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Hightlights 

� PAC could be a good tool for lateralization and localization for the epileptic focus. 

� “Fall-max” pattern was found to be a reliable biomarker in middle seizure period. 

� Strong PAC was appeared mainly between δ、θ、α oscillations and γ、ripple oscillations. 



  

Abstract 

Objective: Neural activity of the epileptic human brain contains the low-frequency and 

high-frequency oscillations in different frequency bands, some of which have been used as the 

reliable biomarkers of the epileptogenic brain areas. However, the relationship between the 

low-frequency and high-frequency oscillations at different cortical areas during the period from 

pre-seizure to post-seizure has not been completely clarified. 

 

Methods: We recorded the electrocorticogram data from the temporal lobe and hippocampus of 

seven patients with temporal lobe epilepsy. The modulation index based on the Kullback-Leibler 

distance and the phase-amplitude coupling co-modulogram were adopted to quantify the coupling 

strength between the phase of low-frequency oscillations (0.2-10 Hz) and the amplitude of 

high-frequency oscillations (11-400 Hz) at different seizure epochs. The time-varying 

phase-amplitude modulogram was used to analyze the phase-amplitude coupling pattern during the 

whole period from pre-seizure to post-seizure at both left and right temporal lobe and hippocampus. 

Channels with strong modulation index were compared with the seizure onset channels identified by 

the neurosurgeons and the resection channels in the clinical surgery. 

 

Results: The phase-amplitude coupling strength (modulation index) increased significantly at 

mid-seizure epoch and decrease significantly at seizure-termination and post-seizure epochs 

(p<0.001). The strong phase-amplitude modulating low-frequency and high-frequency oscillations at 

mid-seizure epoch were mainly δ、θ、α oscillations and γ、ripple oscillations, respectively. The 

phase-amplitude modulation and strength varied among channels and was asymmetrical on the left 



  

and right temporal cortex and hippocampus. “Fall-max” phase-amplitude modulation pattern, i.e. the 

high-frequency amplitudes were largest at the low-frequency phase range [-π, 0] which corresponded 

to the falling edges of low-frequency oscillations, appeared in the middle period of the seizures at 

epileptic focus channels. Channels with strong modulation index appeared on the corresponding left 

or right temporal cortex of surgical resection and overlapped with the clinical resection zones in all 

patients. 

 

Conclusions: The “fall-max” pattern between the phase of low-frequency oscillation and amplitude 

of high-frequency oscillation appeared in the middle period of the seizures is a reliable biomarker in 

epileptogenic cortical areas. The modulation index can be used as a good tool for lateralization and 

localization for the epileptic focus for patients with epilepsy. 

 

Significance: Phase-amplitude coupling can provide meaningful reference for accurate resection of 

epileptogenic focus and also provide insight to the underlying neural dynamics of the epileptic 

seizure for patients with temporal lobe epilepsy. 



  

Keywords: ECoG; temporal lobe epilepsy; cross-frequency coupling; modulation index; fall-max 
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1. Introduction 

Abnormal discharge of neurons in the epileptic human brain causes the specificity of the neural 

oscillations of the cerebral cortex. The low-frequency and high-frequency neural oscillations of some 

frequency bands have been known as the essential biomarkers of the epileptogenicity and epileptic 

seizure-onset zones. The dynamic process of very low frequency oscillations (LFOs) in the 

intracranial electroencephalographic recordings has been found to occur during the preictal state in 

the refractory epilepsy patients (Ren et al. , 2011). The ictal infraslow activity and ictal high 

frequency oscillations (HFOs) were both represented the core of tissue generating seizures in 

epileptic patients (Imamura et al. , 2011, Kanazawa et al. , 2015). Also, Crépon et al. used the 

semi-automatic detection procedure of wavelet decomposition to confirm the generation of interictal 

high-frequency oscillations over 200 Hz in medial and polar temporal lobes, which was regarded as a 

reliable marker of the seizure onset zone (Crépon et al. , 2010). Resection of the cortical areas 

generating fast ripples (>200 Hz) and ripples on a flat background activity has also been found to 

show a significant correlation with seizure-free outcome (Kerber et al. , 2014). Besides, temporal 

changes of ripples (100-250 Hz) and fast ripples (250-500 Hz) during different seizure periods have 

been found to vary greatly between individual epileptic patients (Pearce et al. , 2013). These LFOs 

and HFOs that occur in patients with epilepsy have been considered potential biomarkers of 

epileptogenesis. However, they offered limited insight into the feature of neural oscillations during 

the epileptic seizures because the complex neural activities in the epileptic cerebral cortex are 

constituted by simultaneous neural oscillations in different frequency bands. 

