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ABSTRACT 11 

The role of colours and colour patterns in behavioural ecology has been extensively 12 

studied in a variety of contexts and taxa, while almost overlooked in many others. For 13 

decades anurans have been the focus of research on acoustic signalling due to the 14 

prominence of vocalisations in their communication. Much less attention has been paid 15 

to the enormous diversity of colours, colour patterns, and other types of putative visual 16 

signals exhibited by frogs. With the exception of some anecdotal observations and 17 

studies, the link between colour patterns and the behavioural and evolutionary ecology 18 

of anurans had not been addressed until approximately two decades ago. Since then, 19 

there has been ever-increasing interest in studying how colouration is tied to different 20 

aspects of frog behaviour, ecology and evolution. Here I review the literature on three 21 

different contexts in which frog colouration has been recently studied: predator–prey 22 

interactions, intraspecific communication, and habitat use; and I highlight those aspects 23 

that make frogs an excellent, yet understudied, group to examine the role of colour in the 24 
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evolution of anti-predation strategies and animal communication systems. Further, I 1 

argue that in addition to natural-history observations, more experiments are needed in 2 

order to elucidate the functions of anuran colouration and the selective pressures 3 

involved in its diversity. To conclude, I encourage researchers to strengthen current 4 

experimental approaches, and suggest future directions that may broaden our current 5 

understanding of the adaptive value of anuran colour pattern diversity. 6 

 7 

Key words: colouration, predator–prey interactions, visual communication, sexual 8 

selection, conflict resolution, space use.  9 

 10 
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I. INTRODUCTION 5 

“An extensive survey of the organic world thus leads us to the conclusion that colour is 6 

by no means so unimportant or inconstant a character as at first sight it appears to be; 7 

and the more we examine it the more convinced we shall become that it must serve some 8 

purpose in nature, and that besides charming us by its diversity and beauty it must be 9 

well worthy of our attentive study, and have many secrets to unfold to us.” – A. R. 10 

Wallace (1877, p. 643) 11 

Signals are supposed to evolve so that the signal-to-noise ratio (the contrast 12 

between the signal and the background noise) is maximised (Bradbury & Vehrencamp, 13 

2011; Endler, 1992, 1993a), while signal degradation is minimised (Endler, 1992). 14 

Selection also tends to favour signals with a high efficacy not only in terms of their 15 

transmission and detection, but also in their ability to elicit a response in the receiver 16 

that increases the sender’s fitness (Guilford & Dawkins, 1991) while maintaining the 17 

receiver’s fitness unaffected. An exception to this is deceptive signals, which deliver 18 

incorrect information about the signaller and thus benefit the sender at the expense of the 19 

receiver (Mokkonen & Lindstedt, 2015; Wiley, 1983, 1994).  20 

Different modalities of communication entail diverse advantages and constraints 21 

on the signals involved (Bradbury & Vehrencamp, 2011). Acoustic signals can be 22 

advantageous over long distances because sound waves can travel for longer through 23 

either air or water without degrading compared to, for example, light. This is particularly 24 

useful for nocturnal animals given the low or non-existent light levels at night (Bradbury 25 
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& Vehrencamp, 2011). Chemical or olfactory signals are also good in low-light 1 

scenarios, but they rely heavily on the characteristics of the medium in which they are 2 

transmitted (Bradbury & Vehrencamp, 2011). Visual signals, on the other hand, work 3 

well over short to medium distances provided there is a lack of physical obstacles 4 

between the sender and the receiver, suitable contrast with the background, and a 5 

minimum of environmental light (Endler, 1992, 1993a); they can have different shapes 6 

and sizes, and may convey information either on their own (static signals; e.g. diverse 7 

and conspicuous colour patterns in bird plumage; Andersson, 1994) or when 8 

accompanied or enhanced by repeated movements or displays (dynamic signals; e.g. the 9 

extension of a coloured dewlap in combination with head bobbing in Anolis lizards; 10 

Losos & Chu, 1998). 11 

The role of colour patterns as visual signals in animal behaviour and ecology has 12 

been studied extensively in a variety of contexts and taxa, but has been neglected in 13 

others. For example, for decades anurans have been the focus of studies on acoustic 14 

signalling due to the prominence of vocalisations in their communication system. Not 15 

only has it been demonstrated that frogs emit calls with different functions (Gerhardt & 16 

Huber, 2002), but they have also been shown to have outstanding sensory abilities that 17 

allow them to be both physiologically (Capranica & Moffat, 1983) and behaviourally 18 

(Amézquita et al., 2011) tuned to the characteristics of their own species-specific 19 

acoustic signals. By contrast, the link between colouration and the behavioural and 20 

evolutionary ecology of anurans had not been properly addressed until approximately 21 

two decades ago. Previous studies focused mostly on the inheritance of colour patterns 22 

(Blouin, 1989; Davison, 1963; Fogleman, Corn & Pettus, 1980; Resnick & Jameson, 23 

1963); but see Nevo, 1973, for an early study on the selective pressures involved in the 24 

maintenance of colour polymorphism in cricket frogs). Recently, more attention has 25 

Page 4 of 81Biological Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

 5 

been paid to the enormous diversity of colours, colour patterns, and other types of visual 1 

signals displayed by frogs (e.g. Hödl & Amézquita, 2001), and how those signals are 2 

tied to different aspects of frog ecology and behaviour. Here I aim to review the 3 

diversity of frog colouration in relation to behaviour and ecology. I do so whilst 4 

focusing on those cases in which colour patterns are visual signals on their own, 5 

describing how these signals are currently thought to function in the context of anti-6 

predation strategies, intraspecific communication and habitat use. Lastly, I suggest 7 

future directions within each context that might fill some of the current gaps in frog 8 

colouration research; and highlight the need to strengthen and broaden the current 9 

experimental approaches in order to widen our understanding of the adaptive value of 10 

diversity in frog colouration, and to identify the candidate selective pressures that might 11 

be shaping such diversity. 12 

 13 

II. PREDATOR–PREY INTERACTIONS 14 

Colouration may have an enormous effect on animals’ fitness because of its adaptive 15 

function as an interspecific signal in the context of predation, among others. While some 16 

animals gain protection from predators by blending with their surroundings 17 

(camouflage; Edmunds, 1974), many species also have conspicuous colour patterns that 18 

warn predators about their unprofitability (Ruxton, Sherratt & Speed, 2004). The latter 19 

strategy is referred to as aposematism (Poulton, 1890). 20 

 21 

(1) Camouflage 22 

Camouflage involves a series of strategies that prevent prey from being detected or 23 

recognised by predators (Edmunds, 1974; Stevens & Merilaita, 2009). Such strategies 24 

include, for instance, crypsis and masquerade. Common types of crypsis are background 25 
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matching, whereby an animal resembles its background colouration and thus avoids 1 

detection (Endler, 1988), and disruptive colouration, which involves markings that make 2 

it difficult for the predator to distinguish the outline or shape of the prey (Cott, 1940; 3 

Thayer, 1909). Masquerade, whereby animals resemble an uninteresting object in their 4 

surroundings (i.e. a rock, a leaf, a stick, etc.), prevents prey recognition instead 5 

(Skelhorn et al., 2010). Both crypsis and masquerade ultimately deprive the predator of 6 

key information about the prey and, therefore, constitute a form of deception (Caro, 7 

2014; Mokkonen & Lindstedt, 2015). Camouflage is a widespread anti-predator strategy 8 

among anurans, which is reflected in the prevalence of earthy colours such as different 9 

shades of green, brown and grey in many species (Wells, 2007). It can be effective on its 10 

own, as in young Pristimantis zeuctotylus whose colour patterns resemble those of the 11 

mossy substrate (Fig. 1A), or Hyla japonica, which changes its dorsal colour to match 12 

that of the background (Choi & Jang, 2014); but can also be enhanced with particular 13 

behaviours. Individuals of Craugastor fitzingeri, for example, become completely 14 

immobile after every jump and can also hide their head in the leaf litter; experiments 15 

with human observers who knew exactly where to search but still could not easily locate 16 

individuals have demonstrated that the detection of these frogs can be extremely difficult 17 

for predators (Cooper, Caldwell & Vitt, 2008).  18 

Colour pattern polymorphisms [the simultaneous occurrence of two or more forms 19 

within a population with the rarest form occuring at frequencies higher than those 20 

expected by mutation pressure (Ford, 1945)] are very common among cryptically 21 

coloured species, and frogs are no exception (Hoffman & Blouin, 2000; Wells, 2007). 22 

For example, the frequencies of colour patterns (grey, green, and red) in two species of 23 

Acris (A. gryllus and A. crepitans) are correlated locally with variations in substrate 24 

colour (Nevo, 1973). Remarkably, these species show seasonal variation in the 25 
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frequencies of each colour pattern, suggesting that a morph that is, for example, 1 

favoured in spring when everything is green, will not be favoured in the autumn, when 2 

the background vegetation will be more red. Likewise, in Dendropsopus (formerly Hyla) 3 

labialis, a frog species with an extensive latitudinal and altitudinal distribution, there are 4 

at least five distinct morphs whose frequency seems to be correlated with the 5 

predominant background at each location. For instance, individuals with spotted colour 6 

patterns are more common in populations at high elevations, where the background 7 

vegetation is dominated by mosses (Amézquita, 1999). This suggests that colour 8 

polymorphism in this species may have evolved as a form of crypsis (Amézquita, 1999). 9 

