
    

 

 

 
 
This is an electronic reprint of the original article.  
This reprint may differ from the original in pagination and typographic detail. 
 

Author(s): 

 

 

Title: 

 

Year: 

Version:  

 

Please cite the original version: 

 

 

  

 

 

All material supplied via JYX is protected by copyright and other intellectual property rights, and 
duplication or sale of all or part of any of the repository collections is not permitted, except that 
material may be duplicated by you for your research use or educational purposes in electronic or 
print form. You must obtain permission for any other use. Electronic or print copies may not be 
offered, whether for sale or otherwise to anyone who is not an authorised user. 

 

Sample allocation for efficient model-based small area estimation

Keto, Mauno; Pahkinen, Erkki

Keto, M., & Pahkinen, E. (2017). Sample allocation for efficient model-based small
area estimation. Survey Methodology, 43(1), 93-106.
http://www.statcan.gc.ca/pub/12-001-x/2017001/article/14817-eng.pdf

2017



Survey Methodology

Catalogue no. 12-001-X 
ISSN 1492-0921

by Mauno Keto and Erkki Pahkinen

Sample allocation for efficient model-based 
small area estimation

Release date: June 22, 2017



Standard table symbols
The following symbols are used in Statistics Canada  
publications:

.	 not available for any reference period 

..	 not available for a specific reference period 

...	 not applicable 
0	 true zero or a value rounded to zero 
0s	 value rounded to 0 (zero) where there is a meaningful 
	 distinction between true zero and the value that was rounded 
p	 preliminary 
r	 revised 
x	 suppressed to meet the confidentiality requirements  
	 of the Statistics Act 
E	 use with caution 
F	 too unreliable to be published 
*	 significantly different from reference category (p < 0.05)

How to obtain more information
For information about this product or the wide range of services and data available from Statistics Canada, visit our website, 
www.statcan.gc.ca. 
 
You can also contact us by 
 
email at STATCAN.infostats-infostats.STATCAN@canada.ca 
 
telephone, from Monday to Friday, 8:30 a.m. to 4:30 p.m., at the following toll-free numbers: 

•• Statistical Information Service	 1-800-263-1136
•• National telecommunications device for the hearing impaired	 1-800-363-7629
•• Fax line	 1-877-287-4369

 
Depository Services Program 

•• Inquiries line	 1-800-635-7943
•• Fax line	 1-800-565-7757

Published by authority of the Minister responsible for Statistics Canada

© Minister of Industry, 2017

All rights reserved. Use of this publication is governed by the Statistics Canada Open Licence Agreement.

An HTML version is also available.

Cette publication est aussi disponible en français.

Note of appreciation
Canada owes the success of its statistical system to a 
long‑standing partnership between Statistics Canada, the  
citizens of Canada, its businesses, governments and other 
institutions. Accurate and timely statistical information could not 
be produced without their continued co‑operation and goodwill.

Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, 
reliable and courteous manner. To this end, Statistics Canada has 
developed standards of service that its employees observe. To 
obtain a copy of these service standards, please contact Statistics 
Canada toll-free at 1-800-263-1136. The service standards are 
also published on www.statcan.gc.ca under “Contact us” > 
“Standards of service to the public.”

http://www.statcan.gc.ca
mailto:STATCAN.infostats-infostats.STATCAN%40canada.ca?subject=
http://www.statcan.gc.ca/eng/reference/licence-eng.htm
http://www.statcan.gc.ca/pub/12-001-x/2017001/article/14817-eng.htm
http://www.statcan.gc.ca/eng/about/service/standards


Survey Methodology, June 2017 93 
Vol. 43, No. 1, pp. 93-106 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Mauno Keto, University of Jyväskylä. E-mail: mauno.j.keto@student.jyu.fi; Erkki Pahkinen, Department of Mathematics and Statistics of 

University of Jyväskylä. E-mail: pahkinen@maths.jyu.fi. 

 

Sample allocation for efficient model-based small area 
estimation 

Mauno Keto and Erkki Pahkinen1 

Abstract 

We present research results on sample allocations for efficient model-based small area estimation in cases where 
the areas of interest coincide with the strata. Although model-assisted and model-based estimation methods are 
common in the production of small area statistics, utilization of the underlying model and estimation method are 
rarely included in the sample area allocation scheme. Therefore, we have developed a new model-based 
allocation named g1-allocation. For comparison, one recently developed model-assisted allocation is presented. 
These two allocations are based on an adjusted measure of homogeneity which is computed using an auxiliary 
variable and is an approximation of the intra-class correlation within areas. Five model-free area allocation 
solutions presented in the past are selected from the literature as reference allocations. Equal and proportional 
allocations need the number of areas and area-specific numbers of basic statistical units. The Neyman, Bankier 
and NLP (Non-Linear Programming) allocation need values for the study variable concerning area level 
parameters such as standard deviation, coefficient of variation or totals. In general, allocation methods can be 
classified according to the optimization criteria and use of auxiliary data. Statistical properties of the various 
methods are assessed through sample simulation experiments using real population register data. It can be 
concluded from simulation results that inclusion of the model and estimation method into the allocation method 
improves estimation results. 

 
Key Words: Optimal area sample size; Criteria; Auxiliary information; Measure of homogeneity. 