 

The interactions between neural oscillations in different frequency bands, which are termed as 



  

cross-frequency coupling (CFC), play an important role in investigating the mechanisms of the 

communication and connectivity in neural networks. Phase-amplitude coupling (PAC), one form of 

CFC, in which the phase of LFO modulates the amplitude of HFO, has become a rising concern in 

recent studies. Alvarado-Rojas et al. used the cross-frequency PAC in ECoG of patients with partial 

epilepsy to predict the seizures (Alvarado-Rojas et al. , 2011). CFC between the amplitude of 

pathological high-frequency oscillations and the phase of theta and alpha rhythms was found to be 

significantly elevated in seizure-onset zone compared to non-epileptic regions in patients with partial 

epilepsy (Ibrahim et al. , 2014). Moreover, Guirgis et al. adopted the measures of modulation index 

and eigenvalue decomposition to confirmed that delta-modulated high-frequency oscillations could 

provide more accurate localization of epileptogenic zone in extratemproal lobe epileptic patients 

(Guirgis et al. , 2015a). Recently, modulation index was also used to determine the predictive 

accuracy of seizure onset sites and eloquent areas in children with focal epilepsy, which suggested 

the epileptogenic HFOs might be coupled with slow-wave 3-4 Hz more preferentially than 

slow-wave 0.5-1 Hz (Nonoda et al. , 2016). Also, PAC was estimated by the synchronization index 

for ECoG from patients with refractory temporal lobe epilepsy and accurately distinguished the ictal 

state from interictal state with strong coupling between the phase of beta oscillation and the 

amplitude of high gama oscillation (Edakawa et al. , 2016). 

 

Previous studies concentrated more on the coupling strength, coupling frequency bands or coupling 

areas of the brain between the phase of LFO and the amplitude of HFO. However, the coupling 

patterns of phase-amplitude interaction in different brain areas during the non-seizure and seizure 

periods still remain unclear. Therefore, the aims of this study are to investigate whether the PAC 



  

differs in different seizure periods and in what forms the low-frequency phase and high-frequency 

amplitude may couple. Also, we aim to estimate whether the PAC differs in left and right temporal 

cortex and hippocampi of patients with temporal lobe epilepsy. 

 

To address and better understand these issues, we collected the eletrocorticogram (ECoG) data from 

the left and right temporal cortex and hippocampi in seven patients with temporal lobe epilepsy. We 

adopted the modulation index based on the Kullback-Leibler distance (Tort et al. , 2010), PAC 

co-modulogram and time-varying phase-amplitude modulogram (Mukamel et al. , 2011) to explore 

the temporal-spatial characterization of the PAC strength and patterns during the period from 

pre-seizure to post-seizure at both sides of the cortex (see Materials and methods for details). 



  

2. Materials and methods 

2.1 Data recordings and preprocessing 

We obtained the ECoG recordings from subdural strip electrodes implanted in seven patients. Six 

patients were presented with suspected bilateral temporal lobe epilepsy and the other was right 

temporal lobe epilepsy. All patients provided written informed consent, approved by the ethical 

committee of Xuanwu Hospital (Patient A, B, C and D) and Luhe Hospital (Patient E, F and G). All 

seven patients are pathologically focal cortical dysplasia (FCD). The clinical characteristics of each 

patient are summarized in Table 1. The cortical electrode strip (2.5mm diameter platinum electrodes 

positioned 10mm apart center-to center) and depth electrode strip (1.2mm diameter platinum 

electrodes positioned 10mm apart center-to center) was implanted on the temporal lobes and 

hippocampi of each patient respectively. All electrode strips are placed symmetrically on the left and 

right cerebral cortex except patient E. The strips of patient E are placed only in the right cerebral 

cortex. The spatial distribution of preoperative intracranial electrode strips of patient A is shown in 

Fig. 1A. The top panel shows the left and right views of cerebral cortex, the bottom panel shows the 

top and upward views of cerebral cortex. We arranged all the electrode strips in the plane (Fig. 1B), 

which could be observed easily. 

 

ECoG signals were continuously recorded day and night for preoperative assessment of all patients, 

using a video-EEG monitoring system (PN-NET, Beijing Yunshen Technology, China). An electrode 

located far away from the epileptic focus was used as the reference electrode. The sampling 

frequency of the ECoG data is 2048 Hz. The ECoG data were exported as European Data Format 

Plus (EDF+) files and imported into EEGLAB for changing the file format to MAT. We recorded the 



  

ECoG data of 16 seizures across 7 patients in total and selected 12 seizures for analysis, which 

included the complete spontaneous epileptic seizures from each patient. The data of other four 

seizures were not used for analysis because of the incomplete data recording, which did not contain 

the data in pre-seizure or post seizure period. All ECoG data segments were selected from about 1 

minute before seizure onset time to about 1 minute after seizure termination time. The ECoG data 

segments were downsampled to 1024 Hz firstly and filtered by a 0.2 Hz high-pass filter for removing 

baseline interference. Power frequency noise (50Hz) and harmonic noises were then removed by the 

notch filter. We also removed the large amplitude artifacts in the ECoG data and rejected the bad 

channels by visual inspection from each patient. Fig. 2A shows the preprocessed ECoG data of 

channel 38 from patient A. Both the seizure onset time (tSO) and the seizure termination time (tST) 

were determined by neurologists clinically and labeled on the time coordinate. The seizure onset 

channels were also clinically defined as the electrodes with earliest ictal activity, named focal fast 

waves. 

[Insert Fig. 1] 

[Insert Table 1] 

[Insert Fig. 2] 

2.2 Phase-amplitude coupling analysis 

Modulation index (MI) based on the Kullback-Leibler distance (Tort et al. , 2010) was adopted to 

quantify the strength of PAC. Time-varying phase-amplitude modulogram (Mukamel et al. , 2011) 

was used to characterize the PAC pattern between two specific frequency bands during the period 

from pre-seizure to post-seizure. 

The computing process for PAC was described in Fig. 3, including the following steps: 

(i) Filter the ECoG data ���� by a bandpass filter (eegfilt.m in EEGLAB toolbox) to construct a 



  

narrow band low-frequency signal ����� and a high-frequency signal �����. 

