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Abstract Both kinematic parameters and ground reaction
forces are necessary for understanding the biomechanics of
running. Kinematic information of a runner is typically mea-
sured by a motion capture system whereas ground reaction
force during the support phase of running is measured by
force platforms. In order to analyze both kinematics and ki-
netics of a runner over several subsequent contacts, an in-
strumented treadmill or alternatively several force platforms
installed over a regulated space are available options, but
they are highly immovable, expensive, and sometimes even
impractical options. Naturally, it would be highly useful to
predict ground reaction forces using a motion capture sys-
tem only and this way reduce costs and complexity of the
analysis. In this study, the machine learning model for ver-
tical ground reaction force magnitude prediction based on
running motion information of 128 healthy adults is pro-
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posed. The predicted outputs of a multilayer perceptron model
were compared with the actual force platform measurements.
The results were evaluated with Pearson’s correlation coeffi-
cient through a ten-fold cross validation. The mean standard
error of the estimate was 0.107 body weights, showing that
our method is sufficiently accurate to identify abnormalities
in running technique among recreational runners.

Keywords Ground reaction force · Multilayer perceptron ·
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1 Introduction

Lower extremity overuse injuries are very common in sports
like running [1], where musculoskeletal structures are ex-
posed to repeated loading cycles. The magnitude of force
exerted on the ground during the stance phase of running
provides information of the total leg force production as well
as reflects the loads experienced by the musculoskeletal sys-
tem. Therefore, ground reaction force (GRF) measurements
have been typically used to evaluate the total mechanical
loading that the lower extremities are exposed to during run-
ning [2].

Biomechanical running analysis typically requires a lab-
oratory environment, where the GRFs and motion data are
acquired simultaneously using a force platform and motion
capture systems. As a result, such an analysis is seldom, if
ever, available for measurements outside laboratory environ-
ment limiting its usability for technique monitoring and in-
jury prevention among runners. While a collection of motion
data is relatively easy to perform outside laboratory envi-
ronment, force platforms are usually located in a regulated
space and are not portable [3][4]. Moreover, restricted lab-
oratory space may often be too strict for allowing runners
to achieve constant speed and natural stepping on the force
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platform, particularly if only one force platform is used [4].
Given these issues and the fact that new markerless tech-
nologies [5][6] are making usability of motion capture sys-
tems even more flexible in the near future, there is need
for developing new solutions for acquiring GRF information
during human movement. Because motion capture systems
are an integral part of gait analysis, the possibility to predict
GRFs with reasonable accuracy solely based on motion data
would be a great benefit, making it possible to perform gait
analysis without expensive force platforms.

Previously, few studies have been conducted in an at-
tempt to overcome the above mentioned limitations of the
force platforms. For instance, in [7] an inverse dynamics
method was utilized to calculate intersegmental forces and
moments based on pure positional data of segment centers
during gait. The study showed how the human body could be
modeled as a combination of observed rigid segments. An-
other potential approach is to train a multivariate model on
the basis of kinematic data to make predictions about physi-
cal quantities of interests. For instance, neural networks have
been previously used to predict GRFs and moments from
kinematic data during walking [3][8][4]. In [3], walking mo-
tions, trajectories, velocities, and accelerations of segment
centers extracted from raw motion data were used as ini-
tial input variables into the neural network. Different data
reduction techniques were used to limit input dimensional-
ity. The predicted GRFs and moments were the model out-
puts. In [8], a three-layer neural network with wavelet acti-
vation functions in hidden layers was used. Thus, both the
general approximation of neural networks and the localiza-
tion property of wavelets were utilized for the model design.
The model was reported to be stable, robust, high level of
accuracy and fast [8]. In [9], force magnitude, stiffness, and
elastic energy based on full body kinematics during running
were estimated. Filtered and differentiated sagittal plane cen-
ter of mass information was used to obtain accelerations. Af-
ter taking into account body mass, the analogous force was
estimated and the results were compared against the GRF
data. The study showed that the force magnitude, stiffness,
and elastic energy could be estimated precisely. However,
the results depended on filter settings that were applied to
kinematics [9].