 
 

1  Introduction 
 

In this paper we present a new model-based allocation method in stratified sampling where the areas of 
interest coincide with the strata. Our study is focused on the components of an efficient area allocation. A 
clear starting point for the allocation process is reached if the areas of interest are defined as early as in the 

design phase of the research and if it is also known how large a sample is allowed in consideration of the 
disposable resources (time, budget etc.). The choice of the allocation method depends on various factors 
such as the selected model, estimation method, available pre-information of the population and the 

optimization criteria set only on area or population level, or on both levels simultaneously. 

We have selected six existing allocation methods and developed a new one which we call a model-based 
allocation. The general properties of these methods are examined in Section 2 and Section 3. Five of these 

allocations can be regarded as model-free. Two of them use only number-based information, such as the 
number of areas and the number of basic units in each area. Three other allocations need, in addition to 
number-based information, area level parameter information, such as area totals, standard deviation or 

coefficient of variation (CV). Because this information about the study variable is not available, a common 
solution is to replace it with a proper proxy variable. The last of the reference allocations, introduced by 
Molefe and Clark (MC) (2015), is a model-assisted allocation which is based on a composite estimator and 

a two-level model. We have named it MC-allocation. 

The optimization criteria of the five model-free allocations differ from one another. Allocations based 
only on area-specific numbers can be computed easily, but their choice is reasonable under limited 
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circumstances. In each of the parameter-based allocations the optimization criterion is different. It can be 
set on the level of the population parameter estimate (Neyman allocation) or on area level estimates in 
average (Bankier allocation). The third allocation solution, which deviates from the two former ones, is the 

NLP allocation, in which the tolerances of estimates are set on both population and area level. 

This article starts from the assumption that if model-assisted or model-based estimation is used in a 

survey the model and estimation method must be taken into account when the allocation of the sample into 

areas is designed. This was used as a starting point when the new model-based 1g  allocation, presented in 

Section 2, was derived. Also, one of the reference allocations, model-assisted allocation, is based on a given 

model. 

The comparison of performances of different allocation methods in real situations has been implemented 

by using simulation experiments and is presented in Section 4. An official Finnish register of block 

apartments for sale serves as the population. The structure of the register is introduced in Section 4.1. An 

auxiliary variable has been used in place of the study variable when computing the area sample sizes for 

each allocation except equal and proportional allocation. The comparison demonstrates clearly that these 

allocations lead to different sample distributions. The same kind of variety also concerns their performances. 

We have applied model-based EBLUP (Empirical Best Linear Unbiased Predictor) estimation on the 

allocations when estimating the area totals of the study variable. For measuring and comparing the 

performances of allocations, a relative root mean square error RRMSE% and absolute relative bias ARB% 

were used. 

In Section 5 empirical simulation results are discussed as concluding remarks. They support the 

allocation solution in which not only auxiliary information, but also the model and estimation method should 

be determined as early as in the design phase of a survey. A good example is the 1g  allocation presented 

in Section 2.2. The most accurate area estimates of area totals were obtained by using this method. 

 
2  Allocations which utilize the model 
 
2.1  Choosing the model 
 

Pfeffermann (2013) presents a wide variety of models and methods for small area estimation. Our model 
is one of this assortment, a unit-level mixed model 

 ; 1, , ; 1, , ,x βdk dk d dk dy v e k N d D       (2.1) 

where ’sdv  are random area effects with mean zero and variance 2
v  and ’sdke  are random effects with 

mean zero and variance 2 .e  Furthermore,  dk dkE y  x β  and   2 2
dk v eV y σ σ   (total variance). Matrix 

V  is the variance-covariance matrix of the study variable .y  This model can be used when unit-level values 

are available for the auxiliary variables .x  We use one auxiliary variable in our study. 

Two important measures are needed in developing one of these types of allocations. The first one is a 

common intra-area correlation   and the second one is the ratio   between variance components. They are 

defined as follows: 
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  2 2 2
v v eσ σ σ    and 2 2 1 1.e vσ σ     (2.2) 

Before estimating area parameters, the variance components, regression coefficients and area effects must 

be estimated from the sample data. The BLUE estimator (Best Linear Unbiased Estimator) of ,β  noted ,β  

is obtained according to the theory of the general linear model, and it is replaced with its EBLUP estimate ˆ.β  

The EBLUP estimate (predicted value) for the area total dY  of the study variable is the sum of the 

observed y  values and predicted y  values for units outside the sample: 

                                       ,Eblup
ˆˆ ˆ ˆ .x β

d d d d

d dk dk dk dk d d d
k s k s k s k s

Y y y y N n v
   

          (2.3) 

We use the Prasad-Rao approximation (See Rao 2003) of MSE (Mean Squared Error) for finite populations: 

                                     2 2 2 2 2 2 2 2
Eblup 1 2 3 4

ˆmse , , 2 , , ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆd, d v e d v e d v e d v eY g σ σ g σ σ g σ σ g σ σ     (2.4) 

where the four components 1 ,dg  2 ,dg  3dg  and 4 dg  are defined as follows:  

                            

     

         

          

   

   

22 2 * 2
1

2 12 2 * * *
2

32 2 12 2 * * 2 2 * 4 2
3

4 2 2 2 2 2

2 2 * 2
4

ˆ, 1 ,ˆ ˆ ˆ

ˆ ˆ, ,ˆ ˆ

,ˆ ˆ ˆ ˆ ˆ ˆ

2 Cov , ,ˆ ˆ ˆ ˆ ˆ ˆ

,ˆ ˆ ˆ

d v e d d d v

d v e d d d d d d d d

d v e d d d v e d e v

v e e v e v

d v e d d e

g σ σ N n γ σ

g σ σ N n

g σ σ N n n σ σ n σ V σ

σ V σ σ σ σ σ

g σ σ N n σ .