Interestingly, colour patterns also seem to be related to body size, so that green-10 

dominated morphs are smaller than brown ones (Amézquita, 1999), pointing at a 11 

potential link between colouration and life-history traits that has been surprisingly 12 

understudied in anurans. A long-term study on Eleutherodactylus coqui in Puerto Rico 13 

revealed the existence of 21 distinct pattern morphs whose frequencies also differ among 14 

populations and are correlated with the background colouration (Woolbright & Stewart, 15 

2008). Individuals with longitudinal dorsal stripes were most common in grassland 16 

areas, whereas individuals with spots and bars were more common in the forest 17 

(Woolbright & Stewart, 2008). Likewise, females of Rhinoderma darwinii, which are 18 

mostly brown, are found on brown substrates, whereas males, which can be either green 19 

or brown, are distributed across brown, green and brown–green backgrounds (Bourke, 20 

Busse & Bakker, 2011).  21 

In general, the association between body and background colouration suggests that 22 

frogs try to reduce predation risk through crypsis. Cryptic polymorphic species may 23 

have an advantage over monomorphic ones if they are exposed to predators that prey 24 

disproportionately on the most common phenotypes (apostatic selection), because the 25 
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fitness of each morph will be inversely related to its frequency in the population (Allen 1 

& Greenwood, 1988; Bond, 2007; Bond & Kamil, 1998; Endler, 1991a). Thus, by being 2 

polymorphic the per capita predation risk of a given species might be reduced, as the 3 

abundance of any of its morphs would be low compared to a monomorphic species 4 

(Endler, 1991a). Despite the prevalence of colour pattern polymorphisms among 5 

cryptically coloured anurans, the mechanisms that allow for their maintenance remain 6 

rather obscure. According to Hoffman & Blouin (2000), there is evidence that variation 7 

in colour patterns can be inherited and strong indications that predation could indeed be 8 

the selective pressure behind such diversity, but with a few exceptions (Morey, 1990; 9 

Tordoff, 1980; Wente & Phillips, 2005) most evidence to date remains merely 10 

correlational.  11 

Although there are many frog examples illustrating the benefits of background 12 

matching, evidence describing the function of disruptive colouration or masquerade is 13 

very limited and mostly anecdotal. Indeed, despite the fact that it has been suggested to 14 

be common among anurans (Wells, 2007), disruptive colouration has not been purposely 15 

examined experimentally (Rudh & Qvarnström, 2013). Examples of what might be 16 

disruptive colouration are markings such as light dorsal stripes, and blotches or spots 17 

that hinder definition of the body shape or break up the limbs (Wells, 2007), as well as 18 

lateral lines that cross the eyes while confounding their shape (Amat, Wollenberg & 19 

Vences, 2013; Toledo & Haddad, 2009). The best-known illustration of masquerade, on 20 

the other hand, is probably found in species living in forests, which can presumably trick 21 

predators by looking like dead leaves (Duellman & Trueb, 1994), such as some species 22 

of the genus Rhinella (Fig. 1B–D). 23 

Attempts to demonstrate the adaptive value of any of these forms of camouflage, 24 

or to test specifically for the role of predators as the selective pressure behind this 25 
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diversity in protective colour patterns (i.e. through apostatic selection), could benefit 1 

from the use of well-established protocols employed in other systems. For example, 2 

experiments with both human and avian predators foraging on either artificial prey 3 

items, or virtual prey on computer screens have demonstrated that certain colour patterns 4 

increase prey survival, via background matching or disruptive colouration, implicating 5 

the role of visual predators as a selection agent on the evolution of diverse protective 6 

colouration (Allen & Clarke, 1968; Allen & Greenwood, 1988; Bond & Kamil, 2006; 7 

Fraser et al., 2007; Karpestam, Merilaita & Forsman, 2013, 2014). An alternative 8 

approach to tackle similar kinds of questions, which has been widely used for research 9 

on aposematism (see Section II.2), is to deploy artificial prey in the field and document 10 

and compare attack rates on different morphs by natural visual predators (Cuthill et al., 11 

2005; Farallo & Forstner, 2012; Valkonen et al., 2011). Studies involving actual frogs 12 

would also be highly informative, as they can account for decisions made by the 13 

individual frogs themselves. For instance, in an elegant experiment investigating 14 

whether individuals of two different morphs of Hyla regilla expressed colour pattern-15 

mediated microhabitat selection, chemical cues of a snake predator were used to 16 

evaluate how predator presence affected the frogs’ choice (Wente & Phillips, 2005). The 17 

authors found that, in the presence of predator cues, both green and brown frogs 18 

preferred a substrate that matched their own colour. In the absence of predator cues, 19 

however, only green frogs exhibited a significant preference for a matching background, 20 

which suggests a possible genetically linked association between phenotype (i.e. dorsal 21 

colouration) and behaviour (i.e. preference for a matching background) (Wente & 22 

Phillips, 2005).  23 

Finally, the combination of these kinds of experiments with methods that allow for 24 

detailed analyses of colour patterns while accounting for predator perception (Endler, 25 
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1978, 1984, 1990, 2012; Endler & Mielke, 2005; Kemp et al., 2015; Osorio & 1 

Srinivasan, 1991; Renoult, Kelber & Schaeffer, 2015; Voroyeb & Osorio, 1998; 2 

Voroyeb et al., 1998) opens a broad range of possibilities to study the evolution of 3 

camouflage strategies in anurans. For instance, a field experiment where dummies with 4 

different colour patterns are deployed on different backgrounds to evaluate how attack 5 

rates differ among groups could be complemented with a survey of the actual frogs in 6 

their natural habitat, recording information on the exact spot where each individual is 7 

found. If not only this information is collected, but also standardised photographs are 8 

taken of both the individual frog and its microhabitat, similarities between the frog 9 

colour patterns and its background could be measured, and the accuracy of camouflage 10 

quantified.  11 

  12 

(2) Aposematism and mimicry 13 

Aposematism is an anti-predator strategy through which prey warn predators about their 14 

unprofitability (presence of toxins or physical defences such as spines or irritant hairs) 15 

by means of specific colour patterns that act as warning signals (Cott, 1940; Poulton, 16 

1890; Rojas, Valkonen & Nokelainen, 2015b; Ruxton et al., 2004). This strategy works 17 

in such a way that predators learn the association between the warning signals and the 18 

unprofitability of the prey, and subsequently avoid them (Endler, 1991a; Endler & 19 

Mappes, 2004; Ruxton et al., 2004).  20 

Several species of frogs exhibit conspicuous colouration and have a wide array of 21 

skin toxins (Wells, 2007), such as various species of Mantella (Fig. 2A,B) and the 22 

‘Tomato frogs’ (genus Dyscophus, Microhylidae; Fig. 2C) from Madagascar (Garraffo 23 

et al., 1993a); the Corroboree frogs (Pseudophryne corroboree; Fig. 2D) and other 24 

myobatrachids from Australia (Daly et al., 1990); Brachycephalus ephippium from 25 
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Brazil (Fig. 2E) (Sebben et al., 1986); and numerous species of Bufonids in the genera 1 

Melanophryniscus (Fig. 2F) (Garraffo et al., 1993b; Grant et al., 2012) and Atelopus 2 

(Fig. 3A,B; Kim, Kim & Yotsu-Yamashita, 2003) from South and Central America. 3 

However, probably the best-known example of aposematic frogs are the dart poison 4 

frogs (Dendrobatidae; Fig. 4) (Stynoski, Shelton & Stynoski, 2014). The varied toxins 5 

found in this Neotropical frog family (Daly et al., 2002, 1994; Daly & Myers, 1967; 6 

Myers & Daly, 1976, 1983) are sequestered from their specialised diet (Saporito et al., 7 

2007a, 2004), which consists mainly of ants, termites, mites and other arthropods found 8 

in the leaf litter (Darst et al., 2005; Toft, 1995). Toxins vary noticeably within the family 9 

in composition, amount, and power, but most are lipophilic alkaloids (Saporito et al., 10 

2012). One dendrobatid species, Phyllobates terribilis (Fig. 4D), has the most potent 11 

non-proteolytic (alkaloid) toxin among vertebrates, batrachotoxin (Myers, Daly & 12 

Malkin, 1978). Each of these golden yellow or metallic orange frogs can have up to 1.2 13 

mg of toxin which, if it comes into contact with an open wound, could potentially be 14 

lethal to humans in a dose as low as 200 µg (Myers et al., 1978).  15 

During the last 15 years, various studies have demonstrated an evolutionary link 16 

between colouration and toxicity in dendrobatid frogs (Darst et al., 2005; Santos, 17 

Coloma & Cannatella, 2003; Summers, 2003; Summers & Clough, 2001), suggesting 18 

that bright colouration has evolved independently at least three times. Diet 19 

specialisation, which is in turn linked with higher levels of toxicity (Darst et al., 2005), 20 

might have itself evolved independently at least two, but possibly three times (Santos et 21 

al., 2003; Vences et al., 2003). The combination of bright colours and high toxicity in 22 

these frogs has traditionally been put forward as an example of aposematism (Myers & 23 

Daly, 1983; Pough et al., 2001), even though the first experimental attempts to show 24 

predator aversion of colourful dendrobatids only took place a few years ago (Saporito et 25 
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al., 2007b). While it has been suggested that some crabs, snakes, beetle larvae and 1 

spiders feed on dendrobatid tadpoles (Gray & Christy, 2000; Stynoski et al., 2014), and 2 

some seemingly toxin-resistant snakes might feed on juveniles (Myers et al., 1978), the 3 

major predators of adult poison frogs are still not known with certainty, presumably due 4 

to the frogs’ success at deterring predators. As indicated by anecdotal observations and 5 

experiments in the field, ants, Paraponera clavata (Fritz, Rand & Depamphilis, 1981), 6 

and spiders, Cupiennius coccineus (Szelistowski, 1985) and Sericopelma rubronitens 7 

