42) in a straightforward way. As usual,
one can show [40] that in the isotropization region near the
interface the matrix current is

van lel 2’10~ A

< gtr,in> - < gd,out> = _(g(r>8n<gd)a (43)

UU - o +

where (...)_(;) means the averaging over the part of the

ferromagnet FS corresponding to ps,n < (>)0 and real values

of ps, and pyy,, I, = v, T, is the mean free path, and 9, = ndg.
The boundary condition to the Usadel equation is obtained

using (43), taken at x = 0 with &, inour from Eq. (42) and the

symmetry relations discussed above:

~

3 (80)0n(80) = 1585184 — Ko So1 2, (44)
where k5 = —i (K,v2,/v5)—.

From the boundary condition (44) one can see that the
generation of ESC is determined by the nonadiabatic spin-
flipping terms near the boundary. In the case where these
terms are of the SOC origin, e.g., having the Rashba form,
the magnitude of ESC correlations is given by S, ~ o/ h,
where « is the SOC constant. Otherwise, if it comes from the
magnetic texture with the characteristic scale & the estimation
is Sy 1 & 1/(mp&yh). However, as shown below, that smallness
affects only the overall amplitude of the critical current in the
generic SC/FM/SC Josephson systems but not the spontaneous
phase shift of the current-phase relation. Indeed, the emergent
gauge field Z which drives the spontaneous supercurrents
through strong ferromagnets does not contain any small
parameter. Therefore the anomalous current at zero phase
difference across the junction can be of the order of the critical
current.

IV. SPONTANEOUS JOSEPHSON CURRENT THROUGH
STRONG FERROMAGNETS

Having in hand the machinery of the generalized quasi-
classical theory described above, we can calculate Joseph-
son current-phase relations for different systems with spin-
dependent fields. An example of such a system with magnetic
helix texture is shown in Fig. 1(c).

Here we work in the dirty limit using the linearized (with
respect to the anomalous Green’s function) version of the
spinless Usadel equations (13) and boundary conditions (44).
This simplification is adequate if the proximity effect at the
SC/FM interface is weak, for example, when the interface is
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low-transparent. The absolute value of the order parameter is
assumed to be the same in the superconducting leads, while
there is the phase difference x between them. The electric
current in the ferromagnetic interlayer can be calculated
according to Eq. (14), which in the linearized form is reduced
to

inTe
2

Jj= ZVJDU(fGafo - ftraxfa _4iUfoafa)-

(45)

The anomalous GF f, and f, should be calculated from the
linearized version of the Usadel equation (13):

Do (3x +2i0Z,) fo = 2lol fo =0,
Do (3, = 2i0Z:) fo — 2lo| fo = 0. (46)
The solution of these equations takes the form
fo = (Cyye® + Cp_e~tr¥)e 20 Zsx
fo = (Coe™ + CoeTh)e? %, (47)

The coefficients C, + and C’Ui are to be found from
the boundary conditions (44) taken at the S/F interfaces
x = Fd /2. The resulting expressions take the form

3sgnwSs |
Cort =77 """
’ 4], Ly sinh[A,d ]
X (Ké*eqllgd/ZfiJZXd _ K;*eilad/2+iazxd) (48)
and
N 3sgnwS,
Cou= gnwdg |

41, ), sinh[A,d]

Fhod/24i0 Zcd

> (K(l,e _ K;e:t)»{,d/Zfio*Z‘d)’ (49)

where A, = +/2|w|/D,.

By substituting the anomalous GF from (47) with the
coefficients C,, + and C'G,i from (48) and (49) into Eq. (45) we
obtain the general current-phase relation (CPR):

IG0) =) Lo sin(x + 20 Zyd), (50)
o=%
eR, 1, 98,1851 T ko |*
= , 51
T 2 Z Ao sinh(Ayd) ©D

w>0

where yx is the Josephson phase difference, R, = 1/ (e*v, Dy)
is the spin-resolved resistivity, and A, = +/2|w|/D.

The spin-gauge field Z, # 0 and finite spin splitting D #
D_ in the CPR (50) lead to the spontaneous current at zero
phase difference known as the anomalous Josephson effect.
The ground-state phase difference x, can be found from the
zero-current condition /(x = xo) = O:

-— L tan(2Z,d). (52)
— + I +

tan o =

The spontaneous phase shift of Josephson current has been
obtained in several FM/SC systems [25,27,30,35,41-54]. Here
we demonstrate that this effect is essential only for the case
of strong ferromagnets. When the ferromagnet is weak and
treated within the usual quasiclassical approximation, the
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difference between /_ and I is neglected and the anomalous
Josephson effect disappears.