 

 

  

    

  

 

 

1x x X V X x x

 

(2.5)

 

The area sample sizes *
dn  depend on the sample and are not fixed. The component 1dg  contains the area-

specific ratio  2 2 2 *ˆ .ˆ ˆ ˆd v v e dγ σ σ σ n   According to Nissinen (2009, page 53), the 1dg  component (later 

simply 1)g  contributes generally over 90% of the estimated MSE. This component represents uncertainty 

as regards the variation between the areas. Of course this variation must be strong enough so that such a 

high proportion for 1g  exists. 

Unfortunately, the idea of an analytical solution, which means minimizing the sum of MSE’s over areas 

subject to 
1

,
D

dd
n n


   is difficult and laborious to accomplish because components of the MSE 

approximation (2.5) include sample information which is unknown, and some components contain complex 

matrix and variance-covariance operations. We have examined this allocation problem for the first time in 

an experimental study (Keto and Pahkinen 2009). Now we have developed an allocation based only on the 

component 1g  and auxiliary variable .x  The reasoning for this solution is that because x  and y  are 

correlated, the between-area variation in x  is transferred to .y  
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2.2  Model-based 1g allocation 
 

The 1g  allocation utilizes the auxiliary variable x  and the adjusted homogeneity coefficient (Keto and 

Pahkinen 2014). This coefficient is an approximation of an intra-class correlation (ICC) known of cluster 

sampling. We regard one area as one cluster. First, simple ANOVA between areas is carried out, and then 

the adjusted homogeneity measure of variation between the areas can be computed:  

                                                            2 2 21 1 MSW ,ax xR R x S     (2.6) 

where  2R x  is the coefficient of determination from regression analysis, MSW (Mean Square within) is 

the mean SS (Sum of Squares) of areas and 2
xS  is the variance of the auxiliary variable .x  

Because MSE of the area total is complex, we use only the component 1,g  which appears in (2.4) and 

(2.5), for the reason we have given in Section 2.1. We search for the minimum for the sum of 1’sg  over 

areas: 

                                                    2 12 2 2 2
1

1 1

, 1
D D

d v e d d d e v
d d

g σ σ N n n σ σ


 

     (2.7) 

subject to 
1

.
D

dd
n n


   

We use Lagrange’s multiplier method to find the solution. Therefore, we define the function F  of sample 

sizes  1 2, , , Dn n n n   and :  

                                   2 12 2 2 2
1

1 1 1

, , 1 .n
D D D

d v e d d d e v d
d d d

F g σ σ N n n σ σ n n 

  

      
 

    (2.8) 

We set the derivative of F  with respect to the area sample size dn  to zero and solve for .dn  The expression 

for area sample size 1g
dn  is as follows: 

                                   
       

 
1 1 1

,
1 1

g d d d
d

N δ n δD N n N N D n
n δ

N δ D N D




     
  

  
 (2.9) 

where the ratio   and the intra-area correlation   are defined in (2.2). The only unknown member in (2.9) 

is the intra-area correlation .  Therefore we substitute the known homogeneity measure (2.6) of the 

auxiliary variable x  for .  Thus the final expression for computing area sample sizes is 

                                                      
   

 
2

1

2

1 1
.

1 1
g d d ax
d

ax

N n N N D n R
n

N D R

   


 
 (2.10) 

It is easy to prove that 1

1
.

D g
dd

n n


  The computed sample sizes are rounded to the nearest integer. 

Sometimes compromises must be made. It can be concluded by the examination of (2.10) that the sample 

size increases when the size of area dN  increases, but not proportionally. Under certain circumstances, such 

as low homogeneity coefficient, low overall sample size n  or small size of area, dN  can lead to negative 

area sample size 1.g
dn  In this situation the negative value is changed to zero. A special case occurs if the 

total variation is only between areas causing value one to the measure of homogeneity (2.6), and (2.10) is 

reduced to proportional allocation. 
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2.3  Model-assisted MC-allocation 
 

Molefe and Clark (2015) have used the following composite estimator for estimating the mean of the 

study variable y  for area :d  

   ˆ1 .β XC
d d dr d dy y      (2.11) 

This estimator is a combination of two estimators: the synthetic estimator  syn
ˆ ˆ ,ddY  β X  where β̂  is the 

estimated regression coefficient and dX  is the area population means of auxiliary variables ,x  and a direct 

estimator  ˆ ,dr d d dy y   β x X  where dy  and dx  are the area d  sample means of y  and .x  We use 

one auxiliary variable in our study. The coefficients d  are set with the intent to minimize the MSE of the 

estimator (2.11). The approximated design-based MSE of the estimator under certain conditions and 

assumptions is given by the expression 

      
2 2 2

synMSE ; 1 ,C
p d d d d ddy Y v B     (2.12) 

where  syndv  is the sampling variance of the synthetic estimator  syn
ˆ
dY  and d U d dB Y β X  is the bias 

when  syn
ˆ
dY  is used to estimate ,dY  with Uβ  denoting the approximate design-based expectation of ˆ.β  