(Gray, Kaiser & Green, 2010), reject them as prey; but there are also some accounts of 8 

fish (Santos & Cannatella, 2011), snake (Fig. 5A) (Lenger, Berkey & Dugas, 2014; 9 

Ringler, Ursprung & Hödl, 2010), and spider (T. Larsen, personal communication; Fig. 10 

5B) predators. Experiments with frog clay models (see below), suggest that poison frogs 11 

could be subject to attack by birds and crabs. These results are in agreement with at least 12 

one observation of a crab feeding on an individual of Oophaga histrionica in the Chocó 13 

region of Colombia (A. Vélez & S. Körting, personal communication; Fig. 5C), and two 14 

observations of adult rufous motmots (Baryphthengus martii) consuming one individual 15 

of D. auratus with no apparent negative effects (Master, 1999) or feeding individuals of 16 

O. pumilio to their offspring (Alvarado, Alvarez & Saporito, 2013) (Fig. 5D). Additional 17 

evidence obtained in studies incorporating taxon-specific vision modelling (Crothers & 18 

Cummings, 2013; Dreher, Cummings & Pröhl, 2015; Maan & Cummings, 2012) 19 

indicate that the colour patterns of poison frogs are indeed likely to be designed to signal 20 

primarily to birds and crabs. However, it is important to note that both these vision 21 

models and the experiments with clay models are unable to assess the importance of 22 

predators such as snakes, which do not rely predominantly on visual cues for prey 23 

detection, but use mostly olfactory, thermal or movement cues instead (Saviola, 24 

McKenzie & Chiszar, 2012). 25 
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Further support for the role of poison frog colour patterns as an anti-predator 1 

strategy has been obtained in recent studies. Various field experiments have shown that 2 

colourful models representing local frogs are usually less frequently attacked than dull 3 

models, models representing novel morphs, or familiar models placed on novel 4 

backgrounds, at least for colours resembling the morphs of Oophaga pumilio in Costa 5 

Rica (Hegna et al., 2011; Saporito et al., 2007b; Stuart, Dappen & Losin, 2012) and 6 

Dendrobates tinctorius in French Guiana (Noonan & Comeault, 2009; Rojas, Rautiala & 7 

Mappes, 2014b). Interestingly, an experiment carried out in Isla Colón (Panamá) showed 8 

that the local, green morph of O. pumilio was attacked at significantly higher frequency 9 

than the foreign, red morph from the mainland (Hegna, Saporito & Donnelly, 2013). 10 

According to the authors, this result suggests that red might be a more efficient predator-11 

deterrent warning signal regardless of what the local signal is. Finally, movement has 12 

been shown to affect attack rates on clay models of different colours (Paluh, Hantak & 13 

Saporito, 2014). In a study comparing attack rates on stationary brown and red clay 14 

models to those on moving models of the same colours, Paluh et al. (2014) demonstrated 15 

that not only was bird predation significantly higher on moving brown frog models, but 16 

also significantly lower on moving red frog models. These findings provide evidence of 17 

the significance of prey movement for visual predators, and highlight the importance of 18 

incorporating elements that offer more representative measures of predation in the wild 19 

into clay model experiments.  20 

In addition to aposematism per se, studies demonstrate that both Batesian (a 21 

palatable species mimicking the colouration of a defended one; Bates, 1862) and 22 

Müllerian (two defended species sharing similar colour patterns; Müller, 1878) mimicry 23 

exist among frog species. In Ecuador, the aposematic frogs Ameerega (Epipedobates) 24 

bilinguis (Fig. 4B) and A. parvula occur parapatrically and serve as models to their non-25 
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defended mimic, Allobates zaparo, which adopts the corresponding colouration of its 1 

model at each locality (Darst & Cummings, 2006; Darst, Cummings & Cannatella, 2 

2006). Likewise, Allobates femoralis (Fig. 6A, right), an Amazonian species with a wide 3 

geographic distribution and great interpopulational variation in the colouration of both 4 

their inguinal and axillary patches, has been thought to be a Batesian mimic of 5 

Ameerega hahneli (Fig. 6A, left) (Amézquita et al., 2009). Ranitomeya imitator from 6 

Peru, on the other hand, is by far the best-known example of a Müllerian mimetic 7 

radiation in amphibians (Symula, Schulte & Summers, 2001; Twomey, Vestergaard & 8 

Summers, 2014; Twomey et al., 2013). This species (Fig. 6H–K) has diverged in both 9 

colour pattern and brightness among populations to resemble the colour patterns of its 10 

putative defended models: R. variabilis (Fig. 6D, highland morph; Fig. 6G, lowland 11 

morph), R. summersi (Fig. 6E), and R. fantastica (Fig. 6F) (Yeager et al., 2012; but see 12 

Chouteau et al., 2011). Recent experiments with chickens have demonstrated that 13 

models and mimics in this complex might indeed share the costs of predator learning 14 

(Stuckert, Venegas & Summers, 2014b). Furthermore, a comparison between the 15 

alkaloid profiles of mimics and models has confirmed that all co-mimics possess 16 

chemical defences (Stuckert et al., 2014a). Reciprocal learned avoidance by predators 17 

and possession of secondary defences by all the species in the mimetic complex are two 18 

fundamental assumptions of Müllerian mimicry (Müller, 1878). Among frogs, however, 19 

these assumptions have been tested and confirmed only for the R. imitator complex thus 20 

far. Another case of Müllerian mimicry was recently proposed, without further 21 

experimental support, where the leptodactylid Leptodactylus lineatus (Fig. 6C) 22 

previously thought not to be chemically defended, resembles the colouration of the 23 

dendrobatid Ameerega picta (Fig. 6B) (Prates et al., 2012). Also, phylogenetic analyses 24 

used to study the evolution of colour patterns in Malagassy poison frogs (genus 25 
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Mantella) suggest that the convergence in colouration between M. madagascariensis 1 

and M. baroni (Fig. 2A), which occur sympatrically, may represent another case of 2 

Müllerian mimicry (Schaefer, Vences & Veith, 2002). This hypothesis, however, has not 3 

been tested either. Therefore, given the great variability in toxicity and colour patterns 4 

within anurans, and the co-occurrence of toxic with nontoxic species in wide 5 

geographical ranges, it seems likely that even more examples of both types of mimicry 6 

are waiting to be uncovered.  7 

 8 

(a) The puzzle of polymorphic warning signals  9 

Warning signal variability may reduce the ability of predators to learn and retain 10 

the association between colour patterns and distastefulness (Exnerová et al., 2006; 11 

Greenwood, Wood & Batchelor, 1981; Mallet & Joron, 1999). As a result of stabilising 12 

selection, it is expected that aposematic prey will have little to no variation in their 13 

warning signals (Darst & Cummings, 2006; Endler, 1988; Endler & Mappes, 2004; 14 

Joron & Mallet, 1998). Hence, polymorphisms should be selected against in aposematic 15 

species (Endler & Mappes, 2004). However, there are several cases of aposematic 16 

species exhibiting colour polymorphisms in nature, for example ladybirds (O'Donald & 17 

Majerus, 1984; Ueno, Sato & Tsuchida, 1998), beetles (Borer et al., 2010) and moths 18 

(Hegna, Galarza & Mappes, 2015). In anurans, despite many aposematic species 19 

showing geographic variation in colouration (Amézquita et al., 2013; Brusa et al., 2013; 20 

Chouteau et al., 2011; Hoogmoed & Avila-Pires, 2012; Lötters et al., 1997; Myers & 21 

Daly, 1983; Noonan & Gaucher, 2006; Wollenberg et al., 2008), within-population 22 

variability in warning signals has been reported only for Oophaga pumilio (Fig. 7A–D) 23 

(Maan & Cummings, 2012), O. histrionica (Amézquita et al., 2013), Dendrobates 24 

tinctorius (Rojas & Endler, 2013) (Fig. 7E–H) and Melanophryniscus rubriventris (Fig. 25 
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3C) (Bonansea & Vaira, 2012). Nevertheless, given that levels of variation have not 1 

been investigated in many species, it is highly likely that more examples are yet to be 2 

discovered.  3 

Although there are several instances of polymorphic aposematic populations, the 4 

mechanisms allowing warning signal polymorphisms to persist are not yet fully 5 

understood. Recent approaches suggest a number of possible explanations: (1) an 6 

interaction between natural and sexual selection (Crothers & Cummings, 2013; 7 

Cummings & Crothers, 2013; Nokelainen et al., 2012); for example, in the aposematic 8 

wood tiger moth (Parasemia plantaginis), where males can be either yellow or white, 9 

yellow individuals have been found to be better protected from predators, whereas under 10 

certain circumstances whites have a higher mating success (Gordon et al., 2015; 11 

Nokelainen et al., 2012). In O. pumilio from Solarte Island (in the Bocas del Toro 12 

archipelago), the stabilising selection exerted by predators to keep colour patterns 13 

uniform is most likely counteracted by directional sexual selection favouring brighter 14 

males, which are preferred by females (Maan & Cummings, 2009). (2) Spatio-temporal 15 

variation in selection (Endler & Rojas, 2009; Galarza et al., 2014; Nokelainen et al., 16 