(ii) Extract the instantaneous phase ����� and instantaneous amplitude ����� from ����� and  

����� respectively by using the Hilbert transform. 

(iii) Segment ����� and ����� into 10-second epochs with an overlap of 90%. The phase and 

amplitude in each epoch k is denoted as ��	��� and ��	��� �
 = 1,2,⋯ , ��. Divide the phase 

range [-π,+π] into eighteen equally intervals (The length of each interval is π/9, N=18). 

(iv) In each epoch k, assign all instantaneous phases of ��	��� to one of the eighteen phase bins 

j,	� = 1,2,⋯ ,� . The instantaneous phase and their corresponding instantaneous amplitude are 

denoted as ��	,����	and ��	,����, respectively. The mean amplitude at each phase bin j is denoted as 

〈��	〉���. Then we normalize the mean amplitudes over 18 phase bins ����� =
〈��	〉���

∑ 〈��	〉���
�
���

 to 

obtain the time-varying phase-amplitude modulogram. 

(v) The modulation index is defined by dividing the KL distance of the modulogram distribution 

����� from the uniform distribution  ��� by !"#���.The MI is denoted as �$ = %&'�(	,)�
*+,�-� , where 

the ./����,  � = ∑ �����!"# 0(	���)��� 1
-
�23 . 

(vi) Considering  ��� = 1 �⁄ , � = 1,2,⋯ , �, the MI can be denoted as �$ = ∑ (	���*+,(	����
���

*+,�-� + 1, 

which quantify the strength of PAC between LFOs and HFOs. The MI ranges from 0 to 1, where the 

MI value of 0 represents lack of PAC and the MI of 1 reflects strong PAC. 

The narrow band low-frequency and high-frequency ECoG data were filtered at 0.2-10 Hz with the 

step of 0.1Hz and 11-400 Hz with the step of 1Hz, respectively. MI was computed between the 

narrow band low-frequency and high-frequency data in 10-second windows with an overlap of 90 %. 

 [Insert Fig. 3] 

2.3 Statistical analysis 



  

We assessed the statistical significance of MI by permutation test (Mukamel et al. , 2014). 200 

random time shifts were generated from a uniform distribution on the interval [-5 s, 5 s]. We 

computed the permuted modulation index MIperm using the original and the shifted amplitude. Then, 

MI was judged significant if it was larger than 95% of the 200 permuted values MIperm. Matlab 

Statistics Toolbox was also applied for statistics. In order to assess the changes of PAC strength 

during the period from pre-seizure to post-seizure, we compared the MI values between specific 

LFOs and HFOs in five seizure epochs (pre-seizure, seizure onset, mid-seizure, seizure termination 

and post-seizure epoch) of each patient. We used the Kruskal-Wallis test (kruskalwallis.m) and 

Multiple comparison test (multcompare.m) to determine the significant difference of MI among 

different seizure epochs. The MI values were presented using the box plot. Also, MI values between 

seizure-specific LFOs and HFOs at mid-seizure epoch of all electrode channels of each patients were 

compared using the Kruskal-Wallis test (kruskalwallis.m) and Multiple comparison test 

(multcompare.m) to determine the significant difference of PAC strength cross all channels. p<0.01 

was considered significant difference and marked with the notation *. 



  

3. Results 

3.1 Time varying phase-amplitude modulation during temporal seizure. 

In order to quantify the strength of PAC of ECoG signals during seizure period for all patients, we 

computed the MI value along the whole period of all channels for each patient. To investigate the 

specificity of PAC in different time periods of temporal seizure, a 10-second pre-seizure, seizure 

onset, mid-seizure, seizure termination and post-seizure epoch were selected from all channels for 

each patient. Five seizure epochs in Patient A were shown with the gray rectangles marked on one 

channel ECoG signal in Fig. 2A. The seizure onset epoch was selected from tSO to 10 seconds 

afterward and the seizure termination epoch was selected from tST to 10 seconds forward. The 

mid-seizure epoch was chosen 5 seconds before and after the middle time point of seizure period 

(from tSO to tST). The pre-seizure and post-seizure epoch was selected approximately 30 seconds 

before and after the seizure onset and seizure termination epoch, respectively.  

Then, we computed the MI between each low-frequency (0.2-10 Hz with the step of 0.1 Hz) phase 

and high-frequency (11-400 Hz with the step of 1 Hz) amplitude at five selected epochs from all 

channels of each patient, which constructed the PAC co-modulogram. The co-modulogram at each 

epoch from channel 38 (at right temporal base) of Patient A (Seizure 2) was shown in Fig. 2B. The 

frequency for amplitude was set at 11-200 Hz in the figure which made the MI values displayed 

enlarged. It can be seen from Fig. 2B that the MI values differed from various epochs of seizure, 

which demonstrated the temporal specificity of PAC along the whole period. Obviously, there existed 

a strong coupling between the phase of 4-6 Hz oscillations and amplitude of 30-40 Hz oscillations at 

the mid-seizure epoch. 

To further determine the significant difference of MI in different co-modulograms, we compared the 



  

MI values of 4-6 Hz and 30-40 Hz oscillations among the five seizure epochs. Box plots of MI values 

of the five epochs were shown in the right panel of Fig. 2B. All MI values in the box plot were 

statistically significant (p<0.05, permutation test). As can be seen from the box plot, the MI had a 

significant increase at mid-seizure epoch and a significant decrease at the seizure-termination and 

post-seizure epochs (p<0.001, Kruskal-Wallis test). 

