

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s):

Title:

Year:

Version:

Please cite the original version:

All material supplied via JYX is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that
material may be duplicated by you for your research use or educational purposes in electronic or
print form. You must obtain permission for any other use. Electronic or print copies may not be
offered, whether for sale or otherwise to anyone who is not an authorised user.

Probabilistic Transition-Based Approach for Detecting Application-Layer DDoS Attacks
in Encrypted Software-Defined Networks

Ivannikova, Elena; Zolotukhin, Mikhail; Hämäläinen, Timo

Ivannikova, E., Zolotukhin, M., & Hämäläinen, T. (2017). Probabilistic Transition-
Based Approach for Detecting Application-Layer DDoS Attacks in Encrypted Software-
Defined Networks. In Z. Yan, R. Molva, W. Mazurczyk, & R. Kantola (Eds.), Network
and System Security : 11th International Conference, NSS 2017 Helsinki, Finland,
August 21–23, 2017, Proceedings (pp. 531-543). Springer. Lecture Notes in Computer
Science, 10394. https://doi.org/10.1007/978-3-319-64701-2_40

2017

Probabilistic Transition-Based Approach for
Detecting Application-Layer DDoS Attacks in

Encrypted Software-Defined Networks

Elena Ivannikova, Mikhail Zolotukhin, and Timo Hämäläinen

Department of Mathematical Information Technology
University of Jyväskylä

POBox 35 (Agora), 40014 Jyväskylä, Finland
{elena.v.ivannikova, mikhail.zolotukhin, timo.hamalainen}@jyu.fi

Abstract. With the emergence of cloud computing, many attacks, in-
cluding Distributed Denial-of-Service (DDoS) attacks, have changed their
direction towards cloud environment. In particular, DDoS attacks have
changed in scale, methods, and targets and become more complex by us-
ing advantages provided by cloud computing. Modern cloud computing
environments can benefit from moving towards Software-Defined Net-
working (SDN) technology, which allows network engineers and admin-
istrators to respond quickly to the changing business requirements. In
this paper, we propose an approach for detecting application-layer DDoS
attacks in cloud environment with SDN. The algorithm is applied to
statistics extracted from network flows and, therefore, is suitable for de-
tecting attacks that utilize encrypted protocols. The proposed detection
approach is comprised of the extraction of normal user behavior patterns
and detection of anomalies that significantly deviate from these patterns.
The algorithm is evaluated using DDoS detection system prototype. Sim-
ulation results show that intermediate application-layer DDoS attacks
can be properly detected, while the number of false alarms remains very
low.

1 Introduction

Distributed Denial-of-Service (DDoS) is a coordinated attack which by using
multiple hosts prevents legitimate users from accessing a specific network re-
source, e.g. email, websites, online banking, etc. In DDoS attack, by taking con-
trol of the computer and sending a stream of packets an attacker may perform
attacks to other computers by sending spam messages or huge amount of data to
a website. The target server, overloaded with requests, either becomes very slow
even unusable or totally crashes since it can only process a certain number of
requests at once. Thus, the server becomes unavailable to the legitimate clients.
Another way of the attack is sending malformed packets that cause the target
machine to freeze or reboot [15]. There are many other ways to deny services
on the Internet [21]. DDoS attacks have become a major threat to the stability
in modern high-speed networks [19]. Being hard to detect and abort in a timely

fashion, these attacks can be used to disable strategic business, government, me-
dia and public utility sites prompting victims to loose productivity, revenue and
reputation.

Traditional DDoS attacks are carried out at the network layer. Among them
are volume-based attacks (e.g. UDP floods, ICMP floods, etc.) and protocol at-
tacks (e.g. SYN floods, Smurf DDoS, etc.). Volume-based attacks attempt to
consume the bandwidth either within the target network/service, or between
the target network/service and the rest of the Internet, when protocol attacks
attempt to consume actual server or intermediate communication equipment re-
sources, such as firewalls and load balancer. Recently, these types of attacks have
been well studied and various schemes for protecting network against such at-
tacks have been reported [8], [2], [14]. Application-layer attack is a more advanced
attack which targets vulnerabilities in operative systems and web applications.
These attacks can be performed by seemingly innocent and legitimate requests
from only a few attacking machines generating low traffic rate, which makes
them difficult to detect and mitigate.