2014), for instance in the composition of local predator communities, which may 17 

generate a geographic mosaic of selection throughout the distribution range of a species. 18 

(3) A link between colour patterns and a fitness-related trait (or group of traits), either 19 

behavioural or physiological. Examples of this are differential activity patterns and 20 

investment in immune defences according to colour, as in wood tiger moths, or the 21 

association between movement type and colour patterns in the dyeing poison frog 22 

(Dendrobates tinctorius) (Nokelainen, Lindstedt & Mappes, 2013; Rojas, 23 

Devillechabrolle & Endler, 2014a; Rojas, Gordon & Mappes, 2015a). (4) Relaxed 24 

selection towards warning signals or predator generalisation, which involves predator 25 
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avoidance of one signal and the expansion of this aversion towards other signals similar 1 

enough to the one learnt (Amézquita et al., 2013; Darst et al., 2006; Richards-Zawacki, 2 

Yeager & Bart, 2013). (5) Non-adaptive forces such as hybridisation among geographic 3 

variants or drift (Gray & McKinnon, 2007; Medina et al., 2013; Thompson, 1984). 4 

Whatever the mechanism, for polymorphisms to be maintained there should be no 5 

differences in fitness among the morphs.  6 

 7 

(b) Honesty in warning signals  8 

The ‘handicap principle’ (Zahavi, 1975) suggests that selection should favour 9 

signals that provide reliable information about an individual’s quality. These signals 10 

must represent costs for the signaller, so that they are unaffordable for individuals whose 11 

quality is lower. Although suggested originally for sexual signals, honest signals have 12 

the potential to evolve in predator–prey relationships as well (Guilford & Dawkins, 13 

1993).  14 

For aposematic individuals, it is likely that warning signals are reliable indicators 15 

of prey’s unprofitability (e.g. toxicity), as only well-defended prey can afford the costs 16 

of being easily detectable by predators (Sherratt, 2002). However, detectability is not 17 

necessarily the only cost aposematic species may incur. Theoretical studies have shown 18 

that simultaneous investment in pigments and chemical defences may trade off within 19 

the same individual (Blount et al., 2009). Thus, warning signals are likely to be honest 20 

signals of the quality (or quantity) of chemical defences, as only well-defended 21 

individuals could profitably tolerate the costs of strong warning signals.  22 

A positive correlation between warning signals and toxicity has been found 23 

across species of dart poison frogs in a study where phylogenetic constraints were taken 24 

into account, and where both colouration and toxicity were considered ‘either/or’ traits 25 
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(Summers & Clough, 2001). However, quantitative approaches to whether poison frogs’ 1 

warning signals are honest or not have yielded mixed evidence. For instance, among 2 

different populations of Oophaga pumilio colouration has been suggested to be an 3 

honest indicator of toxicity, such that the brightest populations are also the most toxic 4 

(Maan & Cummings, 2012). However, a negative correlation between these two traits 5 

has also been found, both between and within species. The conspicuous species 6 

Ameerega (Epipedobates) bilinguis has a lower toxicity level than its less-conspicuous 7 

counterpart, Ameerega (Epipedobates) parvulus (Darst et al., 2006). Notably, 8 

experiments with chicks revealed that both increased conspicuousness and increased 9 

toxicity are equally effective when it comes to predator deterrence (Darst et al., 2006). 10 

Likewise, in different populations of Oophaga granulifera conspicuous colouration and 11 

toxicity are inversely related, such that the most conspicuous populations show the 12 

lowest levels of toxicity. In fact, these populations, where individuals are bright red, lack 13 

four of the alkaloids present in populations with the less conspicuous yellow or green 14 

colouration (Wang, 2011). According to Blount et al. (2009), this scenario is plausible 15 

when resource availability is high, as suggested for the seven-spot ladybird, Coccinella 16 

septempunctata (Blount et al., 2012). However, a recent theoretical approach found that, 17 

at equilibrium, a negative correlation between conspicuousness and defence strength 18 

does not hold (Holen & Svennungsen, 2012). This is because, if a trade-off between the 19 

resources invested in warning signals and chemical defences is assumed, the benefit of 20 

more conspicuous signals is a low risk of prey being attacked after detection, whereas 21 

the cost is a reduced defence level, which will bring decreased probabilities of survival 22 

upon attack (Holen & Svennungsen, 2012). Toxins such as those found in dendrobatid, 23 

mantellid or bufonid frogs are believed to be mainly sequestered from their diet (Clark et 24 

al., 2005; Daly et al., 1997; Hantak et al., 2013), which consists primarily of leaf-litter 25 
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arthropods. This means that, as suggested by previous studies (Maan & Cummings, 1 

2012; Wang, 2011), variation in toxicity levels among populations of the same species 2 

might be due to variation in prey availability. However, this does not necessarily explain 3 

why some species (or individuals within the same population) are more toxic, or more 4 

conspicuous, than others.  5 

Finding correlations, either positive or negative, between warning signals and the 6 

quality or quantity of chemical defences in the species mentioned above has been very 7 

informative on the dynamics of predator–prey relationships in anurans. However, 8 

empirical studies tend to miss one (or more) of the key elements about honesty, such as 9 

evidence that predators really pay attention to variation in toxicity and/or see (and care 10 

about) the difference among signals. Often only a correlation between toxicity and 11 

colouration is found, and the rest is assumed. Therefore, as Summers et al. (2015) state 12 

in a recent review, one key question is how to differentiate between quantitative honesty 13 

and other ways in which conspicuousness and toxicity may be correlated without 14 

involving honest signalling. 15 

The next steps thus should also include observations and experiments leading to a 16 

better understanding of the costs associated both with toxin sequestration and storage, 17 

and with the production of warning signals (i.e. pigments). For example, in species with 18 

variable colour patterns, it could be tested whether in cohorts of individuals raised from 19 

larvae in the same conditions, juvenile colour patterns are correlated with life-history 20 

traits such as size and time to metamorphosis. Additionally, juveniles could be raised in 21 

semi-natural enclosures differing in diet restrictions to see whether resource availability 22 

affects colouration, or toxicity, or both. A primer on this is a recent study on 23 

Dendrobates auratus, where the effects of rearing tadpoles on either a high-food or low-24 

food diet were tested on body size and luminance at metamorphosis (Flores et al., 2013). 25 
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The authors found that in metamorphs raised on a high-food diet body size and 1 

luminance were negatively correlated, whereas this correlation was positive in froglets 2 

reared on a low-food diet. According to Flores et al. (2013), these findings suggest 3 

either a trade-off in resource allocation, or developmental plasticity aimed at minimising 4 

predation risk at the most vulnerable (early) stages. Life-history trade-offs in relation to 5 

frog colouration may therefore be more common than usually thought, especially if the 6 

resource-allocation hypothesis holds.  7 

 8 

(3) Conspicuous colouration revealed through movement or behaviour 9 

Besides the very well-studied active visual displays that some frog species perform 10 

with their fore and hind limbs (i.e. arm waving, foot flagging, etc.), some of which 11 

expose coloured patches (reviewed in Hödl & Amézquita, 2001), several anuran species 12 

reveal coloured parts of their body through movement or specific positions (Hödl & 13 

Amézquita, 2001). Some species that use camouflage as their primary defence against 14 

predators have a secondary ‘hidden’ conspicuous colouration which is revealed under 15 

threat (i.e. deimatic displays; Edmunds, 1974; Umbers, Lehtonen & Mappes, 2015). 16 

Species in the genera Phyllomedusa and Agalychnis, for example, have this kind of 17 

colouration on their flanks (Fig. 8A). Their markings display combinations of yellow, 18 

orange, or purple with black stripes, and might serve as a warning signal to their 19 

irritating skin secretions (Wells, 2007, and references therein) and strong smell (B. 20 

Rojas, personal observations) when handled. The anti-predator function of these colour 21 

patterns warrants experimental testing. Species of the genera Physalaemus, Pleurodema 22 

and Edalorhina exhibit what resemble eyespots in the lower part of their dorsum (Fig. 23 

8B). These markings are better seen when the frogs hide their head in the substrate, 24 

leaving visible only the posterior part of the body (Lenzi-Mattos et al., 2005; Martins, 25 
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1989). Fire toads of the genus Bombina expose their conspicuous ventral colouration by 1 

raising the legs and arching their body (‘unken reflex’) when threatened (Bajger, 1980). 2 

This behaviour is also common among South American frogs of the genus 3 

Melanophryniscus (Fig. 8C–E) (Caorsi et al., 2014; Grant et al., 2012; Santos & Grant, 4 

2011). Finally, the conspicuous and very distinctive ventral colouration exhibited by 5 

some species of Atelopus (Fig. 3B) has also the potential to deter predators, especially 6 

given the highly toxic tetrodotoxins present in the genus (Fuhrman, Fuhrman & Mosher, 7 

1969; Kim et al., 2003), but this hypothesis also requires in-depth examination.  8 

 9 

III. INTRASPECIFIC COMMUNICATION 10 

(1) Mate preferences and assortative mating 11 

Bright colours can be important signals in mate choice (Andersson, 1994), particularly, 12 

but not exclusively, for diurnal species that use a wide range of visual signals during 13 

courtship (e.g. poison frogs: Hödl & Amézquita, 2001; Zimmermann & Zimmermann, 14 