While neural networks have been successively used in
different areas of sport, running prediction based on running
kinematics have not been reported. In this work, we used
a multilayer neural network model to predict peak vertical
GRFs. We calculated input parameters of the network model
using body center of mass kinematics and foot markers tra-
jectories during the stance phase of running. Force platform
measurements were used to train the network to predict a
vertical peak value of the GRF.

Detailed assessment of technique and total limb load-
ing in running includes several variables of interest. Among

Fig. 1: Running speed histogram of 128 participants

these variables, the peak force is of primary interest since it
reflects the peak loading exposed to lower extremities over
the period of ground contact. Thus, the choice of the peak
force as an outcome variable in the MLP provides a good
basis for the study.

2 Methods

2.1 Experimental protocol

The study was approved by the local ethics committee, which
was performed in accordance with the Declaration of Helsinki.
The 3D motion analysis running an indoor sports hall volun-
teered in total 128 healthy participants, including 82 males
and 46 females (height: 174.9 ± 9.2 cm; mass: 71.4 ± 11.4
kg; body mass index: 23.2 ± 2.3 kg / m2). The participants
were questioned before the runs to confirm that no clinical
problems affected to the running pattern. The participants
were advised to use their own shoes and run at predefined
running speed. All the participants performed in total 450
runs at different speeds as shown in the Figure 1. One to six
runs per participant were selected for data processing and
neural network training, as each run operated as one input
sample for a network model.

2.2 Instrumentation

Retroreflective markers were placed on the participant’s body
according to the Vicon plug-in gait lower body model (16
markers in total). The 3D motion of the markers was recorded
at a sampling frequency of 300 Hz using a motion analysis
system of eight infrared cameras (Vicon T40, Vicon, Ox-
ford, UK). The participants performed several running tri-
als over a force platform (AMTI BP6001200, AMTI, Wa-
tertown, MA, USA) which was mounted in the middle of a
50 meter runway. Ground reaction data was recorded syn-
chronously with kinematic data at a sampling frequency of
1500 Hz. For each participant a static calibration trial was
used to define the anatomical coordinate system. The global
X-axis was set in the direction of progression, the Y-axis
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was medio-lateral, and the Z-axis was vertical. Vicon Nexus
(v. 1.7.1) software was used to collect kinematic and GRF
data in C3D file format. The participant’s running speed was
monitored with two photocells placed on each side of the
force platform and 6 m apart.

2.3 Data processing

Both the kinematic and GRF data were filtered with a fourth-
order Butterworth, zero-lag, low pass digital filter. The cut-
off frequency was 12 Hz for the kinematic data and 50 Hz
for the GRF data. The standard Vicon plug-in gait model
was used to calculate joint kinematics in each trial. The sin-
gle value of each of following measures was calculated from
the first contact cycle: speed, contact time, center of mass
location, overstriding, stride length, vertical oscillation, ver-
tical velocity, and vertical acceleration. Speed was obtained
from the photocells and contact time was estimated from
the positions of the heel and toe markers (see section 2.5
for details). The location of the participant’s center of mass
was taken as the arithmetic mean of the four pelvic markers
(left anterior superior iliac spine, right anterior superior iliac
spine, left posterior superior iliac spine, right posterior su-
perior iliac spine). Overstriding was taken as the horizontal
distance between the center of mass and heel marker at the
instant of the initial ground contact. Stride length was taken
as the horizontal distance between the left and right leg an-
kle markers at two consecutive ground contacts. Pelvis verti-
cal oscillation was taken as the vertical distance between the
highest and lowest points of the body center of mass during
the stride. Vertical velocity and vertical acceleration were
taken as the maximum values of the center of mass velocity
and acceleration during the period of ground contact.

Initial ground contact and toe-off were captured from
heel and toe marker positions in running. The marker posi-
tions were compared to reference values which were recorded
during the static calibration session. Two offset terms were
selected based on the running data of all the participants to
obtain better accuracies for estimated initial ground contact
and toe-off times. The offset terms were added to the refer-
ence values. The offset term was -1 mm for the initial con-
tact and 4 mm for the toe-off. Estimated contact time was
the time between the initial ground contact and toe-off. Es-
timated times were compared against real contact times ex-
tracted from the GRF data. Example trajectories of heel and
toe markers are shown in Figure 2.