One of the most frequent application-layer DDoS attacks nowadays are at-
tacks that involve the use of HTTP protocol. These attacks can be grouped into
three major categories, depending on the level of sophistication [21]. Trivial at-
tacks, where each bot sends a limited number of unrelated HTTP attacks towards
the target site, comprise the majority of application-level DDoS attacks on the
Internet. In intermediate attacks bots continuously generate random sequences
of browser-like requests of web pages with all embedded content. Such procedure
allows the attack traffic fitting better in regular human requests. Advanced at-
tacks consist of a carefully chosen sequence of HTTP requests in order to better
mimic the browsing behavior of regular human visitors. Advanced DDoS attacks
are believed to raise popularity in the future [21].

Defending against a trivial HTTP attack does not require a complex detection
system. Trivial attack can be detected by inspecting each request to determine
if it comes from a legitimate user. Intermediate and advanced attacks, however,
require more sophisticated techniques [21]. To name a few, paper [24] analyses
intermediate application-layer DDoS attacks by defining a model of normal user
behavior via a number of clustering techniques and comparing conversations
against such normal patterns. Xu et al. [23] model user browsing behavior by
random walk graph and identify attackers based on analysis of their page-request
sequences. Paper [3] proposes a new clustering algorithm against HTTP-GET
attacks using entropy-based clustering and Bayes factor analysis for classification
of legitimate sessions. Most of the current studies devoted to HTTP-based DDoS
attack detection focus on un-encrypted HTTP traffic. Nowadays many DDoS
attacks are utilizing secure protocols for data encryption in the application layer
of network connections making their detection more difficult. In this work, we
concentrate on intermediate attacks in encrypted traffic.

Recently, cloud computing has become a strong contender to traditional on-
premise implementations. The main reason is that cloud environments offer ad-
vantages such as on-demand resource availability, pay as you go billing, better

hardware utilization, no in-house depreciation losses, and, no maintenance over-
head [20]. Cloud resources are provided to the customers in the form of virtual
machines (VMs). Cloud service provider has to guarantee the security of the
machines by filtering unwanted traffic from other cloud customer networks and
external hosts. Despite willing to be secured against attacks, cloud customers
may wish to remain their traffic un-encrypted. Thus, the cloud service provider
has to detect attacks without relying on encrypted packet payload. With the
emergence of cloud computing, many attacks, including DDoS attacks, have
changed their direction towards cloud environment. In particular, DDoS attacks
have changed in scale, methods, and targets and become more complex by using
advantages provided by cloud computing.

Modern cloud computing environments can benefit from moving towards
Software-Defined Networking (SDN) technology. In SDN, the control logic is
separated from individual forwarding devices, such as routers and switches, and
implemented in a logically centralized controller. This allows the network con-
trol to be programmable and the underlying infrastructure to be abstracted for
applications and network services. As a result, SDN allows network engineers
and administrators to respond quickly to the changing business requirements by
shaping traffic from the central controller without having to touch the physical
switches. They use software to prioritize, redirect or block traffic either globally
or in varying degrees down to individual packet levels.

There have been a number of works related to detection of network-based
DDoS attacks in SDN. Phan et al. [18] introduce a hybrid approach based on
combination of SVM and SOM [6] for flow classification in network traffic. An-
other work [22] suggests an attack detection system based on Bloom Filter and
SDN to handle the link flooding attacks. In [11] a method based on SDN to
detect DDoS attacks initiated by a larger number of bots for solving server
attacks is proposed. The method uses the standard OpenFlow APIs designed
for operation in general SDN environments. Other approaches related to detec-
tion of network-based DDoS attacks in SDN using machine learning techniques
are described in [1], [10], [4]. To the best of our knowledge, there are only a few
studies that try to detect application-based DDoS attacks in cloud environments
with the help of SDN. Mohammadi et al. [16] present a software defined solution
named Completely Automated DDoS Attack Mitigation Platform (CAAMP).
When suspicious traffic is detected, CAAMP stores a copy of the original appli-
cation on a private cloud and redirects suspicious traffic there. Thus, more time
can be spent for processing suspicious traffic with no extra costs.