1988). For example, females of different taxa prefer to mate with more colourful or 15 

brighter individuals (Bajer et al., 2010; Gomez et al., 2009; Maan et al., 2004). In some 16 

cases, not only the colour but also a variety of different criteria such as the number, size 17 

or shape of patches or spots are important in mate choice (Petrie, Halliday & Sanders, 18 

1991; Pincemy, Dobson & Jouventin, 2009). Although in many cases the explanations 19 

for mate preferences remain obscure, it has often been found that they are associated 20 

with the indirect benefits of ‘good genes’ (Cutrera, Fanjul & Zenuto, 2012; Hamilton & 21 

Zuk, 1982; Milinski & Bakker, 1990; Stange & Ronacher, 2012). Female preferences 22 

can exert directional selection on male traits that provide reliable information about their 23 

quality, because high-quality mates presumably lead to higher quality offspring, via 24 

increased fitness [through, for example, parasite resistance (Barber et al., 2001; Demuth, 25 
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Naidu & Mydlarz, 2012; Horak et al., 2001; Milinski & Bakker, 1990) or protection 1 

from predators (Lancaster, Hipsley & Sinervo, 2009; Sheldon et al., 2003)]. In spite of 2 

this, there are hardly any studies either on the influence of colouration on mate choice or 3 

on the fitness consequences of such choices in anuran species.  4 

Some nocturnal frog species are known to pay attention to colours when choosing 5 

a mate, given their ability to see some colour cues under low light (Gomez et al., 2010). 6 

Using video playbacks of frogs emitting identical calls but differing in the colour and 7 

brightness of their vocal sac, Gómez et al. (2009) demonstrated that female Hyla 8 

arborea are more attracted to males with a more colourful sac and prominent lateral 9 

stripe, which may together boost male conspicuousness. Furthermore, given that 10 

carotenoid production is costly, the authors hypothesised that carotenoid-based colours 11 

in the vocal sac might convey information about male quality (Gomez et al., 2009). 12 

Similarly, female Scaphiopus couchii prefer brighter males; in this species, both colour 13 

and patterning of males are reliable indicators of body size, which may in turn be an 14 

indicator of male quality (Vasquez & Pfennig, 2007). Finally, when presented with two 15 

models differing in colour pattern but emitting identical calls, female Hyla squirrella 16 

seem to be more attracted to males with large lateral stripes (Taylor et al., 2011). 17 

Among diurnal frogs, the only species in which visual mate choice has been 18 

studied extensively to date is Oophaga pumilio. Females in this species have been 19 

shown to prefer males with higher dorsal brightness (Maan & Cummings, 2009). 20 

Although ventral colouration could be expected to be more important than dorsal 21 

patterns for intraspecific communication given that most interactions occur while frogs 22 

are facing each other (Siddiqi et al., 2004), this and other studies support the idea that 23 

male dorsal colouration is the most relevant trait on which females base their 24 

preferences (Maan & Cummings, 2008; Summers et al., 1999). Oophaga pumilio has 25 

Page 22 of 81Biological Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

 23 

also been the focus of several studies because of its extensive interpopulation variation 1 

in colour patterns, especially in the Bocas del Toro Archipelago in Panama (Fig. 7A–D). 2 

Here, at least 15 different morphs have been identified among different islands (Myers 3 

& Daly, 1983; Siddiqi et al., 2004), but, with the exception of one population at Isla 4 

Bastimentos, populations of this species are known to be monomorphic. Understanding 5 

the origin of such geographic diversity in colour pattern has proved challenging, 6 

although there are strong indications that, besides natural selection, sexual selection may 7 

play a role in its maintenance (Crothers & Cummings, 2013; Cummings & Crothers, 8 

2013; Maan & Cummings, 2009; Summers et al., 1997).  9 

A possible mechanism by which sexual selection can promote the maintenance of 10 

geographic variants is through assortative mating, the non-random pairing of two 11 

individuals on the basis of a shared trait (Kondrashov & Shpak, 1998); be it 12 

morphological, ecological, or behavioural. Assortative mating has been broadly 13 

documented in a wide variety of organisms, and can be either positive (matings between 14 

individuals with the same phenotype) or negative (matings between different 15 

phenotypes). Colours seem to play a prominent role in the occurrence of assortative 16 

mating in taxa such as fish (Maan & Seehausen, 2011; Seehausen & van Alphen, 1998; 17 

Terai & Okada, 2011), birds (Andersson, Ornborg & Andersson, 1998), butterflies 18 

(Melo et al., 2009), and frogs. In a set of choice experiments with O. pumilio in the 19 

laboratory, females presented with males from two different populations (i.e. two 20 

different colour morphs) were more likely to spend time with the male from their own 21 

population (Reynolds & Fitzpatrick, 2007; Summers et al., 1999). Another study, with 22 

four populations, found that female mating preferences are influenced by male colours 23 

in such a way that native males were favoured, but that this preference relies heavily on 24 

the phenotype of the second male that is presented in the experiment (Maan & 25 
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Cummings, 2008). Recent work inferring patterns of colour-based mating in O. pumilio 1 

from wild pedigrees indicates that the assortative mating found in the laboratory does 2 

not necessarily translate completely to the field, where choices are actually made 3 

(Richards-Zawacki, Wang & Summers, 2012). It would be interesting to determine 4 

whether these preference patterns apply to other dart poison frog species with 5 

comparable geographic variation in colour patterns (Hoogmoed & Avila-Pires, 2012; 6 

Lötters et al., 2007; Silverstone, 1975). Likewise, it would be intriguing to determine 7 

whether colours play a role in mate choice in completely unrelated taxa such as species 8 

of the genus Mantella. This group of Malagassy frogs seems a striking example of 9 

evolutionary convergence with dendrobatids not only because of their conspicuous 10 

colouration (Schaefer et al., 2002) and skin alkaloids (Garraffo et al., 1993a), but also 11 

because of their complex social and reproductive behaviour (Heying, 2001). Other 12 

suitable candidates for this kind of investigation are species of the genus 13 

Melanophryniscus, such as M. rubriventris (Bonansea & Vaira, 2012). 14 

 15 

(a) Colours can attract both mates and predators 16 

One problem that animals face when they have conspicuous colour patterns is that they 17 

may be providing information about their presence and location to both wanted and 18 

unwanted receivers. While aposematic species have evolved distastefulness as a way to 19 

deter predators, unprotected organisms must find a way to efficiently attract conspecifics 20 

without attracting too much attention from predators or sneakers (Endler, 1978, 1980). 21 

This problem might be overcome by using ‘private communication channels’ so that 22 

conspicuousness is higher towards conspecifics than it is towards predators (Endler, 23 

1978, 1980, 1991b; Schaefer, 2010), which would imply that the visual sensitivity of 24 

conspecifics is better ‘tuned’ to the characteristics of their visual signals than is the 25 
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predators’ sensitivity (Endler, 1991b). Alternatively, there could be spatio-temporal 1 

constraints on the use of conspicuous signals, for example in species with explosive 2 

breeding (i.e. breeding activity limited to only one or a few days, often following the 3 

first rains of the season; Wells, 2007, and references therein).  4 

There are various examples of spatio-temporal niche partitioning in frogs, most of 5 

which relate to their acoustic signals in complex assemblages (Amézquita et al., 2011; 6 

Check, Bogart & Lougheed, 2003; Duellman & Pyles, 1983; Lüddecke et al., 2000). 7 

Recent studies, however, have shown that such partitioning could also be related to 8 

colouration, and occur at an intraspecific level. The toad Bufo luetkeni breeds at the very 9 

beginning of the rainy season in Costa Rica. Males of this species, which are otherwise 10 

dully coloured, become lemon yellow when they are ready to breed, and combine this 11 

conspicuous signal with distinct calls to create a multimodal display that attracts 12 

females. Females, as well as recently mated males, are dull brown, which suggests that 13 

this temporal change in colouration may be influenced by sexual selection, and restricted 14 

in time presumably due to increased risk of predation when conspicuous (Doucet & 15 

Mennill, 2010). In Rana temporaria, males in breeding aggregations display brighter 16 

throats (Fig. 9A), whereas male moor frogs (Rana arvalis) turn blue (Fig. 9B). Such 17 

colour changes have been suggested to function as a sex-recognition cue to prevent 18 

mismating attempts during the intense scramble competition common among explosive 19 

breeders (Sztatecsny et al., 2012, 2010).  20 

 21 

(b) Sexual dichromatism 22 

The changes in colouration described above occur in just one sex, and are therefore 23 

considered examples of sexual dichromatism. Also, because they occur only 24 

temporarily, during breeding, they are considered to be ‘dynamic’. This type of colour 25 
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change has been studied most thoroughly in the context of frog behaviour or ecology. 1 

However, due to its visibility for only a short period of time – ranging from a few hours 2 

to a few weeks – its occurrence is thought to be underestimated, i.e. it probably is more 3 

common than we are aware of in anuran taxa (Bell & Zamudio, 2012). There are also 4 

cases of ontogenetic colour change, where males differ from females in colouration from 5 

early life stages (Bell & Zamudio, 2012). For example, female African reed frogs of the 6 

genus Hyperolius change their colour patterns when attaining maturity, whereas males 7 

keep their juvenile colours (Veith et al., 2009). 8 

In one of the populations of the Bocas del Toro archipelago, the aposematic frog O. 9 

pumilio is known to be sexually dimorphic in terms of brightness, a non-chromatic 10 

component of colour patterns, with adult males as the brighter sex (Maan & Cummings, 11 

2009). This is most likely due to directional sexual selection (Maan & Cummings, 12 

2009). Male Dendrobates tinctorius from a highly polymorphic population in French 13 