The co-modulograms at five seizure epochs and their corresponding box plots in one selected 

channel of seven patients (12 recorded seizures totally) were illustrated in Fig. 4. As can be seen 

from the figure that, strong MI appeared in the mid-seizure epoch in all 12 recorded seizures of all 

patients. For patient A, strong phase-amplitude modulation was observed between 4-6 Hz and 30-40 

Hz or 30-50 Hz oscillations in three seizures (Seizure 1, Seizure 2 and Seizure 3), which belonged to 

θ oscillation in LFO and γ oscillation in HFO. For patient B (Seizure 4), strong modulation existed in 

6-8 Hz and 60-100 Hz oscillations, i.e., θ oscillation in LFO, γ and ripple oscillations in HFO. 

Similarly, patient C (Seizure 5) has a strong modulation in 4-5 Hz and 30-80 Hz oscillations, which 

were in the range of θ oscillation in LFO and γ oscillation in HFO. Unlike patient A, B and C, LFO 

of patient D (Seizure 6 and Seizure 7) remained in α oscillation modulating the γ and ripple 

oscillations in HFO. The LFO of patient E (Seizure 8 and Seizure 9) and F (Seizure 10 and Seizure 

11) was observed in δ oscillation modulating the γ or ripple oscillation in HFO. For patient G 

(Seizure 12), γ and ripple oscillations were modulated by the 7-9 Hz oscillations in LFO. The LFOs 

and HFOs of strong phase-amplitude modulation at mid-seizure epoch of each patient were 

illustrated in Table 2. The strong phase-amplitude modulating LFOs and HFOs at mid-seizure epoch 

of 12 seizures (seven patients) were mainly δ、θ、α oscillations and γ、ripple oscillations, respectively. 

In addition, MI values of seizure-specific frequency oscillations at five seizure epochs were made a 



  

comparison of significant difference by box plots (right panel of Fig. 4). All MI values in the box 

plots had statistical significance (p<0.05, permutation test). It can be seen from all box plots that the 

MI values at mid-seizure epoch were significantly larger than that at other four seizure epochs 

(pre-seizure、seizure onset、seizure-termination and post-seizure epochs) (p<0.001, Kruskal-Wallis 

test). These results demonstrate that the modulation between the phase of LFOs and amplitude of 

HFOs differs during different epochs of temporal seizure. Temporal seizure make the low-frequency 

phase and high-frequency amplitude have the strong modulation between δ、θ、α oscillations and γ、

ripple oscillations in the middle seizure period rather than other seizure epochs and non-seizure 

period. 

[Insert Fig. 4] 

[Insert Table 2] 

3.2 Spatial specificity of phase-amplitude modulation at mid-seizure epoch. 

As can be seen from the co-modulograms at seizure epochs in the selected channel of 12 recorded 

seizures that, mid-seizure epoch exhibited significantly strong phase-amplitude modulation (Fig. 4). 

We considered the hypotheses that whether the phase-amplitude modulation at mid-seizure epoch 

differed in different regions of left and right temporal cortex, and whether the spatial specificity of 

phase-amplitude modulation related to the location of the epilepsy lesions. Therefore, we computed 

the co-modulogram at mid-seizure epoch in all channels from 12 seizures of 7 patients. Fig. 5A 

showed the co-modulograms at mid-seizure epoch of 43 channels of patient A (seizure 2). Bad 

channel 12 on the electrode strip ② implanted in the right hippocampus had been rejected. The 

distribution of the co-modulogram in each channel was same as that of the electrodes on the arranged 

strips in Fig. 1B. Co-modulograms in the left hippocampus, left temporal pole, left temporal base and 



  

right hippocampus, right temporal pole, right temporal base were in the left and right panel of the 

figure, respectively. MI values in the co-modulograms were computed between the phase of 

low-frequency 0.2-10 Hz with the step of 0.1 Hz and the amplitude of high-frequency 11-200 Hz 

with the step of 1 Hz. 

It can be seen from Fig. 5A that the phase-amplitude modulation was notably different and 

asymmetrical on the left and right side. In the right temporal pole (electrode strip ④) and right 

temporal base (electrode strip ⑥), the strong phase-amplitude modulation appeared in the channel 

21-23, 37-39 and channel 43. Besides, channel 10 in the right hippocampus (electrode strip ②) also 

had a strong modulation. The strong phase-amplitude modulations existed in these channels were all 

between the θ and γ oscillations. By contrast, there was no strong phase-amplitude modulation in the 

left temporal cortex and hippocampus. Co-modulograms of mid-seizure epoch for all channels of 

other patients were distinct in different regions of temporal cortex and hippocampus. These results 

illustrated that the modulation between HFOs and LFOs varied among channels at mid-seizure epoch, 

which means the spatial specificity of phase-amplitude modulation of temporal lobe epilepsy. 