The aim of our research is to provide efficient and proactive solution for
detecting application-layer DDoS attacks in cloud environment with the help
of SDN. We propose a detection approach which is comprised of extracting
normal user behavior patterns and detecting anomalies that significantly deviate
from these patterns. This allows detection of attacks from legitimately connected
network machines that are accomplished by using legitimate requests. Due to
operating with information extracted from packet headers, the proposed scheme
can be applied in secure protocols that encrypt the data of network connections

without its decrypting. In order to evaluate our scheme, we implement a DDoS
detection system prototype that employs the proposed algorithm. Simulation
results show that intermediate application-layer DDoS attacks can be properly
detected, while the number of false alarms remains very low. Finally, not only
do we provide solution for detecting application-layer DDoS attacks in SDN-
driven cloud environments, but also enhance the detection algorithm proposed
in previous work [25]. These enhancements include:

1. Improved performance scores (FPR, TPR, accuracy).
2. Reduced number of parameters to effectively just one, which is the clus-

ter number parameter in the first phase training when using k-Means. The
second training phase is essentially parameterless.

3. Significant reducing the amount of storage needed by the detection algo-
rithm. That is we only need to store centroids from the clustering phase
and transition/marginal probability matrices from the second phase for each
sequence length plus thresholds that are found automatically. Thus, the stor-
age complexity is quadratic in the number of possible clusters O(k2), while
it was at least O(k4).

The rest of the paper is organized as follows. Section 2 briefly describes the
experiment setup. Section 3 summarizes main concepts and provides theoret-
ical background of the proposed approach. Section 4 describes the algorithm
proposed in the paper. Section 4.1 explains feature extraction process, while
training and detection procedures are clarified in Sections 4.2-4.4. Meanwhile,
Section 5 is devoted to the experimental results. It describes simulation environ-
ment, data set and results of the performance tests. Finally, Section 6 concludes
the paper and outlines future work.

2 Problem Formulation

We consider a cloud environment in which cloud customers are allowed to create
private virtual networks and connect them to the existing public networks with
the help of virtual routers. In addition, every customer can spawn several virtual
instances in own virtual networks. Each customer operates inside one of the
projects created by a system administrator for a particular set of user accounts.
We assume that neither user or administrator accounts have been compromised.

Further, we assume that networking inside the cloud is carried out with the
help of SDN that includes an SDN controller and several SDN forwarding devices
that are designed for working with virtual instances. SDN controller and switches
communicate between each other inside the cloud management network and are
not available directly from the data center VMs or external hosts. Scenarios in
which either the controller or one of the switches is compromised are out of scope
of this paper.

We consider a cloud customer that deploys several virtual web servers inside
a virtual network providing access for other cloud customers as well as external
hosts. Communication between the web servers and the users is carried out with

encrypted traffic. Even though the web service provider relies on the data center
security defenses, it cannot allow the cloud security engineers to decrypt the
network traffic since it would violate regulations on privacy along with a high
risk of conflict with the web service users. For this reason, detection of DDoS
attacks is assumed to be carried out on network flow level.

In this study, we assume that network flows are captured on each SDN for-
warding device and sent to the controller with the help of a NetFlow or sFlow
agent. The controller investigates the received flow statistics and discovers be-
havior patterns of normal users. Once discovered, normal behavior patterns can
be used to detect DDoS attacks against the web server applications and to block
traffic from malicious cloud customers or external attackers in online mode.