Guiana, on the other hand, are overall yellower than females. This has been suggested to 14 

be the product of a synergy between sexual selection in the form of parental care, and 15 

the potential increased predation risk for males during the prolonged exposure involved 16 

in tadpole transport (Rojas & Endler, 2013). Despite these examples, sexual 17 

dichromatism is still surprisingly understudied considering how widespread it seems to 18 

be among anurans (Bell & Zamudio, 2012).  19 

 20 

(2) Intrasexual competition and conflict resolution  21 

Intraspecific aggression has been widely documented and can occur in different contexts 22 

(Lorenz, 1966; Riechert, 1998). Individuals can behave aggressively against 23 

conspecifics when they threaten the survival of their offspring (Sommer, 1987), when 24 

they threaten access to potential mates (Andersson, 1994), or when they are defending a 25 
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space that holds resources essential for their survival (i.e. food or shelter) or 1 

reproduction. The latter case is normally referred to as territoriality (Kaufmann, 1983; 2 

Maher & Lott, 1995). However, aggression via escalated conflict is costly in terms of 3 

energy and confers the risk of being injured (Maynard Smith & Harper, 2005). 4 

Therefore, under specific circumstances, the resolution of conflicts via the exchange of 5 

signals is expected to be favoured over physical aggression as an evolutionarily stable 6 

strategy (Maynard Smith, 1982; Maynard Smith & Harper, 2005). In fact, the mitigating 7 

effect of signalling during agonistic interactions has empirical support (Logue et al., 8 

2010).  9 

During a conflict, contestants should assess the probability of defeat by comparing 10 

their own fighting abilities with those of their opponent (Riechert, 1998). This means 11 

that both individuals are at the same time senders and receivers, as they exchange 12 

information about status, relative fighting ability, and relative resource value. Such 13 

information could be given and obtained on the basis of behavioural traits such as the 14 

rate at which displays are repeated (Johnstone, 1997). For example male jacky dragons 15 

(Amphibolurus muricatus) respond to video playbacks of conspecifics displaying at 16 

varying time intervals with aggressive push-ups (Ord & Evans, 2003). Alternatively, 17 

information can be contained in intrinsic characteristics of an individual such as colours, 18 

size, condition, or the size or complexity of weaponry such as horns or antlers (Bradbury 19 

& Vehrencamp, 2011). 20 

Colouration is a reliable signal of status and an important determinant of conflict 21 

resolution for several species of insects, fish, lizards, and birds (López, Martin & 22 

Cuadrado, 2004; Morimoto, Yamaguchi & Ueda, 2005; Pryke & Andersson, 2003a; 23 

Stuart-Fox & Johnston, 2005). Not only the colour, but also the size and shape of visual 24 

signals may provide information about fighting abilities during agonistic encounters. 25 
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There is much evidence that more colourful males, and sometimes females, tend to 1 

acquire and retain higher status within a group of individuals, whereas dull-coloured 2 

individuals are often subordinate. For example, redder male firemouth cichlids 3 

(Cichlasoma meeki) are more likely to win contests than duller ones (Evans & Norris, 4 

1996); and sand lizards (Lacerta agilis) with more colourful badges are more likely to 5 

initiate and win fights (Olsson, 1994); Similar trends have been found in African red-6 

shouldered widowbirds (Euplectes axillaris), where individuals with redder patches are 7 

more likely to acquire territories and outcompete rivals (Pryke & Andersson, 2003b). 8 

If colour pattern is an honest signal of an individual’s ability to defend its territory, 9 

one may also expect brighter or more colourful individuals to win contests more often 10 

than the dull ones, and thus be more successful in acquiring and maintaining high-11 

quality territories. As predicted, we find many examples of this throughout different 12 

taxa. For instance, territorial Augrabies flat lizard (Platysaurus broadleyi) males have a 13 

lower ultraviolet reflectance than floaters (Whiting et al., 2006), and the size of the red 14 

spots in the wings of male rubyspot damselflies (Hetaerina americana) promotes 15 

successful defence of a territory (Grether, 1996).  16 

Nearly all anurans defend small, short-term individual spaces during the breeding 17 

season, as they confer a particular advantage for the propagation of mating signals or 18 

better access to mates (Wells, 2007, and references therein). Dendrobatid frogs seem to 19 

be a remarkable exception to this generalisation, as all of the species studied to date 20 

exhibit some degree of long-term territoriality (Pröhl, 2005; but see Born et al., 2010). 21 

They defend multi-purpose territories that aid in mate attraction (Wells, 2007) and 22 

subsequent breeding. Defended resources within each territory vary from species to 23 

species (Pröhl, 2005), but are most often related to their elaborate parental care.  24 
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Even though most frogs rely on acoustic signals for communication, resident male 1 

dendrobatids generally advertise territory ownership to intruders with a combination of 2 

acoustic and visual signals (Hödl & Amézquita, 2001; Zimmermann & Zimmermann, 3 

1988), and in some cases physical combats can occur until the intruder is chased away, 4 

or gains the territory over the resident. For example, according to Wells (1980), 5 

territorial male Mannophryne (= Colostethus) trinitatis turn black when calling while 6 

non-calling males remain brown. Most interestingly, black males seem to react 7 

aggressively only towards other black males, and often engage in wrestling. At the end 8 

of the encounters, one of the males changes his colour back to brown, which presumably 9 

decreases the probability of being attacked by a black male (Wells, 1980). A recent 10 

study in laboratory conditions showed that O. pumilio males call and approach brighter 11 

males more frequently than duller ones. Furthermore, a male’s own brightness also 12 

predicts his own behaviour, such that brighter males approach stimulus frogs faster and 13 

call more towards other bright individuals (Crothers, Gering & Cummings, 2011). A 14 

field study on males of the same species showed that the most aggressive males from 15 

eight sampled populations were the ones with the most conspicuous colouration (Rudh, 16 

Breed & Qvarnstrom, 2013).  17 

While these links between colouration and behaviour seem to be reported more 18 

frequently, the mechanisms explaining how they appear and persist warrant in-depth 19 

examination. Correlational selection, which may favour certain combinations of traits 20 

(such as behaviour and phenotype) expressed at the same time in an individual without 21 

affecting the expression of each trait on its own (Brodie, 1992; Endler, 1986; Sinervo & 22 

Svensson, 2002), may be one possibility. Pleiotropy and gene linkage have also been 23 

advocated as possible explanations for the higher levels of dominance of Gouldian 24 
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finches (Erythrura gouldiae) bearing a red head, even when their head colour was 1 

manipulated to look like the subordinate morphs (Pryke & Griffith, 2006).  2 

Some species need acoustic and visual signals together (like the inflation–deflation 3 

of the vocal sac) in order to trigger agonistic behaviour (de Luna, Hödl & Amézquita, 4 

2010; Narins, Hödl & Grabul, 2003). Thus, the importance of visual signals and the 5 

potential role of colouration and colour patterns in the agonistic interactions of species 6 

that emit very soft sounds (Dendrobates leucomelas, D. truncatus and D. auratus; 7 

Erdtmann & Amézquita, 2009), or lack an acoustic advertisement call (Dendrobates 8 

tinctorius; Born et al., 2010; B. Rojas, personal observations) demands further 9 

investigation.  10 

As shown above, both male territorial behaviour and male–male aggression have 11 

been well documented in dendrobatoids (Pröhl, 2005). Aggression between females, on 12 

the other hand, has been poorly studied. Wells (1980) reported aggression between 13 

females of Mannophrynne trinitatis. A resident female challenges an intruder by 14 

acquiring an upright posture, and pulsating her bright yellow throat. Female 15 

Dendrobates auratus behave aggressively by chasing each other or wrestling in the 16 

presence of calling males (Summers, 1989). Apart from these studies, no others have 17 

been conducted on the role of colours in the agonistic behaviour of female frogs, and 18 

reports of its occurrence remain mostly a matter of side observations in male mating 19 

behaviour studies (Summers, 1992; Wells, 1978). Female aggression occurs in at least 20 

four colourful species: O. pumilio, D. auratus, D. leucomelas (Meuche, Linsenmair & 21 

Proehl, 2011; Summers, 1989, 1992; Wells, 1978) and D. tinctorius (B. Rojas, personal 22 

observations). Given that females do not vocalise at all, their means of acquiring, 23 

defending, and maintaining resources are still obscure. Hence, species with territorial 24 
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females constitute an excellent target for examining the importance of colour patterns 1 

during agonistic interactions. 2 

 3 

IV. HABITAT SELECTION AND SPACE USE 4 

The distribution of individuals of a species within a particular habitat might be explained 5 

by the location of resources or anti-predator refuges, the suitability of different 6 

microhabitats, or the preferences of conspecific individuals (Alcock, 2001). There are at 7 

least two ways in which colours or colour patterns can be associated with habitat 8 

selection and space use. First, animals might choose a habitat that provides the best 9 

blending opportunities in order to minimise detection by predators (Ruxton et al., 2004). 10 

This can be achieved, for example, either by background matching (Endler, 1984; 11 

Pellissier et al., 2011), or by mixing with groups of species with similar colouration 12 

(Munday, Eyre & Jones, 2003). Second, animals can select microhabitats that increase 13 

their own conspicuousness or the conspicuousness of their sexual displays (Endler, 14 