In addition, in order to know whether the PAC modulation strength varies across different electrode 

channels, we computed the median values of MI between seizure-specific LFOs and HFOs at 

mid-seizure epoch in each seizure of all patients. Fig. 5B showed the median values of MI between 

LFO 4-6 Hz and HFO 30-40 Hz of all 43 channels on both left and right hippocampi and temporal 

lobes of patient A (seizure 2). This patient underwent the right temporal lobe resection, whose 

resected channels were marked with light gray rectangle in the figure. As can be seen from Fig. 5B 

that the high MI values existed in channel 10, 21-23, 37-39, 43 (white asterisk *) and the MI values 

of these channels were significantly larger than that of other ipsilateral and contralateral channels 



  

(p<0.001, Kruskal-Wallis test). The MI values of epileptic focus at mid-seizure epoch were also 

significantly larger than that of other channels in other patients. These results demonstrated the 

spatial specificity of PAC strength at mid-seizure period. i.e., strong PAC appears in the epileptic 

focus rather than the normal cortex of temporal lobe epilepsy. 

[Insert Fig. 5] 

To further evaluate the relationship between the spatial specificity of phase-amplitude modulation at 

mid-seizure epoch and epilepsy lesion, we compared the channels with strong MI in co-modulogram, 

seizure onset channels identified by the neurosurgeons and the resection channels in the clinical 

surgery of all 12 recorded seizures. Channels with different features of each patient were marked 

with various symbols on their corresponding electrode strips, which were illustrated in Fig. 6. 

Asterisk (*) denoted the strong MI channels and different color (green, red and blue) of asterisk 

denoted different recorded seizures of each patient. Pound sign (#) indicated the seizure onset 

channels. Channels filled with gray color indicated the clinical resection zones. 

As can be seen from the Fig. 6, almost all the channels with strong MI appeared on the corresponding 

left or right temporal cortex of surgical resection and overlapped with the clinical resection zones in 

all seven patients. It is important to note that the neurosurgeons generally avoid the functional cortex 

and resect tissue slightly outside of the defined epileptogenic region to minimize the risk of a 

secondary surgery. These results illustrate that strong MI in mid-seizure period can be the biomarker 

of epileptogenic cortex area and PAC is a potential measure for lateralization and localization of 

epileptic focus in temporal lobe epilepsy 

[Insert Fig. 6] 

3.3 Fall-max pattern of phase-amplitude modulation on epileptic foci. 



  

Because the MI only quantifies the coupling strength of low-frequency phase and high-frequency 

amplitude, the pattern of PAC still remains unclear. Therefore, we investigated the PAC pattern by 

time-varying phase-amplitude modulogram during the whole period from pre-seizure to post-seizure. 

We analyzed the modulogram between the phase of LFOs and the amplitude of HFOs of ECoG data 

from all channels for each patient, where the calculated LFOs and HFOs were patient-specific. 

Fig. 7 showed the time-varying modulograms between low-frequency 4-6 Hz and high-frequency 

30-40 Hz oscillations of patient A. The time and low-frequency phase (from –π to +π with a step of 

π/9) were indicated on the horizontal and vertical axis, respectively. Two vertical solid lines 

represented the seizure onset time and seizure termination time. As can be seen from Fig. 7, in the 

modulograms of almost all channels in the right temporal pole (electrode strip ④) and right 

temporal base (electrode strip ⑥), the high-frequency (30-40 Hz) amplitudes were largest at the 

low-frequency (4-6 Hz) phase range [-π, 0] that corresponded to the falling edges of LFOs during 

middle period of seizure, which was called “fall-max” pattern. Moreover, this pattern was relatively 

obvious in the modulograms of channel 21-23 and channel 37-39 in which the co-modulograms had 

the strong MI values (Fig. 5). By contrast, there was no obvious “fall-max” pattern in the left 

temporal cortex and left hippocampus. In addition, this “fall-max” pattern also appeared in the 

middle period of seizure of channels with strong MI values in co-modulograms in patient C (seizure 

5) and patient D (seizure 6, 7) rather than in all twelve studied seizures. These results demonstrated 

that the “fall-max” pattern was a remarkable phase-amplitude coupling pattern in the epileptic focus 

during the period of seizures and also a notable feature of neural oscillations in patients with 

temporal lobe epilepsy. 

[Insert Fig. 7] 



  

To further find out what is “fall-max” pattern in the epileptic focus (i.e., how the low-frequency 

phase and high-frequency amplitude couple in the ECoG signal) and the difference of oscillation 

features between epileptic cortex and normal cortex, we selected 3-second ECoG data of 

low-frequency 4-6 Hz and high-frequency 30-40 Hz oscillations in mid-seizure epoch from one 

channel in the epileptic cortex (channel 38) and the normal cortex (channel 6) of patient A (seizure 2) 

respectively. The ECoG data (black line), 4-6 Hz oscillation (dark green line) and its corresponding 

instantaneous phase (light green line), 30-40 Hz oscillation (light red line) and its corresponding 

instantaneous amplitude (dark red line) were shown in the left panel of Fig. 8A and Fig. 8B. It can be 

seen from Fig. 8A that the high-frequency amplitudes were largest only at the falling edges of the 

LFO where the gray arrows pointed, that is, the large high-frequency amplitudes distributed in the 

low-frequency phase range [-π, 0], which could be seen in the mid-seizure period of time-varying 

modulograms in Fig. 7. Moreover, the distribution of normalized mean high-frequency amplitudes at 

the low-frequency phase range [-π, π] of one mid-seizure epoch of “fall-max” pattern was given in 

the right panel of Fig. 8A. The large mean amplitudes were also distributed on the phase range [-π, 0]. 