3 Theoretical Background

3.1 k-Means-based Clustering

k-Means [12], [13] is one of the most popular algorithms for cluster analysis. It
aims at partitioning data points into k clusters with the parameter k fixed a
priory. Given a set of points χ = (x1, ..., xn), xi ∈ Rm the algorithm starts with
initializing k centroids, one for each cluster, and assigning each data point xi to
the nearest centroid. Then iteratively the algorithm recalculates the centroids
and re-assigns the data points to new clusters until convergence of the algorithm.
Specifically, the algorithm aims at minimizing the sum of Euclidean distances
between each data point and the mean value of the cluster this point belongs to,
or to find

arg min
C

k∑
i=1

∑
x∈Ci

‖x− µi‖2,

where C = {C1, ...,Ck} are data partitions and µ = (µ1, ..., µk) are corresponding
centroids.

3.2 CURE-based Clustering

Despite traditional clustering methods have been widely used in data analysis,
they have a number of drawbacks. For example, centroid-based methods, includ-
ing k-Means, use only one point (centroid) to represent a cluster. If a cluster is
large or has an arbitrary shape, the centroids of its subclusters can be distant
from each other that could cause unnecessary splitting. On the opposite edge of
the spectrum, all points-based methods such as k-NN or kernel, use all points
for cluster representation and are sensitive to outliers and even slight changes
in the position of data points. Both approaches fail to work well for defining
non-spherical or arbitrarily shaped clusters [5].

Clustering Using REpresentatives (CURE) [5] is a hierarchical clustering
algorithm which is a compromise between centroid-based and all point-based

approaches and is suitable for large scale data sets. Compared to traditional
methods, this approach is less sensitive to outliers and defines well even non-
spherical clusters. First, initial clusters are created by hierarchical clustering of
randomly picked sample points. Next, k scattered points describing a cluster
shape and extent are picked, as disperse as possible. After shrinking towards
the cluster centroid by a fixed fraction α these points become representatives of
the cluster. When representative points are set up for each of the initial clusters
the whole data set is rescanned and each point is assigned to the closest cluster.
In traditional version of CURE the closest cluster for a point is defined as the
closest one among all representative points of all the clusters. We modify the
original procedure of cluster assignment as follows. After clusters are found, we
take all representatives and centroids and continue using them as if they were
an output of a centroid-based clustering algorithm, i.e., each centroid and/or
representative is thought to be a center of a cluster. Such gradation of clusters
allows better capturing complexity of user behavior types.

3.3 Probabilistic Transition-based Approach for Detecting DDoS
Attacks

Let C = {ci|i = 1, ...,K} be a set of labels. Given a sequence of labels c =
(c1, ..., cN) ∈ CN , let P (ci|ci−1, l = N) denote conditional probability of ob-
serving label ci after ci−1 in a sequence of length N . Marginal probability of
observing label ci at the beginning of the sequence is denoted as P (ci|l = N).
We factorize joint probability distribution over sequences of length N as the
following product:

P (c1, ..., cN |l = N) = P (c1|l = N)×
N∏
i=2

P (ci|ci−1, l = N), (1)

where l denotes length of the sequence. We estimate P (ci|ci−1, l = N) as

P (ci|ci−1, l = N)
∧
=

n(ci−1, ci, N)

n(ci−1, N)
, (2)

where n(ci−1, ci, N) denotes count of observations of pairs (ci−1, ci) in all se-
quences of length N over all time windows and sessions, n(ci−1, N) denotes
count of observations of label ci−1 in all sequences of length N over all time
windows and sessions. Moreover, P (ci|l = N) is estimated as

P (ci|l = N)
∧
=

n(ci, N)∑K
j=1 n(cj , N)

. (3)

Note, that in the equation (3) we use the fact that the marginal probability of
observing a label in a sequence should be equal to the marginal probability of
observing the label at the beginning of a sequence since the windows are sliced
arbitrarily.

During training phase we estimate conditional and marginal probabilities
according to (2)-(3). Moreover, for every length of sequence N that is present in
the training data we calculate minimal joint probabilities δN , which are further
used as thresholds to examine new data for anomalies during test phase.