The population contains N  units and D  strata defined by areas, and stratified sampling is used. A 

random sample SRSWOR (Simple Random Sampling without Replacement) of dn  units is selected from 

stratum  1, ,d d D   containing dN  units. The relative size of area d  is .d dP N N  

A two-level linear model   conditional on the values of x  is assumed, with uncorrelated stratum random 

effects du  and random effects :i  

 
   
 
 

2

2

0
,

β xi i d i

d i

d ud

i ed

y u

E u E

V u

V

 











 

   


  


 
 

 (2.13) 

where i  refers to all units in stratum .d  This model implies that   2 2
i ud edV y     for all population units 

and  cov ,i jy y  equals 2
d d   for units i j  in the same stratum and zero for units from different strata, 

where  2 2 2 .d ud ud ed      A simplifying assumption that d   are equal for all strata is defined. 

After making some other simplifying assumptions and solving the optimal weight d  in (2.12), the final 

approximate optimum anticipated MSE or approximate model assisted mean squared error is obtained of 

(2.12): 

                                    12
optAMSE MSE ; 1 1 1 .C

d p d d d ddE y Y n              (2.14) 

Next the criterion F  using anticipated MSE’s of the small area mean and overall mean estimators for model-

assisted allocation is defined and developed into the final approximative form: 

                                     

   
        

1

12 2 2 1

1 1

ˆAMSE var

1 1 1 1 .

D
q q
d d p r

d
D D

q q
d d d d d d

d d

F N GN E Y

N σ n GN P n



    




 


 

 

     



 
 

(2.15)
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Optimal sample sizes for the areas are obtained by minimizing (2.15) subject to .dd
n n  Expression 

(2.15) follows the idea of Longford (2006). The weight q
dN  reflects the inferential priority (importance) for 

area ,d  with 0 2,q   and  
1

.
D qq

dd
N N 

   The quantity G  is a relative priority coefficient on the 

population level. Ignoring the goal of estimating the population mean corresponds to 0,G   and the 

attention is then only focused on area level estimation. On the other hand, the larger the value of ,G  the 

more the second component in (2.15) dominates and the more the area level estimation is ignored. 

We assume first that the population estimation has no priority  0G   and the unit survey cost are fixed. 

In this case minimization of (2.15) with respect of dn  has a unique solution 

 
2 2

,opt
2 1 2

1 1

1
1 .

q q
d d d d

d D Dq q
d d d dd d

n N N
n

N D N

  
 

 


  

 
  

 (2.16) 

The formula (2.16) contains two unknown parameters, the intra-class correlation   and the area-specific 

variance 2 .d  We replace   with an adjusted homogeneity coefficient of the auxiliary variable .x  This 

coefficient is an approximation of the ICC (Intra-Class Correlation) (Section 2.2). Parameter 2
d  is replaced 

with the variance of x  in area .d  The reason for both replacements is that y  is correlated with .x  If also 

the population estimation has a priority  0G   then (2.16) does not apply and F  must be minimized 

numerically by using, for example, the NLP method, as we have done (Excel Solver, NLP option).  

 
Table 2.1 
Summary of model-based and model-assisted allocations 
 

Method Computing sample size dn  for area d   Optimality level 
 

Model-based 1g  
   

 
2

1

2

1 1
,

1 1d

d d axg

ax

N n N N D n R
n

N D R

   


 
 

where 2
axR  is the adjusted homogeneity measure of auxiliary variable .x  

 

 Area 

 

Model-assisted MCG0  
 

MCG50 

2 2

,opt
2 1 2

1 1

1
1

q q
d d d d

d D Dq q
d d d dd d

n N N
n

N D N

  
 

 


  

 
  

 

Minimization of 

        12 2 2 1
1 1

1 1 1 1
D Dq q

d d d d d dd d
F N σ n GN P n     

 
        

with respect of .dn  Parameter   is replaced with 2
axR  and 2

d  with  2 .dS x  

 

 Jointly area 
 and population 

 

3  Some model-free area allocations 
 

The aim of this section is to list the five previously presented allocation methods in order to use them 

later as references. Depending on which kind of auxiliary information each one uses, they are divided into 

two groups: number-based and parameter-based allocations. 
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3.1  Number-based allocations  
 

Two basic allocation solutions commonly used go under the names equal allocation and proportional 

allocation. Neither of these allocations contains any specific criterion on the area or population level. Their 

implementation requires only information on the number of strata D  and the numbers of units dN  in each 

stratum.  

In the equal area allocation the sample size dn  is simply a quotient 

 Equ .dn n D  (3.1) 

It is recommended to choose the total sample size n  so that the quotient is a whole number. This allocation 

method does not take differences between the areas into account in any way, which results in inaccurate 

area estimates. A natural lower limit of the sample size is min 2 .n D  

Proportional allocation is a frequently used basic method. Area sample sizes are solved from 

  Pro .d dn n N N  (3.2) 

If the sizes of the areas vary strongly, it can lead to situations where the allocated sample size Pro 2dn   for 

one or more areas. This is an obstacle in calculating direct design-based estimates of standard errors. One 

solution is to apply the combined allocation proposed by Costa, Satorra and Ventura (2004). The idea is a 

weighted solution between the equal and proportional allocation depending on the situation. The combined 

area sample size is 

   EquCom Pro 1
d d dn kn k n    (3.3) 

for a specified constant  0 1 .k k   A minor problem is present if for some areas .dn D N  A modified 

solution exists for this case. 
 