1993b; Heindl & Winkler, 2003; Théry, 2001; Théry & Endler, 2001). Section II.1 15 

discussed how some species with cryptic colouration may select the habitat that best 16 

matches their colours in order to avoid being detected by predators. By contrast, in this 17 

section I will address implications other than background matching of colour-mediated 18 

space use and habitat selection. 19 

As discussed above, aposematic species rely on their conspicuousness to teach 20 

predators about their unprofitability which should lead to monomorphism of the warning 21 

signal. However, as explained previously there are many polymorphic (and polytypic) 22 

aposematic species. It is possible that these species benefit from colour pattern-mediated 23 

habitat selection as a mechanism to maintain colour pattern variability. In such cases, 24 

each morph could choose a habitat that maximises its conspicuousness. Alternatively, if 25 
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conspicuousness differed among morphs, less-protected individuals could benefit from 1 

choosing microhabitats that provide extra protection from predators, for example hiding 2 

places. The former seems to be the case for males of O. pumilio, which seem to select 3 

vocalisation perches that maximise their conspicuousness (Pröhl & Ostrowski, 2011). 4 

Likewise, males from more conspicuously coloured populations of O. granulifera (Fig. 5 

4G) tend to call from more exposed perches than populations with duller males (Willink 6 

et al., 2013). 7 

Aposematic colour patterns may be associated with aspects of space use other than 8 

habitat selection. For aposematism to work, prey density must be high (Mappes, Marples 9 

& Endler, 2005; Ruxton et al., 2004; Speed, 2000), or at least above a certain threshold 10 

(Endler & Rojas, 2009), so that the frequency of encounters between the predator and 11 

the defended prey enhances predator learning. Therefore, aposematic organisms are 12 

assumed to benefit from spatial aggregations (Alatalo & Mappes, 1996; Lindström et al., 13 

2001; Mappes & Alatalo, 1997; Riipi et al., 2001), and at least in some taxa it has been 14 

demonstrated that gregariousness appeared after warning colouration (Beltrán et al., 15 

2007; Sillén-Tullberg, 1988). This does not necessarily occur in all aposematic species. 16 

While colourful dendrobatids are also highly toxic, their strong territorial behaviour 17 

makes them unlikely to be aggregated. However, one might predict that the territories of 18 

conspicuous species are more aggregated than those of dull-coloured species.  19 

Another way to approach the same conceptual problem would be to conduct 20 

studies comparing populations of colourful species that differ in abundance. There is 21 

good theoretical and increasing experimental support in favour of the idea that spatial 22 

variation in selective pressures (i.e. predation) might be a relevant factor shaping the 23 

evolution of aposematic signals (Chouteau & Angers, 2011; Nokelainen et al., 2014; 24 

Valkonen et al., 2012), and that the emergence of novel signals can be a frequency-25 
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dependent process (e.g. Endler & Mappes, 2004; Endler & Rojas, 2009). To date, 1 

however, there is only one empirical study examining how the spatial variation in the 2 

frequency of different warning signals may enable the emergence of novel signal types 3 

(Comeault & Noonan, 2011). Using clay models Comeault & Noonan (2011) compared 4 

the attack rate on different morphs of Dendrobates tinctorius in two populations 5 

differing in the abundance of the local morph. This study provided evidence that 6 

selective pressures affecting the survival rate of a ‘protected’ morph vary in accordance 7 

with its relative abundance in the population. In other words, an aposematic signal that is 8 

successful at high densities might not be so when the densities are low.  9 

 10 

V. FUTURE DIRECTIONS 11 

Even though the diversity of colours seen in anurans has been documented for decades, 12 

only relatively recent studies have directly assessed its function and adaptive 13 

significance (reviewed in Rudh & Qvarnström, 2013). Specifically, greater emphasis has 14 

been placed on examining the role that colours and other visual signals play in frog 15 

behaviour and ecology, especially in relation to protection from predators and mating. 16 

Likewise, current research has increasingly explored the synergy between different 17 

sensory modalities during mate attraction and male–male competition. Altogether, this 18 

indicates that frogs are excellent subjects for research on the evolution of colour-related 19 

anti-predation strategies and intraspecific communication systems. Future research 20 

should focus on a variety of key issues listed below.  21 

First, experimental approaches could be used to test the efficacy of eyespots and flash 22 

colours as signals addressed to potential predators. Among diurnal frogs, predation 23 

seems to be the selective pressure that stimulates the most interest among researchers 24 

studying colour pattern diversity, but most studies have been carried out in one taxon 25 
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only (Neotropical dart poison frogs) even though there is a great array of anuran taxa 1 

that possess diverse colour patterns (i.e. Mantellidae, Myobatrachidae, Bufonidae, 2 

Brachycephalidae, etc.). Furthermore, many recent studies have used clay models; 3 

although these studies represent a significant step forward in the study of warning 4 

signals, they are biased towards an overestimation of deaths, i.e. ignoring the fact that an 5 

attacked individual may survive. Additionally, research with clay models does not 6 

account for predators like snakes, which most likely would not attack the models, or for 7 

any behavioural correlates that act in concert with the warning signal. Future research 8 

could thus benefit from complementary studies where the survival of individuals bearing 9 

different colour patterns is tracked, for example, using capture–mark–recapture methods 10 

in semi-natural or wild conditions. Also, given their dissimilar distribution ranges, it 11 

would be especially interesting to compare the role of natural and sexual selection in the 12 

colour diversification of dendrobatids to that of mantellids, which show remarkable 13 

signs of evolutionary convergence in other aspects of their biology.  14 

Second, the role of colour patterns is relatively unexplored in mate choice and other 15 

aspects of sexual selection such as intrasexual competition, especially in highly 16 

territorial species. Studies on how nocturnal species use information conveyed in visual 17 

signals and why they may have retained colour vision and coloured traits whose 18 

expression may be costly, could refine our understanding of the function and importance 19 

of multimodal communication, which has proven increasingly prominent in anurans 20 

(Starnberger, Preininger & Hödl, 2014). Beyond the actual mate preferences, there is not 21 

much evidence to date supporting the function of colours as reliable indicators of good 22 

genes in frogs. It is unknown, for example, whether females obtain indirect benefits 23 

when mating with brighter males or males with certain colour patterns and whether that 24 

enhances the survival of their offspring.  25 
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Third, there is a surprisingly large gap in studies linking colour patterns and life history, 1 

especially in aposematic species. It would be very exciting to know what the costs and 2 

constraints are that compromise signal efficacy, and whether colours are honest signals 3 

for all receivers (i.e. both conspecifics and heterospecifics), or whether they are instead 4 

deceptive. 5 

Finally, we must consider other selective pressures besides mate choice and predation in 6 

order to investigate how variation in colour patterns can originate and be maintained. 7 

Future research should thus focus on exploring more aspects of the behaviour and 8 

ecology of the studied species in order to have a better understanding of the function and 9 

evolution of the great diversity in colour patterns that exists among anurans today.  10 

 11 

VI. CONCLUSIONS 12 

(1) Animals use different modalities of communication depending on both intrinsic and 13 

extrinsic factors. Frogs are widely known for their acoustic signals, which are 14 

particularly useful for nocturnal animals. Recently, also the use of visual signals in frog 15 

communication has become a focus of research.  16 

(2) The first approaches to studying variation in frog colouration dealt mostly with the 17 

inheritance of colour patterns. However, not many studies have addressed directly the 18 

selective pressures involved in the maintenance of such variation. 19 

(3) Dorsal colour patterns can be directly related to predator avoidance. Some frogs 20 

blend with their surroundings in different ways such as matching the colouration of their 21 

background, exhibiting colour patterns that make it difficult to distinguish their outline 22 

the shape, or by resembling an inanimate object. By contrast, other species of frogs 23 

display conspicuous colour patterns which are often coupled with some form of 24 

unprofitability. Such colour patterns are thought to aid in predator education. Bright 25 
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colouration displayed in other parts of the body such as the flanks or ventral side have 1 

been much less studied, and their role in predator deterrence is yet to be tested. 2 

(4) Cryptically coloured frogs are often polymorphic, which may be favourable as a 3 

strategy to reduce the per capita predation risk. The mechanisms that maintain such 4 

polymorphisms are still poorly understood, but predation seems to be a good candidate. 5 

Aposematic species, on the other hand, are not expected to be polymorphic because 6 

intrapopulational variation in warning signals might interfere with predator avoidance 7 

learning. Nonetheless, a few aposematic species exhibit colour pattern polymorphisms. 8 

Recent research suggests that such polymorphisms could be maintained via an 9 

interaction beteween predation and sexual selection, spatio-temporal variation in 10 

selection, an association between fitness-related traits and colour patterns, predator 11 

generalisation, hybridisation among variants or genetic drift. 12 

(5) Experiments in the field with frog models displaying conspicuous colouration have 13 

shown the effectiveness of some colour patterns in predator deterrance. With a few 14 

exceptions, local morphs tend to be less attacked than novel ones, and moving models 15 

exhibiting conspicuous colouration receive fewer attacks than stationary ones.  16 

(6) In natural frog populations some palatable species mimic the coloration of defended 17 

species, obtaining benefits against predation without investing in the production or 18 

sequestration of defensive chemicals (Batesian mimicry). Two (or more) chemically 19 

defended species can also share similar colour patterns, thus sharing the costs of 20 

predator education (Müllerian mimicry). Only a handful of studies have been able to 21 

demonstrate the occurrence of either type of mimicry in anurans, and they have focused 22 

only on one taxonomic group. 23 

(7) Aposematic individuals are likely to display warning signals that are reliable 24 

indicators of their unprofitability, as only defended prey can afford the costs of being 25 
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detectable and of having the pigments required for strong warning signals. To 1 

demonstrate signal honesty, showing a positive correlation between warning signals and 2 

toxicity is not enough. It is necessary to differentiate between quantitative honesty and 3 

other ways in which colour patterns and chemical defences can be correlated without 4 

involving honest signalling. 5 

(8) Colours can have an important role in mate choice, particularly for diurnal species. 6 