2.4 Background of neural networks

Neural networks are statistical learning models attempting
to simulate biological neural systems [10]. Neural networks
are of great interest in many fields of science because of

Fig. 2: Vertical heel and toe marker trajectories. The refer-
ence positions of markers are illustrated as dotted lines. The
offset positions are marked as solid lines. The real initial
contact (circle) and toe-off (cross) were measured from a
force platform

their ability to accurately approximate complex non-linear
functions of their inputs and are thus well-suited for many
real-world data analysis tasks. A neural network calculates
parameters based on training data and is useful in situations
where there is not much prior information for task com-
pletion. One of the simplest model of a neural network is
called the perceptron [11]. The perceptron produces its out-
put value by computing a weighted sum of its inputs, sub-
tracting a bias term from the sum, and then examining the
sign of the result. The perceptron acts as a binary classifier,
where the output (either -1 or +1) determines the category
of the input data point.

Multilayer perceptron (MLP) is an extension of the per-
ceptron for multiple feed-forward-way interconnected lay-
ers of nodes and non-linear activation functions [12]. The
first layer that interacts with the environment is known as the
input layer. The final layer that presents the processed data
is the output layer. Intermediate levels between input and
output layers are called hidden layers. Except for the input
layer units, each node of the MLP is called a neuron, which
contain an activation function. The activation functions not
need to be binary valued and therefore MLP network cannot
only be used for classification but for non-linear regression
of continuous-valued outputs.

MLPs with at least one hidden layer are universal ap-
proximators [13], meaning that they can approximate target
functions of arbitrary complexity. The downside of neural
networks is overfitting, which occur when an overly com-
plex neural network model describes random error or noise
instead of the underlying relationship. To avoid overfitting,
it is important to choose an appropriate network complexity,
topology and cost function for a given problem.

2.5 MLP Cost function

Before predictions can be made using the MLP, a learning
algorithm must be run to determine a set of weights that
minimize the value of the cost function, which is usually
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chosen to be the sum of squares of the network errors on the
training data set. The mean square error is calculated as

F =
1
N

N

∑
i=1

(yi − ŷi)
2 (1)

where N is the number of training samples, yi is the target
value and ŷi is the predicted value. It is possible to improve
generalization by modifying the cost function by adding a
penalty term w that consists of the network weights and bi-
ases [14]. The penalized mean square error is calculated as

F = α
1
N

N

∑
i=1

(yi − ŷi)
2 +β

1
K

K

∑
j=1

w2
j (2)

where K is the total number of weights and biases. The reg-
ularization parameters α and β can be obtained by max-
imizing a Bayesian posterior function during the network
training [14]. If a uniform density for the regularization pa-
rameters is assumed, the maximum posterior is achieved by
means of maximum likelihood estimation. Using this pe-
nalized form causes the weights and biases to converge to
smaller absolute values than they otherwise would. This forces
the network response to be smoother and the model is less
prone to overfitting.

2.6 Feature extraction and MLP training

An MLP architecture was used in this study and it is shown
in Figure 3. MLP was used to approximate the nonlinear re-
lationship between inputs and continuous-valued peak GRF
outputs (i.e. non-linear regression was performed). The net-
work was created using a Neural Network Toolbox (v. 8.4)
of MATLAB (v. R2015b, 64-bit, The MathWorks, Inc). The
inputs to the network were selected based on prior knowl-
edge about the biomechanics of human motion. The selected
features were weight (kilograms), speed (meters / second),
contact time (seconds), overstriding (meters), stride length
(meters), vertical oscillation (meters), pelvis maximum ver-
tical velocity (meters / second), and pelvis maximum verti-
cal acceleration (meters / second2). The network output was
the predicted peak GRF (body weights). The target force
values needed in the model training and testing were ob-
tained using force platforms.