3.2  Parameter-based allocations 
 

These allocations use area-level information of the study variable y  and in some cases of the auxiliary 

variable x  correlated with .y  The values of x  are available for all population units. In practice the unknown 

y  is replaced with a proper proxy variable *y  such as a study variable obtained from an earlier research of 

the same subject, or the values of *y  are generated with a suitable model developed of a small pre-sample. 

Also x  can be substituted for .y  Allocation criteria can be set on population level, only on area level or on 

combined population and area level. 

The Neyman allocation aims at reaching an optimal accuracy concerning population parameters  SD dy  

(Tschuprow 1923). The standard deviation of the study variable y  or some proxy variable and the number 

of units in each area must be known. Allocation favors large areas with strong variation. 

The Bankier or power allocation (1988) is based on a criterion set on the area level. Area CV values of 

y  are weighted by area total transformations q
dX  which contain a tuning constant .q  In practice *y  or x  

must be used in place of .y  Allocation favors mainly large areas with high CV.  

Choudhry, Rao and Hidiroglou (2012) present the NLP allocation method for direct estimation. This 

method uses non-linear programming to find a solution. Criteria for the allocation are defined by setting 
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upper limits for CV values of the study variable y  in each area and in the population. In practice *y  or x  

replaces .y  The program searches the minimum sample size dd
n n   satisfying these conditions. The 

SAS (Statistical Analysis System) procedure NLP with Newton-Raphson option was used to find the 

solution. The allocation favors areas with high CV regardless of the area size .dN  

A summary of the model-free allocations and the formulas for calculating area sample sizes are presented 

in Table 3.1. 

 
 
Table 3.1 
Summary of number-based and parameter-based allocations 
 

Allocation  Computing area sample size dn  Optimality level 

Equal Equ

d
n n D  Area 

Proportional  Pro
d dn n N N  Population 

Neyman  Ney

1
,

d

D

d d d dd
n n N S N S


   where dS  is the standard deviation of y  

(in practise *y  or )x  in area .d  

Population 

Bankier     Ban
1

CV CV ,
Dq q

d d d dd d
n n X y X y


   where dX  is the area total of 

,x   CVd d dy S Y  and q  is a tuning constant. In practise *y  or x  

replace .y  

Area 

NLP  NLP
1

min
D

st dd
n n


   satisfying tolerances   0CV CVd dy   and 

  0CV CV .sty   In practise *y  or x  replace .y  

Jointly population and area 

 
Some other parameter-based allocation methods are mentioned briefly. For example Longford (2006) 

introduced inferential priorities dP  for the strata d  and G  for the population and used those constraints for 

allocation. Another solution is presented by Falorsi and Righi (2008). This solution does not contain a direct 

imposition of quotas, but tries to solve the comprehensive collection of data by using a multi-stage sampling 

design, so that the area estimation can be implemented effectively. 

 

4  Comparison of performances of allocations  
 

In this section we study the performances of the allocation methods introduced in Sections 2 and 3. The 

estimated parameters are area and population totals of the study variable .y  The overall sample size 

112.n   Section 4.1 includes the description of the research data. Simulation experiments and comparisons 

of allocations are presented in Section 4.3. 
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4.1  Empirical data 
 

Our research data is obtained from a national Finnish register of block apartments for sale. This register 

is maintained by a private company, Alma Mediapartners Ltd, whose customers are real estate agencies. 

They save all the necessary information of the apartments into this register as soon as they receive an 

assignment from the owners. The population we have used consists of 9,815 block apartments (these serve 

as sampling units) for sale selected from the register. They represent 14 Finnish districts, mainly towns, in 

spring 2011. The sizes of the smallest and largest area were 112 and 1,333, respectively. The study variable 

 y  measures the apartment price (1,000 €) and the auxiliary variable  x  measures the size (m2). Area 

sizes   ,dN  population summary statistics (totals, means, standard deviations and CVs) for y  and ,x  as 

well as correlations between x  and ,y  are given in Table 4.1. The characteristics of the areas have a wide 

range. The most diverging area is Helsinki. 

 
Table 4.1 
Population summary statistics 
 

Area Study variable y  Auxiliary variable x  Correlation 

Label dN  dY  dY   dS y  CVd y dX  dX   dS x   CVd x  yxr  

Porvoo town 112 25,409 226.86 207.82 0.916 8,940 79.82 50.67 0.635 0.877 

Pirkkala district 148 30,323 204.88 87.82 0.429 11,149 75.33 23.78 0.316 0.823 

South Savo county 493 64,863 131.57 72.90 0.554 32,644 66.22 20.25 0.306 0.437 

Jyväskylä town 494 89,941 182.07 69.65 0.383 40,000 80.97 17.62 0.218 0.509 

Lappi county 555 62,143 111.97 50.15 0.448 30,805 55.50 16.22 0.292 0.207 

South-East Finland 585 98,504 168.38 106.78 0.634 47,750 81.62 21.68 0.266 0.601 

Helsinki (capital) 621 437,902 705.16 562.38 0.798 76,931 123.88 57.98 0.468 0.753 

