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UNIQUENESS OF POSITIVE SOLUTIONS TO SOME NONLINEAR

NEUMANN PROBLEMS

YOUYAN WAN AND CHANG-LIN XIANG

Abstract. Using the moving plane method, we obtain a Liouville type theorem for

nonnegative solutions of the Neumann problem⎧⎨
⎩
div (ya∇u(x, y)) = 0, x ∈ R

n, y > 0,

lim
y→0+

yauy(x, y) = −f(u(x, 0)), x ∈ R
n,

under general nonlinearity assumptions on the function f : R → R for any constant

a ∈ (−1, 1).

Keywords: Neumann problem; Liouville type theorem; Moving plane method
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1. Introduction and main results

1.1. Introduction. Let a ∈ (−1, 1), n ≥ 1 and H denote the upper half space

H = {(x, y) : x ∈ R
n, y > 0}.

In this paper, we consider the Neumann problem⎧⎨
⎩
div (ya∇u(x, y)) = 0 in H,
∂u

∂νa
= f(u) on ∂H,

(1.1)
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2 Y. WAN AND C.-L. XIANG

wheref : R → [0,∞) is a nonnegative function, ∇ = (∂x1 , · · · , ∂xn , ∂y) is the full gradient

operator in H, and
∂u

∂νa
= − lim

y→0+
ya∂yu(x, y).

Equation (1.1) has been studied extensively in the literature. Indeed, equation (1.1)

is closely related to the fractional Laplacian equation

(−Δ)su = f(u) in R
n, (1.2)

where (−Δ)s is the usual fractional Laplacian operator defined via its multiplier |ξ|2s in

Fourier space, where we denote

s = (1− a)/2

throughout the paper. This connection has been highlighted by Caffarelli and Silvestre [4]

and by related applications such as Cabré and Sire [2, 3], Frank and Lenzmann [15] and

Frank et al. [16]. More precisely, let y > 0 and let P a
y : Rn → R be the kernel given by

P a
y (x) = kay

−n
(
1 + (|x|/y)2

)−(n+1−a)/2
, x ∈ R

n,

where the positive constant ka is chosen such that
∫
Rn P

a
y (x)dx = 1. It was proven in

Caffarelli and Silvestre [4] that for sufficiently regular function φ in R
n (e.g., φ belongs to

the fractional Sobolev space Ḣs(Rn)), the function Φ : H → R defined as

Φ(x, y) = P a
y ∗ φ(x) =

∫
Rn

P a
y (x− z)φ(z)dz, (x, y) ∈ H,

is an extension of φ to the upper half plane, such that limy→0+Φ(x, y) = φ(x) holds on

∂H in some sense. Moreover, Φ solves the boundary problem{
div (ya∇Φ(x, y)) = 0, (x, y) ∈ H,

∂Φ/∂νa = ds(−Δ)sφ, on ∂H,

with ds = 21−2sΓ (1− s) /Γ (s). In particular, the following identity holds for all functions

φ ∈ C∞
0 (H), the space of smooth functions on H̄ with compact support,

ds

∫
Rn

|(−Δ)s/2φ|2dx =

∫
H

y1−2s|∇Φ(x, y)|2dxdy.

Another equivalence of fractional Laplacian operators given in the form of difference quo-

tients, such as

(−Δ)su(x) = Cn,sP.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy, (1.3)

are also used quite often in the literature, see e.g. Cabré and Sire [2, 3] and Chen et al.

[9, 11].

On the other hand, nonlinear Neumann boundary value problems of type (1.1) have

their own independent interests. In the case a = 0, equation (1.1) is reduced to{
Δu(x, y) = 0, (x, y) ∈ H,
∂u
∂ν = f(u) on ∂H,

(1.4)

where Δ is the usual Laplacian operator in R
n+1 and ν is the unit outward normal on

∂H. Equation (1.4) has been studied considerably, see e.g. [13, 19, 24, 25, 26] and the
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references therein. In particular, Hu [19] established nonexistence results for positive

solutions to equation (1.4) with f(u) = up for 1 ≤ p < n/(n − 1), which have found

applications in the study of heat equations with nonlinear boundary condition in Hu and