The spin gauge field Z is generated by the spin helix
shown schematically in Fig. 1. Recently the proximity effect
in helical magnets has been observed experimentally [55,56].
In this case the magnetization texture is described by h =
h(cosa, sinx cosf, sina sinf), where we assume that the
angle o is spatially independent and 6 = 6(x). The spin
rotation is given by U = e 1%:0/2¢=i6:4/2=i6,7/4  yielding
Z, = —cosad,0/2mp. The surface ESC-generating term in
Eq. (16) is provided by S, = ion, sinad0/2mh).

The general theory developed above describes the prox-
imity effect in a homogeneous ferromagnet with a linear-
in-momentum SOC [33,34]. For example, let us con-
sider the SC/FM/SC junction through the quasi-2D ferro-
magnet in the xz plane, interfaces in yz planes, and the
exchange field in the plane of the ferromagnet & || z. In case
of the Rashba SOC in the ferromagnetic region this system

is characterized by the spin-dependent fields M,, = —M,, =
—a /2, which leads to
Zx = —mpa/2; SUL = 0, (53)
while the Dresselhaus SOC yields M,, = —M,, = $/2 and
therefore
Z,=mpB/2; So1 = —n:p/2h. (54)

In each of these cases the Josephson CPR can be found
substituting the fields into the general equations (50) and (51).
Since the ground-state phase shift x, is determined by the
component Z, parallel to the Josephson current, for & || z
we have o # 0,7 only for the Rashba SOC but not for the
Dresselhaus one. This is natural, because in the general case
of a magnetoelectric effect the spontaneous current and the
magnetization are perpendicular to each other for the Rashba
SOC [41,57,58] but they are parallel for the Dresselhaus SOC.
Therefore, in order to get the anomalous Josephson current for
the Dresselhaus SOC, h is to have a component parallel to the
current.

Comparing Egs. (51) and (53), (54) one can see that in
the considered geometry the Dresselhaus SOC produce the
long-range ESC, even in the case of the homogeneous magnet
(while in general the both Rashba and Dresselhaus SOC can
produce ESC [34]). However, their amplitudes are determined
by the SOC constants, which in general are rather small in
metals. Although the anomalous phase shift is also determined
by SOC, it can become rather large for a sufficiently long
junction, i.e., when |Z,d| > 1. Therefore even a weak SOC
leads to the significant phase shifts of the CPR, although the
overall critical current amplitude is rather small. In reality,
however, the long-range ESC can be generated by the magnetic
inhomogeneity near the interface. Let us consider the following
model [26]:

h = h(sin6,0, cos0), U = e /2, (55)

where 6 = 6(x) changes linearly in the region §; < d near the
interfaces and 8 = 0 in the bulk FM. Neglecting the effect of
SOC we get S, = —ion,d,60/(2mgh) in the CPR Eq. (50),
where the spin gauge field Z, is determined by the SOC in
the bulk FM. For small exchange fields # < u the anomalous
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phase shift y is determined by the prefactor (I — I_)/(1+ +
1_) ~ h/p. If we assume additionally (in general it is not
necessary condition) that Z,d « 1, then xo ~ mp(hd/n)a,
in agreement with Ref. [41].

V. CONCLUSION

To conclude, we have developed the generalized quasi-
classical formalism to calculate the behavior of long-range
ESC in ferromagnets. These correlations can be generated
at the ferromagnetic/superconductor interface in the presence
of either magnetization inhomogeneity or SOC. The general
conditions for ESC generation are derived in terms of the
SU(2) gauge fields. In the ferromagnetic material the behavior
of ESC is shown to be governed by the adiabatic spin gauge
field, which generates spontaneous superconducting currents
through strong FMs with magnetic texture or SOC. These
results demonstrate that spontaneous superconducting currents
exist as a robust and experimentally observable phenomenon
in many superconducting/ferromagnetic systems studied in
connection to superconducting spintronics [59,60].
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Eq. (26) as the incident wave coming from the ferromagnet to
the FM/SC interface.