West coast district 655 108,339 165.40 75.85 0.459 50,903 77.71 36.39 0.468 0.439 

Trackside district 818 148,845 181.96 65.08 0.358 59,220 72.40 23.84 0.321 0.517 

Kuopio district 871 126,867 145.66 75.79 0.520 64,103 73.60 23.27 0.324 0.580 

Turku district 958 166,613 173.92 131.62 0.757 79,970 83.48 25.71 0.308 0.635 

Oulu district 1,072 133,591 124.62 50.19 0.403 59,210 55.23 16.92 0.306 0.392 

Metropol area 1,100 263,293 239.36 117.84 0.492 80,034 72.76 26.37 0.362 0.754 

Lahti-Tampere distr. 1,333 262,400 196.85 110.76 0.563 105,804 79.37 25.54 0.322 0.602 

Population 9,815 2,019,031 205.71 215.52 1.048 747,462 76.16 31.76 0.417 0.674 

 
The adjusted measure of homogeneity of the auxiliary variable x  is 2 0.231axR   indicating quite strong 

variability between the areas. 

 
4.2  Allocations 
 

In general, the overall sample size depends on the available time and financial resources in the research 

project. This aspect has not been taken into account now, because it is a question of an experimental study. 
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The value of the sampling ratio was determined as    % 100 112 9,815 1.14%.f     Method-specific 

allocations were produced according to the formulas presented in Table 2.1 and Table 3.1. Some details 

have been taken into account. In the Bankier allocation the value of a tuning constant q  is 0.5. In the NLP 

allocation the selected CV limits 0.1258 (12.58%) for areas and the CV limit 0.0375 (3.75%) for the 

population lead to the overall sample size 112. We use the Excel Solver procedure with non-linear option 

for solving the NLP allocation problem. We use a modified proportional allocation to obtain an area sample 

size which is at least two. First we allocated one unit for every area and then allocated the rest 98 units by 

using proportionality. We have substituted x  for y  in every parameter-based allocation. In the model-

assisted allocations the value of q  was set to 1, and the quantity G  was set to zero and 50. The final sample 

sizes in each allocation are presented in Table 4.2. The variation of sample sizes on area level is very strong 

between the allocations. 

 

Table 4.2 
Area sample sizes by allocation 
 

Area 
Model-
based 

Composite estim. 
Model-assisted 

Number-based
allocations 

Parameter-based  
allocations 

Label dN  *1g  *MCG0  *MCG50  EQU PRO Ney _ X  Ban _ X  NLP _ X  

Porvoo town 112 0 6 3 8 2 2 6 20 

Pirkkala district 148 0 2 2 8 2 2 4 6 

South Savo county 493 5 4 4 8 6 4 6 6 

Jyväskylä town 494 5 3 4 8 6 4 5 3 

Lappi county 555 6 3 4 8 6 4 5 5 

South-East Finland 585 6 6 5 8 7 6 6 4 

Helsinki (capital) 621 7 21 16 8 7 16 14 14 

West coast district 655 7 12 11 8 8 10 11 14 

Trackside district 818 10 8 8 8 9 9 8 7 

Kuopio district 871 11 8 9 8 10 9 8 6 

Turku district 958 12 10 11 8 11 11 9 6 

Oulu district 1,072 13 6 8 8 12 8 8 6 

Metropol area 1,100 13 11 12 8 12 13 11 8 

Lahti-Tampere district 1,333 17 12 15 8 14 14 11 7 

Total 9,815 112 112 112 112 112 112 112 112 
* based on the adjusted coefficient of homogeneity (value 0.231) computed of .x  

 
 

4.3  Comparison of performances of allocations 
 

In this section we present the results based on design-based simulation experiments. For each allocation, 

1,500 independent stratified SRSWOR samples were simulated with the SAS program and necessary 

calculations from the simulated samples were implemented with SPSS (Statistical Package for the Social 

Sciences) program. We have applied model-based EBLUP estimation on the samples for each allocation. 

For comparison of the allocations, we have computed two quality measures: RRMSE %d  and ARB %d  

for each allocation. 

Assume that r  simulated samples are drawn in each allocation, and let ,EBLUPd̂iY  be the EBLUP estimate 

of the area total dY  in the thi  sample  1, , .i r   Then RRMSE %d  and ARB %d  are defined as 
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 
 

2

,EBLUP1

,EBLUP1

ˆRRMSE % 100 1 ,

ˆARB % 100 1 1 ,

r

d di d di

r

d di di

r Y Y Y

D Y Y





  

  




  

and their means over areas are computed as follows:  

 
1 1

MRRMSE% 1 RRMSE % and MARB% 1 ARB %.
D D

d dd d
D D

 
     

The estimate for the population total in the thi  simulated sample  1, ,i r   is the sum of the estimates of 

the area totals: , EBLUP , EBLUP1
ˆ ˆ .