Yin [20]. Ou [26] exteneded the result of Hu [19] to the range −∞ < p ≤ n/(n− 1) by the

moving plane method. Quite recently, Jin, Li and Xiong [21] studied equation (1.1) for

all a ∈ (−1, 1) with f(u) = u(n+2s)/(n−2s) in the weak sense and classified all the positive

solutions to equation (1.1). They also pointed out the nonexistence of positive solutions

to equation (1.1) with f(u) = up for p < (n+ 2s)/(n− 2s). The same results to [21] was

also obtained by de Pablo and Sánchez [12] in the case −1 < a < 0 and f(u) = up with

1 < p < (n+ 2s)/(n− 2s).

1.2. Main result. In this paper, our aim is to extend above results in a more general

setting. This is motivated naturally by the effort of gaining a better understanding on

the role played by the nonlinear term f(u) in problems of type (1.1). To state our main

results, assume throughout the paper that f : [0,∞) → [0,∞) is a continuous function

satisfying

(H1) f(t) is nondecreasing for t ≥ 0 and f(0) = 0; and

(H2) g(t) ≡ f(t)/t2
∗
s−1 is a nonincreasing function in t > 0, where

2∗s = 2n/(n− 2s)

is the so called fractional critical Sobolev exponent.

As examples, it is straightforward to verify that both functions f(t) = tp for 0 < p <

2∗s − 1, and f(t) =
∑m

k=1 ckt
pk for 0 < pk < 2∗s − 1, ck > 0, satisfy (H1) and (H2).

Due to the regularity theory developed in Cabré and Sire [2], we can prove that weak

solutions of problem (1.1) are also classical solutions. Thus, we will restrict ourselves to

classical solutions of problem (1.1). Our result reads as follows.

Theorem 1.1. Suppose that f satisfies (H1) and (H2), and that u ≥ 0 is a classical

solution to the Neumann problem (1.1). Then u 
≡ 0 holds on H if and only if g(t) ≡
f(t)/t2

∗
s−1 is a constant function for t > 0, in which case the following hold:

(1) If g ≡ 0, that is, f(t) ≡ 0 for all t > 0, then

u(x, y) = C1y
1−a + C2, (x, y) ∈ H,

for some nonnegative constants C1, C2 with C2
1 + C2

2 > 0.

(2) If g ≡ g0 > 0 is a constant function, that is, f(t) = g0t
2∗s−1 for all t > 0, then

u(x, y) =
(
P a
y ∗ u0

)
(x), ∀(x, y) ∈ H, (1.5)

where

u0(x) =

(
cd

d2 + |x− x0|2
)n−2s

2

for some x0 ∈ R
n, d > 0, and c > 0 is a constant depending only on n and g0.

In view of the extension principle of Caffarelli and Silvestre [4] aforementioned, the

following theorem is a direct consequence of of Theorem 1.1. Recall that s = (1− a)/2.
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Theorem 1.2. Assume that f satisfies the conditions (H1) and (H2). Then there exists

a nontrivial nonnegative solution to the fractional Laplacian equation (1.2) in Ḣs(Rn) if

and only if f(t) = Ct2
∗
s−1 for t > 0 with some constant C > 0, in which case, solutions of

equation (1.2) are of the form

Q(x) =

(
b

|x− x0|2 + c

)(n−2s)/2

, x ∈ R
n, (1.6)

for some constants b, c > 0 and a point x0 ∈ R
n.

We remark that in Theorem 1.2, we restricted the solutions to the fractional Sobolev

space Ḣs(Rn), the completion of C∞
0 (Rn) under the quadratic form

‖u‖2
Ḣs =

∫
Rn

|(−Δ)s/2u|2dx =

∫
Rn

|ξ|2s|û(ξ)|2dξ.

This is due to the fact that solutions of problem (1.2) in Ḣs(Rn) can be considered in the

setting of problem (1.1), in view of the extension principle of Caffarelli and Silvestre [4].