To apply the boundary conditions, Egs. (24) and (25), we
write the solution in the superconductor as the superposition
of two terms decaying at x — 00 :

125 = éleiq]x + ézeiqzx’ (Al)
iIA* L . IA* . .
b = Crelt Crelx, A2
b = — s 161" + g (A2)

where g1 = /2ms(us +i2) and g, = —+/2mgs(us —iS2),
and Q = \/w? + |A|?. Below we will neglect the imaginary
part of ¢ » and use g & —¢q2 & ps,, where ps, = /2mgiis.

First, let us find reflection coefficients without spin-flip, in
zero order, by small parameter M;" p. ,/h. For this purpose
we obtain the following system of equations:

al +d =i + e, (A3)
ACKNOWLEDGMENTS A i}
. . . . . v+n(a+ - d+ ) = apcr — anC2, (A4)
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theoretical studies of physical properties of low-dimensional where
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g = vsy +2iV, (A7)
APPENDIX: SPIN-FLIP ANDREEV
REFLECTION COEFFICIENT wr = w+ Q. (A8)
Here we find the reflection coefficients of the electronic and
holelike waves in Eqgs. (33) and (34). For this purpose we use The solutions are
|
af =1/Givy), (A9)
d(O) _ a(O) (053 + vy — v_p)o — (OlE)k + v_p)(@o — Vin)wy (A10)
T o+ von) (@ + vy — (@ — van)(@o — v_p)o-
ZA* n n
b = g2 b, (A11)
Vi

X

The spin-flip reflection amplitude b_ can be found by taking into account first-order corrections in M ny Dx,y/ h when matching
the electron and hole waves at the FM/SC boundary. In this way we get the following linear system:

AP+ DY+ D =C + 06,

(A12)
v (AY = DOy —v_,D_=aC, —aé,, (A13)
BY+B =iNC oy + Crjw), (A14)
(A15)

v, BY +v,B. =iA@C o, —ECw),

where the coefficients & = ag — My,6; and & = a; + My 6y take into account the correction to the boundary condition from
the effective spin-orbital term. The spinors AL, B, D\ are given by Eqgs. (28), (35), and (37) with the amplitudes (A9), (A10),
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and (A11) and without the spin-flip terms

AY =a{l e (1, 007, (A16)
DY =dPVeirnv'(1, 0)7, (A17)
BY = b (1, 0). (A18)
The solution of this system reads

N ivs, A*(v A% — v, DY) — ZB°

B = N (vs + d +) Jr7 (A19)
Y,
where

7 =7, +4iQV M6y, (A20)
Z, = Qlaol® 4 v2,) 4 20v5,0_, = 3(@4lao + vy > — w_|otg — v_,[*), (A21)

Yy = Qaol* + vinvoy +2ivgV) + 0vs,vs = jlog (@ + vo)(@g + vin) — o (@0 — v —vo)],  (A22)

where vy = vy, +v_, and vy = vy, — V_,.

In this way we obtain the spin-flip Andreev reflection amplitude in the form b_ = K, S| + K451 with
i A Vg, pin(@Qvs 4+ dPvg) + (Zy p_y + 8hiQV)
Kip =— , (A23)
2Y,
i A*v5,(dY vg — a®vz) — b Z
K,y =p, t + —F (A24)
2Y,

Let us now consider the other pair of spinors in Eq. (17) i, 0, which determine the correlation function F_. They can be
obtained from ii;, 9, by transforming the Hamiltonian H — o, Ho, which flips the spin index o

The reflected holelike states are given by the same Eq. (37), but this time we are interested in the wave B (x"). This wave has
the form (37) with the amplitude by = K,_S_, + K,_S_;, where

i A Vg, p_n(@@vs — dPvy) + b O(Z_pin — 8RIQV)

K, = , A25
A (A25)

i A vgn(dPvg + aOvs) + 07
Ky =py >y , (A26)

where the amplitudes d, 5, ' and coefficients Z_, Y_ are obtained from Eqs. (A9), (A10), (A11), (A19), (A20), (A21),
and (A22) with + changed by the — and vice versa.

Now consider the large barrier V > vg,v,,05,h/ps s0 that @ 2 iV and Zy ~ Y ~ QV?2. Then from the equations we get
d(f) ~ —aﬂ?) and bf) ~ af)i Apsnp1n/(222V?). Substituting to the Eq. (A23) and taking into account (A9) we get

UsnP—n A*

Ko\ =— , A27
n n A*
K, = 2nPr (A28)

V2 o+ AP

These expressions are valid for the half metal when & > wp as well. In this case one should take p_, = i /2mpr(h — ur).
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