During test phase, we first calculate joint probability of a sequence of length
N according to (1) and then compare it against a corresponding threshold value
δN . If the sequence satisfies P (c1, ..., cN |l = N) < δN it is marked anomalous.

4 Algorithm

4.1 Feature Extraction

To detect outliers, we build a normal user behavior model. The features for
building this model are extracted from a portion of network traffic at a very short
time window that allows timely detection of attacks. The presented approach is
based on the analysis of network traffic flows, namely, groups of IP packets with
some common properties passing a monitoring point at a specified time interval.
This time interval is defined to be equal to the time window. For analysis, we
consider traffic flow extracted from the current time window. Furthermore, to
reduce amount of data to be analyzed, we utilize aggregated traffic information
by taking into account all packets of the flow transferred during previous time
windows.

Next, we re-construct client to server conversations by combining the flow
pairs such that the source socket of one flow equals to the destination socket of
the other flow and vice versa. A conversation can be characterized by source IP,
address, source port, destination IP address and destination port. For each such
conversation, we extract the following information at every time interval:

1. Duration of the conversation.
2. Number of packets sent in 1 second.
3. Number of bytes sent in 1 second.
4. Average packet size.
5. Presence of packets with different TCP flags: URG, ACK, PSH, RST, SYN

and FIN.

The set of features is defined by existing protocols for collecting IP traf-
fic information such as NetFlow and sFlow. Since the values of the extracted
feature vectors can have different scales, we standardize them using min-max
normalization [6] by scaling to a range [0,1].

4.2 Training

We perform training using the standardized extracted features described in Sec-
tion 4.1. First, we apply a clustering algorithm to divide the features into distinct
groups representing specific classes of traffic in the network system. Thus, the
algorithm discovers hidden patterns in the dataset. We assume that the traf-
fic being clustered is mostly legitimate despite the fact it can be encrypted.

Therefore, we state that the obtained clusters describe behavior of normal users.
Second, we group together conversations with the same source IP address, des-
tination IP address and destination port extracted at a certain time interval.
Such groups serve as an approximation of a user session and are analyzed sep-
arately, as other studies propose [3], [23], [24]. Next, we represent each session
in every time window by a sequence of cluster labels obtained at the first step.
Finally, from the obtained sequences we estimate conditional and marginal prob-
abilities P (ci|ci−1, l = N), P (ci|l = N) according to formulas (2)-(3). For every
sequence we calculate its probability using estimated parameters and model (1).
In addition, we calculate thresholds δN by finding minimum among all sequence
probabilities for a particular length of a sequence N .

4.3 Online Training Procedure

As behavioral patterns of users can change over time, we need to adapt our mod-
els in real-time. For adapting the clustering phase model we can use streaming
k-Means algorithm. After clustering and classification have been done for a par-
ticular window t, one can update cluster centroids using the following formula:

µt+1
i = µti · δ +

∑
x∈Ct

i,
x∈χnormal

x · (1− δ),

where µti is centroid of the cluster i at the time window t, Cti is the set of data
points assigned to the cluster i, χnormal is a set of data points classified as
normal, and δ ∈ [0, 1] is a constant reflecting how fast the model has changed
when a new observation emerged, i.e. for bigger δ the model changes slower. For
CURE the same formula can be used, but representatives are updated instead
of the cluster centroids.

To update transition probabilities from the probabilistic model dynamically,
we apply the following updates that are performed for each pair of labels (ci−1, ci)
from the label sequences that were classified as normal:

P (ci|Ci−1 = ci−1, l = N)← P (ci|Ci−1 = ci−1, l = N) + ε,

P (ci|Ci−1 6= ci−1, l = N)← P (ci|Ci−1 6= ci−1, l = N)− ε/(K − 1),

where Ci−1 is a random variable that denotes cluster label at position i − 1
and ε represents the velocity of change of a conditional probability once a new
evidence has been observed. Thus, ε affects how fast model is changed with
respect to new data. These updates guarantee that the conditional probability
remains properly normalized by adding a probability mass to the parameter that
accounts for the new data and removing the same amount of probability mass
from the parameters that do not correspond to the new data. Moreover, these
updates implement a forgetting mechanism as the old evidence gets less and less
influence on the model with time.