As a matter of fact, Theorem 1.2 holds for nonnegative functions under far more general

conditions, see e.g. [10, 11, 23]. In particular, in the most recent paper Chen, Li and Zhang

[11], by introducing a direct method of moving spheres for fractional Laplacian operators

given by the difference form (1.3), the authors proved that if u ∈ Ls(R
n) ∩ C1,1

loc (R
n) is a

nonnegative solution to equation (1.2), where Ls(R
n) is given by

Ls(R
n) = {f ∈ L1

loc(R
n) : (1 + |x|)−n−2sf ∈ L1(Rn)},

and f : (0,∞) → [0,∞) is a locally bounded function satisfying (H2), then the results of

Theorem 1.2 holds, see Theorem 2 of [11] for more details. However, since we do not need

so general results in the present paper, we refer the interested readers to [10, 11, 23] for

more details.

As another consequence, consider the variational problem

S = inf

{∫
H

ya|∇φ(x, y)|2dxdy : φ ∈ C∞
0 (H̄),

∫
∂H

|φ(x, 0)| 2n
n−1+adx = 1

}
. (1.7)

The constant S in problem (1.7) is well defined, due to the trace inequality∫
∂H

|φ(x, 0)| 2n
n−1+adx ≤ Cn,a

∫
H

ya|∇φ(x, y)|2dxdy, ∀φ ∈ C∞
0 (H̄),

where Cn,a > 0 is a constant depending only on n and a, see e.g. Frank et al. [15, 16].

In the case a = 0, minimizers of problem (1.7) was classified by Escobar [14], in which

the author showed that minimizers are of the form (1.5) with s = 1/2, for some x0 ∈ ∂H,

y0 < 0. By Theorem 1.2 and the extension principle of Caffarelli and Silvestre [4], we have

the following.

Corollary 1.3. Minimizers of problem (1.7) are of the form (1.5) for all −1 < a < 1.

To prove Theorem 1.1, we apply the famous moving plane method which was invented

by the Soviet mathematician Alexanderoff in the early 1950s, and later developed by Serrin

[27], Gidas, Ni and Nirenberg [17], Caffarelli, Gidas and Spruck [4], Li [22], Chen and Li

[6, 7], Chang and Yang [5], Chen, Li and Ou [10], Li [23], Chen et al. [8, 9, 11] and many

others. Now this method has been developed to study more classes of problems, such as
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integral systems, subelliptic equations on Heisenberg groups, see e.g. [1, 28], and even

on fully nonlinear nonlocal problems (see e.g. [8]). In this paper, we will mainly use the

moving plane method in integral form developed in [10]. We also combine some useful

result in Li [23] so as to simplify the arguments.

2. Classifications of positive solutions

2.1. Some basic facts and notations. We collect some useful properties of equation

(1.1) in this subsection. First we have the following comparison principle.

Lemma 2.1. (Comparison principle) Let Ω ⊂ H be an open set with a part of flat boundary

Γ ⊂ ∂H. Let u ≥ 0, u 
≡ 0, be a classical solution to equation⎧⎨
⎩
div (ya∇u(x, y)) = 0 in Ω,

lim
y→0+

yauy(x, y) ≤ 0, x ∈ Γ.

Then

u > 0 on Ω ∪ Γ.

Proof. The result holds in Ω by the maximum principle for uniform elliptic equations, see

e.g. Gilbert and Trudinger [18]. We need to show that u > 0 holds on Γ. Fix an arbitrary

point X0 = (x0, 0) ∈ Γ. Suppose that limy→0+y
auy(x0, y) < 0. By continuity, we have

uy(x0, y) < 0 for (x0, y) close to X0 enough, which implies that u(x0, 0) ≥ u(x0, y) > 0 if

we choose y small enough. In the general case, choose φ(y) = y1−a. The function u− εφ

is also a solution of the same equation in Ω but with boundary condition

ya (u− εφ)y ≤ −(1− a)ε < 0 on Γ.

Hence we deduce that u(x, 0) = (u − εφ)(x, 0) > u(x, y) − εy1−a for sufficiently small y.

Letting ε → 0 we obtain u(X) ≥ u(x, y) > 0. The proof of Lemma 2.1 is complete. �

As an application of Lemma 2.1, we have the following corollary.

Corollary 2.2. If u ≥ 0 is a nontrivial classical solution to equation (1.1), then u > 0 on

H̄.