By contrast, in the Fig. 8B, the high-frequency amplitudes were largest at the peaks, the troughs, the 

rising edges and the falling edges of the LFO, which means the large high-frequency amplitudes 

distributed evenly in the low-frequency phase range [-π, π]. These results illustrate that, in 

mid-seizure period, the LFO and HFO of epileptic cortex evolve into a specific coupling pattern, 

while they present without any synchronous features in the normal cortex. 

[Insert Fig. 8] 



  

4. Discussion 

Interictal and ictal ECoG recordings are essential to preoperative assessment of localization of the 

epilepsy focus for the patients with refractory focal seizures. Neurologists sometimes can not 

completely determine the seizure onset zones clinically by the interictal and ictal ECoG recordings 

and they are trying to discover a more efficient and reliable biomarker for assessing epileptogenic 

zones. In this study, we investigated the temporal and spatial coupling difference of low-frequency 

phase and high-frequency amplitude of ECoG signals collected from 7 patients with temporal lobe 

epilepsy by using the measure of phase-amplitude coupling, which described the characteristics of 

neural oscillations during different periods of seizures and made phase-amplitude coupling to be one 

significant measure for lateralization and localization of the epileptic focus. 

 

To quantify the strength of phase-amplitude coupling during the period from pre-seizure to 

post-seizure of all patients, we adopted the modulation index to analyze the intensity change of 

low-frequency phase (0.2-10 Hz with the step of 0.1 Hz) and high-frequency amplitude(11-400 Hz 

with the step of 1 Hz). Also, we compared the significant difference of modulation index value at 

five representative seizure epochs (pre-seizure, seizure onset, mid-seizure, seizure termination and 

post-seizure epoch). The modulation index in co-modulogram at mid-seizure epoch was significantly 

stronger than that of other seizure epochs in twelve seizures of all patients (Fig. 3 and Fig. 4). In fact, 

in the interictal period, there was no phase-amplitude synchronization feature between low-frequency 

and high-frequency oscillations. Gradually, the low-frequency and high-frequency oscillations 

tended to present a synchronous oscillation mode after seizure onset. When the seizure developed to 

the middle seizure period, the neural oscillations between low-frequency and high-frequency showed 



  

a specific and regular synchronization feature, which caused the strong phase-amplitude coupling. 

After that, this particular synchronization oscillation weakened gradually. It is this regular 

phase-amplitude synchronous mode between low-frequency and high-frequency oscillations in the 

middle period of seizures that made a high modulation index value than that of other seizure periods. 

This significantly strong coupling between low-frequency phase and high-frequency amplitude 

which is appeared in the middle period of the whole seizure is an important characteristic and could 

be a biomarker during the temporal lobe epilepsy. However, in previous study, Guirgis et al. used the 

modulation index to compute the phase-amplitude coupling strength at seizure onset, mid-seizure 

and seizure termination periods and found the modulation in all three seizure periods (Guirgis et al. , 

2015b). Also, phase-amplitude modulation was observed in the low-frequency δ and θ rhythms in 

their study, while the strong phase-amplitude coupling in our study appeared mainly between the 

low-frequency δ、θ、α oscillations and high-frequency γ、ripple oscillations. Therefore, the 

low-frequency and high-frequency oscillations modulation frequency bands vary among patients and 

the strong phase-amplitude coupling did not just appear in the middle period of seizures, which may 

be related to patients’ different conscious states when neurosurgeons record the epileptic seizures or 

the different types of epilepsy. 

 

In addition, we investigated the spatial distribution of phase-amplitude coupling strength in 

mid-seizure epoch of all recorded seizures in order to find out the difference across all channels in 

the left and right hippocampus and temporal cortex. The co-modulograms and modulation index 

between seizure-specific low and high frequency oscillations of all channels were calculated to 

assess the spatial distribution of phase-amplitude coupling strength, and also the relationship 



  

between the spatial phase-amplitude modulation and epilepsy lesion location. The spatial modulation 

and strength of phase-amplitude coupling at mid-seizure epoch showed the difference and 

asymmetry between low-frequency and high-frequency oscillations of the epileptic cortex and 

normal cortex (Fig. 5). Obvious phase-amplitude modulation appeared in the specific channels of 

each patients. Also, channels with strong modulation index overlapped with the seizure onset 

channels identified by the neurosurgeons and the resection cortex areas in the clinical surgery (Fig. 

6). This spatial specificity of phase-amplitude modulation and phase-amplitude coupling strength 

demonstrate that the epileptic foci cause the strong and specific phase-amplitude coupling compared 

to the normal cortex. It provides the neurologists important reference signification for the 

lateralization and localization of the epilepsy lesion of the patients with temporal lobe epilepsy. 

 

To further determine the pattern of phase-amplitude coupling during the whole period from 

pre-seizure to post-seizure, especially the mid-seizure epoch, time-varying modulogram was used to 

describe the phase-amplitude coupling pattern of seizure-specific low and high frequency oscillations 

(Fig. 7). Obvious ‘‘fall-max’’ pattern was observed in three of the seven patients (six of twelve 

recorded seizures) in the middle period of the seizures. Although this ‘‘fall-max’’ pattern does not 

appeared in all twelve studied seizures of all patients, we speculate this phase-amplitude pattern may 

be discovered in other recorded epileptic seizures. Besides, channels with this ‘‘fall-max’’ pattern in 

modulograms were the ones with the strong MI values in co-modulograms. These results illustrate 

that low-frequency phase modulates the high-frequency amplitude in a particular way in the middle 

period of seizures, which also varies among different cortical areas. It has no phase-amplitude 

coupling pattern at the seizure onset time, while the epileptic foci make the low-frequency and 



  

high-frequency oscillations form a pattern of coupling (‘‘fall-max’’ pattern) after several seconds. 