In order to keep thresholds δN up to date we propose to store top Nδ data
sequences in a heap data structure with keys equal to probabilities of the data

sequences. We need to keep a separate heap for label sequences of each length.
Every time the model is updated the top element with the lowest probability
(equal to the current threshold δN) is popped out and pushed in the heap again
with a new recomputed probability key. Moreover, the threshold δN is assigned
the new value. This way threshold can either become bigger or smaller. Threshold
value is also updated once a new normal data sequence gets smaller probability
under the current model.

4.4 Detection

For detecting anomalies we use a model of normal user behavior obtained during
training phase. First, we assign each session with a sequence of cluster numbers
using clustering model from the training phase. Then, similarly to the training
phase, we calculate probability of every sequence using estimated probability
parameters and the model (1). The obtained probability values are compared
against thresholds δN to decide whether the sequence is anomalous or not. If
probability of a sequence is less than a threshold probability then it is marked
as anomaly.

5 Algorithm Performance

5.1 Simulation Environment and Data Set

We test the attack detection algorithm proposed in this study in a virtual net-
work environment that includes a small botnet, command and control center
(C2) and a target web bank server (see Figure 1). The target server is running
in the Openstack [7] cloud environment where networks are carried out by an
Opendaylight [9] integrated SDN controller and several Open vSwitches [17].
Bots and C2 are located outside the cloud. Each bot is a VM with running a
special program implemented in Java, it receives commands from C2 and gener-
ates some traffic to the server. It is worth noting that all the traffic is transfered
by using encrypted SSL/TLS protocol. All network flows are captured on SDN
switches and sent to the controller with the help of NetFlow agents.

In order to generate a normal bank user traffic, we specify several scenarios
that each bot follows when using the bank site. Each such scenario consists of
several actions following each other. The list of the actions consists of logging
in to the system by using the corresponding user account, checking the account
balance, transferring some money to another account, checking the result of the
transaction, logging out of the system, and some other actions. Each action cor-
responds to requesting a certain page of the bank service with all of its embedded
content. Pauses between two adjacent actions are selected in a way similar to a
human user behavior. For example, checking the account balance usually takes
only a couple of seconds, whereas filling in information to transfer money to
another account may take much longer time.

In addition to the normal traffic, we perform an intermediate DDoS attack
during which several bots-attackers try to mimic the browsing behavior of regular

Fig. 1. Virtual network simulation environment.

users by requesting sequences of web pages with all embedded content from
the service. However, unlike the normal user behavior, these sequences are not
related to each other by any logic but generated randomly. We consider the case
when the attacker sends traffic with about the same rate as normal users, and
each attacker’s connection individually looks like normal. More advanced attack
scenarios are left for future works.

5.2 Results

We evaluate the proposed approach on the test set described in Section 5.1. We
propose two methods for detecting intermediate DDoS attacks which both con-
sist of two phases. The first method (k-Means+Prob) uses k-Means clustering in
the first phase and probabilistic transition-based approach (Prob) in the second
phase. The second method (CURE+Prob) applies CURE clustering in the first
phase and Prob in the second phase. The algorithms have been evaluated using
the detection accuracy, true positive rate (TPR) and false positive rate (FPR)
performance metrics [6].

In our experiments, the time window size is set to 5 seconds, due to the nature
of the data. Moreover, we are only interested in results when FPR is below 1% as
the high number of false alarms is one of the most important known drawbacks
of anomaly-based detection systems.