Next we introduce some notations that will be used in the proof of Theorem 1.1. Let

λ ∈ R and X = (x1, x2, · · · , xn, y) ∈ H. We write

Tλ = {X ∈ H : x1 = λ} ,
Σλ = {X ∈ H : x1 > λ} ,
pλ = (2λ, 0, · · · , 0, 0) ∈ ∂H,

Xλ = (2λ− x1, x2, · · · , xn, y) .
We note that if u is a nonnegative solution to problem (1.1), then the function v defined

by

v(X) =
1

|X|n−2s
u

(
X

|X|2
)
, X = (x, y) ∈ H\{0}, (2.1)
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is also nonnegative in H and satisfies

⎧⎨
⎩
div

(
y1−2s∇v(x, y)

)
= 0 in H,

lim
y→0+

y1−2svy(x, y) = −g(|x|n−2sv(x))v2
∗
s−1(x) on ∂H\{0}. (2.2)

Moreover v satisfies

lim
|X|→∞

|X|n−2sv(X) = u(0). (2.3)

Thus v ∈ L
q

n−2s (Σλ) for any n+ 1 < q ≤ ∞ and any λ > 0. Since v seems to have better

properties than that of u in the neighborhood of infinity, we turn to study the function v

instead of u in the following. Remark that it is possible that v has singularity at X = 0.

Furthermore, write vλ(X) = v(Xλ). It is straightforward to verify that vλ ≥ 0 solves

the equation

⎧⎨
⎩
div

(
y1−2s∇vλ(x, y)

)
= 0 in H,

lim
y→0+

y1−2s∂yvλ(x, y) = −g(|xλ|n−2svλ(x))v
2∗s−1
λ (x) on ∂H\{pλ}. (2.4)

Now let us start the proof of Theorem 1.1 with the following homogeneous case, which is

also the simplest case that we can expect.

2.2. Homogeneous case. In this subsection we consider the case f ≡ 0. In this case

the result of Theorem 1.1 can be viewed as an analogue of the classical Liouville theorem

for nonnegative harmonic functions in Euclidean spaces. There are many different ways

to study this homogeneous case, such as by Harnack type inequality. But here we prefer

to use the moving plane method, since the essential point of the moving plane method is

already contained in this case.

Fix λ > 0 and let 0 < 2ε < λ. Choose a cut-off function ηε ∈ C∞
0 (Rn+1) such that

0 ≤ ηε ≤ 1 in R
n+1, ηε ≡ 1 for 2ε ≤ |X − pλ| ≤ ε−1 and ηε = 0 for |X − pλ| ≤ ε or

|X − pλ| ≥ 2ε−1, |∇ηε(X)| ≤ Cε−1 for {ε ≤ |X − pλ| ≤ 2ε} and |∇ηε(X)| ≤ Cε for

ε−1 ≤ |X − pλ| ≤ 2ε−1. Here C > 0 is independent of ε. Multiply both sides of equations

(2.2) and (2.4) by φε = (v − vλ)+η
2
ε . Here c+ = max{c, 0}. We deduce that

∫
Σλ∩{2ε≤|X−pλ|≤1/ε}

ya|∇(v − vλ)+|2dX

≤
∫
Σλ

ya|∇ (ηε(v − vλ)+) |2dX

=

∫
Σλ

ya∇(v − vλ)+ · ∇φεdX +

∫
Σλ

ya(v − vλ)
2
+|∇ηε|2dX

=

∫
Σλ

ya(v − vλ)
2
+|∇ηε|2dX =: J.

(2.5)
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The last equality holds since we are considering the case f ≡ 0. Estimate J as below.

Write Rr = {X ∈ H : r ≤ |X − pλ| ≤ 2r} for r > 0. Then

J ≤ Cε−2

∫
Σλ∩Rε

ya(v − vλ)
2
+dX + Cε2

∫
Σλ∩R1/ε

ya(v − vλ)
2
+dX

≤ Cε−2

∫
Rε

ya|v|2dX + Cε2
∫
R1/ε

ya|v|2dX,

where C > 0 is independent of ε. For ε > 0 sufficiently small, we derive from (2.3) that

ε−2

∫
Rε

yav2dX ≤ Cλε
−2

∫
{X∈H:|X−pλ|≤2ε}

yadX = O(εn−2s),

and that

ε2
∫
Σλ∩R1/ε

yav2dX ≤ Cλε
2

∫
{X∈H:1/ε≤|X−pλ|≤2/ε}

ya|X|2(2s−n)dX

≤ Cλε
2+2(n−2s)

∫
{X∈H:|X−pλ|≤2/ε}

yadX

= O(εn−2s)

for some constants Cλ > 0. Hence

J = O(εn−2s) → 0 as ε → 0.