However, this ‘‘fall-max’’ pattern vanishes before the seizure termination time rather than continue 

to the end of the seizure. Besides, the ECoG data, low-frequency oscillation and its corresponding 

instantaneous phase, high-frequency oscillation and its corresponding instantaneous amplitude were 

elaborated to illustrate the difference of neural oscillations between epileptic cortex and normal 

cortex (Fig. 8). The specific phase-amplitude synchronization between low-frequency phase and 

high-frequency amplitude in epileptic cortex led to a strong phase-amplitude coupling and high 

modulation index value directly, while the irregular phase-amplitude coupling in the normal cortex 

resulted in the low modulation index value. The ‘‘fall-max’’ phase-amplitude coupling pattern which 

is not mentioned in previous studies caused by the epileptic foci in the seizure period may be an 

important biomarker of epileptogenicity. Neurosurgeons can determine the lateralization and 

localization of the epilepsy lesion by observing the synchronization modes and characteristics 

between low-frequency and high-frequency oscillations. The neuropathological mechanisms for the 

appearance and disappearance of “fall-max” pattern during the period from pre-seizure to 

post-seizure still need to further investigation. 

 

Nevertheless, our study has some limitations. Only twelve recorded seizures of seven patients were 

studied. More ECoG data segments of recorded spontaneous seizures of more epilepsy patients can 

provide more sufficient and worthy information for the characteristics of phase-amplitude coupling 

during the seizure and non-seizure periods. Future work on different gender, different age groups and 

different time periods of the day will be necessary to be deeply investigated and compared. Epileptic 

foci located in various cortical areas may have different influences on the pattern of phase-amplitude 



  

coupling during the seizure period. Also, the data length of the ECoG data segment we selected are 

limited, which only including the data period from the pre-seizure to post-seizure of all the epilepsy 

patients. Data of interictal period which have longer time interval with that of the seizure period may 

contain some neurophysiological information about the phase-amplitude modulation of the epileptic 

foci. 

 

Overall, the phase-amplitude coupling during the whole period from pre-seizure to post-seizure 

exhibits different features in the patients with temporal lobe epilepsy. Also, the modulation between 

low-frequency phase and high-frequency amplitude has spatial specificity on different cortical areas. 

The spatial specificity of phase-amplitude modulation and the newfound “fall-max” phase-amplitude 

pattern in the middle period of seizure are the important neurophysiological characteristic and 

biomarker, which may be a good tool for lateralization and localization of the epileptic foci and 

provide insight to the underlying neural dynamics of the epileptic seizure. 
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Figure legends 

Fig. 1. (A) Three-dimensional distribution of electrode strips of patient A. The electrode strip ① 

and ② with purple color were implanted in both left (6×1, channel 1-6) and right (6×1, channel 

7-12) hippocampi. The electrode strips ③,④,⑤ and ⑥ with green color were implanted in the left 

(8×1, channel 13-20) and right (8×1, channel 21-28) temporal pole, also in the left (8×1, channel 

29-36) and right (8×1, channel 37-44) temporal base. The blue numbers marked besides the electrode 

strips denote the channel number on the strips. (B) Planar distribution of all arranged electrode strips 

of patient A. 

 

Fig. 2. (A) Preprocessed ECoG data of channel 38 from patient A during the period from pre-seizure 

to post-seizure. Two red dotted line denote the seizure onset time tSO and seizure termination time tST 

respectively. The gray rectangles indicates the five selected 10-second seizure epochs, i.e., 

pre-seizure (I), seizure onset (II), mid-seizure (III), seizure termination (IV) and post-seizure (V). (B) 

PAC co-modulograms set between the phase of 0.2-10 Hz with the step of 0.1 Hz and the amplitude 

of 11-200 Hz with the step of 1 Hz of five seizure epochs and corresponding box plot of MI values in 

the co-modulograms between 4-6 Hz and 30-40 Hz oscillations among the five epochs. The notation 

* indicate significant difference of MI values at p<0.001. 

 

Fig. 3. Presentation of the phase-amplitude analysis procedures in a structural scheme. 

 

Fig. 4. PAC co-modulograms at five seizure epochs and the corresponding box plots of MI values of 

one selected channel from totally 12 recorded seizures of 7 patients. Frequency for phase (0.2-10 Hz 



  

with the step of 0.1 Hz) and amplitude (11-200 Hz with the step of 1 Hz) were indicated on the 

horizontal and vertical axis, respectively. 

 

Fig. 5. (A) PAC co-modulograms at mid-seizure epoch from all channels of patient A (Seizure 2). 

Frequency for phase (0.2-10 Hz with the step of 0.1 Hz) and amplitude (11-200 Hz with the step of 1 

Hz) were indicated on the horizontal and vertical axis, respectively. (B) MI values between 4-6 Hz 

and 30-40 Hz at mid-seizure epoch from all channels of patient A (seizure 2). Strong MI channels are 

marked with white asterisk *. 