Interestingly, some species of nocturnal frogs have been shown to pay attention to 7 

different components of male colour patterns. This has also been studied extensively in 8 

one diurnal species. However, the fitness consequences of female preferences regarding 9 

male colouration remain poorly understood. 10 

(9) In certain cases, colour patterns may provide information about the social status or 11 

fighting abilities of an individual during agonistic encounters. Although this has been 12 

shown for the males of some species, there is increasing evidence that colours might 13 

play a role in conflict resolution also among females. 14 

(10) Besides background matching, habitat selection and space use may also be related 15 

to colouration such that different morphs of a species choose a habitat that boosts their 16 

conspicuousness. Alternatively, in accordance with the assumed benefits of aggregation 17 

of aposematic species, the territories of aposematic frogs might be clumped compared to 18 

those of cryptic species. This hypothesis warrants further examination. 19 

(11) The detailed study of colour pattern variation, particularly with an experimental 20 

approach, should facilitate the formulation and testing of hypotheses on the evolution of 21 

predator–prey interactions, mating preferences and communication systems, and provide 22 

valuable knowledge on the mechanisms promoting and maintaining signal diversity. 23 

 24 
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 1 

Figure legends 2 

 3 

Fig. 1. An example of background matching in a young Pristimantis zeuctotylus (A); 4 

and examples of masquerading, where a female Rhinella margaritifera is shown to 5 

resemble a dead leaf (B–D). Images C and D are for the same individual photographed 6 

at different distances. Photo credits: Bibiana Rojas. 7 

 8 

Fig. 2. Aposematic frogs (A) Mantella baroni; (B) Mantella aurantiaca; (C) Dyscophus 9 

guineti, known as the ‘Tomato frog’; (D) Pseudophryne corroboree; (E) 10 

Brachycephalus ephippium; and (F) Melanophryniscus rubriventris. Photo credits: A–C, 11 

Gerardo García; D, J.P. Lawrence; E, Taran Grant; F, Marcos Vaira. 12 

 13 

Fig. 3. Atelopus aff. franciscus (A) dorsal and (B) ventral colouration. (C) Geographic 14 

variation in the dorsal and ventral colouration of Melanophryniscus rubriventris. Photo 15 

credits: A,B, Bibiana Rojas; C, Marcos Vaira. 16 

 17 

Fig. 4. Dart poison frogs represent the best-known example of aposematism among 18 

anurans. (A) Adelphobates galactonotus; (B) Ameerega bilinguis; (C) Dendrobates 19 

truncatus; (D) Dendrobates tinctorius; (E) Phyllobates terribilis; (F) Dendrobates 20 

auratus; (G) Oophaga granulifera; (H) Phyllobates lugubris and (I) Ranitomeya 21 

imitator. Photo credits: A,C, Taran Grant; B,F,H,I, J.P. Lawrence; D,G, Bibiana Rojas; 22 

E, Roberto Márquez. 23 

 24 
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Fig. 5. Known predators of dendrobatid frogs: (A) the snake Rhadinaea decorata, 1 

feeding on Oophaga pumilio; (B) wolf spider (Lycosidae) preying on Ameerega 2 

trivittata; (C) crab holding an individual Oophaga histrionica; (D) rufous motmot 3 

(Baryphthengus martii) taking an O. pumilio to its nest. Photo credits: A, Matthew 4 

Dugas; B, Trond Larsen; C, Alejandro Vélez; D, Ralph Saporito. 5 

 6 

Fig. 6. Examples of mimicry among poison frog species. (A) Ameerega hahneli (left) is 7 

thought to be a model for Allobates femoralis (right); Leptodactylus lineatus (C) has 8 

been suggested to be a Müllerian mimic of Ameerega picta (B). The best-known case of 9 

a Müllerian mimicry system is that of Ranitomeya imitator. D–G are the model species: 10 

Ranitomeya variabilis, highland morph; R. summersi, R. fantastica, R. variabilis 11 

lowland morph. The different morphs of R. imitator are shown below: (H) spotted; (I) 12 

banded; (J) varadero; and (K) striped. Photo credits: A, Jason L. Brown; B, Mauricio 13 

Pacheco; C, Quentin Martínez; D–K Evan Twomey.  14 

 15 

Fig. 7. Examples of geographic variation in the colour patterns of Oophaga pumilio (A–16 

D); and intrapopulation variation in Dendrobates tinctorius (E–H). Photo credits: A–D, 17 

J.P. Lawrence; E–H, Bibiana Rojas. 18 

 19 

Fig. 8. Flash colouration in the flanks of Phyllomedusa tomopterna (A); ‘eye spots’ in 20 

the lower dorsum of Edalorhina perezi (B); and (C–E) the ‘unken reflex’ performed by 21 

species of the genus Melanophryniscus, even in amplexus (D) . All have been suggested 22 

to function as deimatic displays. Photo credits: A,B, J.P. Lawrence; C,D, Marcos Vaira; 23 

E, Taran Grant. 24 
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Fig. 9. Breeding aggregation of Rana temporaria (A) and a pair of the moor frog (Rana 1 

arvalis) in amplexus (B). Note the bright throats and blue colouration of the males, 2 

which are thought to function as sex-recognition cues to prevent mismatings. Photo 3 

credits: Marc Sztatecsny. 4 

 5 

 6 

 7 
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Fig. 1. An example of background matching in a young Pristimantis zeuctotylus (A); and examples of 
masquerading, where a female Rhinella margaritifera is shown to resemble a dead leaf (B–D). Images C and 

D are for the same individual photographed at different distances. Photo credits: Bibiana Rojas.  
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Fig. 2. Aposematic frogs (A) Mantella baroni; (B) Mantella aurantiaca; (C) Dyscophus guineti, known as the 
‘Tomato frog’; (D) Pseudophryne corroboree; (E) Brachycephalus ephippium; and (F) Melanophryniscus 
rubriventris. Photo credits: A–C, Gerardo García; D, J.P. Lawrence; E, Taran Grant; F, Marcos Vaira.  
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Fig. 3. Atelopus aff. franciscus (A) dorsal and (B) ventral colouration. (C) Geographic variation in the dorsal 
and ventral colouration of Melanophryniscus rubriventris. Photo credits: A,B, Bibiana Rojas; C, Marcos Vaira. 
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Fig. 4. Dart poison frogs represent the best-known example of aposematism among anurans. (A) 
Adelphobates galactonotus; (B) Ameerega bilinguis; (C) Dendrobates truncatus; (D) Dendrobates tinctorius; 
(E) Phyllobates terribilis; (F) Dendrobates auratus; (G) Oophaga granulifera; (H) Phyllobates lugubris and 
(I) Ranitomeya imitator. Photo credits: A,C, Taran Grant; B,F,H,I, J.P. Lawrence; D,G, Bibiana Rojas; E, 

Roberto Márquez.  
129x87mm (300 x 300 DPI)  
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Fig. 5. Known predators of dendrobatid frogs: (A) the snake Rhadinaea decorata, feeding on O. pumilio; (B) 
wolf spider (Lycosidae) preying on Ameerega trivittata; (C) crab holding an individual Oophaga histrionica; 

(D) rufous motmot (Baryphthengus martii) taking an O. pumilio to its nest. Photo credits: A, Matthew 
Dugas; B, Trond Larsen; C, Alejandro Vélez; D, Ralph Saporito.  
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Fig. 6. Examples of mimicry among poison frog species. (A) Ameerega hahneli (left) is thought to be a 
model for Allobates femoralis (right); Leptodactylus lineatus (C) has been suggested to be a Müllerian mimic 
of Ameerega picta (B). The best-known case of a Müllerian mimicry system is that of Ranitomeya imitator. 
D–G are the model species: Ranitomeya variabilis, highland morph; R. summersi, R. fantastica, R. variabilis 
lowland morph. The different morphs of R. imitator are shown below: (H) spotted; (I) banded; (J) varadero; 
and (K) striped. Photo credits: A, Jason L. Brown; B, Mauricio Pacheco; C, Quentin Martínez; D–K Evan 

Twomey.  
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Fig. 7. Examples of geographic variation in the colour patterns of Oophaga pumilio (A–D); and 
intrapopulation variation in Dendrobates tinctorius (E–H). Photo credits: A–D, J.P. Lawrence; E–H, Bibiana 

Rojas.  
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Fig. 8. Flash colouration in the flanks of Phyllomedusa tomopterna (A); ‘eye spots’ in the lower dorsum of 
Edalorhina perezi (B); and (C–E) the ‘unken reflex’ performed by species of the genus Melanophryniscus, 
even in amplexus (D) . All have been suggested to function as deimatic displays. Photo credits: A,B, J.P. 

Lawrence; C,D, Marcos Vaira; E, Taran Grant.  
76x81mm (300 x 300 DPI)  
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Fig. 9. Breeding aggregation of Rana temporaria (A) and a pair of the moor frog (Rana arvalis) in amplexus 
(B). Note the bright throats and blue colouration of the males, which are thought to function as sex-

recognition cues to prevent mismatings. Photo credits: Marc Sztatecsny.  
119x43mm (300 x 300 DPI)  
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