Therefore, combining above estimate for J and (2.5) yields that

v ≤ vλ in Σλ.

Since λ > 0 is an arbitrary constant, we derive by sending λ → 0 that

v(x1, x2, · · · , xn, y) ≤ v(−x1, x2, · · · , xn, y) ∀(x, y) ∈ H.

Note that in the above arguments x1 could denote any direction on ∂H. We conclude

that v is radially symmetric with respect to the variable x ∈ ∂H. That is, u = u(|x|, y).
Moreover, since we can apply the Kelvin transform centered at any point of ∂H, we infer

from the same procedure that u is symmetric with respect to any point on ∂H, which

implies u(x, y) = u(y) for all (x, y) ∈ H. By substituting u = u(y) into the equation, we

obtain

u(x, y) = C1y
1−a + C2, (x, y) ∈ H

for some constants C1, C2 ≥ 0. This finishes the proof of Theorem 1.1 in the case f ≡ 0.

2.3. Nonhomogeneous case. Now we consider the case f 
≡ 0. We divide the proof of

Theorem 1.1 into several steps.

Step 1. We show that the procedure of moving plane can be started for sufficiently

large λ. The essential idea is already contained in the proof for homogeneous case. We

start with the following integral inequality.

Lemma 2.3. For any fixed λ > 0, there holds∫
Σλ

ya|∇(v − vλ)+|2dX ≤ Cλ

(∫
∂H∩∂Aλ

v2
∗
sdx

)2∗s−2 ∫
Σλ

ya|∇(v − vλ)+|2dX, (2.6)
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where Aλ = {X ∈ Σλ : v(X) > vλ(X)}, Cλ is a constant which is bounded when λ is away

from zero.

Proof. Formula (2.6) is a consequence of Caccioppoli type inequality. Indeed, let 0 < ε < λ

and ηε ∈ C∞
0 (Rn+1) be given as in the homogeneous case. Multiply both sides of equations

(2.2) and (2.4) by φε = (v − vλ)+η
2
ε . We obtain that∫

Σλ∩{2ε≤|X−pλ|≤ 1
ε
}
ya|∇(v − vλ)+|2dX

≤
∫
Σλ

ya|∇ (ηε(v − vλ)+) |2dX

=

∫
Σλ

ya∇(v − vλ)+ · ∇φεdX +

∫
Σλ

ya(v − vλ)
2
+|∇ηε|2dX

=: I + J.

As in the previous subsection, we have

J = O(εn−2s) → 0 as ε → 0.

Thus, we only need to estimate I.

By equations (2.2) and (2.4), we have

I =

∫
Σλ

ya∇(v − vλ)+ · ∇φε

=

∫
∂(Σλ∩suppηε)

φεy
a∇(v − vλ)+ · ν

=

∫
{x∈Rn:x1>λ,ε≤|x−pλ|≤2/ε}

(
g(|x|n−2sv(x))v2

∗
s−1(x)− g(|xλ|n−2svλ(x))v

2∗s−1
λ (x)

)
φε.

Since |x| ≥ |xλ| if x1 > λ and v > vλ on Aλ, and since g is nonincreasing by assumption,

it follows that

I ≤
∫
{x∈Rn:x1>λ,ε≤|x−pλ|≤2/ε}

g(|x|n−2sv(x))(v2
∗
s−1 − v

2∗s−1
λ )φεdx

≤ C ′
λ

∫
∂H∩∂Aλ

v2
∗
s−2(x)(v − vλ)

2
+dx

≤ C ′
λ

(∫
∂H∩∂Aλ

v2
∗
s (x)dx

) 2∗s−2

2∗s
(∫

∂H∩∂Σλ

(v − vλ)
2∗s
+ dx

) 2
2∗s

,

where C ′
λ := (2∗s − 1) supx1>λ g(|x|n−2sv(x)). Recall that |x|n−2sv(x) → u(0) as |x| → ∞.