The network inputs were linearly scaled between the range
[−1+ 1]. A purelin transfer function was used in the out-
put layer and a tan-sigmoid transfer function in the hidden
layer. The hidden layer size was selected as six neurons on
an empirical method basis. A Bayesian regularization train-
ing method was used in the experiments. The Bayesian reg-
ularization updated the weight and bias values according to
the Jacobian backpropagation algorithm [14]. The method
minimized a combination of squared error and weights, and
produced the network that generalized well to unseen data.

Weight

Speed

Contact time

Over striding

Stride length

Vertical oscillation

Vertical velocity

Vertical acceleration

Active force

Hidden
layer

Input
layer

Output
layer

Fig. 3: An MLP architecture used in this study for prediction
of active peak force value

The MATLAB Neural Network Toolbox’s default train-
ing parameters were used as input parameters to the neural
network model. The parameters were the maximum number
of epochs to train (1000), the maximum value of the Mar-
quardt adjustment parameter (1.0 e+10), and the minimum
performance gradient (1.0 e-07). Training was automatically
stopped when any of these conditions occurred. Network
training was performed 100 times from random initial con-
ditions of the network weights to avoid local minima of the
error surface.

2.7 Performance evaluation

The performance was evaluated through a ten-fold cross val-
idation technique. More specifically, the data was randomly
divided into a test and training fold ten times such that the
amount of training data was 90 % in each fold and every
sample was selected to test fold one time in total. The calcu-
lated active peak forces were compared with force platform
data and similarities between the predicted and measured
values were determined by calculating Pearson’s correlation
coefficient

r =
1

N −1 ∑

(
yi −µy

σy

)(
ŷi −µŷ

σŷ

)
(3)

and standard error of the estimate

Sest = σŷ

√
1− r2 (4)

In the above equations N is the number of samples in a test
data set, µy is the mean value of measured peak force values,
µŷ is the mean value of predicted peak force values, σy is the
standard deviation of measured values of active peak forces
and σŷ is the standard deviation of predicted values of active
peak forces. Finally, the arithmetic means of Pearson’s cor-
relation coefficient and standard error of the estimate values
were calculated over ten test folds to form the final evalua-
tion results.
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Table 1: Correlation coefficients and standard error of the
estimates for active peak forces evaluated using a ten-fold
cross validation

Pearson’s correlation Standard error
coefficient of the estimate

(body weights)

Folds 1 & 2 0.915 0.947 0.109 0.087
Folds 3 & 4 0.882 0.924 0.132 0.100
Folds 5 & 6 0.951 0.908 0.075 0.116
Folds 7 & 8 0.929 0.901 0.103 0.116
Folds 9 & 10 0.916 0.912 0.119 0.115
Mean 0.919 0.107

Fig. 4: Measured versus predicted active peak force based
on multilayer perceptron. The regression line is marked as
solid line and the line of identity is marked as dotted line

3 Results

According to Table 1, the average Pearson’s correlation co-
efficient between the measured and predicted forces was 0.919.
The average standard error of the estimate was 0.107 body
weights. Figure 4 shows the combined values, which were
obtained when all the active peak force predictions were
taken into account in the calculations. Clearly, the predicted
forces fit very well to the measured values (r = 0.916). A
linear regression analysis was carried out to evaluate accu-
racy of the method. The average 95 % confidence interval
of the best fit regression line l = my + c was [-0.014, 0.014]
body weights, where l is the predicted active force and y is
the measured active force. The calculated gradient and in-
tercept values with corresponding 95 % confidence intervals
were m = 0.858 [0.823, 0.893] and c = 0.368 [0.277, 0.459]
body weights, respectively. The average network training
time was 0.64 seconds with Intel processor (core i7 2.6 GHz).