Table 1 displays accuracy of detecting intermediate DDoS attacks for the
proposed detection schemes. For comparison, we also include to Table 1 perfor-

Table 1. Accuracy of detecting intermediate DDoS attacks

Algorithm TPR (%) FPR (%) Accuracy (%)

k-Means + Prob 98.66 0 99.58
CURE + Prob 95.65 0 86.16
2-gram k-Means 95.08 0.24 86.61
3-gram k-Means 91.21 0 73.66

Fig. 2. (a) - ROC curves for detection of intermediate DDoS attacks, (b) - dependence
of performance scores from number of clusters for the (k-Means+Prob) algorithm.

mance results of the k-Means-based data stream clustering approach proposed
in [25]. The parameters of the methods are selected to maximize the detection
accuracy on validation set. The best result is shown by the (k-Means+Prob)
approach which outperforms other methods by 13% in terms of accuracy. Still,
other methods perform relatively well reaching accuracy of 86% with FPR equal-
ing to or near zero.

To visualize the results, we plot ROC curves in Figure 2(a). ROC curves
corresponding to the (k-Means+Prob) and (CURE+Prob) methods proposed in
this paper are displayed by dashed and plain lines, correspondingly. Furthermore,
by dash-dot and dotted lines we plot ROC curves for the k-Means-based data
stream clustering approach proposed in [25] for 2-gram and 3-gram models,
respectively. From the ROC curves one can see that (k-Means+Prob) is the
only among the presented algorithms that reaches TPR of 100%. Other methods
demonstrate similar performance reaching the highest TPR of around 98% at
FPR near 1.5%.

In addition, for the best performing algorithm (k-Means+Prob) we plot how
performance scores depend on number of clusters, which is the only parameter
of this method. Figure 2(b) shows that the algorithm performs relatively well
for all parameter values reaching the maximum in accuracy and TPR when the
number of clusters is equal to 12. FPR, which is plotted in (100%−FPR) scale
for better visual representation, remains below 1% for all parameter values.

6 Conclusions and Future Work

In this work, we proposed probabilistic transition-based approach for detect-
ing intermediate application-layer DDoS attacks in cloud environment with the
use of SDN. Operating with information extracted from the packet headers
makes this approach suitable for detecting DDoS attacks from encrypted traffic.
We tested the proposed algorithms against other methods used for detecting
application-layer DDoS attacks in encrypted networks proposed earlier in [25].
Both presented algorithms demonstrated good performance results. Moreover,
(k-Means+Prob) significantly outperforms other evaluated algorithms under the
condition of FPR < 1%.

In the future, we plan to improve the algorithm in terms of the detection
accuracy and test it with a bigger dataset. In addition, more focus will be on
the simulation and detection of more advanced DDoS attacks.

7 Acknowledgment

This research was supported by the Nokia Foundation Scholarship funded by
Nokia, Finland.

References

1. Chen, P.J., Chen, Y.W.: Implementation of sdn based network intrusion detection
and prevention system. In: 2015 International Carnahan Conference on Security
Technology (ICCST) (2015)

2. Chen, R., Wei, J.y., Yu, H.f.: An improved grey self-organizing map based dos
detection. In: Proceedings of IEEE Conference on Cybernetics and Intelligent Sys-
tems. pp. 497–502 (2008)

3. Chwalinski, P., Belavkin, R., Cheng, X.: Detection of application layer ddos attacks
with clustering and bayes factors. In: Proceedings of the 2013 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). pp. 156–161 (2013)

4. Dotcenko, S., Vladyko, A., Letenko, I.: A fuzzy logic-based information security
management for software-defined networks. In: 16th International Conference on
Advanced Communication Technology (ICACT). pp. 167–171 (2014)

5. Guha, S., Rastogi, R., Shim, K.: Cure: an efficient clustering algorithm for large
databases. Information Systems 26(1), 35 – 58 (2001)

6. Hastie, T.J., Tibshirani, R.J., Friedman, J.H.: The elements of statistical learning
: data mining, inference, and prediction. Springer series in statistics, Springer, New
York (2009)

7. Jackson, K.: OpenStack Cloud Computing Cookbook. Packt Publishing (2012)
8. Ke-xin, Y., Jian-qi, Z.: A novel dos detection mechanism. In: Proceedings of Inter-

national Conference on Mechatronic Science, Electric Engineering and Computer
(MEC). pp. 296–298 (2011)