So C ′
λ → (2∗s − 1)g(u(0)) > 0 as λ → ∞, which implies that C ′

λ is bounded for λ being

away from zero. By virtue of the trace inequality (1.7), we deduce

S

(∫
∂H∩∂Σλ

(v − vλ)
2∗s
+ dx

) 2
2∗s ≤

∫
Σλ

ya|∇(v − vλ)+|2dX,

where S is the constant defined as in (1.7). Therefore,

I ≤ Cλ

(∫
∂H∩∂Aλ

v2
∗
s (x)dx

) 2∗s−2

2∗s
∫
Σλ

ya|∇(v − vλ)+|2dX,
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where Cλ is a positive constant which is bounded when λ is away from zero.

Finally, combining the estimate of I and J together and letting ε → 0, we obtain

(2.6). The proof is complete. �

As a consequence of (2.6), we infer immediately that for λ > 0 large enough, there

holds

Cλ

(∫
∂H∩∂Aλ

v2
∗
s

)2∗s−2

≤ 1

2
,

since v(x, 0) ∈ L2∗s (∂H ∩ ∂Σλ). Hence, for λ large enough we deduce that∫
Σλ

ya|∇(v − vλ)+|2 = 0.

Thus for λ large enough we obtain

v ≤ vλ in Σλ.

Step 2. Now we can move the plane. Define

μ = inf {λ > 0 : v ≤ vλ in Σλ} .
Lemma 2.4. If μ > 0, then v ≡ vμ in Σμ.

Proof. By continuity, we have v ≤ vμ in Σμ. Suppose on the contrary that v 
≡ vμ in Σμ.

Then for (x, 0) ∈ ∂H ∩ ∂Σμ, we have that

g(|x|n−2sv(x))vτ (x) =
f(|x|n−2sv(x))

|x|n+2s

≤ f(|x|n−2svμ(x))

|x|n+2s

= g
(|x|n−2svμ(x)

)
v2

∗
s−1

μ (x)

≤ g
(|xμ|n−2svμ(x)

)
v2

∗
s−1

μ (x).

Applying the comparison principle of lemma 2.1, we deduce that

v(x, y) < vμ(x, y) for (x, y) ∈ Σμ ∪ {X ∈ ∂H, x1 > μ}.
By virtue of the strict inequality, we find that the characteristic function χ∂Aλ

→ 0 a.e.

in R
n as λ → μ. Thus the Dominated convergence theorem implies

lim
λ→μ

Cλ

(∫
∂H∩∂Aλ

v2
∗
s

)2∗s−2

= 0.

Combining above limit together with the inequality (2.6), we conclude that there exists a

sufficiently small positive constant δ > 0 such that for all λ ∈ [μ− δ, μ]

v ≤ vλ in Σλ.

However, this is against the choice of μ. The proof of Lemma 2.4 is complete. �
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Now we can prove Theorem 1.1 in the nonhomogeneous case.

Case 1: g is not a constant function.

We show that u vanishes everywhere. To this end, first we claim that μ = 0. For

otherwise, μ > 0 implies that v ≡ vμ in Σμ. But then substituting the equality into

equations (2.2) and (2.4) leads to the identity

g(|x|n−2sv(x)) ≡ g(|xμ|n−2sv(x)) for all x ∈ ∂Σμ,

which is impossible since g is monotone and nonconstant. Hence μ = 0. Then we deduce

that

v(x1, x2, · · · , xn, y) ≤ v(−x1, x2, · · · , xn, y) for all (x1, x2, · · · , xn, y) ∈ Σ0.

By the same argument as that of the homogeneous case, we conclude u depends only on

the variable y. But then the equation can be explicitly solved by

u(x, y) = −f(m)

1− a
y1−a +m

for some constant m > 0. Thus u cannot be nonnegative for y large enough if f(m) > 0.

However, this happens, for otherwise if f(t0) = 0 for some t0 > 0, the monotonicity

assumptions (H1) and (H2) implies that g ≡ 0, which is against our assumption. Therefore,

there is no nontrivial nonnegative solution to equation (1.1).