4 Discussion

In this work, a new data-driven, non-linear approach for biome-
chanical analysis of running was presented. It seems plausi-

Table 2: Ground reaction peak force values of young,
middle-aged, and old groups during running

Young Middle-aged Old

Average peak vertical (BW) 3.19* 2.95* 2.66*
Abnormal high peak vertical (BW) 3.74 3.46 2.97
Difference (BW) 0.55 0.51 0.31
*based on results in [15]
BW = body weights

ble that the accuracy of the current method is sufficient for
discriminating between normal and abnormal peak vertical
GRF values of recreational runners. As an example, GRF
peak values of young, middle-aged, and old athletes were
measured and compared in [15]. By calculating the 95th per-
centiles of the values for each age category, we obtained
estimates of the thresholds for abnormal peak forces from
these data sets. Mean GRF values, abnormal GRF values,
and differences between the abnormal and mean values for
each age category are listed in Table 2. Clearly the difference
between abnormal and mean GRF is much larger than the
average standard error of the estimate obtained in this study
(0.107 body weights), indicating that the current method is
capable of discriminating runners with exceptionally high
GRFs from runners having the average peak GRF values.
In the future, the accuracy of the method can be further im-
proved by collecting more training data.

The method is currently limited to predict only a peak
GRF, but the goal in the future is to predict several variables
of interest which allows comprehensive technical analysis
of runners. To reach this goal, the effect of different sophis-
ticated kinematic features will be investigated and the suit-
ability of more advanced algorithms, such as those based on
deep learning, will be tested. Previous studies suggest that
especially vertical GRF impact peak [16][17] and loading
rate [17] may increase the risk of running related injuries.

Peak force prediction from kinematics in running has
not previously been reported in the literature. Some previ-
ous studies have focused on lower limb load prediction in
walking [3][4] and jumping [18]. In walking, good correla-
tions were achieved in [3] (0.991) and in [4] (0.999), when
vertical GRFs were predicted. In [18], joint torques based
on the GRF parameters during jumping were predicted and
good correlations were obtained (over 0.950). Differences
in the correlation values obtained in the current study and in
the previous studies might be explained by different move-
ment tasks, experimental arrangements, and predicted pa-
rameters. The total number of participants was considerably
lower in previous studies (10 - 48 adults). Additionally, ten-
fold cross validation was used only in [3]. Moreover, speed
is usually faster and contact time is shorter during running,
when compared to speed and contact time while walking.
Figure 1 shows how the running speed ranged from 2 to
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6.5 m / s in the current study. Further, in running, the total
numbers of marker trajectories and locations may be much
higher when compared to numbers in walking and jumping.

In this work, contact times were estimated from the mo-
tion vectors of the foot markers. If exact contact times were
available as input variables, the average Pearson’s correla-
tion coefficient and standard error of the estimates would
have been 0.926 and 0.103 body weights, respectively. How-
ever, the estimated contact times correlated very well with
the values measured from a force platform. The correlation
coefficient between estimated and exact contact times was
0.912.

The implication of the current study is that it is possi-
ble to predict active vertical peak GRF during running basis
of pure kinematic data. This has several practical implica-
tions in the context of human locomotion. First, the model
can be used to assess runner’s total leg force production out-
side limited laboratory space. Second, a fast processing time
allows prediction of peak GRF in real time. Above all, the
proposed approach may not only be beneficial for detecting
runners with a high risk of injury, but it may be useful to an-
alyze multiple aspects of running technique. Thus, based on
the model output, personalized exercise programs could be
offered to runners to prevent injuries and improve efficiency
of their running.

5 Conclusion

An MLP model to predict active peak of the GRF was devel-
oped in this study. Weight and selected kinematic running
parameters were used as an input features to the network.
The MLP performance was evaluated using the Bayesian
regularization training function and ten-fold cross valida-
tion technique. The standard error of the estimate and the
Pearson’s correlation coefficient were used to determine the
prediction accuracy. The average value of standard error of
the estimate was 0.107 body weights and the average value
of Pearson’s correlation coefficient was 0.919. These results
indicate that computational data-based methods allow pre-
diction of the peak leg force generation during running and
consequently enable scaling of biomechanical analysis for
more extensive utilization. The study shows that the MLP
model can be used as a flexible alternative for force plat-
forms to discriminate runners with abnormal peak vertical
GRF values.
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