D

i did
Y Y


   RRMSE% for the population total is computed as 

                                     2

pop ,EBLUP1
ˆRRMSE % 100 1 ,

r

ii
r Y Y Y


     

where Y  is the true value of the population total, for which ARB% is computed as 

                                           pop ,EBLUP1
ˆARB % 100 1 1 .

r

ii
r Y Y


     

Tables 4.3 and 4.4 contain RRMSE% and ARB% values for areas, their means over areas and population 

RRMSE%s and ARB%s in each allocation. The evaluation of the results was based on two arguments. One was 

the mean value of the quality measure on the area level and the other was the value of the quality measure on the 

population level. 
 

Table 4.3 
Area and population RRMSE%s by allocation 
 

Area dN  1g  MCG0  MCG50  EQU PRO Ney _ X  Ban _ X  NLP _ X  

Porvoo town 112 8.08 14.63 15.93 13.41 19.79 16.49 14.78 10.10 

Pirkkala district 148 6.60 9.72 10.77 8.35 12.04 10.60 9.76 8.97 

South Savo county 493 22.29 22.77 23.20 18.63 20.70 23.20 20.16 20.88 

Jyväskylä town 494 15.36 24.55 20.70 13.61 14.43 20.83 18.33 21.98 

Lappi county 555 21.72 28.19 26.19 19.91 21.34 25.45 23.97 22.59 

South-East Finland 585 20.76 27.25 25.93 19.68 19.64 24.37 24.31 27.81 

Helsinki (capital) 621 22.72 12.68 14.97 21.92 23.15 14.35 16.02 16.43 

West coast district 655 21.15 22.43 21.57 20.35 19.92 21.75 20.67 18.91 

Trackside district 818 11.93 12.86 13.63 12.31 11.38 13.73 12.76 13.47 

Kuopio district 871 16.22 23.22 20.70 19.21 16.37 20.84 20.82 23.49 

Turku district 958 17.56 24.75 21.66 20.94 17.74 21.57 22.70 26.44 

Oulu district 1,072 14.39 25.40 21.14 16.96 14.34 21.22 19.00 19.81 

Metropol area 1,100 9.59 11.31 10.86 12.14 9.78 10.16 10.78 11.55 

Lahti-Tampere distr. 1,333 10.54 13.43 11.66 13.35 10.64 12.76 12.87 14.98 

Mean over areas (%)  15.65 19.51 18.59 16.48 16.52 18.38 17.64 18.39 

Population value (%)  6.15 6.53 5.88 6.13 5.97 6.07 5.89 6.62 

 
The lowest RRMSE% mean over the areas (15.65%) was obtained in the 1g  allocation developed in 

this study. Helsinki was an exception on area level because its RRMSE% value was clearly higher compared 
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with model-assisted and parameter-based allocations. Also equal and proportional allocations performed 

well on area level, with means 16.48% and 16.52%. The highest means were obtained in the model-assisted 

MC-allocations. On the population level, the lowest value for the quality measure was obtained in the model-

assisted MCG50-allocation (5.88%) and the second lowest value in the Bankier allocation (5.89%), but in 

general, differences between the allocations on this level were small. 

 

Table 4.4 
Area and population ARB%s by allocation 
 

Area dN  1g  MCG0 MCG50 EQU PRO Ney _ X  Ban _ X  NLP _ X

Porvoo town 112 2.28 2.20 0.97 0.04 1.26 1.28 0.98 0.79 

Pirkkala district 148 0.17 2.10 1.08 0.19 0.79 0.85 0.86 1.15 

South Savo county 493 8.08 11.81 10.87 6.76 7.29 11.47 9.09 9.81 

Jyväskylä town 494 6.09 19.78 15.36 6.10 5.82 14.33 12.16 16.31 

Lappi county 555 2.08 5.27 3.14 1.45 2.70 2.44 1.22 1.44 

South-East Finland 585 9.05 20.62 18.28 9.53 8.11 15.69 15.96 20.41 

Helsinki (capital) 621 9.71 6.38 7.93 10.95 11.59 7.43 8.80 9.45 

West coast district 655 7.83 12.34 11.60 9.07 8.16 12.69 10.52 10.87 

Trackside district 818 1.21 3.11 1.78 1.76 0.96 2.61 2.10 2.94 

Kuopio district 871 6.00 14.90 10.68 9.37 6.53 11.33 11.77 15.56 

Turku district 958 5.26 16.46 12.59 8.48 5.78 11.54 13.27 16.91 

Oulu district 1,072 0.81 10.17 6.08 1.88 1.84 6.47 4.71 4.00 

Metropol area 1,100 3.06 5.84 5.11 5.29 3.37 4.39 5.12 5.76 

Lahti-Tampere distr. 1,333 1.86 6.14 3.97 3.62 1.79 4.65 4.37 6.10 

Mean over areas (%)  4.53 9.79 7.82 5.32 4.71 7.66 7.21 9.15 

Population value (%)  0.01 3.33 2.05 0.18 0.50 2.26 1.83 3.01 

 

The 1g  allocation was the only allocation with absolute relative bias less than 10% on each area, and 

it had a practically zero bias on the population level. Also the equal and proportional allocations had low 

biases on both levels, but the model-assisted and parameter-based allocations had a clearly poorer 

performance. An interesting detail in the 1g  allocation is that the accuracy of area estimates is fairly good 

and the relative bias is low also for the case of two areas with zero sample size. A common characteristic 

for these areas is that the means of variables y  and x  are close to corresponding population means. In any 

case, it is essential that the model-based estimation can produce reliable estimates for areas, which are not 

represented in the random sample. 