 

Fig. 6. Channels marked with different symbols which represented strong MI channels in 

co-modulogram (*), seizure onset channels identified by the neurosurgeons (#) and the resection 

channels in the clinical surgery (gray electrode) of all 12 recorded seizures from 7 patients. 

 

Fig. 7. Time-varying phase-amplitude modulograms during the period from pre-seizure to 

post-seizure from all channels of patient A (Seizure 2). The seizure onset time (tSO) and seizure 

termination time (tST) are demarcated by the black vertical lines in each modulogram. 

 

Fig. 8. The ECoG signals of epileptic cortex (A) and normal cortex (B) at mid-seizure epoch (left 

panel) and their corresponding distribution of normalized mean amplitudes of high-frequency 

oscillation at the low-frequency phase range [-π, π] (right panel). 

 



  

Tables 

Table 1. Clinical characteristics of seven patients. 

Patients/

Seizure 

Number 

Sex Age 

(years) 

Epilepsy 

duration 

(years) 

Seizure semiology MRI findings MEG abnormal 

current source 

Interictal EEG Pathology Strip electrode 

placement/Electr

ode contacts 

Res

ecti

on 

side 

Follow-up 

period(months)/Surg

ical outcome 

(Engel Class) 

A/1,2,3 F 24 6 LoC, Bilateral hand 

automatism, 

Automatism of right 

leg; Convulsions of 

the limbs 

RHS Mainly in LTL Left posterior 

temporal sharp 

waves 

HS+FCD IIIa LH,LTP,LTB,RH

,RTP,RTB/44 

R 26/I 

B/4 F 46 28 LoC, Bilateral hand 

automatism 

No 

abnormalities 

Mainly in LTL, 

occasionally in 

RTL 

Bilateral sphenoid 

spikes 

FCD I LTP,LTB,RTP,RT

B /32 

L 53/II 

C/5 M 22 18 Convulsions of the 

limbs 

LHS - Bilateral frontal 

and sphenoid 

spikes and sharp 

waves 

HS+FCD I LH,LTB,LPTB,R

H,RTB,RPTB 

/48 

L 55/II 

D/6,7 M 33 11 Convulsions of the 

limbs 

LHS Mainly in LTL, 

occasionally in 

RTL 

 severe HS LH,LTP,LTB,RH

,RTP,RTB /38 

L 54/I 

E/8,9 F 28 19 LoC, Involuntary 

movements；

Convulsions of the 

limbs 

No 

abnormalities 

RTL Right frontal and 

central  sharp 

waves 

FCD I RH,RTP,RTB,RP

TL,RFPL/64 

R 27/I 

F/10,11 F 28 23 LoC, Bilateral hand 

automatism; Eyes on 

the turn accompanied 

by nausea; 

Convulsions of the 

limbs 

Suspected 

bilateral HS 

- Bilateral sphenoid 

spikes 

FCD I+Gray 

matter 

heterotopia 

LTP,LTB,LTO,R

TP,RTB,RTO/48 

R 34/III 

G/12 M 21 18 LoC, Convulsions of 

the limbs 

No 

abnormalities 

- Bilateral sphenoid 

sharp waves 

HS+FCD IIIa LTP,LTB,LTO,R

TP,RTB,RTO/48 

R 29/III 

F:female, M:male, L:left, R:right, H: hippocampus, TL: temporal lobe, TP: temporal pole, TB: temporal base, PTL: posterior temporal lobe, PTB: posterior temporal base, FPL: frontal-parietal 

lobe, TO: temporal-occipital, LoC: loss of consciousness, HS: hippocampal sclerosis, FCD: focal cortical dysplasia 



  

 

Table 2. Frequency band of oscillation of strong MI at mid-seizure epoch of the selected channel in twelve seizures of seven patients. 

Seizure/Patient 1/A 2/A 3/A 4/B 5/C 6/D 7/D 8/E 9/E 10/F 11/F 12/G 

LFO θ θ θ θ θ α α δ δ δ δ θ & α 

HFO γ γ γ γ & ripple γ γ & ripple γ & ripple γ γ γ & ripple γ & ripple γ & ripple 

LFO: low frequency oscillation, HFO: high frequency oscillation 



  

http://ees.elsevier.com/clinph/download.aspx?id=550129&guid=763c2684-7ab7-4f32-afda-64adddbe6172&scheme=1


  

http://ees.elsevier.com/clinph/download.aspx?id=550138&guid=7b1e0704-7318-4343-b95e-9c0a65426c27&scheme=1


  

http://ees.elsevier.com/clinph/download.aspx?id=550139&guid=30af1d7f-6fa8-4672-bee8-b5655eb7b57b&scheme=1


  

http://ees.elsevier.com/clinph/download.aspx?id=550132&guid=54f7182f-ffe4-4765-9fa3-dd2ec18b770a&scheme=1


  

http://ees.elsevier.com/clinph/download.aspx?id=550133&guid=c989fd3f-7c30-4a21-933e-9550cb086c5f&scheme=1


  

http://ees.elsevier.com/clinph/download.aspx?id=550134&guid=34d81a92-beb1-4937-a7cb-8d1a2194815e&scheme=1


  

http://ees.elsevier.com/clinph/download.aspx?id=550135&guid=66e7f109-2b73-44dd-9463-c847efa20b4b&scheme=1


  

http://ees.elsevier.com/clinph/download.aspx?id=550136&guid=d0eb9fa3-8398-4cbe-a19d-25ba520e746f&scheme=1