9. Knorr, E.: Opendaylight: A big step toward the software-defined data center. In-
foWorld (2013)

10. Le, A., Dinh, P., Le, H., Tran, N.C.: Flexible network-based intrusion detection and
prevention system on software-defined networks. In: 2015 International Conference
on Advanced Computing and Applications (ACOMP). pp. 106–111 (2015)

11. Lim, S., Ha, J., Kim, H., Kim, Y., Yang, S.: A sdn-oriented ddos blocking scheme
for botnet-based attacks. In: 2014 6th International Conf on Ubiquitous and Future
Networks (ICUFN). pp. 63–68 (2014)

12. Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theor. 28(2), 129–
137 (Sep 2006)

13. Macqueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: In 5-th Berkeley Symposium on Mathematical Statistics and Probability.
pp. 281–297 (1967)

14. Mills, K., Yuan, J.: Monitoring the macroscopic effect of ddos flooding attacks.
IEEE Trans. on Dependable and Secure Computing 2, 324–335 (2005)

15. Mirkovic, J., Reiher, P.: A taxonomy of ddos attack and ddos defense mechanisms.
SIGCOMM Comput. Commun. Rev. 34(2), 39–53 (Apr 2004)

16. Mohammadi, N.B., Barna, C., Shtern, M., Khazaei, H., Litoiu, M.: CAAMP: com-
pletely automated ddos attack mitigation platform in hybrid clouds. In: 12th Intl.
Conference on Network and Service Management (CNSM). pp. 136–143 (2016)

17. Pfaff, B., Pettit, J., Koponen, T., Jackson, E.J., Zhou, A., Rajahalme, J., Gross,
J., Wang, A., Stringer, J., Shelar, P., Amidon, K., Casado, M.: The design and
implementation of open vswitch. In: Proceedings of the 12th USENIX Conference
on Networked Systems Design and Implementation (NSDI). pp. 117–130 (2015)

18. Phan, T.V., Bao, N.K., Park, M.: A novel hybrid flow-based handler with ddos
attacks in software-defined networking. In: 2016 IEEE Conferences on Ubiquitous
Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing
and Communications, Cloud and Big Data Computing, Internet of People, and
Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld) (2016)

19. Radware: 2015-2016 global application & network security report. Avail-
able at https://www.radware.com/newsevents/pressreleases/radwares-2015-2016-
global-applications-and-network-security-report/

20. Somani, G., Gaur, M.S., Sanghi, D., Conti, M., Buyya, R.: Ddos attacks in cloud
computing: Issues, taxonomy, and future directions. ACM Computing Surveys 1(1),
1–44 (2015)

21. Stevanovic, D., Vlajic, N.: Next generation application-layer ddos defences: Ap-
plying the concepts of outlier detection in data streams with concept drift. In:
Proceedings of 13th International Conference on Machine Learning and Applica-
tions (ICMLA). pp. 456–462 (2014)

22. Xiao, P., Li, Z., Qi, H., Qu, W., Yu, H.: An efficient ddos detection with bloom
filter in SDN. In: 2016 IEEE Trustcom/BigDataSE/ISPA. pp. 1–6 (2016)

23. Xu, C., Zhao, G., Xie, G., Yu, S.: Detection on application layer ddos using random
walk model. In: IEEE International Conference on Communications (ICC). pp.
707–712 (2014)

24. Zolotukhin, M., Hämäläinen, T., Kokkonen, T., Siltanen, J.: Increasing web service
availability by detecting application-layer ddos attacks in encrypted traffic. In: 23rd
International Conference on Telecommunications (ICT). pp. 1–6 (2016)

25. Zolotukhin, M., Kokkonen, T., Hämäläinen, T., Siltanen, J.: On application-layer
ddos attack detection in high-speed encrypted networks. Intl. Journal of Digital
Content Technology and its Applications 10(5), 14–33 (2016)