 

5  Concluding remarks 
 

This research was focused on seven different allocation solutions which were categorized into three 

groups according to the auxiliary data needed in their implementation. The least amount of auxiliary 

information is needed in equal and proportional allocation which are based on the number of areas and the 

number of statistical units in each area. The Neyman, Bankier and NLP allocations are based on pre-set 

optimization criteria, and application of these methods presumes area-specific parameter information such 
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as the standard deviation or CV of the study variable, and in the Bankier allocation the area totals of at least 

one auxiliary variable must be known. Because the study variable is unknown, it must be replaced with a 

suitable proxy or auxiliary variable to enable the use of these three methods. A common feature of the 

number-based and parameter-based allocations is that they are not based on any model, whereas the other 

three allocations utilize the underlying model, in addition to number-based information.  

On the basis of the empirical results, the performance of the model-based 1g  allocation can be regarded 

as the best compared with the other allocations tested in this research. Also equal and proportional 

allocations reached good results, but the model-assisted allocations and the parameter-based allocations had 

clearly weaker performances. The last three allocations are developed originally for direct design-based 

estimation, and their results can be understood from that point of view. Compared with 1g  allocation, the 

MC-allocations are based on a different model and this fact seems to affect their results. 

One of the characteristics of the 1g  allocation is that when the sampling design is constructed, also the 

model and estimation method are fixed, meaning that they are regarded as given preliminary information. 

This allocation, which is based on a unit-level linear mixed model and EBLUP estimation method, needs 

only the homogeneity coefficient between areas which is computed by using the values of the auxiliary 

variable. In this respect, the 1g  allocation differs from the other allocations used in the comparison. Also 

the starting point for choosing the final estimation method is different, because this allocation is focused on 

model-based estimation, not on direct design-based estimation using sampling weights. The choice of the 

model-based estimation is justified also for the reason that it is commonly used in small area estimation. On 

the other hand, the 1g  allocation enables the use of small sample sizes, because information can be 

borrowed between areas when the model is applied. This can be significant in quick surveys or studies 

carried out by market research organizations, when a single measurement is expensive. However, it is 

important to examine the characteristics of the areas and especially the small areas, before the final sample 

sizes are determined. 

As a recommendation, it would be justified to start a wider research to find out what advantages and 

disadvantages are encountered if the applicable computing technique for producing area statistics is decided 

as early as in the design of the research plan. 

 
Acknowledgements 
 

The authors thank the Editor, Associate Editor and two referees as well as Professor Risto Lehtonen for 

constructive comments and suggestions. 

 
References 

 

Bankier, M.D. (1988). Power allocations: Determining sample sizes for subnational areas. The American 
Statistician, 42, 174-177. 

 
Choudhry, G.H., Rao, J.N.K. and Hidiroglou, M.A. (2012). On sample allocation for efficient domain 

estimation. Survey Methodology, 38, 1, 23-29. Paper available at http://www.statcan.gc.ca/pub/12-001-
x/2012001/article/11682-eng.pdf. 

 



106 Keto and Pahkinen: Sample allocation for efficient model-based small area estimation 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Costa, A., Satorra, A. and Ventura, E. (2004). Improving both domain and total area estimation by 
composition. SORT, 28(1), 69-86. 

 
Falorsi, P.D., and Righi, P. (2008). A balanced sampling approach for multi-way stratification for small area 

estimation. Survey Methodology, 34, 2, 223-234. Paper available at http://www.statcan.gc.ca/pub/12-
001-x/2008002/article/10763-eng.pdf. 

 
Keto, M., and Pahkinen, E. (2009). On sample allocation for effective EBLUP estimation of small area 

totals – “Experimental Allocation”. In Survey Sampling Methods in Economic and Social Research, 
(Eds., J. Wywial and W. Gamrot), 2010. Katowice: Katowice University of Economics. 

 
Keto, M., and Pahkinen, E. (2014). On sample allocation for efficient small area estimation. Book of 

Abstracts. SAE 2014, Poland: Poznan University of Economics, page 50. 
 
Longford, N.T. (2006). Sample size calculation for small-area estimation. Survey Methodology, 32, 1, 87-

96. Paper available at http://www.statcan.gc.ca/pub/12-001-x/2006001/article/9259-eng.pdf. 
 
Molefe, W.B., and Clark, R.G. (2015). Model-assisted optimal allocation for planned domains using 

composite estimation. Survey Methodology, 41, 2, 377-387. Paper available at 
http://www.statcan.gc.ca/pub/12-001-x/2015002/article/14230-eng.pdf. 

 
Nissinen, K. (2009). Small Area Estimation with Linear Mixed Models from Unit-Level Panel and Rotating 

Panel Data. Ph.D. thesis, University of Jyväskylä, Department of Mathematics and Statistics, Report 
117, https://jyx.jyu.fi/dspace/handle/123456789/21312. 

 
Pfefferman, D. (2013). New important developments in small area estimation. Statistical Science, 28, 40-

68. 
 
Rao, J.N.K. (2003). Small Area Estimation. Hobogen, New Jersey: John Wiley & Sons, Inc. 
 
Tschuprow, A.A. (1923). On the mathematical expectation of the moments of frequency distributions in the 

case of correlated observations. Metron, Vol. 2, 3, 461-493; 4, 646-683. 