Case 2: g ≡ constant > 0.

In this case, f(u) = f0u
2∗s−1 for some f0 > 0. With no loss of generality, we assume

that f0 = 1 so that g ≡ 1. The proof in this case is essentially the same as that of [10, 26]

but with some simplifications. We give a sketch of proof below. First we prove

Lemma 2.5. There exists a constant u∞ > 0 such that

lim
|X|→∞

|X|n−2su(X) = u∞. (2.7)

Proof. In fact, if μ > 0, then Lemma 2.4 shows that u has no singularity at infinity, and

so the result holds. Indeed, suppose that (2.7) does not hold. Then for any two different

point a, b ∈ ∂H, let c = (a+ b)/2 and consider the Kelvin transform centered at c:

v(X) =
1

|X − c|n−2s
u

(
X − c

|X − c|2 + c

)
.

Then v has singularity at X = c. Repeat the same argument in the above. We conclude

that μ = 0. Thus, v is radially symmetric about the axis that passes X = c and parallels

to y−axis. In particular, we have u(a) = u(b). Since a, b are two arbitrary points on ∂H,

u must depend only on y. We obtain a contradiction as in Case 1. The proof of Lemma

2.5 is complete. �

The following lemma is very useful to derive the formula (1.5).

Lemma 2.6. Let u be a solution to equation (1.1) and a ∈ R
n, λn−2s = u∞/u(a, 0). Then

we have

u(x, 0) =

(
λ

|x− a|
)n−2s

u

(
a+

λ2(x− a)

|x− a|2 , 0

)
, x ∈ R

n.
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Proof. First notice that in our case for any (a, 0) ∈ ∂H and δ > 0, the translation

u(· − (a, 0)) and the scaling uδ(X) = δ
n−2s

2 u(δX) are solutions to equation (1.1) as well.

Consider a = 0, λn−2s = u∞/u(0). Let e be any unit vector on ∂H, and set

v(X) =
1

|X − e|n−2s
uλ

(
X − e

|X − e|2 + e

)
.

Then v is a solution to (1.1) with v(0) = λ
n−2s

2 u(0), v(e) = λ−n−2s
2 u∞ by (2.7). By the

choice of λ, we also have v(0) = v(e). Hence v is radially symmetric with respect to

x = e/2. In particular, we have for any h ∈ R that(√
λ

|h|

)n−2s

u

(
λ
h− 1

h
e

)
=

( √
λ

|h− 1|

)n−2s

u

(
λ

h

h− 1
e

)
.

Letting t = h
h−1 , we arrive at

u(λte) =
1

|t|n−2s
u
(
λ
e

t

)
.

Thus for any (x, 0) ∈ ∂H, we achieve

u(x, 0) =

(
λ

|x|
)n−2s

u

(
λ2x

|x|2 , 0
)
.

Now the lemma follows from a translation. �

We are quite close to our result now. Combining Lemma 5.8 [23] and Lemma 2.6

yields

u(x, 0) =

(
cd

d2 + |x− x0|2
)n−2s

2

, x ∈ R
n

for some c, d > 0. Then, using a standard Caccioppoli type inequality, combining Lemma

2.5 and the above explicit formula of u(·, 0), we deduce that u has finite energy in the

upper plane in the sense that ∫
H

ya|∇u|2dX < ∞.

Next, let

Γ(x, y) =
(
P a
y ∗ u(·, 0)) (x).

Then Γ is a solution to equation (1.1) with Γ = u on ∂H as aforementioned in the intro-

duction. Moreover, notice that u(·, 0) ∈ Ḣs(Rn) holds since it is the function that achieves

the best constant for the fractional Sobolev inequality. Hence it follows from Proposition

3.5 of Frank and Lenzmann [15] (see also [16] for a higher dimensional analog) that Γ

satisfies ∫
H

ya|∇Γ|2dX < ∞.

Hence both u and Γ are finite energy solutions to equation (1.1) with the same boundary

value. This fact implies that u ≡ Γ in H. This finishes the proof for case 2. The proof of

Theorem 1.1 is complete.
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